Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/compiler/glsl/ir.h
4545 views
1
/* -*- c++ -*- */
2
/*
3
* Copyright © 2010 Intel Corporation
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
* and/or sell copies of the Software, and to permit persons to whom the
10
* Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice (including the next
13
* paragraph) shall be included in all copies or substantial portions of the
14
* Software.
15
*
16
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22
* DEALINGS IN THE SOFTWARE.
23
*/
24
25
#ifndef IR_H
26
#define IR_H
27
28
#include <stdio.h>
29
#include <stdlib.h>
30
31
#include "util/ralloc.h"
32
#include "util/format/u_format.h"
33
#include "util/half_float.h"
34
#include "compiler/glsl_types.h"
35
#include "list.h"
36
#include "ir_visitor.h"
37
#include "ir_hierarchical_visitor.h"
38
39
#ifdef __cplusplus
40
41
/**
42
* \defgroup IR Intermediate representation nodes
43
*
44
* @{
45
*/
46
47
/**
48
* Class tags
49
*
50
* Each concrete class derived from \c ir_instruction has a value in this
51
* enumerant. The value for the type is stored in \c ir_instruction::ir_type
52
* by the constructor. While using type tags is not very C++, it is extremely
53
* convenient. For example, during debugging you can simply inspect
54
* \c ir_instruction::ir_type to find out the actual type of the object.
55
*
56
* In addition, it is possible to use a switch-statement based on \c
57
* \c ir_instruction::ir_type to select different behavior for different object
58
* types. For functions that have only slight differences for several object
59
* types, this allows writing very straightforward, readable code.
60
*/
61
enum ir_node_type {
62
ir_type_dereference_array,
63
ir_type_dereference_record,
64
ir_type_dereference_variable,
65
ir_type_constant,
66
ir_type_expression,
67
ir_type_swizzle,
68
ir_type_texture,
69
ir_type_variable,
70
ir_type_assignment,
71
ir_type_call,
72
ir_type_function,
73
ir_type_function_signature,
74
ir_type_if,
75
ir_type_loop,
76
ir_type_loop_jump,
77
ir_type_return,
78
ir_type_discard,
79
ir_type_demote,
80
ir_type_emit_vertex,
81
ir_type_end_primitive,
82
ir_type_barrier,
83
ir_type_max, /**< maximum ir_type enum number, for validation */
84
ir_type_unset = ir_type_max
85
};
86
87
88
/**
89
* Base class of all IR instructions
90
*/
91
class ir_instruction : public exec_node {
92
public:
93
enum ir_node_type ir_type;
94
95
/**
96
* GCC 4.7+ and clang warn when deleting an ir_instruction unless
97
* there's a virtual destructor present. Because we almost
98
* universally use ralloc for our memory management of
99
* ir_instructions, the destructor doesn't need to do any work.
100
*/
101
virtual ~ir_instruction()
102
{
103
}
104
105
/** ir_print_visitor helper for debugging. */
106
void print(void) const;
107
void fprint(FILE *f) const;
108
109
virtual void accept(ir_visitor *) = 0;
110
virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
111
virtual ir_instruction *clone(void *mem_ctx,
112
struct hash_table *ht) const = 0;
113
114
bool is_rvalue() const
115
{
116
return ir_type == ir_type_dereference_array ||
117
ir_type == ir_type_dereference_record ||
118
ir_type == ir_type_dereference_variable ||
119
ir_type == ir_type_constant ||
120
ir_type == ir_type_expression ||
121
ir_type == ir_type_swizzle ||
122
ir_type == ir_type_texture;
123
}
124
125
bool is_dereference() const
126
{
127
return ir_type == ir_type_dereference_array ||
128
ir_type == ir_type_dereference_record ||
129
ir_type == ir_type_dereference_variable;
130
}
131
132
bool is_jump() const
133
{
134
return ir_type == ir_type_loop_jump ||
135
ir_type == ir_type_return ||
136
ir_type == ir_type_discard;
137
}
138
139
/**
140
* \name IR instruction downcast functions
141
*
142
* These functions either cast the object to a derived class or return
143
* \c NULL if the object's type does not match the specified derived class.
144
* Additional downcast functions will be added as needed.
145
*/
146
/*@{*/
147
#define AS_BASE(TYPE) \
148
class ir_##TYPE *as_##TYPE() \
149
{ \
150
assume(this != NULL); \
151
return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
152
} \
153
const class ir_##TYPE *as_##TYPE() const \
154
{ \
155
assume(this != NULL); \
156
return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
157
}
158
159
AS_BASE(rvalue)
160
AS_BASE(dereference)
161
AS_BASE(jump)
162
#undef AS_BASE
163
164
#define AS_CHILD(TYPE) \
165
class ir_##TYPE * as_##TYPE() \
166
{ \
167
assume(this != NULL); \
168
return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
169
} \
170
const class ir_##TYPE * as_##TYPE() const \
171
{ \
172
assume(this != NULL); \
173
return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
174
}
175
AS_CHILD(variable)
176
AS_CHILD(function)
177
AS_CHILD(dereference_array)
178
AS_CHILD(dereference_variable)
179
AS_CHILD(dereference_record)
180
AS_CHILD(expression)
181
AS_CHILD(loop)
182
AS_CHILD(assignment)
183
AS_CHILD(call)
184
AS_CHILD(return)
185
AS_CHILD(if)
186
AS_CHILD(swizzle)
187
AS_CHILD(texture)
188
AS_CHILD(constant)
189
AS_CHILD(discard)
190
#undef AS_CHILD
191
/*@}*/
192
193
/**
194
* IR equality method: Return true if the referenced instruction would
195
* return the same value as this one.
196
*
197
* This intended to be used for CSE and algebraic optimizations, on rvalues
198
* in particular. No support for other instruction types (assignments,
199
* jumps, calls, etc.) is planned.
200
*/
201
virtual bool equals(const ir_instruction *ir,
202
enum ir_node_type ignore = ir_type_unset) const;
203
204
protected:
205
ir_instruction(enum ir_node_type t)
206
: ir_type(t)
207
{
208
}
209
210
private:
211
ir_instruction()
212
{
213
assert(!"Should not get here.");
214
}
215
};
216
217
218
/**
219
* The base class for all "values"/expression trees.
220
*/
221
class ir_rvalue : public ir_instruction {
222
public:
223
const struct glsl_type *type;
224
225
virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
226
227
virtual void accept(ir_visitor *v)
228
{
229
v->visit(this);
230
}
231
232
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
233
234
virtual ir_constant *constant_expression_value(void *mem_ctx,
235
struct hash_table *variable_context = NULL);
236
237
ir_rvalue *as_rvalue_to_saturate();
238
239
virtual bool is_lvalue(const struct _mesa_glsl_parse_state * = NULL) const
240
{
241
return false;
242
}
243
244
/**
245
* Get the variable that is ultimately referenced by an r-value
246
*/
247
virtual ir_variable *variable_referenced() const
248
{
249
return NULL;
250
}
251
252
253
/**
254
* If an r-value is a reference to a whole variable, get that variable
255
*
256
* \return
257
* Pointer to a variable that is completely dereferenced by the r-value. If
258
* the r-value is not a dereference or the dereference does not access the
259
* entire variable (i.e., it's just one array element, struct field), \c NULL
260
* is returned.
261
*/
262
virtual ir_variable *whole_variable_referenced()
263
{
264
return NULL;
265
}
266
267
/**
268
* Determine if an r-value has the value zero
269
*
270
* The base implementation of this function always returns \c false. The
271
* \c ir_constant class over-rides this function to return \c true \b only
272
* for vector and scalar types that have all elements set to the value
273
* zero (or \c false for booleans).
274
*
275
* \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
276
*/
277
virtual bool is_zero() const;
278
279
/**
280
* Determine if an r-value has the value one
281
*
282
* The base implementation of this function always returns \c false. The
283
* \c ir_constant class over-rides this function to return \c true \b only
284
* for vector and scalar types that have all elements set to the value
285
* one (or \c true for booleans).
286
*
287
* \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
288
*/
289
virtual bool is_one() const;
290
291
/**
292
* Determine if an r-value has the value negative one
293
*
294
* The base implementation of this function always returns \c false. The
295
* \c ir_constant class over-rides this function to return \c true \b only
296
* for vector and scalar types that have all elements set to the value
297
* negative one. For boolean types, the result is always \c false.
298
*
299
* \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
300
*/
301
virtual bool is_negative_one() const;
302
303
/**
304
* Determine if an r-value is an unsigned integer constant which can be
305
* stored in 16 bits.
306
*
307
* \sa ir_constant::is_uint16_constant.
308
*/
309
virtual bool is_uint16_constant() const { return false; }
310
311
/**
312
* Return a generic value of error_type.
313
*
314
* Allocation will be performed with 'mem_ctx' as ralloc owner.
