Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/compiler/glsl/ast_function.cpp
4547 views
1
/*
2
* Copyright © 2010 Intel Corporation
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice (including the next
12
* paragraph) shall be included in all copies or substantial portions of the
13
* Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21
* DEALINGS IN THE SOFTWARE.
22
*/
23
24
#include "glsl_symbol_table.h"
25
#include "ast.h"
26
#include "compiler/glsl_types.h"
27
#include "ir.h"
28
#include "main/mtypes.h"
29
#include "main/shaderobj.h"
30
#include "builtin_functions.h"
31
32
static ir_rvalue *
33
convert_component(ir_rvalue *src, const glsl_type *desired_type);
34
35
static unsigned
36
process_parameters(exec_list *instructions, exec_list *actual_parameters,
37
exec_list *parameters,
38
struct _mesa_glsl_parse_state *state)
39
{
40
void *mem_ctx = state;
41
unsigned count = 0;
42
43
foreach_list_typed(ast_node, ast, link, parameters) {
44
/* We need to process the parameters first in order to know if we can
45
* raise or not a unitialized warning. Calling set_is_lhs silence the
46
* warning for now. Raising the warning or not will be checked at
47
* verify_parameter_modes.
48
*/
49
ast->set_is_lhs(true);
50
ir_rvalue *result = ast->hir(instructions, state);
51
52
/* Error happened processing function parameter */
53
if (!result) {
54
actual_parameters->push_tail(ir_rvalue::error_value(mem_ctx));
55
count++;
56
continue;
57
}
58
59
ir_constant *const constant =
60
result->constant_expression_value(mem_ctx);
61
62
if (constant != NULL)
63
result = constant;
64
65
actual_parameters->push_tail(result);
66
count++;
67
}
68
69
return count;
70
}
71
72
73
/**
74
* Generate a source prototype for a function signature
75
*
76
* \param return_type Return type of the function. May be \c NULL.
77
* \param name Name of the function.
78
* \param parameters List of \c ir_instruction nodes representing the
79
* parameter list for the function. This may be either a
80
* formal (\c ir_variable) or actual (\c ir_rvalue)
81
* parameter list. Only the type is used.
82
*
83
* \return
84
* A ralloced string representing the prototype of the function.
85
*/
86
char *
87
prototype_string(const glsl_type *return_type, const char *name,
88
exec_list *parameters)
89
{
90
char *str = NULL;
91
92
if (return_type != NULL)
93
str = ralloc_asprintf(NULL, "%s ", return_type->name);
94
95
ralloc_asprintf_append(&str, "%s(", name);
96
97
const char *comma = "";
98
foreach_in_list(const ir_variable, param, parameters) {
99
ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
100
comma = ", ";
101
}
102
103
ralloc_strcat(&str, ")");
104
return str;
105
}
106
107
static bool
108
verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
109
const ir_variable *formal, const ir_variable *actual)
110
{
111
/**
112
* From the ARB_shader_image_load_store specification:
113
*
114
* "The values of image variables qualified with coherent,
115
* volatile, restrict, readonly, or writeonly may not be passed
116
* to functions whose formal parameters lack such
117
* qualifiers. [...] It is legal to have additional qualifiers
118
* on a formal parameter, but not to have fewer."
119
*/
120
if (actual->data.memory_coherent && !formal->data.memory_coherent) {
121
_mesa_glsl_error(loc, state,
122
"function call parameter `%s' drops "
123
"`coherent' qualifier", formal->name);
124
return false;
125
}
126
127
if (actual->data.memory_volatile && !formal->data.memory_volatile) {
128
_mesa_glsl_error(loc, state,
129
"function call parameter `%s' drops "
130
"`volatile' qualifier", formal->name);
131
return false;
132
}
133
134
if (actual->data.memory_restrict && !formal->data.memory_restrict) {
135
_mesa_glsl_error(loc, state,
136
"function call parameter `%s' drops "
137
"`restrict' qualifier", formal->name);
138
return false;
139
}
140
141
if (actual->data.memory_read_only && !formal->data.memory_read_only) {
142
_mesa_glsl_error(loc, state,
143
"function call parameter `%s' drops "
144
"`readonly' qualifier", formal->name);
145
return false;
146
}
147
148
if (actual->data.memory_write_only && !formal->data.memory_write_only) {
149
_mesa_glsl_error(loc, state,
150
"function call parameter `%s' drops "
151
"`writeonly' qualifier", formal->name);
152
return false;
153
}
154
155
return true;
156
}
157
158
static bool
159
verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
160
ir_variable *var)
161
{
162
if (!var ||
163
(!var->is_in_shader_storage_block() &&
164
var->data.mode != ir_var_shader_shared)) {
165
_mesa_glsl_error(loc, state, "First argument to atomic function "
166
"must be a buffer or shared variable");
167
return false;
168
}
169
return true;
170
}
171
172
static bool
173
is_atomic_function(const char *func_name)
174
{
175
return !strcmp(func_name, "atomicAdd") ||
176
!strcmp(func_name, "atomicMin") ||
177
!strcmp(func_name, "atomicMax") ||
178
!strcmp(func_name, "atomicAnd") ||
179
!strcmp(func_name, "atomicOr") ||
180
!strcmp(func_name, "atomicXor") ||
181
!strcmp(func_name, "atomicExchange") ||
182
!strcmp(func_name, "atomicCompSwap");
183
}
184
185
static bool
186
verify_atomic_image_parameter_qualifier(YYLTYPE *loc, _mesa_glsl_parse_state *state,
187
ir_variable *var)
188
{
189
if (!var ||
190
(var->data.image_format != PIPE_FORMAT_R32_UINT &&
191
var->data.image_format != PIPE_FORMAT_R32_SINT &&
192
var->data.image_format != PIPE_FORMAT_R32_FLOAT)) {
193
_mesa_glsl_error(loc, state, "Image atomic functions should use r32i/r32ui "
194
"format qualifier");
195
return false;
196
}
197
return true;
198
}
199
200
static bool
201
is_atomic_image_function(const char *func_name)
202
{
203
return !strcmp(func_name, "imageAtomicAdd") ||
204
!strcmp(func_name, "imageAtomicMin") ||
205
!strcmp(func_name, "imageAtomicMax") ||
206
!strcmp(func_name, "imageAtomicAnd") ||
207
!strcmp(func_name, "imageAtomicOr") ||
208
!strcmp(func_name, "imageAtomicXor") ||
209
!strcmp(func_name, "imageAtomicExchange") ||
210
!strcmp(func_name, "imageAtomicCompSwap") ||
211
!strcmp(func_name, "imageAtomicIncWrap") ||
212
!strcmp(func_name, "imageAtomicDecWrap");
213
}
214
215
216
/**
217
* Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
218
* that 'const_in' formal parameters (an extension in our IR) correspond to
219
* ir_constant actual parameters.
220
*/
221
static bool
222
verify_parameter_modes(_mesa_glsl_parse_state *state,
223
ir_function_signature *sig,
224
exec_list &actual_ir_parameters,
225
exec_list &actual_ast_parameters)
226
{
227
exec_node *actual_ir_node = actual_ir_parameters.get_head_raw();
228
exec_node *actual_ast_node = actual_ast_parameters.get_head_raw();
229
230
foreach_in_list(const ir_variable, formal, &sig->parameters) {
231
/* The lists must be the same length. */
232
assert(!actual_ir_node->is_tail_sentinel());
233
assert(!actual_ast_node->is_tail_sentinel());
234
235
const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
236
const ast_expression *const actual_ast =
237
exec_node_data(ast_expression, actual_ast_node, link);
238
239
YYLTYPE loc = actual_ast->get_location();
240
241
/* Verify that 'const_in' parameters are ir_constants. */
242
if (formal->data.mode == ir_var_const_in &&
243
actual->ir_type != ir_type_constant) {
244
_mesa_glsl_error(&loc, state,
245
"parameter `in %s' must be a constant expression",
246
formal->name);
247
return false;
248
}
249
250
/* Verify that shader_in parameters are shader inputs */
251
if (formal->data.must_be_shader_input) {
252
const ir_rvalue *val = actual;
253
254
/* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */
255
if (val->ir_type == ir_type_swizzle) {
256
if (!state->is_version(440, 0)) {
257
_mesa_glsl_error(&loc, state,
258
"parameter `%s` must not be swizzled",
259
formal->name);
260
return false;
261
}
262
val = ((ir_swizzle *)val)->val;
263
}
264
265
for (;;) {
266
if (val->ir_type == ir_type_dereference_array) {
267
val = ((ir_dereference_array *)val)->array;
268
} else if (val->ir_type == ir_type_dereference_record &&
269
!state->es_shader) {
270
val = ((ir_dereference_record *)val)->record;
271
} else
272
break;
273
}
274
275
ir_variable *var = NULL;
276
if (const ir_dereference_variable *deref_var = val->as_dereference_variable())
277
var = deref_var->variable_referenced();
278
279
if (!var || var->data.mode != ir_var_shader_in) {
280
_mesa_glsl_error(&loc, state,
281
"parameter `%s` must be a shader input",
282
formal->name);
283
return false;
284
}
285
286
var->data.must_be_shader_input = 1;
287
}
288
289
/* Verify that 'out' and 'inout' actual parameters are lvalues. */
290
if (formal->data.mode == ir_var_function_out
291
|| formal->data.mode == ir_var_function_inout) {
292
const char *mode = NULL;
293
switch (formal->data.mode) {
294
case ir_var_function_out: mode = "out"; break;
295
case ir_var_function_inout: mode = "inout"; break;
296
default: assert(false); break;
297
}
298
299
/* This AST-based check catches errors like f(i++). The IR-based
300
* is_lvalue() is insufficient because the actual parameter at the
301
* IR-level is just a temporary value, which is an l-value.