315
*/
316
static ir_rvalue *error_value(void *mem_ctx);
317
318
protected:
319
ir_rvalue(enum ir_node_type t);
320
};
321
322
323
/**
324
* Variable storage classes
325
*/
326
enum ir_variable_mode {
327
ir_var_auto = 0, /**< Function local variables and globals. */
328
ir_var_uniform, /**< Variable declared as a uniform. */
329
ir_var_shader_storage, /**< Variable declared as an ssbo. */
330
ir_var_shader_shared, /**< Variable declared as shared. */
331
ir_var_shader_in,
332
ir_var_shader_out,
333
ir_var_function_in,
334
ir_var_function_out,
335
ir_var_function_inout,
336
ir_var_const_in, /**< "in" param that must be a constant expression */
337
ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
338
ir_var_temporary, /**< Temporary variable generated during compilation. */
339
ir_var_mode_count /**< Number of variable modes */
340
};
341
342
/**
343
* Enum keeping track of how a variable was declared. For error checking of
344
* the gl_PerVertex redeclaration rules.
345
*/
346
enum ir_var_declaration_type {
347
/**
348
* Normal declaration (for most variables, this means an explicit
349
* declaration. Exception: temporaries are always implicitly declared, but
350
* they still use ir_var_declared_normally).
351
*
352
* Note: an ir_variable that represents a named interface block uses
353
* ir_var_declared_normally.
354
*/
355
ir_var_declared_normally = 0,
356
357
/**
358
* Variable was explicitly declared (or re-declared) in an unnamed
359
* interface block.
360
*/
361
ir_var_declared_in_block,
362
363
/**
364
* Variable is an implicitly declared built-in that has not been explicitly
365
* re-declared by the shader.
366
*/
367
ir_var_declared_implicitly,
368
369
/**
370
* Variable is implicitly generated by the compiler and should not be
371
* visible via the API.
372
*/
373
ir_var_hidden,
374
};
375
376
/**
377
* \brief Layout qualifiers for gl_FragDepth.
378
*
379
* The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
380
* with a layout qualifier.
381
*/
382
enum ir_depth_layout {
383
ir_depth_layout_none, /**< No depth layout is specified. */
384
ir_depth_layout_any,
385
ir_depth_layout_greater,
386
ir_depth_layout_less,
387
ir_depth_layout_unchanged
388
};
389
390
/**
391
* \brief Convert depth layout qualifier to string.
392
*/
393
const char*
394
depth_layout_string(ir_depth_layout layout);
395
396
/**
397
* Description of built-in state associated with a uniform
398
*
399
* \sa ir_variable::state_slots
400
*/
401
struct ir_state_slot {
402
gl_state_index16 tokens[STATE_LENGTH];
403
int swizzle;
404
};
405
406
407
/**
408
* Get the string value for an interpolation qualifier
409
*
410
* \return The string that would be used in a shader to specify \c
411
* mode will be returned.
412
*
413
* This function is used to generate error messages of the form "shader
414
* uses %s interpolation qualifier", so in the case where there is no
415
* interpolation qualifier, it returns "no".
416
*
417
* This function should only be used on a shader input or output variable.
418
*/
419
const char *interpolation_string(unsigned interpolation);
420
421
422
class ir_variable : public ir_instruction {
423
public:
424
ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
425
426
virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
427
428
virtual void accept(ir_visitor *v)
429
{
430
v->visit(this);
431
}
432
433
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
434
435
436
/**
437
* Determine whether or not a variable is part of a uniform or
438
* shader storage block.
439
*/
440
inline bool is_in_buffer_block() const
441
{
442
return (this->data.mode == ir_var_uniform ||
443
this->data.mode == ir_var_shader_storage) &&
444
this->interface_type != NULL;
445
}
446
447
/**
448
* Determine whether or not a variable is part of a shader storage block.
449
*/
450
inline bool is_in_shader_storage_block() const
451
{
452
return this->data.mode == ir_var_shader_storage &&
453
this->interface_type != NULL;
454
}
455
456
/**
457
* Determine whether or not a variable is the declaration of an interface
458
* block
459
*
460
* For the first declaration below, there will be an \c ir_variable named
461
* "instance" whose type and whose instance_type will be the same
462
* \c glsl_type. For the second declaration, there will be an \c ir_variable
463
* named "f" whose type is float and whose instance_type is B2.
464
*
465
* "instance" is an interface instance variable, but "f" is not.
466
*
467
* uniform B1 {
468
* float f;
469
* } instance;
470
*
471
* uniform B2 {
472
* float f;
473
* };
474
*/
475
inline bool is_interface_instance() const
476
{
477
return this->type->without_array() == this->interface_type;
478
}
479
480
/**
481
* Return whether this variable contains a bindless sampler/image.
482
*/
483
inline bool contains_bindless() const
484
{
485
if (!this->type->contains_sampler() && !this->type->contains_image())
486
return false;
487
488
return this->data.bindless || this->data.mode != ir_var_uniform;
489
}
490
491
/**
492
* Set this->interface_type on a newly created variable.
493
*/
494
void init_interface_type(const struct glsl_type *type)
495
{
496
assert(this->interface_type == NULL);
497
this->interface_type = type;
498
if (this->is_interface_instance()) {
499
this->u.max_ifc_array_access =
500
ralloc_array(this, int, type->length);
501
for (unsigned i = 0; i < type->length; i++) {
502
this->u.max_ifc_array_access[i] = -1;
503
}
504
}
505
}
506
507
/**
508
* Change this->interface_type on a variable that previously had a
509
* different, but compatible, interface_type. This is used during linking
510
* to set the size of arrays in interface blocks.
511
*/
512
void change_interface_type(const struct glsl_type *type)
513
{
514
if (this->u.max_ifc_array_access != NULL) {
515
/* max_ifc_array_access has already been allocated, so make sure the
516
* new interface has the same number of fields as the old one.
517
*/
518
assert(this->interface_type->length == type->length);
519
}
520
this->interface_type = type;
521
}
522
523
/**
524
* Change this->interface_type on a variable that previously had a
525
* different, and incompatible, interface_type. This is used during
526
* compilation to handle redeclaration of the built-in gl_PerVertex
527
* interface block.
528
*/
529
void reinit_interface_type(const struct glsl_type *type)
530
{
531
if (this->u.max_ifc_array_access != NULL) {
532
#ifndef NDEBUG
533
/* Redeclaring gl_PerVertex is only allowed if none of the built-ins
534
* it defines have been accessed yet; so it's safe to throw away the
535
* old max_ifc_array_access pointer, since all of its values are
536
* zero.
537
*/
538
for (unsigned i = 0; i < this->interface_type->length; i++)
539
assert(this->u.max_ifc_array_access[i] == -1);
540
#endif
541
ralloc_free(this->u.max_ifc_array_access);
542
this->u.max_ifc_array_access = NULL;
543
}
544
this->interface_type = NULL;
545
init_interface_type(type);
546
}
547
548
const glsl_type *get_interface_type() const
549
{
550
return this->interface_type;
551
}
552
553
enum glsl_interface_packing get_interface_type_packing() const
554
{
555
return this->interface_type->get_interface_packing();
556
}
557
/**
558
* Get the max_ifc_array_access pointer
559
*
560
* A "set" function is not needed because the array is dynamically allocated
561
* as necessary.
562
*/
563
inline int *get_max_ifc_array_access()
564
{
565
assert(this->data._num_state_slots == 0);
566
return this->u.max_ifc_array_access;
567
}
568
569
inline unsigned get_num_state_slots() const
570
{
571
assert(!this->is_interface_instance()
572
|| this->data._num_state_slots == 0);
573
return this->data._num_state_slots;
574
}
575
576
inline void set_num_state_slots(unsigned n)
577
{
578
assert(!this->is_interface_instance()
579
|| n == 0);
580
this->data._num_state_slots = n;
581
}
582
583
inline ir_state_slot *get_state_slots()
584
{
585
return this->is_interface_instance() ? NULL : this->u.state_slots;
586
}
587
588
inline const ir_state_slot *get_state_slots() const
589
{
590
return this->is_interface_instance() ? NULL : this->u.state_slots;
591
}
592
593
inline ir_state_slot *allocate_state_slots(unsigned n)
594
{
595
assert(!this->is_interface_instance());
596
597
this->u.state_slots = ralloc_array(this, ir_state_slot, n);
598
this->data._num_state_slots = 0;
599
600
if (this->u.state_slots != NULL)
601
this->data._num_state_slots = n;
602
603
return this->u.state_slots;
604
}
605
606
inline bool is_interpolation_flat() const
607
{
608
return this->data.interpolation == INTERP_MODE_FLAT ||
609
this->type->contains_integer() ||
610
this->type->contains_double();
611
}
612
613
inline bool is_name_ralloced() const
614
{
615
return this->name != ir_variable::tmp_name &&
616
this->name != this->name_storage;
617
}
618
619
/**
620
* Enable emitting extension warnings for this variable
621
*/
622
void enable_extension_warning(const char *extension);
623
624
/**
625
* Get the extension warning string for this variable
626
*
627
* If warnings are not enabled, \c NULL is returned.
628
*/
629
const char *get_extension_warning() const;
630
631
/**
632
* Declared type of the variable
633
*/
634
const struct glsl_type *type;
635
636
/**
637
* Declared name of the variable
638
*/
639
const char *name;
640
641
private:
642
/**
643
* If the name length fits into name_storage, it's used, otherwise
644
* the name is ralloc'd. shader-db mining showed that 70% of variables
645
* fit here. This is a win over ralloc where only ralloc_header has
646
* 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
647
*/
648
char name_storage[16];
649
650
public:
651
struct ir_variable_data {
652
653
/**
654
* Is the variable read-only?
655
*
656
* This is set for variables declared as \c const, shader inputs,
657
* and uniforms.
658
*/
659
unsigned read_only:1;
660
unsigned centroid:1;
661
unsigned sample:1;
662
unsigned patch:1;
663
/**
664
* Was an 'invariant' qualifier explicitly set in the shader?
665
*
666
* This is used to cross validate qualifiers.
667
*/
668
unsigned explicit_invariant:1;
669
/**
670
* Is the variable invariant?
671
*
672
* It can happen either by having the 'invariant' qualifier
673
* explicitly set in the shader or by being used in calculations
674
* of other invariant variables.
675
*/
676
unsigned invariant:1;
677
unsigned precise:1;
678
679
/**
680
* Has this variable been used for reading or writing?
681
*
682
* Several GLSL semantic checks require knowledge of whether or not a
683
* variable has been used. For example, it is an error to redeclare a
684
* variable as invariant after it has been used.
685
*
686
* This is maintained in the ast_to_hir.cpp path and during linking,
687
* but not in Mesa's fixed function or ARB program paths.
688
*/
689
unsigned used:1;
690
691
/**
692
* Has this variable been statically assigned?
693
*
694
* This answers whether the variable was assigned in any path of
695
* the shader during ast_to_hir. This doesn't answer whether it is
696
* still written after dead code removal, nor is it maintained in
697
* non-ast_to_hir.cpp (GLSL parsing) paths.
698
*/
699
unsigned assigned:1;
700
701
/**
702
* When separate shader programs are enabled, only input/outputs between
703
* the stages of a multi-stage separate program can be safely removed
704
* from the shader interface. Other input/outputs must remains active.
705
*/
706
unsigned always_active_io:1;
707
708
/**
709
* Enum indicating how the variable was declared. See
710
* ir_var_declaration_type.
711
*
712
* This is used to detect certain kinds of illegal variable redeclarations.
713
*/
714
unsigned how_declared:2;
715
716
/**
717
* Storage class of the variable.
718
*
719
* \sa ir_variable_mode
720
*/
721
unsigned mode:4;
722
723
/**
724
* Interpolation mode for shader inputs / outputs
725
*
726
* \sa glsl_interp_mode
727
*/
728
unsigned interpolation:2;
729
730
/**
731
* Was the location explicitly set in the shader?
732
*
733
* If the location is explicitly set in the shader, it \b cannot be changed
734
* by the linker or by the API (e.g., calls to \c glBindAttribLocation have
735
* no effect).
736
*/
737
unsigned explicit_location:1;
738
unsigned explicit_index:1;
739
740
/**
741
* Was an initial binding explicitly set in the shader?
742
*
743
* If so, constant_value contains an integer ir_constant representing the
744
* initial binding point.
745
*/
746
unsigned explicit_binding:1;
747
748
/**
749
* Was an initial component explicitly set in the shader?
750
*/
751
unsigned explicit_component:1;
752
753
/**
754
* Does this variable have an initializer?
755
*
756
* This is used by the linker to cross-validiate initializers of global
757
* variables.
758
*/
759
unsigned has_initializer:1;
760
761
/**
762
* Is the initializer created by the compiler (glsl_zero_init)
763
*/
764
unsigned is_implicit_initializer:1;
765
766
/**
767
* Is this variable a generic output or input that has not yet been matched
768
* up to a variable in another stage of the pipeline?
769
*
770
* This is used by the linker as scratch storage while assigning locations
771
* to generic inputs and outputs.
772
*/
773
unsigned is_unmatched_generic_inout:1;
774
775
/**
776
* Is this varying used by transform feedback?
777
*
778
* This is used by the linker to decide if it's safe to pack the varying.
779
*/
780
unsigned is_xfb:1;
781
782
/**
783
* Is this varying used only by transform feedback?
784
*
785
* This is used by the linker to decide if its safe to pack the varying.
786
*/
787
unsigned is_xfb_only:1;
788
789
/**
790
* Was a transform feedback buffer set in the shader?
791
*/
792
unsigned explicit_xfb_buffer:1;
793
794
/**
795
* Was a transform feedback offset set in the shader?
796
*/
797
unsigned explicit_xfb_offset:1;
798
799
/**
800
* Was a transform feedback stride set in the shader?
801
*/
802
unsigned explicit_xfb_stride:1;
803
804
/**
805
* If non-zero, then this variable may be packed along with other variables
806
* into a single varying slot, so this offset should be applied when
807
* accessing components. For example, an offset of 1 means that the x
808
* component of this variable is actually stored in component y of the
809
* location specified by \c location.
810
*/
811
unsigned location_frac:2;
812
813
/**
814
* Layout of the matrix. Uses glsl_matrix_layout values.
815
*/
816
unsigned matrix_layout:2;
817
818
/**
819
* Non-zero if this variable was created by lowering a named interface
820
* block.
821
*/
822
unsigned from_named_ifc_block:1;
823
824
/**
825
* Non-zero if the variable must be a shader input. This is useful for
826
* constraints on function parameters.
827
*/
828
unsigned must_be_shader_input:1;
829
830
/**
831
* Output index for dual source blending.
832
*
833
* \note
834
* The GLSL spec only allows the values 0 or 1 for the index in \b dual
835
* source blending.
836
*/
837
unsigned index:1;
838
839
/**
840
* Precision qualifier.
841
*
842
* In desktop GLSL we do not care about precision qualifiers at all, in
843
* fact, the spec says that precision qualifiers are ignored.
844
*
845
* To make things easy, we make it so that this field is always
846
* GLSL_PRECISION_NONE on desktop shaders. This way all the variables
847
* have the same precision value and the checks we add in the compiler
848
* for this field will never break a desktop shader compile.
849
*/
850
unsigned precision:2;
851
852
/**
853
* \brief Layout qualifier for gl_FragDepth.
854
*
855
* This is not equal to \c ir_depth_layout_none if and only if this
856
* variable is \c gl_FragDepth and a layout qualifier is specified.
857
*/
858
ir_depth_layout depth_layout:3;
859
860
/**
861
* Memory qualifiers.
862
*/
863
unsigned memory_read_only:1; /**< "readonly" qualifier. */
864
unsigned memory_write_only:1; /**< "writeonly" qualifier. */
865
unsigned memory_coherent:1;
866
unsigned memory_volatile:1;
867
unsigned memory_restrict:1;
868
869
/**
870
* ARB_shader_storage_buffer_object
871
*/
872
unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
873
874
unsigned implicit_sized_array:1;
875
876
/**
877
* Whether this is a fragment shader output implicitly initialized with
878
* the previous contents of the specified render target at the
879
* framebuffer location corresponding to this shader invocation.
880
*/
881
unsigned fb_fetch_output:1;
882
883
/**
884
* Non-zero if this variable is considered bindless as defined by
885
* ARB_bindless_texture.
886
*/
887
unsigned bindless:1;
888
889
/**
890
* Non-zero if this variable is considered bound as defined by
891
* ARB_bindless_texture.
892
*/
893
unsigned bound:1;
894
895
/**
896
* Non-zero if the variable shall not be implicitly converted during
897
* functions matching.
898
*/
899
unsigned implicit_conversion_prohibited:1;
900
901
/**
902
* Emit a warning if this variable is accessed.
903
*/
904
private:
905
uint8_t warn_extension_index;
906
907
public:
908
/**
909
* Image internal format if specified explicitly, otherwise
910
* PIPE_FORMAT_NONE.
911
*/
912
enum pipe_format image_format;
913
914
private:
915
/**
916
* Number of state slots used
917
*
918
* \note
919
* This could be stored in as few as 7-bits, if necessary. If it is made
920
* smaller, add an assertion to \c ir_variable::allocate_state_slots to
921
* be safe.
922
*/
923
uint16_t _num_state_slots;
924
925
public:
926
/**
927
* Initial binding point for a sampler, atomic, or UBO.
928
*
929
* For array types, this represents the binding point for the first element.
930
*/
931
uint16_t binding;
932
933
/**
934
* Storage location of the base of this variable
935
*
936
* The precise meaning of this field depends on the nature of the variable.
937
*
938
* - Vertex shader input: one of the values from \c gl_vert_attrib.
939
* - Vertex shader output: one of the values from \c gl_varying_slot.
940
* - Geometry shader input: one of the values from \c gl_varying_slot.
941
* - Geometry shader output: one of the values from \c gl_varying_slot.
942
* - Fragment shader input: one of the values from \c gl_varying_slot.
943
* - Fragment shader output: one of the values from \c gl_frag_result.
944
* - Uniforms: Per-stage uniform slot number for default uniform block.
945
* - Uniforms: Index within the uniform block definition for UBO members.