302
*/
303
if (actual_ast->non_lvalue_description != NULL) {
304
_mesa_glsl_error(&loc, state,
305
"function parameter '%s %s' references a %s",
306
mode, formal->name,
307
actual_ast->non_lvalue_description);
308
return false;
309
}
310
311
ir_variable *var = actual->variable_referenced();
312
313
if (var && formal->data.mode == ir_var_function_inout) {
314
if ((var->data.mode == ir_var_auto ||
315
var->data.mode == ir_var_shader_out) &&
316
!var->data.assigned &&
317
!is_gl_identifier(var->name)) {
318
_mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
319
var->name);
320
}
321
}
322
323
if (var)
324
var->data.assigned = true;
325
326
if (var && var->data.read_only) {
327
_mesa_glsl_error(&loc, state,
328
"function parameter '%s %s' references the "
329
"read-only variable '%s'",
330
mode, formal->name,
331
actual->variable_referenced()->name);
332
return false;
333
} else if (!actual->is_lvalue(state)) {
334
_mesa_glsl_error(&loc, state,
335
"function parameter '%s %s' is not an lvalue",
336
mode, formal->name);
337
return false;
338
}
339
} else {
340
assert(formal->data.mode == ir_var_function_in ||
341
formal->data.mode == ir_var_const_in);
342
ir_variable *var = actual->variable_referenced();
343
if (var) {
344
if ((var->data.mode == ir_var_auto ||
345
var->data.mode == ir_var_shader_out) &&
346
!var->data.assigned &&
347
!is_gl_identifier(var->name)) {
348
_mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
349
var->name);
350
}
351
}
352
}
353
354
if (formal->type->is_image() &&
355
actual->variable_referenced()) {
356
if (!verify_image_parameter(&loc, state, formal,
357
actual->variable_referenced()))
358
return false;
359
}
360
361
actual_ir_node = actual_ir_node->next;
362
actual_ast_node = actual_ast_node->next;
363
}
364
365
/* The first parameter of atomic functions must be a buffer variable */
366
const char *func_name = sig->function_name();
367
bool is_atomic = is_atomic_function(func_name);
368
if (is_atomic) {
369
const ir_rvalue *const actual =
370
(ir_rvalue *) actual_ir_parameters.get_head_raw();
371
372
const ast_expression *const actual_ast =
373
exec_node_data(ast_expression,
374
actual_ast_parameters.get_head_raw(), link);
375
YYLTYPE loc = actual_ast->get_location();
376
377
if (!verify_first_atomic_parameter(&loc, state,
378
actual->variable_referenced())) {
379
return false;
380
}
381
} else if (is_atomic_image_function(func_name)) {
382
const ir_rvalue *const actual =
383
(ir_rvalue *) actual_ir_parameters.get_head_raw();
384
385
const ast_expression *const actual_ast =
386
exec_node_data(ast_expression,
387
actual_ast_parameters.get_head_raw(), link);
388
YYLTYPE loc = actual_ast->get_location();
389
390
if (!verify_atomic_image_parameter_qualifier(&loc, state,
391
actual->variable_referenced())) {
392
return false;
393
}
394
}
395
396
return true;
397
}
398
399
struct copy_index_deref_data {
400
void *mem_ctx;
401
exec_list *before_instructions;
402
};
403
404
static void
405
copy_index_derefs_to_temps(ir_instruction *ir, void *data)
406
{
407
struct copy_index_deref_data *d = (struct copy_index_deref_data *)data;
408
409
if (ir->ir_type == ir_type_dereference_array) {
410
ir_dereference_array *a = (ir_dereference_array *) ir;
411
ir = a->array->as_dereference();
412
413
ir_rvalue *idx = a->array_index;
414
ir_variable *var = idx->variable_referenced();
415
416
/* If the index is read only it cannot change so there is no need
417
* to copy it.
418
*/
419
if (!var || var->data.read_only || var->data.memory_read_only)
420
return;
421
422
ir_variable *tmp = new(d->mem_ctx) ir_variable(idx->type, "idx_tmp",
423
ir_var_temporary);
424
d->before_instructions->push_tail(tmp);
425
426
ir_dereference_variable *const deref_tmp_1 =
427
new(d->mem_ctx) ir_dereference_variable(tmp);
428
ir_assignment *const assignment =
429
new(d->mem_ctx) ir_assignment(deref_tmp_1,
430
idx->clone(d->mem_ctx, NULL));
431
d->before_instructions->push_tail(assignment);
432
433
/* Replace the array index with a dereference of the new temporary */
434
ir_dereference_variable *const deref_tmp_2 =
435
new(d->mem_ctx) ir_dereference_variable(tmp);
436
a->array_index = deref_tmp_2;
437
}
438
}
439
440
static void
441
fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
442
exec_list *before_instructions, exec_list *after_instructions,
443
bool parameter_is_inout)
444
{
445
ir_expression *const expr = actual->as_expression();
446
447
/* If the types match exactly and the parameter is not a vector-extract,
448
* nothing needs to be done to fix the parameter.
449
*/
450
if (formal_type == actual->type
451
&& (expr == NULL || expr->operation != ir_binop_vector_extract)
452
&& actual->as_dereference_variable())
453
return;
454
455
/* An array index could also be an out variable so we need to make a copy
456
* of them before the function is called.
457
*/
458
if (!actual->as_dereference_variable()) {
459
struct copy_index_deref_data data;
460
data.mem_ctx = mem_ctx;
461
data.before_instructions = before_instructions;
462
463
visit_tree(actual, copy_index_derefs_to_temps, &data);
464
}
465
466
/* To convert an out parameter, we need to create a temporary variable to
467
* hold the value before conversion, and then perform the conversion after
468
* the function call returns.
469
*
470
* This has the effect of transforming code like this:
471
*
472
* void f(out int x);
473
* float value;
474
* f(value);
475
*
476
* Into IR that's equivalent to this:
477
*
478
* void f(out int x);
479
* float value;
480
* int out_parameter_conversion;
481
* f(out_parameter_conversion);
482
* value = float(out_parameter_conversion);
483
*
484
* If the parameter is an ir_expression of ir_binop_vector_extract,
485
* additional conversion is needed in the post-call re-write.
486
*/
487
ir_variable *tmp =
488
new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
489
490
before_instructions->push_tail(tmp);
491
492
/* If the parameter is an inout parameter, copy the value of the actual
493
* parameter to the new temporary. Note that no type conversion is allowed
494
* here because inout parameters must match types exactly.
495
*/
496
if (parameter_is_inout) {
497
/* Inout parameters should never require conversion, since that would
498
* require an implicit conversion to exist both to and from the formal
499
* parameter type, and there are no bidirectional implicit conversions.
500
*/
501
assert (actual->type == formal_type);
502
503
ir_dereference_variable *const deref_tmp_1 =
504
new(mem_ctx) ir_dereference_variable(tmp);
505
ir_assignment *const assignment =
506
new(mem_ctx) ir_assignment(deref_tmp_1, actual->clone(mem_ctx, NULL));
507
before_instructions->push_tail(assignment);
508
}
509
510
/* Replace the parameter in the call with a dereference of the new
511
* temporary.
512
*/
513
ir_dereference_variable *const deref_tmp_2 =
514
new(mem_ctx) ir_dereference_variable(tmp);
515
actual->replace_with(deref_tmp_2);
516
517
518
/* Copy the temporary variable to the actual parameter with optional
519
* type conversion applied.
520
*/
521
ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
522
if (actual->type != formal_type)
523
rhs = convert_component(rhs, actual->type);
524
525
ir_rvalue *lhs = actual;
526
if (expr != NULL && expr->operation == ir_binop_vector_extract) {
527
lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx,
528
NULL),
529
expr->operands[1]->clone(mem_ctx,
530
NULL));
531
}
532
533
ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
534
after_instructions->push_tail(assignment_2);
535
}
536
537
/**
538
* Generate a function call.
539
*
540
* For non-void functions, this returns a dereference of the temporary
541
* variable which stores the return value for the call. For void functions,
542
* this returns NULL.
543
*/
544
static ir_rvalue *
545
generate_call(exec_list *instructions, ir_function_signature *sig,
546
exec_list *actual_parameters,
547
ir_variable *sub_var,
548
ir_rvalue *array_idx,
549
struct _mesa_glsl_parse_state *state)
550
{
551
void *ctx = state;
552
exec_list post_call_conversions;
553
554
/* Perform implicit conversion of arguments. For out parameters, we need
555
* to place them in a temporary variable and do the conversion after the
556
* call takes place. Since we haven't emitted the call yet, we'll place
557
* the post-call conversions in a temporary exec_list, and emit them later.
558
*/
559
foreach_two_lists(formal_node, &sig->parameters,
560
actual_node, actual_parameters) {
561
ir_rvalue *actual = (ir_rvalue *) actual_node;
562
ir_variable *formal = (ir_variable *) formal_node;
563
564
if (formal->type->is_numeric() || formal->type->is_boolean()) {
565
switch (formal->data.mode) {
566
case ir_var_const_in:
567
case ir_var_function_in: {
568
ir_rvalue *converted
569
= convert_component(actual, formal->type);
570
actual->replace_with(converted);
571
break;
572
}
573
case ir_var_function_out:
574
case ir_var_function_inout:
575
fix_parameter(ctx, actual, formal->type,
576
instructions, &post_call_conversions,
577
formal->data.mode == ir_var_function_inout);
578
break;
579
default:
580
assert (!"Illegal formal parameter mode");
581
break;
582
}
583
}
584
}
585
586
/* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
587
*
588
* "Initializers for const declarations must be formed from literal
589
* values, other const variables (not including function call
590
* paramaters), or expressions of these.
591
*
592
* Constructors may be used in such expressions, but function calls may
593
* not."
594
*
595
* Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
596
*
597
* "A constant expression is one of
598
*
599
* ...
600
*
601
* - a built-in function call whose arguments are all constant
602
* expressions, with the exception of the texture lookup
603
* functions, the noise functions, and ftransform. The built-in
604
* functions dFdx, dFdy, and fwidth must return 0 when evaluated
605
* inside an initializer with an argument that is a constant
606
* expression."
607
*
608
* Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
609
*
610
* "A constant expression is one of
611
*
612
* ...
613
*
614
* - a built-in function call whose arguments are all constant
615
* expressions, with the exception of the texture lookup
616
* functions."
617
*
618
* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
619
*
620
* "A constant expression is one of
621
*
622
* ...
623
*
624
* - a built-in function call whose arguments are all constant
625
* expressions, with the exception of the texture lookup
626
* functions. The built-in functions dFdx, dFdy, and fwidth must
627
* return 0 when evaluated inside an initializer with an argument
628
* that is a constant expression."
629
*
630
* If the function call is a constant expression, don't generate any
631
* instructions; just generate an ir_constant.
632
*/
633
if (state->is_version(120, 100) ||
634
state->ctx->Const.AllowGLSLBuiltinConstantExpression) {
635
ir_constant *value = sig->constant_expression_value(ctx,
636
actual_parameters,
637
NULL);
638
if (value != NULL) {
639
return value;
640
}
641
}
642
643
ir_dereference_variable *deref = NULL;
644
if (!sig->return_type->is_void()) {
645
/* Create a new temporary to hold the return value. */
646
char *const name = ir_variable::temporaries_allocate_names
647
? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
648
: NULL;
649
650
ir_variable *var;
651
652
var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
653
instructions->push_tail(var);
654
655
ralloc_free(name);
656
657
deref = new(ctx) ir_dereference_variable(var);
658
}
659
660
ir_call *call = new(ctx) ir_call(sig, deref,
661
actual_parameters, sub_var, array_idx);
662
instructions->push_tail(call);
663
664
/* Also emit any necessary out-parameter conversions. */
665
instructions->append_list(&post_call_conversions);
666
667
return deref ? deref->clone(ctx, NULL) : NULL;
668
}
669
670
/**
671
* Given a function name and parameter list, find the matching signature.
672
*/
673
static ir_function_signature *
674
match_function_by_name(const char *name,
675
exec_list *actual_parameters,
676
struct _mesa_glsl_parse_state *state)
677
{
678
ir_function *f = state->symbols->get_function(name);
679
ir_function_signature *local_sig = NULL;
680
ir_function_signature *sig = NULL;
681
682
/* Is the function hidden by a record type constructor? */
683
if (state->symbols->get_type(name))
684
return sig; /* no match */
685
686
/* Is the function hidden by a variable (impossible in 1.10)? */
687
if (!state->symbols->separate_function_namespace
688
&& state->symbols->get_variable(name))
689
return sig; /* no match */
690
691
if (f != NULL) {
692
/* In desktop GL, the presence of a user-defined signature hides any
693
* built-in signatures, so we must ignore them. In contrast, in ES2
694
* user-defined signatures add new overloads, so we must consider them.
695
*/
696
bool allow_builtins = state->es_shader || !f->has_user_signature();
697
698
/* Look for a match in the local shader. If exact, we're done. */
699
bool is_exact = false;
700
sig = local_sig = f->matching_signature(state, actual_parameters,
701
allow_builtins, &is_exact);
702
if (is_exact)
703
return sig;
704
705
if (!allow_builtins)
706
return sig;
707
}
708
709
/* Local shader has no exact candidates; check the built-ins. */
710
sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
711
712
/* if _mesa_glsl_find_builtin_function failed, fall back to the result
713
* of choose_best_inexact_overload() instead. This should only affect
714
* GLES.
715
*/
716
return sig ? sig : local_sig;
717
}
718
719
static ir_function_signature *
720
match_subroutine_by_name(const char *name,
721
exec_list *actual_parameters,
722
struct _mesa_glsl_parse_state *state,
723
ir_variable **var_r)
724
{
725
void *ctx = state;
726
ir_function_signature *sig = NULL;
727
ir_function *f, *found = NULL;
728
const char *new_name;
729
ir_variable *var;
730
bool is_exact = false;
731
732
new_name =
733
ralloc_asprintf(ctx, "%s_%s",
734
_mesa_shader_stage_to_subroutine_prefix(state->stage),
735
name);
736
var = state->symbols->get_variable(new_name);
737
if (!var)
738
return NULL;
739
740
for (int i = 0; i < state->num_subroutine_types; i++) {
741
f = state->subroutine_types[i];
742
if (strcmp(f->name, var->type->without_array()->name))
743
continue;
744
found = f;
745
break;
746
}
747
748
if (!found)
749
return NULL;
750
*var_r = var;
751
sig = found->matching_signature(state, actual_parameters,
752
false, &is_exact);
753
return sig;
754
}
755
756
static ir_rvalue *
757
generate_array_index(void *mem_ctx, exec_list *instructions,
758
struct _mesa_glsl_parse_state *state, YYLTYPE loc,
759
const ast_expression *array, ast_expression *idx,
760
const char **function_name, exec_list *actual_parameters)
761
{
762
if (array->oper == ast_array_index) {
763
/* This handles arrays of arrays */
764
ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
765
state, loc,
766
array->subexpressions[0],
767
array->subexpressions[1],
768
function_name,
769
actual_parameters);
770
ir_rvalue *outer_array_idx = idx->hir(instructions, state);
771
772
YYLTYPE index_loc = idx->get_location();
773
return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
774
outer_array_idx, loc,
775
index_loc);
776
} else {
777
ir_variable *sub_var = NULL;
778
*function_name = array->primary_expression.identifier;
779
780
if (!match_subroutine_by_name(*function_name, actual_parameters,
781
state, &sub_var)) {
782
_mesa_glsl_error(&loc, state, "Unknown subroutine `%s'",
783
*function_name);
784
*function_name = NULL; /* indicate error condition to caller */
785
return NULL;
786
}
787
788
ir_rvalue *outer_array_idx = idx->hir(instructions, state);
789
return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
790
}
791
}
792
793
static bool
794
function_exists(_mesa_glsl_parse_state *state,
795
struct glsl_symbol_table *symbols, const char *name)
796
{
797
ir_function *f = symbols->get_function(name);
798
if (f != NULL) {
799
foreach_in_list(ir_function_signature, sig, &f->signatures) {
800
if (sig->is_builtin() && !sig->is_builtin_available(state))
801
continue;
802
return true;
803
}
804
}
805
return false;
806
}
807
808
static void
809
print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
810
ir_function *f)
811
{
812
if (f == NULL)
813
return;
814
815
foreach_in_list(ir_function_signature, sig, &f->signatures) {
816
if (sig->is_builtin() && !sig->is_builtin_available(state))
817
continue;
818
819
char *str = prototype_string(sig->return_type, f->name,
820
&sig->parameters);
821
_mesa_glsl_error(loc, state, " %s", str);
822
ralloc_free(str);
823
}
824
}
825
826
/**
827
* Raise a "no matching function" error, listing all possible overloads the
828
* compiler considered so developers can figure out what went wrong.
829
*/
830
static void
831
no_matching_function_error(const char *name,
832
YYLTYPE *loc,
833
exec_list *actual_parameters,
834
_mesa_glsl_parse_state *state)
835
{
836
gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
837
838
if (!function_exists(state, state->symbols, name)
839
&& (!state->uses_builtin_functions
840
|| !function_exists(state, sh->symbols, name))) {
841
_mesa_glsl_error(loc, state, "no function with name '%s'", name);
842
} else {
843
char *str = prototype_string(NULL, name, actual_parameters);
844
_mesa_glsl_error(loc, state,
845
"no matching function for call to `%s';"
846
" candidates are:",
847
str);
848
ralloc_free(str);
849
850
print_function_prototypes(state, loc,
851
state->symbols->get_function(name));
852
853
if (state->uses_builtin_functions) {
854
print_function_prototypes(state, loc,
855
sh->symbols->get_function(name));
856
}
857
}
858
}
859
860
/**
861
* Perform automatic type conversion of constructor parameters
862
*
863
* This implements the rules in the "Conversion and Scalar Constructors"
864
* section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
865
*/
866
static ir_rvalue *
867
convert_component(ir_rvalue *src, const glsl_type *desired_type)
868
{
869
void *ctx = ralloc_parent(src);
870
const unsigned a = desired_type->base_type;
871
const unsigned b = src->type->base_type;
872
ir_expression *result = NULL;
873
874
if (src->type->is_error())
875
return src;
876
877
assert(a <= GLSL_TYPE_IMAGE);
878
assert(b <= GLSL_TYPE_IMAGE);
879
880
if (a == b)
881
return src;
882
883
switch (a) {
884
case GLSL_TYPE_UINT:
885
switch (b) {
886
case GLSL_TYPE_INT:
887
result = new(ctx) ir_expression(ir_unop_i2u, src);
888
break;
889
case GLSL_TYPE_FLOAT:
890
result = new(ctx) ir_expression(ir_unop_f2u, src);
891
break;
892
case GLSL_TYPE_BOOL:
893
result = new(ctx) ir_expression(ir_unop_i2u,
894
new(ctx) ir_expression(ir_unop_b2i,
895
src));
896
break;
897
case GLSL_TYPE_DOUBLE:
898
result = new(ctx) ir_expression(ir_unop_d2u, src);
899
break;
900
case GLSL_TYPE_UINT64:
901
result = new(ctx) ir_expression(ir_unop_u642u, src);
902
break;
903
case GLSL_TYPE_INT64:
904
result = new(ctx) ir_expression(ir_unop_i642u, src);
905
break;
906
case GLSL_TYPE_SAMPLER:
907
result = new(ctx) ir_expression(ir_unop_unpack_sampler_2x32, src);
908
break;
909
case GLSL_TYPE_IMAGE:
910
result = new(ctx) ir_expression(ir_unop_unpack_image_2x32, src);
911
break;
912
}
913
break;
914
case GLSL_TYPE_INT:
915
switch (b) {
916
case GLSL_TYPE_UINT:
917
result = new(ctx) ir_expression(ir_unop_u2i, src);
918
break;
919
case GLSL_TYPE_FLOAT:
920
result = new(ctx) ir_expression(ir_unop_f2i, src);
921
break;
922
case GLSL_TYPE_BOOL:
923
result = new(ctx) ir_expression(ir_unop_b2i, src);
924
break;
925
case GLSL_TYPE_DOUBLE:
926
result = new(ctx) ir_expression(ir_unop_d2i, src);
927
break;
928
case GLSL_TYPE_UINT64:
929
result = new(ctx) ir_expression(ir_unop_u642i, src);
930
break;
931
case GLSL_TYPE_INT64:
932
result = new(ctx) ir_expression(ir_unop_i642i, src);
933
break;
934
}
935
break;
936
case GLSL_TYPE_FLOAT:
937
switch (b) {
938
case GLSL_TYPE_UINT:
939
result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
940
break;
941
case GLSL_TYPE_INT:
942
result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
943
break;
944
case GLSL_TYPE_BOOL:
945
result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
946
break;
947
case GLSL_TYPE_DOUBLE:
948
result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
949
break;
950
case GLSL_TYPE_UINT64:
951
result = new(ctx) ir_expression(ir_unop_u642f, desired_type, src, NULL);
952
break;
953
case GLSL_TYPE_INT64:
954
result = new(ctx) ir_expression(ir_unop_i642f, desired_type, src, NULL);
955
break;
956
}
957
break;
958
case GLSL_TYPE_BOOL:
959
switch (b) {
960
case GLSL_TYPE_UINT:
961
result = new(ctx) ir_expression(ir_unop_i2b,
962
new(ctx) ir_expression(ir_unop_u2i,
963
src));
964
break;
965
case GLSL_TYPE_INT:
966
result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
967
break;
968
case GLSL_TYPE_FLOAT:
969
result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
970
break;
971
case GLSL_TYPE_DOUBLE:
972
result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
973
break;
974
case GLSL_TYPE_UINT64:
975
result = new(ctx) ir_expression(ir_unop_i642b,
976
new(ctx) ir_expression(ir_unop_u642i64,
977
src));
978
break;
979
case GLSL_TYPE_INT64:
980
result = new(ctx) ir_expression(ir_unop_i642b, desired_type, src, NULL);
981
break;
982
}
983
break;
984
case GLSL_TYPE_DOUBLE:
985
switch (b) {
986
case GLSL_TYPE_INT:
987
result = new(ctx) ir_expression(ir_unop_i2d, src);
988
break;
989
case GLSL_TYPE_UINT:
990
result = new(ctx) ir_expression(ir_unop_u2d, src);
991
break;
992
case GLSL_TYPE_BOOL:
993
result = new(ctx) ir_expression(ir_unop_f2d,
994
new(ctx) ir_expression(ir_unop_b2f,
995
src));
996
break;
997
case GLSL_TYPE_FLOAT:
998
result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
999
break;
1000
case GLSL_TYPE_UINT64:
1001
result = new(ctx) ir_expression(ir_unop_u642d, desired_type, src, NULL);
1002
break;
1003
case GLSL_TYPE_INT64:
1004
result = new(ctx) ir_expression(ir_unop_i642d, desired_type, src, NULL);
1005
break;
1006
}
1007
break;
1008
case GLSL_TYPE_UINT64:
1009
switch (b) {
1010
case GLSL_TYPE_INT:
1011
result = new(ctx) ir_expression(ir_unop_i2u64, src);
1012
break;
1013
case GLSL_TYPE_UINT:
1014
result = new(ctx) ir_expression(ir_unop_u2u64, src);
1015
break;
1016
case GLSL_TYPE_BOOL:
1017
result = new(ctx) ir_expression(ir_unop_i642u64,
1018
new(ctx) ir_expression(ir_unop_b2i64,
1019
src));
1020
break;
1021
case GLSL_TYPE_FLOAT:
1022
result = new(ctx) ir_expression(ir_unop_f2u64, src);
1023
break;
1024
case GLSL_TYPE_DOUBLE:
1025
result = new(ctx) ir_expression(ir_unop_d2u64, src);
1026
break;
1027
case GLSL_TYPE_INT64:
1028
result = new(ctx) ir_expression(ir_unop_i642u64, src);
1029
break;
1030
}
1031
break;
1032
case GLSL_TYPE_INT64:
1033
switch (b) {
1034
case GLSL_TYPE_INT:
1035
result = new(ctx) ir_expression(ir_unop_i2i64, src);
1036
break;
1037
case GLSL_TYPE_UINT:
1038
result = new(ctx) ir_expression(ir_unop_u2i64, src);
1039
break;
1040
case GLSL_TYPE_BOOL:
1041
result = new(ctx) ir_expression(ir_unop_b2i64, src);
1042
break;
1043
case GLSL_TYPE_FLOAT:
1044
result = new(ctx) ir_expression(ir_unop_f2i64, src);
1045
break;
1046
case GLSL_TYPE_DOUBLE:
1047
result = new(ctx) ir_expression(ir_unop_d2i64, src);
1048
break;
1049
case GLSL_TYPE_UINT64:
1050
result = new(ctx) ir_expression(ir_unop_u642i64, src);
1051
break;
1052
}
1053
break;
1054
case GLSL_TYPE_SAMPLER:
1055
switch (b) {
1056
case GLSL_TYPE_UINT:
1057
result = new(ctx)
1058
ir_expression(ir_unop_pack_sampler_2x32, desired_type, src);
1059
break;
1060
}
1061
break;
1062
case GLSL_TYPE_IMAGE:
1063
switch (b) {
1064
case GLSL_TYPE_UINT:
1065
result = new(ctx)
1066
ir_expression(ir_unop_pack_image_2x32, desired_type, src);
1067
break;
1068
}
1069
break;
1070
}
1071
1072
assert(result != NULL);
1073
assert(result->type == desired_type);
1074
1075
/* Try constant folding; it may fold in the conversion we just added. */
1076
ir_constant *const constant = result->constant_expression_value(ctx);
1077
return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
1078
}
1079
1080
1081
/**
1082
* Perform automatic type and constant conversion of constructor parameters
1083
*
1084
* This implements the rules in the "Implicit Conversions" rules, not the
1085
* "Conversion and Scalar Constructors".