946
* - Non-UBO Uniforms: explicit location until linking then reused to
947
* store uniform slot number.
948
* - Other: This field is not currently used.
949
*
950
* If the variable is a uniform, shader input, or shader output, and the
951
* slot has not been assigned, the value will be -1.
952
*/
953
int location;
954
955
/**
956
* for glsl->tgsi/mesa IR we need to store the index into the
957
* parameters for uniforms, initially the code overloaded location
958
* but this causes problems with indirect samplers and AoA.
959
* This is assigned in _mesa_generate_parameters_list_for_uniforms.
960
*/
961
int param_index;
962
963
/**
964
* Vertex stream output identifier.
965
*
966
* For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
967
* stream of the i-th component.
968
*/
969
unsigned stream;
970
971
/**
972
* Atomic, transform feedback or block member offset.
973
*/
974
unsigned offset;
975
976
/**
977
* Highest element accessed with a constant expression array index
978
*
979
* Not used for non-array variables. -1 is never accessed.
980
*/
981
int max_array_access;
982
983
/**
984
* Transform feedback buffer.
985
*/
986
unsigned xfb_buffer;
987
988
/**
989
* Transform feedback stride.
990
*/
991
unsigned xfb_stride;
992
993
/**
994
* Allow (only) ir_variable direct access private members.
995
*/
996
friend class ir_variable;
997
} data;
998
999
/**
1000
* Value assigned in the initializer of a variable declared "const"
1001
*/
1002
ir_constant *constant_value;
1003
1004
/**
1005
* Constant expression assigned in the initializer of the variable
1006
*
1007
* \warning
1008
* This field and \c ::constant_value are distinct. Even if the two fields
1009
* refer to constants with the same value, they must point to separate
1010
* objects.
1011
*/
1012
ir_constant *constant_initializer;
1013
1014
private:
1015
static const char *const warn_extension_table[];
1016
1017
union {
1018
/**
1019
* For variables which satisfy the is_interface_instance() predicate,
1020
* this points to an array of integers such that if the ith member of
1021
* the interface block is an array, max_ifc_array_access[i] is the
1022
* maximum array element of that member that has been accessed. If the
1023
* ith member of the interface block is not an array,
1024
* max_ifc_array_access[i] is unused.
1025
*
1026
* For variables whose type is not an interface block, this pointer is
1027
* NULL.
1028
*/
1029
int *max_ifc_array_access;
1030
1031
/**
1032
* Built-in state that backs this uniform
1033
*
1034
* Once set at variable creation, \c state_slots must remain invariant.
1035
*
1036
* If the variable is not a uniform, \c _num_state_slots will be zero
1037
* and \c state_slots will be \c NULL.
1038
*/
1039
ir_state_slot *state_slots;
1040
} u;
1041
1042
/**
1043
* For variables that are in an interface block or are an instance of an
1044
* interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1045
*
1046
* \sa ir_variable::location
1047
*/
1048
const glsl_type *interface_type;
1049
1050
/**
1051
* Name used for anonymous compiler temporaries
1052
*/
1053
static const char tmp_name[];
1054
1055
public:
1056
/**
1057
* Should the construct keep names for ir_var_temporary variables?
1058
*
1059
* When this global is false, names passed to the constructor for
1060
* \c ir_var_temporary variables will be dropped. Instead, the variable will
1061
* be named "compiler_temp". This name will be in static storage.
1062
*
1063
* \warning
1064
* \b NEVER change the mode of an \c ir_var_temporary.
1065
*
1066
* \warning
1067
* This variable is \b not thread-safe. It is global, \b not
1068
* per-context. It begins life false. A context can, at some point, make
1069
* it true. From that point on, it will be true forever. This should be
1070
* okay since it will only be set true while debugging.
1071
*/
1072
static bool temporaries_allocate_names;
1073
};
1074
1075
/**
1076
* A function that returns whether a built-in function is available in the
1077
* current shading language (based on version, ES or desktop, and extensions).
1078
*/
1079
typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1080
1081
#define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1082
ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1083
1084
#define MAP_INTRINSIC_TO_TYPE(i, t) \
1085
ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1086
1087
enum ir_intrinsic_id {
1088
ir_intrinsic_invalid = 0,
1089
1090
/**
1091
* \name Generic intrinsics
1092
*
1093
* Each of these intrinsics has a specific version for shared variables and
1094
* SSBOs.
1095
*/
1096
/*@{*/
1097
ir_intrinsic_generic_load,
1098
ir_intrinsic_generic_store,
1099
ir_intrinsic_generic_atomic_add,
1100
ir_intrinsic_generic_atomic_and,
1101
ir_intrinsic_generic_atomic_or,
1102
ir_intrinsic_generic_atomic_xor,
1103
ir_intrinsic_generic_atomic_min,
1104
ir_intrinsic_generic_atomic_max,
1105
ir_intrinsic_generic_atomic_exchange,
1106
ir_intrinsic_generic_atomic_comp_swap,
1107
/*@}*/
1108
1109
ir_intrinsic_atomic_counter_read,
1110
ir_intrinsic_atomic_counter_increment,
1111
ir_intrinsic_atomic_counter_predecrement,
1112
ir_intrinsic_atomic_counter_add,
1113
ir_intrinsic_atomic_counter_and,
1114
ir_intrinsic_atomic_counter_or,
1115
ir_intrinsic_atomic_counter_xor,
1116
ir_intrinsic_atomic_counter_min,
1117
ir_intrinsic_atomic_counter_max,
1118
ir_intrinsic_atomic_counter_exchange,
1119
ir_intrinsic_atomic_counter_comp_swap,
1120
1121
ir_intrinsic_image_load,
1122
ir_intrinsic_image_store,
1123
ir_intrinsic_image_atomic_add,
1124
ir_intrinsic_image_atomic_and,
1125
ir_intrinsic_image_atomic_or,
1126
ir_intrinsic_image_atomic_xor,
1127
ir_intrinsic_image_atomic_min,
1128
ir_intrinsic_image_atomic_max,
1129
ir_intrinsic_image_atomic_exchange,
1130
ir_intrinsic_image_atomic_comp_swap,
1131
ir_intrinsic_image_size,
1132
ir_intrinsic_image_samples,
1133
ir_intrinsic_image_atomic_inc_wrap,
1134
ir_intrinsic_image_atomic_dec_wrap,
1135
1136
ir_intrinsic_ssbo_load,
1137
ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1138
ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1139
ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1140
ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1141
ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1142
ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1143
ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1144
ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1145
ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1146
1147
ir_intrinsic_memory_barrier,
1148
ir_intrinsic_shader_clock,
1149
ir_intrinsic_group_memory_barrier,
1150
ir_intrinsic_memory_barrier_atomic_counter,
1151
ir_intrinsic_memory_barrier_buffer,
1152
ir_intrinsic_memory_barrier_image,
1153
ir_intrinsic_memory_barrier_shared,
1154
ir_intrinsic_begin_invocation_interlock,
1155
ir_intrinsic_end_invocation_interlock,
1156
1157
ir_intrinsic_vote_all,
1158
ir_intrinsic_vote_any,
1159
ir_intrinsic_vote_eq,
1160
ir_intrinsic_ballot,
1161
ir_intrinsic_read_invocation,
1162
ir_intrinsic_read_first_invocation,
1163
1164
ir_intrinsic_helper_invocation,
1165
1166
ir_intrinsic_shared_load,
1167
ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1168
ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1169
ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1170
ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1171
ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1172
ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1173
ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1174
ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1175
ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1176
};
1177
1178
/*@{*/
1179
/**
1180
* The representation of a function instance; may be the full definition or
1181
* simply a prototype.
1182
*/
1183
class ir_function_signature : public ir_instruction {
1184
/* An ir_function_signature will be part of the list of signatures in
1185
* an ir_function.
1186
*/
1187
public:
1188
ir_function_signature(const glsl_type *return_type,
1189
builtin_available_predicate builtin_avail = NULL);
1190
1191
virtual ir_function_signature *clone(void *mem_ctx,
1192
struct hash_table *ht) const;
1193
ir_function_signature *clone_prototype(void *mem_ctx,
1194
struct hash_table *ht) const;
1195
1196
virtual void accept(ir_visitor *v)
1197
{
1198
v->visit(this);
1199
}
1200
1201
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1202
1203
/**
1204
* Attempt to evaluate this function as a constant expression,
1205
* given a list of the actual parameters and the variable context.
1206
* Returns NULL for non-built-ins.
1207
*/
1208
ir_constant *constant_expression_value(void *mem_ctx,
1209
exec_list *actual_parameters,
1210
struct hash_table *variable_context);
1211
1212
/**
1213
* Get the name of the function for which this is a signature
1214
*/
1215
const char *function_name() const;
1216
1217
/**
1218
* Get a handle to the function for which this is a signature
1219
*
1220
* There is no setter function, this function returns a \c const pointer,
1221
* and \c ir_function_signature::_function is private for a reason. The
1222
* only way to make a connection between a function and function signature
1223
* is via \c ir_function::add_signature. This helps ensure that certain
1224
* invariants (i.e., a function signature is in the list of signatures for
1225
* its \c _function) are met.