1086
*
1087
* After attempting the implicit conversion, an attempt to convert into a
1088
* constant valued expression is also done.
1089
*
1090
* The \c from \c ir_rvalue is converted "in place".
1091
*
1092
* \param from Operand that is being converted
1093
* \param to Base type the operand will be converted to
1094
* \param state GLSL compiler state
1095
*
1096
* \return
1097
* If the attempt to convert into a constant expression succeeds, \c true is
1098
* returned. Otherwise \c false is returned.
1099
*/
1100
static bool
1101
implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to,
1102
struct _mesa_glsl_parse_state *state)
1103
{
1104
void *mem_ctx = state;
1105
ir_rvalue *result = from;
1106
1107
if (to != from->type->base_type) {
1108
const glsl_type *desired_type =
1109
glsl_type::get_instance(to,
1110
from->type->vector_elements,
1111
from->type->matrix_columns);
1112
1113
if (from->type->can_implicitly_convert_to(desired_type, state)) {
1114
/* Even though convert_component() implements the constructor
1115
* conversion rules (not the implicit conversion rules), its safe
1116
* to use it here because we already checked that the implicit
1117
* conversion is legal.
1118
*/
1119
result = convert_component(from, desired_type);
1120
}
1121
}
1122
1123
ir_rvalue *const constant = result->constant_expression_value(mem_ctx);
1124
1125
if (constant != NULL)
1126
result = constant;
1127
1128
if (from != result) {
1129
from->replace_with(result);
1130
from = result;
1131
}
1132
1133
return constant != NULL;
1134
}
1135
1136
1137
/**
1138
* Dereference a specific component from a scalar, vector, or matrix
1139
*/
1140
static ir_rvalue *
1141
dereference_component(ir_rvalue *src, unsigned component)
1142
{
1143
void *ctx = ralloc_parent(src);
1144
assert(component < src->type->components());
1145
1146
/* If the source is a constant, just create a new constant instead of a
1147
* dereference of the existing constant.
1148
*/
1149
ir_constant *constant = src->as_constant();
1150
if (constant)
1151
return new(ctx) ir_constant(constant, component);
1152
1153
if (src->type->is_scalar()) {
1154
return src;
1155
} else if (src->type->is_vector()) {
1156
return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
1157
} else {
1158
assert(src->type->is_matrix());
1159
1160
/* Dereference a row of the matrix, then call this function again to get
1161
* a specific element from that row.
1162
*/
1163
const int c = component / src->type->column_type()->vector_elements;
1164
const int r = component % src->type->column_type()->vector_elements;
1165
ir_constant *const col_index = new(ctx) ir_constant(c);
1166
ir_dereference *const col = new(ctx) ir_dereference_array(src,
1167
col_index);
1168
1169
col->type = src->type->column_type();
1170
1171
return dereference_component(col, r);
1172
}
1173
1174
assert(!"Should not get here.");
1175
return NULL;
1176
}
1177
1178
1179
static ir_rvalue *
1180
process_vec_mat_constructor(exec_list *instructions,
1181
const glsl_type *constructor_type,
1182
YYLTYPE *loc, exec_list *parameters,
1183
struct _mesa_glsl_parse_state *state)
1184
{
1185
void *ctx = state;
1186
1187
/* The ARB_shading_language_420pack spec says:
1188
*
1189
* "If an initializer is a list of initializers enclosed in curly braces,
1190
* the variable being declared must be a vector, a matrix, an array, or a
1191
* structure.
1192
*
1193
* int i = { 1 }; // illegal, i is not an aggregate"
1194
*/
1195
if (constructor_type->vector_elements <= 1) {
1196
_mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
1197
"matrices, arrays, and structs");
1198
return ir_rvalue::error_value(ctx);
1199
}
1200
1201
exec_list actual_parameters;
1202
const unsigned parameter_count =
1203
process_parameters(instructions, &actual_parameters, parameters, state);
1204
1205
if (parameter_count == 0
1206
|| (constructor_type->is_vector() &&
1207
constructor_type->vector_elements != parameter_count)
1208
|| (constructor_type->is_matrix() &&
1209
constructor_type->matrix_columns != parameter_count)) {
1210
_mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
1211
constructor_type->is_vector() ? "vector" : "matrix",
1212
constructor_type->vector_elements);
1213
return ir_rvalue::error_value(ctx);
1214
}
1215
1216
bool all_parameters_are_constant = true;
1217
1218
/* Type cast each parameter and, if possible, fold constants. */
1219
foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1220
/* Apply implicit conversions (not the scalar constructor rules, see the
1221
* spec quote above!) and attempt to convert the parameter to a constant
1222
* valued expression. After doing so, track whether or not all the
1223
* parameters to the constructor are trivially constant valued
1224
* expressions.
1225
*/
1226
all_parameters_are_constant &=
1227
implicitly_convert_component(ir, constructor_type->base_type, state);
1228
1229
if (constructor_type->is_matrix()) {
1230
if (ir->type != constructor_type->column_type()) {
1231
_mesa_glsl_error(loc, state, "type error in matrix constructor: "
1232
"expected: %s, found %s",
1233
constructor_type->column_type()->name,
1234
ir->type->name);
1235
return ir_rvalue::error_value(ctx);
1236
}
1237
} else if (ir->type != constructor_type->get_scalar_type()) {
1238
_mesa_glsl_error(loc, state, "type error in vector constructor: "
1239
"expected: %s, found %s",
1240
constructor_type->get_scalar_type()->name,
1241
ir->type->name);
1242
return ir_rvalue::error_value(ctx);
1243
}
1244
}
1245
1246
if (all_parameters_are_constant)
1247
return new(ctx) ir_constant(constructor_type, &actual_parameters);
1248
1249
ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
1250
ir_var_temporary);
1251
instructions->push_tail(var);
1252
1253
int i = 0;
1254
1255
foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1256
ir_instruction *assignment = NULL;
1257
1258
if (var->type->is_matrix()) {
1259
ir_rvalue *lhs =
1260
new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1261
assignment = new(ctx) ir_assignment(lhs, rhs);
1262
} else {
1263
/* use writemask rather than index for vector */
1264
assert(var->type->is_vector());
1265
assert(i < 4);
1266
ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1267
assignment = new(ctx) ir_assignment(lhs, rhs, NULL,
1268
(unsigned)(1 << i));
1269
}
1270
1271
instructions->push_tail(assignment);
1272
1273
i++;
1274
}
1275
1276
return new(ctx) ir_dereference_variable(var);
1277
}
1278
1279
1280
static ir_rvalue *
1281
process_array_constructor(exec_list *instructions,
1282
const glsl_type *constructor_type,
1283
YYLTYPE *loc, exec_list *parameters,
1284
struct _mesa_glsl_parse_state *state)
1285
{
1286
void *ctx = state;
1287
/* Array constructors come in two forms: sized and unsized. Sized array
1288
* constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
1289
* variables. In this case the number of parameters must exactly match the
1290
* specified size of the array.
1291
*
1292
* Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
1293
* are vec4 variables. In this case the size of the array being constructed
1294
* is determined by the number of parameters.
1295
*
1296
* From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
1297
*
1298
* "There must be exactly the same number of arguments as the size of
1299
* the array being constructed. If no size is present in the
1300
* constructor, then the array is explicitly sized to the number of
1301
* arguments provided. The arguments are assigned in order, starting at
1302
* element 0, to the elements of the constructed array. Each argument
1303
* must be the same type as the element type of the array, or be a type
1304
* that can be converted to the element type of the array according to
1305
* Section 4.1.10 "Implicit Conversions.""