1226
*
1227
* \sa ir_function::add_signature
1228
*/
1229
inline const class ir_function *function() const
1230
{
1231
return this->_function;
1232
}
1233
1234
/**
1235
* Check whether the qualifiers match between this signature's parameters
1236
* and the supplied parameter list. If not, returns the name of the first
1237
* parameter with mismatched qualifiers (for use in error messages).
1238
*/
1239
const char *qualifiers_match(exec_list *params);
1240
1241
/**
1242
* Replace the current parameter list with the given one. This is useful
1243
* if the current information came from a prototype, and either has invalid
1244
* or missing parameter names.
1245
*/
1246
void replace_parameters(exec_list *new_params);
1247
1248
/**
1249
* Function return type.
1250
*
1251
* \note The precision qualifier is stored separately in return_precision.
1252
*/
1253
const struct glsl_type *return_type;
1254
1255
/**
1256
* List of ir_variable of function parameters.
1257
*
1258
* This represents the storage. The paramaters passed in a particular
1259
* call will be in ir_call::actual_paramaters.
1260
*/
1261
struct exec_list parameters;
1262
1263
/** Whether or not this function has a body (which may be empty). */
1264
unsigned is_defined:1;
1265
1266
/*
1267
* Precision qualifier for the return type.
1268
*
1269
* See the comment for ir_variable_data::precision for more details.
1270
*/
1271
unsigned return_precision:2;
1272
1273
/** Whether or not this function signature is a built-in. */
1274
bool is_builtin() const;
1275
1276
/**
1277
* Whether or not this function is an intrinsic to be implemented
1278
* by the driver.
1279
*/
1280
inline bool is_intrinsic() const
1281
{
1282
return intrinsic_id != ir_intrinsic_invalid;
1283
}
1284
1285
/** Identifier for this intrinsic. */
1286
enum ir_intrinsic_id intrinsic_id;
1287
1288
/** Whether or not a built-in is available for this shader. */
1289
bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1290
1291
/** Body of instructions in the function. */
1292
struct exec_list body;
1293
1294
private:
1295
/**
1296
* A function pointer to a predicate that answers whether a built-in
1297
* function is available in the current shader. NULL if not a built-in.
1298
*/
1299
builtin_available_predicate builtin_avail;
1300
1301
/** Function of which this signature is one overload. */
1302
class ir_function *_function;
1303
1304
/** Function signature of which this one is a prototype clone */
1305
const ir_function_signature *origin;
1306
1307
friend class ir_function;
1308
1309
/**
1310
* Helper function to run a list of instructions for constant
1311
* expression evaluation.
1312
*
1313
* The hash table represents the values of the visible variables.
1314
* There are no scoping issues because the table is indexed on
1315
* ir_variable pointers, not variable names.
1316
*
1317
* Returns false if the expression is not constant, true otherwise,
1318
* and the value in *result if result is non-NULL.
1319
*/
1320
bool constant_expression_evaluate_expression_list(void *mem_ctx,
1321
const struct exec_list &body,
1322
struct hash_table *variable_context,
1323
ir_constant **result);
1324
};
1325
1326
1327
/**
1328
* Header for tracking multiple overloaded functions with the same name.
1329
* Contains a list of ir_function_signatures representing each of the
1330
* actual functions.
1331
*/
1332
class ir_function : public ir_instruction {
1333
public:
1334
ir_function(const char *name);
1335
1336
virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1337
1338
virtual void accept(ir_visitor *v)
1339
{
1340
v->visit(this);
1341
}
1342
1343
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1344
1345
void add_signature(ir_function_signature *sig)
1346
{
1347
sig->_function = this;
1348
this->signatures.push_tail(sig);
1349
}
1350
1351
/**
1352
* Find a signature that matches a set of actual parameters, taking implicit
1353
* conversions into account. Also flags whether the match was exact.
1354
*/
1355
ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1356
const exec_list *actual_param,
1357
bool allow_builtins,
1358
bool *match_is_exact);
1359
1360
/**
1361
* Find a signature that matches a set of actual parameters, taking implicit
1362
* conversions into account.
1363
*/
1364
ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1365
const exec_list *actual_param,
1366
bool allow_builtins);
1367
1368
/**
1369
* Find a signature that exactly matches a set of actual parameters without
1370
* any implicit type conversions.
1371
*/
1372
ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1373
const exec_list *actual_ps);
1374
1375
/**
1376
* Name of the function.
1377
*/
1378
const char *name;
1379
1380
/** Whether or not this function has a signature that isn't a built-in. */
1381
bool has_user_signature();
1382
1383
/**
1384
* List of ir_function_signature for each overloaded function with this name.
1385
*/
1386
struct exec_list signatures;
1387
1388
/**
1389
* is this function a subroutine type declaration
1390
* e.g. subroutine void type1(float arg1);
1391
*/
1392
bool is_subroutine;
1393
1394
/**
1395
* is this function associated to a subroutine type
1396
* e.g. subroutine (type1, type2) function_name { function_body };
1397
* would have num_subroutine_types 2,
1398
* and pointers to the type1 and type2 types.
1399
*/
1400
int num_subroutine_types;
1401
const struct glsl_type **subroutine_types;
1402
1403
int subroutine_index;
1404
};
1405
1406
inline const char *ir_function_signature::function_name() const
1407
{
1408
return this->_function->name;
1409
}
1410
/*@}*/
1411
1412
1413
/**
1414
* IR instruction representing high-level if-statements
1415
*/
1416
class ir_if : public ir_instruction {
1417
public:
1418
ir_if(ir_rvalue *condition)
1419
: ir_instruction(ir_type_if), condition(condition)
1420
{
1421
}
1422
1423
virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1424
1425
virtual void accept(ir_visitor *v)
1426
{
1427
v->visit(this);
1428
}
1429
1430
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1431
1432
ir_rvalue *condition;
1433
/** List of ir_instruction for the body of the then branch */
1434
exec_list then_instructions;
1435
/** List of ir_instruction for the body of the else branch */
1436
exec_list else_instructions;
1437
};
1438
1439
1440
/**
1441
* IR instruction representing a high-level loop structure.
1442
*/
1443
class ir_loop : public ir_instruction {
1444
public:
1445
ir_loop();
1446
1447
virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1448
1449
virtual void accept(ir_visitor *v)
1450
{
1451
v->visit(this);
1452
}
1453
1454
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1455
1456
/** List of ir_instruction that make up the body of the loop. */
1457
exec_list body_instructions;
1458
};
1459
1460
1461
class ir_assignment : public ir_instruction {
1462
public:
1463
ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1464
1465
/**
1466
* Construct an assignment with an explicit write mask
1467
*
1468
* \note
1469
* Since a write mask is supplied, the LHS must already be a bare
1470
* \c ir_dereference. The cannot be any swizzles in the LHS.
1471
*/
1472
ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1473
unsigned write_mask);
1474
1475
virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1476
1477
virtual ir_constant *constant_expression_value(void *mem_ctx,
1478
struct hash_table *variable_context = NULL);
1479
1480
virtual void accept(ir_visitor *v)
1481
{
1482
v->visit(this);
1483
}
1484
1485
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1486
1487
/**
1488
* Get a whole variable written by an assignment
1489
*
1490
* If the LHS of the assignment writes a whole variable, the variable is
1491
* returned. Otherwise \c NULL is returned. Examples of whole-variable
1492
* assignment are:
1493
*
1494
* - Assigning to a scalar
1495
* - Assigning to all components of a vector
1496
* - Whole array (or matrix) assignment
1497
* - Whole structure assignment
1498
*/
1499
ir_variable *whole_variable_written();
1500
1501
/**
1502
* Set the LHS of an assignment
1503
*/
1504
void set_lhs(ir_rvalue *lhs);
1505
1506
/**
1507
* Left-hand side of the assignment.
1508
*
1509
* This should be treated as read only. If you need to set the LHS of an
1510
* assignment, use \c ir_assignment::set_lhs.
1511
*/
1512
ir_dereference *lhs;
1513
1514
/**
1515
* Value being assigned
1516
*/
1517
ir_rvalue *rhs;
1518
1519
/**
1520
* Optional condition for the assignment.
1521
*/
1522
ir_rvalue *condition;
1523
1524
1525
/**
1526
* Component mask written
1527
*
1528
* For non-vector types in the LHS, this field will be zero. For vector
1529
* types, a bit will be set for each component that is written. Note that
1530
* for \c vec2 and \c vec3 types only the lower bits will ever be set.