1306
*/
1307
exec_list actual_parameters;
1308
const unsigned parameter_count =
1309
process_parameters(instructions, &actual_parameters, parameters, state);
1310
bool is_unsized_array = constructor_type->is_unsized_array();
1311
1312
if ((parameter_count == 0) ||
1313
(!is_unsized_array && (constructor_type->length != parameter_count))) {
1314
const unsigned min_param = is_unsized_array
1315
? 1 : constructor_type->length;
1316
1317
_mesa_glsl_error(loc, state, "array constructor must have %s %u "
1318
"parameter%s",
1319
is_unsized_array ? "at least" : "exactly",
1320
min_param, (min_param <= 1) ? "" : "s");
1321
return ir_rvalue::error_value(ctx);
1322
}
1323
1324
if (is_unsized_array) {
1325
constructor_type =
1326
glsl_type::get_array_instance(constructor_type->fields.array,
1327
parameter_count);
1328
assert(constructor_type != NULL);
1329
assert(constructor_type->length == parameter_count);
1330
}
1331
1332
bool all_parameters_are_constant = true;
1333
const glsl_type *element_type = constructor_type->fields.array;
1334
1335
/* Type cast each parameter and, if possible, fold constants. */
1336
foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1337
/* Apply implicit conversions (not the scalar constructor rules, see the
1338
* spec quote above!) and attempt to convert the parameter to a constant
1339
* valued expression. After doing so, track whether or not all the
1340
* parameters to the constructor are trivially constant valued
1341
* expressions.
1342
*/
1343
all_parameters_are_constant &=
1344
implicitly_convert_component(ir, element_type->base_type, state);
1345
1346
if (constructor_type->fields.array->is_unsized_array()) {
1347
/* As the inner parameters of the constructor are created without
1348
* knowledge of each other we need to check to make sure unsized
1349
* parameters of unsized constructors all end up with the same size.
1350
*
1351
* e.g we make sure to fail for a constructor like this:
1352
* vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
1353
* vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
1354
* vec4[](vec4(0.0), vec4(1.0)));
1355
*/
1356
if (element_type->is_unsized_array()) {
1357
/* This is the first parameter so just get the type */
1358
element_type = ir->type;
1359
} else if (element_type != ir->type) {
1360
_mesa_glsl_error(loc, state, "type error in array constructor: "
1361
"expected: %s, found %s",
1362
element_type->name,
1363
ir->type->name);
1364
return ir_rvalue::error_value(ctx);
1365
}
1366
} else if (ir->type != constructor_type->fields.array) {
1367
_mesa_glsl_error(loc, state, "type error in array constructor: "
1368
"expected: %s, found %s",
1369
constructor_type->fields.array->name,
1370
ir->type->name);
1371
return ir_rvalue::error_value(ctx);
1372
} else {
1373
element_type = ir->type;
1374
}
1375
}
1376
1377
if (constructor_type->fields.array->is_unsized_array()) {
1378
constructor_type =
1379
glsl_type::get_array_instance(element_type,
1380
parameter_count);
1381
assert(constructor_type != NULL);
1382
assert(constructor_type->length == parameter_count);
1383
}
1384
1385
if (all_parameters_are_constant)
1386
return new(ctx) ir_constant(constructor_type, &actual_parameters);
1387
1388
ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
1389
ir_var_temporary);
1390
instructions->push_tail(var);
1391
1392
int i = 0;
1393
foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1394
ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
1395
new(ctx) ir_constant(i));
1396
1397
ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs);
1398
instructions->push_tail(assignment);
1399
1400
i++;
1401
}
1402
1403
return new(ctx) ir_dereference_variable(var);
1404
}
1405
1406
1407
/**
1408
* Determine if a list consists of a single scalar r-value
1409
*/
1410
static bool
1411
single_scalar_parameter(exec_list *parameters)
1412
{
1413
const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw();
1414
assert(((ir_rvalue *)p)->as_rvalue() != NULL);
1415
1416
return (p->type->is_scalar() && p->next->is_tail_sentinel());
1417
}
1418
1419
1420
/**
1421
* Generate inline code for a vector constructor
1422
*
1423
* The generated constructor code will consist of a temporary variable
1424
* declaration of the same type as the constructor. A sequence of assignments
1425
* from constructor parameters to the temporary will follow.
1426
*
1427
* \return
1428
* An \c ir_dereference_variable of the temprorary generated in the constructor
1429
* body.
1430
*/
1431
static ir_rvalue *
1432
emit_inline_vector_constructor(const glsl_type *type,
1433
exec_list *instructions,
1434
exec_list *parameters,
1435
void *ctx)
1436
{
1437
assert(!parameters->is_empty());
1438
1439
ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
1440
instructions->push_tail(var);
1441
1442
/* There are three kinds of vector constructors.
1443
*
1444
* - Construct a vector from a single scalar by replicating that scalar to
1445
* all components of the vector.
1446
*
1447
* - Construct a vector from at least a matrix. This case should already
1448
* have been taken care of in ast_function_expression::hir by breaking
1449
* down the matrix into a series of column vectors.
1450
*
1451
* - Construct a vector from an arbirary combination of vectors and
1452
* scalars. The components of the constructor parameters are assigned
1453
* to the vector in order until the vector is full.
1454
*/
1455
const unsigned lhs_components = type->components();
1456
if (single_scalar_parameter(parameters)) {
1457
ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw();
1458
ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
1459
lhs_components);
1460
ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
1461
const unsigned mask = (1U << lhs_components) - 1;
1462
1463
assert(rhs->type == lhs->type);
1464
1465
ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
1466
instructions->push_tail(inst);
1467
} else {
1468
unsigned base_component = 0;
1469
unsigned base_lhs_component = 0;
1470
ir_constant_data data;
1471
unsigned constant_mask = 0, constant_components = 0;
1472
1473
memset(&data, 0, sizeof(data));
1474
1475
foreach_in_list(ir_rvalue, param, parameters) {
1476
unsigned rhs_components = param->type->components();
1477
1478
/* Do not try to assign more components to the vector than it has! */
1479
if ((rhs_components + base_lhs_component) > lhs_components) {
1480
rhs_components = lhs_components - base_lhs_component;
1481
}
1482
1483
const ir_constant *const c = param->as_constant();
1484
if (c != NULL) {
1485
for (unsigned i = 0; i < rhs_components; i++) {
1486
switch (c->type->base_type) {
1487
case GLSL_TYPE_UINT:
1488
data.u[i + base_component] = c->get_uint_component(i);
1489
break;
1490
case GLSL_TYPE_INT:
1491
data.i[i + base_component] = c->get_int_component(i);
1492
break;
1493
case GLSL_TYPE_FLOAT:
1494
data.f[i + base_component] = c->get_float_component(i);
1495
break;
1496
case GLSL_TYPE_DOUBLE:
1497
data.d[i + base_component] = c->get_double_component(i);
1498
break;
1499
case GLSL_TYPE_BOOL:
1500
data.b[i + base_component] = c->get_bool_component(i);
1501
break;
1502
case GLSL_TYPE_UINT64:
1503
data.u64[i + base_component] = c->get_uint64_component(i);
1504
break;
1505
case GLSL_TYPE_INT64:
1506
data.i64[i + base_component] = c->get_int64_component(i);
1507
break;
1508
default:
1509
assert(!"Should not get here.");
1510
break;
1511
}
1512
}
1513
1514
/* Mask of fields to be written in the assignment. */
1515
constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
1516
constant_components += rhs_components;
1517
1518
base_component += rhs_components;
1519
}
1520
/* Advance the component index by the number of components
1521
* that were just assigned.
1522
*/
1523
base_lhs_component += rhs_components;
1524
}
1525
1526
if (constant_mask != 0) {
1527
ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1528
const glsl_type *rhs_type =
1529
glsl_type::get_instance(var->type->base_type,
1530
constant_components,
1531
1);
1532
ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1533
1534
ir_instruction *inst =
1535
new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
1536
instructions->push_tail(inst);
1537
}
1538
1539
base_component = 0;
1540
foreach_in_list(ir_rvalue, param, parameters) {
1541
unsigned rhs_components = param->type->components();
1542
1543
/* Do not try to assign more components to the vector than it has! */
1544
if ((rhs_components + base_component) > lhs_components) {
1545
rhs_components = lhs_components - base_component;
1546
}
1547
1548
/* If we do not have any components left to copy, break out of the
1549
* loop. This can happen when initializing a vec4 with a mat3 as the
1550
* mat3 would have been broken into a series of column vectors.
1551
*/
1552
if (rhs_components == 0) {
1553
break;
1554
}
1555
1556
const ir_constant *const c = param->as_constant();
1557
if (c == NULL) {
1558
/* Mask of fields to be written in the assignment. */
1559
const unsigned write_mask = ((1U << rhs_components) - 1)
1560
<< base_component;
1561
1562
ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1563
1564
/* Generate a swizzle so that LHS and RHS sizes match. */
1565
ir_rvalue *rhs =
1566
new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1567
1568
ir_instruction *inst =
1569
new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1570
instructions->push_tail(inst);
1571
}
1572
1573
/* Advance the component index by the number of components that were
1574
* just assigned.
1575
*/
1576
base_component += rhs_components;
1577
}
1578
}
1579
return new(ctx) ir_dereference_variable(var);
1580
}
1581
1582
1583
/**
1584
* Generate assignment of a portion of a vector to a portion of a matrix column
1585
*
1586
* \param src_base First component of the source to be used in assignment
1587
* \param column Column of destination to be assiged
1588
* \param row_base First component of the destination column to be assigned
1589
* \param count Number of components to be assigned
1590
*
1591
* \note
1592
* \c src_base + \c count must be less than or equal to the number of
1593
* components in the source vector.
1594
*/
1595
static ir_instruction *
1596
assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1597
ir_rvalue *src, unsigned src_base, unsigned count,
1598
void *mem_ctx)
1599
{
1600
ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1601
ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var,
1602
col_idx);
1603
1604
assert(column_ref->type->components() >= (row_base + count));
1605
assert(src->type->components() >= (src_base + count));
1606
1607
/* Generate a swizzle that extracts the number of components from the source
1608
* that are to be assigned to the column of the matrix.
1609
*/
1610
if (count < src->type->vector_elements) {
1611
src = new(mem_ctx) ir_swizzle(src,
1612
src_base + 0, src_base + 1,
1613
src_base + 2, src_base + 3,
1614
count);
1615
}
1616
1617
/* Mask of fields to be written in the assignment. */
1618
const unsigned write_mask = ((1U << count) - 1) << row_base;
1619
1620
return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1621
}
1622
1623
1624
/**
1625
* Generate inline code for a matrix constructor
1626
*
1627
* The generated constructor code will consist of a temporary variable
1628
* declaration of the same type as the constructor. A sequence of assignments
1629
* from constructor parameters to the temporary will follow.
1630
*
1631
* \return
1632
* An \c ir_dereference_variable of the temprorary generated in the constructor
1633
* body.
1634
*/
1635
static ir_rvalue *
1636
emit_inline_matrix_constructor(const glsl_type *type,
1637
exec_list *instructions,
1638
exec_list *parameters,
1639
void *ctx)
1640
{
1641
assert(!parameters->is_empty());
1642
1643
ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1644
instructions->push_tail(var);
1645
1646
/* There are three kinds of matrix constructors.