1531
*
1532
* A partially-set write mask means that each enabled channel gets
1533
* the value from a consecutive channel of the rhs. For example,
1534
* to write just .xyw of gl_FrontColor with color:
1535
*
1536
* (assign (constant bool (1)) (xyw)
1537
* (var_ref gl_FragColor)
1538
* (swiz xyw (var_ref color)))
1539
*/
1540
unsigned write_mask:4;
1541
};
1542
1543
#include "ir_expression_operation.h"
1544
1545
extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1546
extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1547
1548
class ir_expression : public ir_rvalue {
1549
public:
1550
ir_expression(int op, const struct glsl_type *type,
1551
ir_rvalue *op0, ir_rvalue *op1 = NULL,
1552
ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1553
1554
/**
1555
* Constructor for unary operation expressions
1556
*/
1557
ir_expression(int op, ir_rvalue *);
1558
1559
/**
1560
* Constructor for binary operation expressions
1561
*/
1562
ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1563
1564
/**
1565
* Constructor for ternary operation expressions
1566
*/
1567
ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1568
1569
virtual bool equals(const ir_instruction *ir,
1570
enum ir_node_type ignore = ir_type_unset) const;
1571
1572
virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1573
1574
/**
1575
* Attempt to constant-fold the expression
1576
*
1577
* The "variable_context" hash table links ir_variable * to ir_constant *
1578
* that represent the variables' values. \c NULL represents an empty
1579
* context.
1580
*
1581
* If the expression cannot be constant folded, this method will return
1582
* \c NULL.
1583
*/
1584
virtual ir_constant *constant_expression_value(void *mem_ctx,
1585
struct hash_table *variable_context = NULL);
1586
1587
/**
1588
* This is only here for ir_reader to used for testing purposes please use
1589
* the precomputed num_operands field if you need the number of operands.
1590
*/
1591
static unsigned get_num_operands(ir_expression_operation);
1592
1593
/**
1594
* Return whether the expression operates on vectors horizontally.
1595
*/
1596
bool is_horizontal() const
1597
{
1598
return operation == ir_binop_all_equal ||
1599
operation == ir_binop_any_nequal ||
1600
operation == ir_binop_dot ||
1601
operation == ir_binop_vector_extract ||
1602
operation == ir_triop_vector_insert ||
1603
operation == ir_binop_ubo_load ||
1604
operation == ir_quadop_vector;
1605
}
1606
1607
/**
1608
* Do a reverse-lookup to translate the given string into an operator.
1609
*/
1610
static ir_expression_operation get_operator(const char *);
1611
1612
virtual void accept(ir_visitor *v)
1613
{
1614
v->visit(this);
1615
}
1616
1617
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1618
1619
virtual ir_variable *variable_referenced() const;
1620
1621
/**
1622
* Determine the number of operands used by an expression
1623
*/
1624
void init_num_operands()
1625
{
1626
if (operation == ir_quadop_vector) {
1627
num_operands = this->type->vector_elements;
1628
} else {
1629
num_operands = get_num_operands(operation);
1630
}
1631
}
1632
1633
ir_expression_operation operation;
1634
ir_rvalue *operands[4];
1635
uint8_t num_operands;
1636
};
1637
1638
1639
/**
1640
* HIR instruction representing a high-level function call, containing a list
1641
* of parameters and returning a value in the supplied temporary.
1642
*/
1643
class ir_call : public ir_instruction {
1644
public:
1645
ir_call(ir_function_signature *callee,
1646
ir_dereference_variable *return_deref,
1647
exec_list *actual_parameters)
1648
: ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1649
{
1650
assert(callee->return_type != NULL);
1651
actual_parameters->move_nodes_to(& this->actual_parameters);
1652
}
1653
1654
ir_call(ir_function_signature *callee,
1655
ir_dereference_variable *return_deref,
1656
exec_list *actual_parameters,
1657
ir_variable *var, ir_rvalue *array_idx)
1658
: ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1659
{
1660
assert(callee->return_type != NULL);
1661
actual_parameters->move_nodes_to(& this->actual_parameters);
1662
}
1663
1664
virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1665
1666
virtual ir_constant *constant_expression_value(void *mem_ctx,
1667
struct hash_table *variable_context = NULL);
1668
1669
virtual void accept(ir_visitor *v)
1670
{
1671
v->visit(this);
1672
}
1673
1674
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1675
1676
/**
1677
* Get the name of the function being called.
1678
*/
1679
const char *callee_name() const
1680
{
1681
return callee->function_name();
1682
}
1683
1684
/**
1685
* Generates an inline version of the function before @ir,
1686
* storing the return value in return_deref.
1687
*/
1688
void generate_inline(ir_instruction *ir);
1689
1690
/**
1691
* Storage for the function's return value.
1692
* This must be NULL if the return type is void.
1693
*/
1694
ir_dereference_variable *return_deref;
1695
1696
/**
1697
* The specific function signature being called.
1698
*/
1699
ir_function_signature *callee;
1700
1701
/* List of ir_rvalue of paramaters passed in this call. */
1702
exec_list actual_parameters;
1703
1704
/*
1705
* ARB_shader_subroutine support -
1706
* the subroutine uniform variable and array index
1707
* rvalue to be used in the lowering pass later.
1708
*/
1709
ir_variable *sub_var;
1710
ir_rvalue *array_idx;
1711
};
1712
1713
1714
/**
1715
* \name Jump-like IR instructions.
1716
*
1717
* These include \c break, \c continue, \c return, and \c discard.
1718
*/
1719
/*@{*/
1720
class ir_jump : public ir_instruction {
1721
protected:
1722
ir_jump(enum ir_node_type t)
1723
: ir_instruction(t)
1724
{
1725
}
1726
};
1727
1728
class ir_return : public ir_jump {
1729
public:
1730
ir_return()
1731
: ir_jump(ir_type_return), value(NULL)
1732
{
1733
}
1734
1735
ir_return(ir_rvalue *value)
1736
: ir_jump(ir_type_return), value(value)
1737
{
1738
}
1739
1740
virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1741
1742
ir_rvalue *get_value() const
1743
{
1744
return value;
1745
}
1746
1747
virtual void accept(ir_visitor *v)
1748
{
1749
v->visit(this);
1750
}
1751
1752
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1753
1754
ir_rvalue *value;
1755
};
1756
1757
1758
/**
1759
* Jump instructions used inside loops
1760
*
1761
* These include \c break and \c continue. The \c break within a loop is
1762
* different from the \c break within a switch-statement.
1763
*
1764
* \sa ir_switch_jump
1765
*/
1766
class ir_loop_jump : public ir_jump {
1767
public:
1768
enum jump_mode {
1769
jump_break,
1770
jump_continue
1771
};
1772
1773
ir_loop_jump(jump_mode mode)
1774
: ir_jump(ir_type_loop_jump)
1775
{
1776
this->mode = mode;
1777
}
1778
1779
virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1780
1781
virtual void accept(ir_visitor *v)
1782
{
1783
v->visit(this);
1784
}
1785
1786
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1787
1788
bool is_break() const
1789
{
1790
return mode == jump_break;
1791
}
1792
1793
bool is_continue() const
1794
{
1795
return mode == jump_continue;
1796
}
1797
1798
/** Mode selector for the jump instruction. */
1799
enum jump_mode mode;
1800
};
1801
1802
/**
1803
* IR instruction representing discard statements.
1804
*/
1805
class ir_discard : public ir_jump {
1806
public:
1807
ir_discard()
1808
: ir_jump(ir_type_discard)
1809
{
1810
this->condition = NULL;
1811
}
1812
1813
ir_discard(ir_rvalue *cond)
1814
: ir_jump(ir_type_discard)
1815
{
1816
this->condition = cond;
1817
}
1818
1819
virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1820
1821
virtual void accept(ir_visitor *v)
1822
{
1823
v->visit(this);
1824
}
1825
1826
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1827
1828
ir_rvalue *condition;
1829
};
1830
/*@}*/
1831
1832
1833
/**
1834
* IR instruction representing demote statements from
1835
* GL_EXT_demote_to_helper_invocation.
1836
*/
1837
class ir_demote : public ir_instruction {
1838
public:
1839
ir_demote()
1840
: ir_instruction(ir_type_demote)
1841
{
1842
}
1843
1844
virtual ir_demote *clone(void *mem_ctx, struct hash_table *ht) const;
1845
1846
virtual void accept(ir_visitor *v)
1847
{
1848
v->visit(this);
1849
}
1850
1851
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1852
};
1853
1854
1855
/**
1856
* Texture sampling opcodes used in ir_texture
1857
*/
1858
enum ir_texture_opcode {
1859
ir_tex, /**< Regular texture look-up */
1860
ir_txb, /**< Texture look-up with LOD bias */
1861
ir_txl, /**< Texture look-up with explicit LOD */
1862
ir_txd, /**< Texture look-up with partial derivatives */
1863
ir_txf, /**< Texel fetch with explicit LOD */
1864
ir_txf_ms, /**< Multisample texture fetch */
1865
ir_txs, /**< Texture size */
1866
ir_lod, /**< Texture lod query */
1867
ir_tg4, /**< Texture gather */
1868
ir_query_levels, /**< Texture levels query */
1869
ir_texture_samples, /**< Texture samples query */
1870
ir_samples_identical, /**< Query whether all samples are definitely identical. */
1871
};
1872
1873
1874
/**
1875
* IR instruction to sample a texture
1876
*
1877
* The specific form of the IR instruction depends on the \c mode value
1878
* selected from \c ir_texture_opcodes. In the printed IR, these will
1879
* appear as:
1880
*
1881
* Texel offset (0 or an expression)
1882
* | Projection divisor
1883
* | | Shadow comparator
1884
* | | |
1885
* v v v
1886
* (tex <type> <sampler> <coordinate> 0 1 ( ))
1887
* (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1888
* (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1889
* (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1890
* (txf <type> <sampler> <coordinate> 0 <lod>)
1891
* (txf_ms
1892
* <type> <sampler> <coordinate> <sample_index>)
1893
* (txs <type> <sampler> <lod>)
1894
* (lod <type> <sampler> <coordinate>)
1895
* (tg4 <type> <sampler> <coordinate> <offset> <component>)
1896
* (query_levels <type> <sampler>)
1897
* (samples_identical <sampler> <coordinate>)
1898
*/
1899
class ir_texture : public ir_rvalue {
1900
public:
1901
ir_texture(enum ir_texture_opcode op)
1902
: ir_rvalue(ir_type_texture),
1903
op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1904
shadow_comparator(NULL), offset(NULL)
1905
{
1906
memset(&lod_info, 0, sizeof(lod_info));
1907
}
1908
1909
virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1910
1911
virtual ir_constant *constant_expression_value(void *mem_ctx,
1912
struct hash_table *variable_context = NULL);
1913
1914
virtual void accept(ir_visitor *v)
1915
{
1916
v->visit(this);
1917
}
1918
1919
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1920
1921
virtual bool equals(const ir_instruction *ir,
1922
enum ir_node_type ignore = ir_type_unset) const;
1923
1924
/**
1925
* Return a string representing the ir_texture_opcode.