1647
*
1648
* - Construct a matrix from a single scalar by replicating that scalar to
1649
* along the diagonal of the matrix and setting all other components to
1650
* zero.
1651
*
1652
* - Construct a matrix from an arbirary combination of vectors and
1653
* scalars. The components of the constructor parameters are assigned
1654
* to the matrix in column-major order until the matrix is full.
1655
*
1656
* - Construct a matrix from a single matrix. The source matrix is copied
1657
* to the upper left portion of the constructed matrix, and the remaining
1658
* elements take values from the identity matrix.
1659
*/
1660
ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw();
1661
if (single_scalar_parameter(parameters)) {
1662
/* Assign the scalar to the X component of a vec4, and fill the remaining
1663
* components with zero.
1664
*/
1665
glsl_base_type param_base_type = first_param->type->base_type;
1666
assert(first_param->type->is_float() || first_param->type->is_double());
1667
ir_variable *rhs_var =
1668
new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
1669
"mat_ctor_vec",
1670
ir_var_temporary);
1671
instructions->push_tail(rhs_var);
1672
1673
ir_constant_data zero;
1674
for (unsigned i = 0; i < 4; i++)
1675
if (first_param->type->is_float())
1676
zero.f[i] = 0.0;
1677
else
1678
zero.d[i] = 0.0;
1679
1680
ir_instruction *inst =
1681
new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1682
new(ctx) ir_constant(rhs_var->type, &zero));
1683
instructions->push_tail(inst);
1684
1685
ir_dereference *const rhs_ref =
1686
new(ctx) ir_dereference_variable(rhs_var);
1687
1688
inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1689
instructions->push_tail(inst);
1690
1691
/* Assign the temporary vector to each column of the destination matrix
1692
* with a swizzle that puts the X component on the diagonal of the
1693
* matrix. In some cases this may mean that the X component does not
1694
* get assigned into the column at all (i.e., when the matrix has more
1695
* columns than rows).
1696
*/
1697
static const unsigned rhs_swiz[4][4] = {
1698
{ 0, 1, 1, 1 },
1699
{ 1, 0, 1, 1 },
1700
{ 1, 1, 0, 1 },
1701
{ 1, 1, 1, 0 }
1702
};
1703
1704
const unsigned cols_to_init = MIN2(type->matrix_columns,
1705
type->vector_elements);
1706
for (unsigned i = 0; i < cols_to_init; i++) {
1707
ir_constant *const col_idx = new(ctx) ir_constant(i);
1708
ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1709
col_idx);
1710
1711
ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1712
ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1713
type->vector_elements);
1714
1715
inst = new(ctx) ir_assignment(col_ref, rhs);
1716
instructions->push_tail(inst);
1717
}
1718
1719
for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1720
ir_constant *const col_idx = new(ctx) ir_constant(i);
1721
ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1722
col_idx);
1723
1724
ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1725
ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1726
type->vector_elements);
1727
1728
inst = new(ctx) ir_assignment(col_ref, rhs);
1729
instructions->push_tail(inst);
1730
}
1731
} else if (first_param->type->is_matrix()) {
1732
/* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1733
*
1734
* "If a matrix is constructed from a matrix, then each component
1735
* (column i, row j) in the result that has a corresponding
1736
* component (column i, row j) in the argument will be initialized
1737
* from there. All other components will be initialized to the
1738
* identity matrix. If a matrix argument is given to a matrix
1739
* constructor, it is an error to have any other arguments."
1740
*/
1741
assert(first_param->next->is_tail_sentinel());
1742
ir_rvalue *const src_matrix = first_param;
1743
1744
/* If the source matrix is smaller, pre-initialize the relavent parts of
1745
* the destination matrix to the identity matrix.
1746
*/
1747
if ((src_matrix->type->matrix_columns < var->type->matrix_columns) ||
1748
(src_matrix->type->vector_elements < var->type->vector_elements)) {
1749
1750
/* If the source matrix has fewer rows, every column of the
1751
* destination must be initialized. Otherwise only the columns in
1752
* the destination that do not exist in the source must be
1753
* initialized.
1754
*/
1755
unsigned col =
1756
(src_matrix->type->vector_elements < var->type->vector_elements)
1757
? 0 : src_matrix->type->matrix_columns;
1758
1759
const glsl_type *const col_type = var->type->column_type();
1760
for (/* empty */; col < var->type->matrix_columns; col++) {
1761
ir_constant_data ident;
1762
1763
if (!col_type->is_double()) {
1764
ident.f[0] = 0.0f;
1765
ident.f[1] = 0.0f;
1766
ident.f[2] = 0.0f;
1767
ident.f[3] = 0.0f;
1768
ident.f[col] = 1.0f;
1769
} else {
1770
ident.d[0] = 0.0;
1771
ident.d[1] = 0.0;
1772
ident.d[2] = 0.0;
1773
ident.d[3] = 0.0;
1774
ident.d[col] = 1.0;
1775
}
1776
1777
ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1778
1779
ir_rvalue *const lhs =
1780
new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1781
1782
ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs);
1783
instructions->push_tail(inst);
1784
}
1785
}
1786
1787
/* Assign columns from the source matrix to the destination matrix.
1788
*
1789
* Since the parameter will be used in the RHS of multiple assignments,
1790
* generate a temporary and copy the paramter there.
1791
*/
1792
ir_variable *const rhs_var =
1793
new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1794
ir_var_temporary);
1795
instructions->push_tail(rhs_var);
1796
1797
ir_dereference *const rhs_var_ref =
1798
new(ctx) ir_dereference_variable(rhs_var);
1799
ir_instruction *const inst =
1800
new(ctx) ir_assignment(rhs_var_ref, first_param);
1801
instructions->push_tail(inst);
1802
1803
const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1804
var->type->vector_elements);
1805
const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1806
var->type->matrix_columns);
1807
1808
unsigned swiz[4] = { 0, 0, 0, 0 };
1809
for (unsigned i = 1; i < last_row; i++)
1810
swiz[i] = i;
1811
1812
const unsigned write_mask = (1U << last_row) - 1;
1813
1814
for (unsigned i = 0; i < last_col; i++) {
1815
ir_dereference *const lhs =
1816
new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1817
ir_rvalue *const rhs_col =
1818
new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1819
1820
/* If one matrix has columns that are smaller than the columns of the
1821
* other matrix, wrap the column access of the larger with a swizzle
1822
* so that the LHS and RHS of the assignment have the same size (and
1823
* therefore have the same type).
1824
*
1825
* It would be perfectly valid to unconditionally generate the
1826
* swizzles, this this will typically result in a more compact IR
1827
* tree.
1828
*/
1829
ir_rvalue *rhs;
1830
if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1831
rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1832
} else {
1833
rhs = rhs_col;
1834
}
1835
1836
ir_instruction *inst =
1837
new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1838
instructions->push_tail(inst);
1839
}
1840
} else {
1841
const unsigned cols = type->matrix_columns;
1842
const unsigned rows = type->vector_elements;
1843
unsigned remaining_slots = rows * cols;
1844
unsigned col_idx = 0;
1845
unsigned row_idx = 0;
1846
1847
foreach_in_list(ir_rvalue, rhs, parameters) {
1848
unsigned rhs_components = rhs->type->components();
1849
unsigned rhs_base = 0;
1850
1851
if (remaining_slots == 0)
1852
break;
1853
1854
/* Since the parameter might be used in the RHS of two assignments,
1855
* generate a temporary and copy the paramter there.
1856
*/
1857
ir_variable *rhs_var =
1858
new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1859
instructions->push_tail(rhs_var);
1860
1861
ir_dereference *rhs_var_ref =
1862
new(ctx) ir_dereference_variable(rhs_var);
1863
ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs);
1864
instructions->push_tail(inst);
1865
1866
do {
1867
/* Assign the current parameter to as many components of the matrix
1868
* as it will fill.
1869
*
1870
* NOTE: A single vector parameter can span two matrix columns. A
1871
* single vec4, for example, can completely fill a mat2.
1872
*/
1873
unsigned count = MIN2(rows - row_idx,
1874
rhs_components - rhs_base);
1875
1876
rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1877
ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1878
row_idx,
1879
rhs_var_ref,
1880
rhs_base,
1881
count, ctx);
1882
instructions->push_tail(inst);
1883
rhs_base += count;
1884
row_idx += count;
1885
remaining_slots -= count;
1886
1887
/* Sometimes, there is still data left in the parameters and
1888
* components left to be set in the destination but in other
1889
* column.
1890
*/
1891
if (row_idx >= rows) {
1892
row_idx = 0;
1893
col_idx++;
1894
}
1895
} while(remaining_slots > 0 && rhs_base < rhs_components);
1896
}
1897
}
1898
1899
return new(ctx) ir_dereference_variable(var);
1900
}
1901
1902
1903
static ir_rvalue *
1904
emit_inline_record_constructor(const glsl_type *type,
1905
exec_list *instructions,
1906
exec_list *parameters,
1907
void *mem_ctx)
1908
{
1909
ir_variable *const var =
1910
new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1911
ir_dereference_variable *const d =
1912
new(mem_ctx) ir_dereference_variable(var);
1913
1914
instructions->push_tail(var);
1915
1916
exec_node *node = parameters->get_head_raw();
1917
for (unsigned i = 0; i < type->length; i++) {
1918
assert(!node->is_tail_sentinel());
1919
1920
ir_dereference *const lhs =
1921
new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1922
type->fields.structure[i].name);
1923
1924
ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1925
assert(rhs != NULL);
1926
1927
ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs);
1928
1929
instructions->push_tail(assign);
1930
node = node->next;
1931
}
1932
1933
return d;
1934
}
1935
1936
1937
static ir_rvalue *
1938
process_record_constructor(exec_list *instructions,
1939
const glsl_type *constructor_type,
1940
YYLTYPE *loc, exec_list *parameters,
1941
struct _mesa_glsl_parse_state *state)
1942
{
1943
void *ctx = state;
1944
/* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec:
1945
*
1946
* "The arguments to the constructor will be used to set the structure's
1947
* fields, in order, using one argument per field. Each argument must
1948
* be the same type as the field it sets, or be a type that can be
1949
* converted to the field's type according to Section 4.1.10 “Implicit
1950
* Conversions.”"
1951
*
1952
* From page 35 (page 41 of the PDF) of the GLSL 4.20 spec:
1953
*
1954
* "In all cases, the innermost initializer (i.e., not a list of
1955
* initializers enclosed in curly braces) applied to an object must
1956
* have the same type as the object being initialized or be a type that
1957
* can be converted to the object's type according to section 4.1.10
1958
* "Implicit Conversions". In the latter case, an implicit conversion
1959
* will be done on the initializer before the assignment is done."
1960
*/
1961
exec_list actual_parameters;
1962
1963
const unsigned parameter_count =
1964
process_parameters(instructions, &actual_parameters, parameters,
1965
state);
1966
1967
if (parameter_count != constructor_type->length) {
1968
_mesa_glsl_error(loc, state,
1969
"%s parameters in constructor for `%s'",
1970
parameter_count > constructor_type->length
1971
? "too many": "insufficient",
1972
constructor_type->name);
1973
return ir_rvalue::error_value(ctx);
1974
}
1975
1976
bool all_parameters_are_constant = true;
1977
1978
int i = 0;
1979
/* Type cast each parameter and, if possible, fold constants. */
1980
foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1981
1982
const glsl_struct_field *struct_field =
1983
&constructor_type->fields.structure[i];
1984
1985
/* Apply implicit conversions (not the scalar constructor rules, see the
1986
* spec quote above!) and attempt to convert the parameter to a constant
1987
* valued expression. After doing so, track whether or not all the
1988
* parameters to the constructor are trivially constant valued
1989
* expressions.
1990
*/
1991
all_parameters_are_constant &=
1992
implicitly_convert_component(ir, struct_field->type->base_type,
1993
state);
1994
1995
if (ir->type != struct_field->type) {
1996
_mesa_glsl_error(loc, state,
1997
"parameter type mismatch in constructor for `%s.%s' "
1998
"(%s vs %s)",
1999
constructor_type->name,
2000
struct_field->name,
2001
ir->type->name,
2002
struct_field->type->name);
2003
return ir_rvalue::error_value(ctx);
2004
}
2005
2006
i++;
2007
}
2008
2009
if (all_parameters_are_constant) {
2010
return new(ctx) ir_constant(constructor_type, &actual_parameters);
2011
} else {
2012
return emit_inline_record_constructor(constructor_type, instructions,
2013
&actual_parameters, state);
2014
}
2015
}
2016
2017
ir_rvalue *
2018
ast_function_expression::handle_method(exec_list *instructions,
2019
struct _mesa_glsl_parse_state *state)
2020
{
2021
const ast_expression *field = subexpressions[0];
2022
ir_rvalue *op;
2023
ir_rvalue *result;
2024
void *ctx = state;
2025
/* Handle "method calls" in GLSL 1.20 - namely, array.length() */
2026
YYLTYPE loc = get_location();
2027
state->check_version(120, 300, &loc, "methods not supported");
2028
2029
const char *method;
2030
method = field->primary_expression.identifier;
2031
2032
/* This would prevent to raise "uninitialized variable" warnings when
2033
* calling array.length.
2034
*/
2035
field->subexpressions[0]->set_is_lhs(true);
2036
op = field->subexpressions[0]->hir(instructions, state);
2037
if (strcmp(method, "length") == 0) {
2038
if (!this->expressions.is_empty()) {
2039
_mesa_glsl_error(&loc, state, "length method takes no arguments");
2040
goto fail;
2041
}
2042
2043
if (op->type->is_array()) {
2044
if (op->type->is_unsized_array()) {
2045
if (!state->has_shader_storage_buffer_objects()) {
2046
_mesa_glsl_error(&loc, state,
2047
"length called on unsized array"
2048
" only available with"
2049
" ARB_shader_storage_buffer_object");
2050
goto fail;
2051
} else if (op->variable_referenced()->is_in_shader_storage_block()) {
2052
/* Calculate length of an unsized array in run-time */
2053
result = new(ctx)
2054
ir_expression(ir_unop_ssbo_unsized_array_length, op);
2055
} else {
2056
/* When actual size is known at link-time, this will be
2057
* replaced with a constant expression.
2058
*/
2059
result = new (ctx)
2060
ir_expression(ir_unop_implicitly_sized_array_length, op);
2061
}
2062
} else {
2063
result = new(ctx) ir_constant(op->type->array_size());
2064
}
2065
} else if (op->type->is_vector()) {
2066
if (state->has_420pack()) {
2067
/* .length() returns int. */
2068
result = new(ctx) ir_constant((int) op->type->vector_elements);
2069
} else {
2070
_mesa_glsl_error(&loc, state, "length method on matrix only"
2071
" available with ARB_shading_language_420pack");
2072
goto fail;
2073
}
2074
} else if (op->type->is_matrix()) {
2075
if (state->has_420pack()) {
2076
/* .length() returns int. */
2077
result = new(ctx) ir_constant((int) op->type->matrix_columns);
2078
} else {
2079
_mesa_glsl_error(&loc, state, "length method on matrix only"
2080
" available with ARB_shading_language_420pack");
2081
goto fail;
2082
}
2083
} else {
2084
_mesa_glsl_error(&loc, state, "length called on scalar.");
2085
goto fail;
2086
}
2087
} else {
2088
_mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
2089
goto fail;
2090
}
2091
return result;
2092
fail:
2093
return ir_rvalue::error_value(ctx);
2094
}
2095
2096
static inline bool is_valid_constructor(const glsl_type *type,
2097
struct _mesa_glsl_parse_state *state)
2098
{
2099
return type->is_numeric() || type->is_boolean() ||
2100
(state->has_bindless() && (type->is_sampler() || type->is_image()));
2101
}
2102
2103
ir_rvalue *
2104
ast_function_expression::hir(exec_list *instructions,
2105
struct _mesa_glsl_parse_state *state)
2106
{
2107
void *ctx = state;
2108
/* There are three sorts of function calls.
2109
*
2110
* 1. constructors - The first subexpression is an ast_type_specifier.
2111
* 2. methods - Only the .length() method of array types.
2112
* 3. functions - Calls to regular old functions.
2113
*
2114
*/
2115
if (is_constructor()) {
2116
const ast_type_specifier *type =
2117
(ast_type_specifier *) subexpressions[0];
2118
YYLTYPE loc = type->get_location();
2119
const char *name;
2120
2121
const glsl_type *const constructor_type = type->glsl_type(& name, state);
2122
2123
/* constructor_type can be NULL if a variable with the same name as the
2124
* structure has come into scope.
2125
*/
2126
if (constructor_type == NULL) {
2127
_mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
2128
"may be shadowed by a variable with the same name)",
2129
type->type_name);
2130
return ir_rvalue::error_value(ctx);
2131
}
2132
2133
2134
/* Constructors for opaque types are illegal.
2135
*
2136
* From section 4.1.7 of the ARB_bindless_texture spec:
2137
*
2138
* "Samplers are represented using 64-bit integer handles, and may be "
2139
* converted to and from 64-bit integers using constructors."
2140
*
2141
* From section 4.1.X of the ARB_bindless_texture spec:
2142
*
2143
* "Images are represented using 64-bit integer handles, and may be
2144
* converted to and from 64-bit integers using constructors."
2145
*/
2146
if (constructor_type->contains_atomic() ||
2147
(!state->has_bindless() && constructor_type->contains_opaque())) {
2148
_mesa_glsl_error(& loc, state, "cannot construct %s type `%s'",
2149
state->has_bindless() ? "atomic" : "opaque",
2150
constructor_type->name);
2151
return ir_rvalue::error_value(ctx);
2152
}
2153
2154
if (constructor_type->is_subroutine()) {
2155
_mesa_glsl_error(& loc, state,
2156
"subroutine name cannot be a constructor `%s'",
2157
constructor_type->name);
2158
return ir_rvalue::error_value(ctx);
2159
}
2160
2161
if (constructor_type->is_array()) {
2162
if (!state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120,
2163
300, &loc, "array constructors forbidden")) {
2164
return ir_rvalue::error_value(ctx);
2165
}
2166
2167
return process_array_constructor(instructions, constructor_type,
2168
& loc, &this->expressions, state);
2169
}
2170
2171
2172
/* There are two kinds of constructor calls. Constructors for arrays and
2173
* structures must have the exact number of arguments with matching types
2174
* in the correct order. These constructors follow essentially the same
2175
* type matching rules as functions.
2176
*
2177
* Constructors for built-in language types, such as mat4 and vec2, are
2178
* free form. The only requirements are that the parameters must provide
2179
* enough values of the correct scalar type and that no arguments are
2180
* given past the last used argument.
2181
*
2182
* When using the C-style initializer syntax from GLSL 4.20, constructors
2183
* must have the exact number of arguments with matching types in the
2184
* correct order.
2185
*/
2186
if (constructor_type->is_struct()) {
2187
return process_record_constructor(instructions, constructor_type,
2188
&loc, &this->expressions,
2189
state);
2190
}
2191
2192
if (!is_valid_constructor(constructor_type, state))
2193
return ir_rvalue::error_value(ctx);
2194
2195
/* Total number of components of the type being constructed. */
2196
const unsigned type_components = constructor_type->components();
2197
2198
/* Number of components from parameters that have actually been
2199
* consumed. This is used to perform several kinds of error checking.
2200
*/
2201
unsigned components_used = 0;
2202
2203
unsigned matrix_parameters = 0;
2204
unsigned nonmatrix_parameters = 0;
2205
exec_list actual_parameters;
2206
2207
foreach_list_typed(ast_node, ast, link, &this->expressions) {
2208
ir_rvalue *result = ast->hir(instructions, state);
2209
2210
/* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2211
*
2212
* "It is an error to provide extra arguments beyond this
2213
* last used argument."
2214
*/
2215
if (components_used >= type_components) {
2216
_mesa_glsl_error(& loc, state, "too many parameters to `%s' "
2217
"constructor",
2218
constructor_type->name);
2219
return ir_rvalue::error_value(ctx);
2220
}
2221
2222
if (!is_valid_constructor(result->type, state)) {
2223
_mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
2224
"non-numeric data type",
2225
constructor_type->name);
2226
return ir_rvalue::error_value(ctx);
2227
}
2228
2229
/* Count the number of matrix and nonmatrix parameters. This
2230
* is used below to enforce some of the constructor rules.
2231
*/
2232
if (result->type->is_matrix())
2233
matrix_parameters++;
2234
else
2235
nonmatrix_parameters++;
2236
2237
actual_parameters.push_tail(result);
2238
components_used += result->type->components();
2239
}
2240
2241
/* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2242
*
2243
* "It is an error to construct matrices from other matrices. This
2244
* is reserved for future use."
2245
*/
2246
if (matrix_parameters > 0
2247
&& constructor_type->is_matrix()
2248
&& !state->check_version(120, 100, &loc,
2249
"cannot construct `%s' from a matrix",
2250
constructor_type->name)) {
2251
return ir_rvalue::error_value(ctx);
2252
}
2253
2254
/* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2255
*
2256
* "If a matrix argument is given to a matrix constructor, it is
2257
* an error to have any other arguments."
2258
*/
2259
if ((matrix_parameters > 0)
2260
&& ((matrix_parameters + nonmatrix_parameters) > 1)
2261
&& constructor_type->is_matrix()) {
2262
_mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
2263
"matrix must be only parameter",
2264
constructor_type->name);
2265
return ir_rvalue::error_value(ctx);
2266
}
2267
2268
/* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2269
*
2270
* "In these cases, there must be enough components provided in the
2271
* arguments to provide an initializer for every component in the
2272
* constructed value."