1926
*/
1927
const char *opcode_string();
1928
1929
/** Set the sampler and type. */
1930
void set_sampler(ir_dereference *sampler, const glsl_type *type);
1931
1932
/**
1933
* Do a reverse-lookup to translate a string into an ir_texture_opcode.
1934
*/
1935
static ir_texture_opcode get_opcode(const char *);
1936
1937
enum ir_texture_opcode op;
1938
1939
/** Sampler to use for the texture access. */
1940
ir_dereference *sampler;
1941
1942
/** Texture coordinate to sample */
1943
ir_rvalue *coordinate;
1944
1945
/**
1946
* Value used for projective divide.
1947
*
1948
* If there is no projective divide (the common case), this will be
1949
* \c NULL. Optimization passes should check for this to point to a constant
1950
* of 1.0 and replace that with \c NULL.
1951
*/
1952
ir_rvalue *projector;
1953
1954
/**
1955
* Coordinate used for comparison on shadow look-ups.
1956
*
1957
* If there is no shadow comparison, this will be \c NULL. For the
1958
* \c ir_txf opcode, this *must* be \c NULL.
1959
*/
1960
ir_rvalue *shadow_comparator;
1961
1962
/** Texel offset. */
1963
ir_rvalue *offset;
1964
1965
union {
1966
ir_rvalue *lod; /**< Floating point LOD */
1967
ir_rvalue *bias; /**< Floating point LOD bias */
1968
ir_rvalue *sample_index; /**< MSAA sample index */
1969
ir_rvalue *component; /**< Gather component selector */
1970
struct {
1971
ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1972
ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1973
} grad;
1974
} lod_info;
1975
};
1976
1977
1978
struct ir_swizzle_mask {
1979
unsigned x:2;
1980
unsigned y:2;
1981
unsigned z:2;
1982
unsigned w:2;
1983
1984
/**
1985
* Number of components in the swizzle.
1986
*/
1987
unsigned num_components:3;
1988
1989
/**
1990
* Does the swizzle contain duplicate components?
1991
*
1992
* L-value swizzles cannot contain duplicate components.
1993
*/
1994
unsigned has_duplicates:1;
1995
};
1996
1997
1998
class ir_swizzle : public ir_rvalue {
1999
public:
2000
ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2001
unsigned count);
2002
2003
ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2004
2005
ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2006
2007
virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2008
2009
virtual ir_constant *constant_expression_value(void *mem_ctx,
2010
struct hash_table *variable_context = NULL);
2011
2012
/**
2013
* Construct an ir_swizzle from the textual representation. Can fail.
2014
*/
2015
static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2016
2017
virtual void accept(ir_visitor *v)
2018
{
2019
v->visit(this);
2020
}
2021
2022
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2023
2024
virtual bool equals(const ir_instruction *ir,
2025
enum ir_node_type ignore = ir_type_unset) const;
2026
2027
bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
2028
{
2029
return val->is_lvalue(state) && !mask.has_duplicates;
2030
}
2031
2032
/**
2033
* Get the variable that is ultimately referenced by an r-value
2034
*/
2035
virtual ir_variable *variable_referenced() const;
2036
2037
ir_rvalue *val;
2038
ir_swizzle_mask mask;
2039
2040
private:
2041
/**
2042
* Initialize the mask component of a swizzle
2043
*
2044
* This is used by the \c ir_swizzle constructors.
2045
*/
2046
void init_mask(const unsigned *components, unsigned count);
2047
};
2048
2049
2050
class ir_dereference : public ir_rvalue {
2051
public:
2052
virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2053
2054
bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
2055
2056
/**
2057
* Get the variable that is ultimately referenced by an r-value
2058
*/
2059
virtual ir_variable *variable_referenced() const = 0;
2060
2061
/**
2062
* Get the precision. This can either come from the eventual variable that
2063
* is dereferenced, or from a record member.
2064
*/
2065
virtual int precision() const = 0;
2066
2067
protected:
2068
ir_dereference(enum ir_node_type t)
2069
: ir_rvalue(t)
2070
{
2071
}
2072
};
2073
2074
2075
class ir_dereference_variable : public ir_dereference {
2076
public:
2077
ir_dereference_variable(ir_variable *var);
2078
2079
virtual ir_dereference_variable *clone(void *mem_ctx,
2080
struct hash_table *) const;
2081
2082
virtual ir_constant *constant_expression_value(void *mem_ctx,
2083
struct hash_table *variable_context = NULL);
2084
2085
virtual bool equals(const ir_instruction *ir,
2086
enum ir_node_type ignore = ir_type_unset) const;
2087
2088
/**
2089
* Get the variable that is ultimately referenced by an r-value
2090
*/
2091
virtual ir_variable *variable_referenced() const
2092
{
2093
return this->var;
2094
}
2095
2096
virtual int precision() const
2097
{
2098
return this->var->data.precision;
2099
}
2100
2101
virtual ir_variable *whole_variable_referenced()
2102
{
2103
/* ir_dereference_variable objects always dereference the entire
2104
* variable. However, if this dereference is dereferenced by anything
2105
* else, the complete dereference chain is not a whole-variable
2106
* dereference. This method should only be called on the top most
2107
* ir_rvalue in a dereference chain.
2108
*/
2109
return this->var;
2110
}
2111
2112
virtual void accept(ir_visitor *v)
2113
{
2114
v->visit(this);
2115
}
2116
2117
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2118
2119
/**
2120
* Object being dereferenced.
2121
*/
2122
ir_variable *var;
2123
};
2124
2125
2126
class ir_dereference_array : public ir_dereference {
2127
public:
2128
ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2129
2130
ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2131
2132
virtual ir_dereference_array *clone(void *mem_ctx,
2133
struct hash_table *) const;
2134
2135
virtual ir_constant *constant_expression_value(void *mem_ctx,
2136
struct hash_table *variable_context = NULL);
2137
2138
virtual bool equals(const ir_instruction *ir,
2139
enum ir_node_type ignore = ir_type_unset) const;
2140
2141
/**
2142
* Get the variable that is ultimately referenced by an r-value
2143
*/
2144
virtual ir_variable *variable_referenced() const
2145
{
2146
return this->array->variable_referenced();
2147
}
2148
2149
virtual int precision() const
2150
{
2151
ir_dereference *deref = this->array->as_dereference();
2152
2153
if (deref == NULL)
2154
return GLSL_PRECISION_NONE;
2155
else
2156
return deref->precision();
2157
}
2158
2159
virtual void accept(ir_visitor *v)
2160
{
2161
v->visit(this);
2162
}
2163
2164
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2165
2166
ir_rvalue *array;
2167
ir_rvalue *array_index;
2168
2169
private:
2170
void set_array(ir_rvalue *value);
2171
};
2172
2173
2174
class ir_dereference_record : public ir_dereference {
2175
public:
2176
ir_dereference_record(ir_rvalue *value, const char *field);
2177
2178
ir_dereference_record(ir_variable *var, const char *field);
2179
2180
virtual ir_dereference_record *clone(void *mem_ctx,
2181
struct hash_table *) const;
2182
2183
virtual ir_constant *constant_expression_value(void *mem_ctx,
2184
struct hash_table *variable_context = NULL);
2185
2186
/**
2187
* Get the variable that is ultimately referenced by an r-value
2188
*/
2189
virtual ir_variable *variable_referenced() const
2190
{
2191
return this->record->variable_referenced();
2192
}
2193
2194
virtual int precision() const
2195
{
2196
glsl_struct_field *field = record->type->fields.structure + field_idx;
2197
2198
return field->precision;
2199
}
2200
2201
virtual void accept(ir_visitor *v)
2202
{
2203
v->visit(this);
2204
}
2205
2206
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2207
2208
ir_rvalue *record;
2209
int field_idx;
2210
};
2211
2212
2213
/**
2214
* Data stored in an ir_constant
2215
*/
2216
union ir_constant_data {
2217
unsigned u[16];
2218
int i[16];
2219
float f[16];
2220
bool b[16];
2221
double d[16];
2222
uint16_t f16[16];
2223
uint16_t u16[16];
2224
int16_t i16[16];
2225
uint64_t u64[16];
2226
int64_t i64[16];
2227
};
2228
2229
2230
class ir_constant : public ir_rvalue {
2231
public:
2232
ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2233
ir_constant(bool b, unsigned vector_elements=1);
2234
ir_constant(int16_t i16, unsigned vector_elements=1);
2235
ir_constant(uint16_t u16, unsigned vector_elements=1);
2236
ir_constant(unsigned int u, unsigned vector_elements=1);
2237
ir_constant(int i, unsigned vector_elements=1);
2238
ir_constant(float16_t f16, unsigned vector_elements=1);
2239
ir_constant(float f, unsigned vector_elements=1);
2240
ir_constant(double d, unsigned vector_elements=1);
2241
ir_constant(uint64_t u64, unsigned vector_elements=1);
2242
ir_constant(int64_t i64, unsigned vector_elements=1);
2243
2244
/**
2245
* Construct an ir_constant from a list of ir_constant values
2246
*/
2247
ir_constant(const struct glsl_type *type, exec_list *values);
2248
2249
/**
2250
* Construct an ir_constant from a scalar component of another ir_constant
2251
*
2252
* The new \c ir_constant inherits the type of the component from the
2253
* source constant.