2273
*/
2274
if (components_used < type_components && components_used != 1
2275
&& matrix_parameters == 0) {
2276
_mesa_glsl_error(& loc, state, "too few components to construct "
2277
"`%s'",
2278
constructor_type->name);
2279
return ir_rvalue::error_value(ctx);
2280
}
2281
2282
/* Matrices can never be consumed as is by any constructor but matrix
2283
* constructors. If the constructor type is not matrix, always break the
2284
* matrix up into a series of column vectors.
2285
*/
2286
if (!constructor_type->is_matrix()) {
2287
foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
2288
if (!matrix->type->is_matrix())
2289
continue;
2290
2291
/* Create a temporary containing the matrix. */
2292
ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
2293
ir_var_temporary);
2294
instructions->push_tail(var);
2295
instructions->push_tail(
2296
new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
2297
matrix));
2298
var->constant_value = matrix->constant_expression_value(ctx);
2299
2300
/* Replace the matrix with dereferences of its columns. */
2301
for (int i = 0; i < matrix->type->matrix_columns; i++) {
2302
matrix->insert_before(
2303
new (ctx) ir_dereference_array(var,
2304
new(ctx) ir_constant(i)));
2305
}
2306
matrix->remove();
2307
}
2308
}
2309
2310
bool all_parameters_are_constant = true;
2311
2312
/* Type cast each parameter and, if possible, fold constants.*/
2313
foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
2314
const glsl_type *desired_type;
2315
2316
/* From section 5.4.1 of the ARB_bindless_texture spec:
2317
*
2318
* "In the following four constructors, the low 32 bits of the sampler
2319
* type correspond to the .x component of the uvec2 and the high 32
2320
* bits correspond to the .y component."
2321
*
2322
* uvec2(any sampler type) // Converts a sampler type to a
2323
* // pair of 32-bit unsigned integers
2324
* any sampler type(uvec2) // Converts a pair of 32-bit unsigned integers to
2325
* // a sampler type
2326
* uvec2(any image type) // Converts an image type to a
2327
* // pair of 32-bit unsigned integers
2328
* any image type(uvec2) // Converts a pair of 32-bit unsigned integers to
2329
* // an image type
2330
*/
2331
if (ir->type->is_sampler() || ir->type->is_image()) {
2332
/* Convert a sampler/image type to a pair of 32-bit unsigned
2333
* integers as defined by ARB_bindless_texture.
2334
*/
2335
if (constructor_type != glsl_type::uvec2_type) {
2336
_mesa_glsl_error(&loc, state, "sampler and image types can only "
2337
"be converted to a pair of 32-bit unsigned "
2338
"integers");
2339
}
2340
desired_type = glsl_type::uvec2_type;
2341
} else if (constructor_type->is_sampler() ||
2342
constructor_type->is_image()) {
2343
/* Convert a pair of 32-bit unsigned integers to a sampler or image
2344
* type as defined by ARB_bindless_texture.
2345
*/
2346
if (ir->type != glsl_type::uvec2_type) {
2347
_mesa_glsl_error(&loc, state, "sampler and image types can only "
2348
"be converted from a pair of 32-bit unsigned "
2349
"integers");
2350
}
2351
desired_type = constructor_type;
2352
} else {
2353
desired_type =
2354
glsl_type::get_instance(constructor_type->base_type,
2355
ir->type->vector_elements,
2356
ir->type->matrix_columns);
2357
}
2358
2359
ir_rvalue *result = convert_component(ir, desired_type);
2360
2361
/* Attempt to convert the parameter to a constant valued expression.
2362
* After doing so, track whether or not all the parameters to the
2363
* constructor are trivially constant valued expressions.
2364
*/
2365
ir_rvalue *const constant = result->constant_expression_value(ctx);
2366
2367
if (constant != NULL)
2368
result = constant;
2369
else
2370
all_parameters_are_constant = false;
2371
2372
if (result != ir) {
2373
ir->replace_with(result);
2374
}
2375
}
2376
2377
/* If all of the parameters are trivially constant, create a
2378
* constant representing the complete collection of parameters.
2379
*/
2380
if (all_parameters_are_constant) {
2381
return new(ctx) ir_constant(constructor_type, &actual_parameters);
2382
} else if (constructor_type->is_scalar()) {
2383
return dereference_component((ir_rvalue *)
2384
actual_parameters.get_head_raw(),
2385
0);
2386
} else if (constructor_type->is_vector()) {
2387
return emit_inline_vector_constructor(constructor_type,
2388
instructions,
2389
&actual_parameters,
2390
ctx);
2391
} else {
2392
assert(constructor_type->is_matrix());
2393
return emit_inline_matrix_constructor(constructor_type,
2394
instructions,
2395
&actual_parameters,
2396
ctx);
2397
}
2398
} else if (subexpressions[0]->oper == ast_field_selection) {
2399
return handle_method(instructions, state);
2400
} else {
2401
const ast_expression *id = subexpressions[0];
2402
const char *func_name = NULL;
2403
YYLTYPE loc = get_location();
2404
exec_list actual_parameters;
2405
ir_variable *sub_var = NULL;
2406
ir_rvalue *array_idx = NULL;
2407
2408
process_parameters(instructions, &actual_parameters, &this->expressions,
2409
state);
2410
2411
if (id->oper == ast_array_index) {
2412
array_idx = generate_array_index(ctx, instructions, state, loc,
2413
id->subexpressions[0],
2414
id->subexpressions[1], &func_name,
2415
&actual_parameters);
2416
} else if (id->oper == ast_identifier) {
2417
func_name = id->primary_expression.identifier;
2418
} else {
2419
_mesa_glsl_error(&loc, state, "function name is not an identifier");
2420
}
2421
2422
/* an error was emitted earlier */
2423
if (!func_name)
2424
return ir_rvalue::error_value(ctx);
2425
2426
ir_function_signature *sig =
2427
match_function_by_name(func_name, &actual_parameters, state);
2428
2429
ir_rvalue *value = NULL;
2430
if (sig == NULL) {
2431
sig = match_subroutine_by_name(func_name, &actual_parameters,
2432
state, &sub_var);
2433
}
2434
2435
if (sig == NULL) {
2436
no_matching_function_error(func_name, &loc,
2437
&actual_parameters, state);
2438
value = ir_rvalue::error_value(ctx);
2439
} else if (!verify_parameter_modes(state, sig,
2440
actual_parameters,
2441
this->expressions)) {
2442
/* an error has already been emitted */
2443
value = ir_rvalue::error_value(ctx);
2444
} else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) {
2445
/* ftransform refers to global variables, and we don't have any code
2446
* for remapping the variable references in the built-in shader.
2447
*/
2448
ir_variable *mvp =
2449
state->symbols->get_variable("gl_ModelViewProjectionMatrix");
2450
ir_variable *vtx = state->symbols->get_variable("gl_Vertex");
2451
value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type,
2452
new(ctx) ir_dereference_variable(mvp),
2453
new(ctx) ir_dereference_variable(vtx));
2454
} else {
2455
bool is_begin_interlock = false;
2456
bool is_end_interlock = false;
2457
if (sig->is_builtin() &&
2458
state->stage == MESA_SHADER_FRAGMENT &&
2459
state->ARB_fragment_shader_interlock_enable) {
2460
is_begin_interlock = strcmp(func_name, "beginInvocationInterlockARB") == 0;
2461
is_end_interlock = strcmp(func_name, "endInvocationInterlockARB") == 0;
2462
}
2463
2464
if (sig->is_builtin() &&
2465
((state->stage == MESA_SHADER_TESS_CTRL &&
2466
strcmp(func_name, "barrier") == 0) ||
2467
is_begin_interlock || is_end_interlock)) {
2468
if (state->current_function == NULL ||
2469
strcmp(state->current_function->function_name(), "main") != 0) {
2470
_mesa_glsl_error(&loc, state,
2471
"%s() may only be used in main()", func_name);
2472
}
2473
2474
if (state->found_return) {
2475
_mesa_glsl_error(&loc, state,
2476
"%s() may not be used after return", func_name);
2477
}
2478
2479
if (instructions != &state->current_function->body) {
2480
_mesa_glsl_error(&loc, state,
2481
"%s() may not be used in control flow", func_name);
2482
}
2483
}
2484
2485
/* There can be only one begin/end interlock pair in the function. */
2486
if (is_begin_interlock) {
2487
if (state->found_begin_interlock)
2488
_mesa_glsl_error(&loc, state,
2489
"beginInvocationInterlockARB may not be used twice");
2490
state->found_begin_interlock = true;
2491
} else if (is_end_interlock) {
2492
if (!state->found_begin_interlock)
2493
_mesa_glsl_error(&loc, state,
2494
"endInvocationInterlockARB may not be used "
2495
"before beginInvocationInterlockARB");
2496
if (state->found_end_interlock)
2497
_mesa_glsl_error(&loc, state,
2498
"endInvocationInterlockARB may not be used twice");
2499
state->found_end_interlock = true;
2500
}
2501
2502
value = generate_call(instructions, sig, &actual_parameters, sub_var,
2503
array_idx, state);
2504
if (!value) {
2505
ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
2506
"void_var",
2507
ir_var_temporary);
2508
instructions->push_tail(tmp);
2509
value = new(ctx) ir_dereference_variable(tmp);
2510
}
2511
}
2512
2513
return value;
2514
}
2515
2516
unreachable("not reached");
2517
}
2518
2519
bool
2520
ast_function_expression::has_sequence_subexpression() const
2521
{
2522
foreach_list_typed(const ast_node, ast, link, &this->expressions) {
2523
if (ast->has_sequence_subexpression())
2524
return true;
2525
}
2526
2527
return false;
2528
}
2529
2530
ir_rvalue *
2531
ast_aggregate_initializer::hir(exec_list *instructions,
2532
struct _mesa_glsl_parse_state *state)
2533
{
2534
void *ctx = state;
2535
YYLTYPE loc = this->get_location();
2536
2537
if (!this->constructor_type) {
2538
_mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
2539
return ir_rvalue::error_value(ctx);
2540
}
2541
const glsl_type *const constructor_type = this->constructor_type;
2542
2543
if (!state->has_420pack()) {
2544
_mesa_glsl_error(&loc, state, "C-style initialization requires the "
2545
"GL_ARB_shading_language_420pack extension");
2546
return ir_rvalue::error_value(ctx);
2547
}
2548
2549
if (constructor_type->is_array()) {
2550
return process_array_constructor(instructions, constructor_type, &loc,
2551
&this->expressions, state);
2552
}
2553
2554
if (constructor_type->is_struct()) {
2555
return process_record_constructor(instructions, constructor_type, &loc,
2556
&this->expressions, state);
2557
}
2558
2559
return process_vec_mat_constructor(instructions, constructor_type, &loc,
2560
&this->expressions, state);
2561
}
2562
2563