2254
*
2255
* \note
2256
* In the case of a matrix constant, the new constant is a scalar, \b not
2257
* a vector.
2258
*/
2259
ir_constant(const ir_constant *c, unsigned i);
2260
2261
/**
2262
* Return a new ir_constant of the specified type containing all zeros.
2263
*/
2264
static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2265
2266
virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2267
2268
virtual ir_constant *constant_expression_value(void *mem_ctx,
2269
struct hash_table *variable_context = NULL);
2270
2271
virtual void accept(ir_visitor *v)
2272
{
2273
v->visit(this);
2274
}
2275
2276
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2277
2278
virtual bool equals(const ir_instruction *ir,
2279
enum ir_node_type ignore = ir_type_unset) const;
2280
2281
/**
2282
* Get a particular component of a constant as a specific type
2283
*
2284
* This is useful, for example, to get a value from an integer constant
2285
* as a float or bool. This appears frequently when constructors are
2286
* called with all constant parameters.
2287
*/
2288
/*@{*/
2289
bool get_bool_component(unsigned i) const;
2290
float get_float_component(unsigned i) const;
2291
uint16_t get_float16_component(unsigned i) const;
2292
double get_double_component(unsigned i) const;
2293
int16_t get_int16_component(unsigned i) const;
2294
uint16_t get_uint16_component(unsigned i) const;
2295
int get_int_component(unsigned i) const;
2296
unsigned get_uint_component(unsigned i) const;
2297
int64_t get_int64_component(unsigned i) const;
2298
uint64_t get_uint64_component(unsigned i) const;
2299
/*@}*/
2300
2301
ir_constant *get_array_element(unsigned i) const;
2302
2303
ir_constant *get_record_field(int idx);
2304
2305
/**
2306
* Copy the values on another constant at a given offset.
2307
*
2308
* The offset is ignored for array or struct copies, it's only for
2309
* scalars or vectors into vectors or matrices.
2310
*
2311
* With identical types on both sides and zero offset it's clone()
2312
* without creating a new object.
2313
*/
2314
2315
void copy_offset(ir_constant *src, int offset);
2316
2317
/**
2318
* Copy the values on another constant at a given offset and
2319
* following an assign-like mask.
2320
*
2321
* The mask is ignored for scalars.
2322
*
2323
* Note that this function only handles what assign can handle,
2324
* i.e. at most a vector as source and a column of a matrix as
2325
* destination.
2326
*/
2327
2328
void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2329
2330
/**
2331
* Determine whether a constant has the same value as another constant
2332
*
2333
* \sa ir_constant::is_zero, ir_constant::is_one,
2334
* ir_constant::is_negative_one
2335
*/
2336
bool has_value(const ir_constant *) const;
2337
2338
/**
2339
* Return true if this ir_constant represents the given value.
2340
*
2341
* For vectors, this checks that each component is the given value.
2342
*/
2343
virtual bool is_value(float f, int i) const;
2344
virtual bool is_zero() const;
2345
virtual bool is_one() const;
2346
virtual bool is_negative_one() const;
2347
2348
/**
2349
* Return true for constants that could be stored as 16-bit unsigned values.
2350
*
2351
* Note that this will return true even for signed integer ir_constants, as
2352
* long as the value is non-negative and fits in 16-bits.
2353
*/
2354
virtual bool is_uint16_constant() const;
2355
2356
/**
2357
* Value of the constant.
2358
*
2359
* The field used to back the values supplied by the constant is determined
2360
* by the type associated with the \c ir_instruction. Constants may be
2361
* scalars, vectors, or matrices.
2362
*/
2363
union ir_constant_data value;
2364
2365
/* Array elements and structure fields */
2366
ir_constant **const_elements;
2367
2368
private:
2369
/**
2370
* Parameterless constructor only used by the clone method
2371
*/
2372
ir_constant(void);
2373
};
2374
2375
/**
2376
* IR instruction to emit a vertex in a geometry shader.
2377
*/
2378
class ir_emit_vertex : public ir_instruction {
2379
public:
2380
ir_emit_vertex(ir_rvalue *stream)
2381
: ir_instruction(ir_type_emit_vertex),
2382
stream(stream)
2383
{
2384
assert(stream);
2385
}
2386
2387
virtual void accept(ir_visitor *v)
2388
{
2389
v->visit(this);
2390
}
2391
2392
virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2393
{
2394
return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2395
}
2396
2397
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2398
2399
int stream_id() const
2400
{
2401
return stream->as_constant()->value.i[0];
2402
}
2403
2404
ir_rvalue *stream;
2405
};
2406
2407
/**
2408
* IR instruction to complete the current primitive and start a new one in a
2409
* geometry shader.
2410
*/
2411
class ir_end_primitive : public ir_instruction {
2412
public:
2413
ir_end_primitive(ir_rvalue *stream)
2414
: ir_instruction(ir_type_end_primitive),
2415
stream(stream)
2416
{
2417
assert(stream);
2418
}
2419
2420
virtual void accept(ir_visitor *v)
2421
{
2422
v->visit(this);
2423
}
2424
2425
virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2426
{
2427
return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2428
}
2429
2430
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2431
2432
int stream_id() const
2433
{
2434
return stream->as_constant()->value.i[0];
2435
}
2436
2437
ir_rvalue *stream;
2438
};
2439
2440
/**
2441
* IR instruction for tessellation control and compute shader barrier.
2442
*/
2443
class ir_barrier : public ir_instruction {
2444
public:
2445
ir_barrier()
2446
: ir_instruction(ir_type_barrier)
2447
{
2448
}
2449
2450
virtual void accept(ir_visitor *v)
2451
{
2452
v->visit(this);
2453
}
2454
2455
virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2456
{
2457
return new(mem_ctx) ir_barrier();
2458
}
2459
2460
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2461
};
2462
2463
/*@}*/
2464
2465
/**
2466
* Apply a visitor to each IR node in a list
2467
*/
2468
void
2469
visit_exec_list(exec_list *list, ir_visitor *visitor);
2470
2471
/**
2472
* Validate invariants on each IR node in a list
2473
*/
2474
void validate_ir_tree(exec_list *instructions);
2475
2476
struct _mesa_glsl_parse_state;
2477
struct gl_shader_program;
2478
2479
/**
2480
* Detect whether an unlinked shader contains static recursion
2481
*
2482
* If the list of instructions is determined to contain static recursion,
2483
* \c _mesa_glsl_error will be called to emit error messages for each function
2484
* that is in the recursion cycle.
2485
*/
2486
void
2487
detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2488
exec_list *instructions);
2489
2490
/**
2491
* Detect whether a linked shader contains static recursion
2492
*
2493
* If the list of instructions is determined to contain static recursion,
2494
* \c link_error_printf will be called to emit error messages for each function
2495
* that is in the recursion cycle. In addition,
2496
* \c gl_shader_program::LinkStatus will be set to false.
2497
*/
2498
void
2499
detect_recursion_linked(struct gl_shader_program *prog,
2500
exec_list *instructions);
2501
2502
/**
2503
* Make a clone of each IR instruction in a list
2504
*
2505
* \param in List of IR instructions that are to be cloned
2506
* \param out List to hold the cloned instructions
2507
*/
2508
void
2509
clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2510
2511
extern void
2512
_mesa_glsl_initialize_variables(exec_list *instructions,
2513
struct _mesa_glsl_parse_state *state);
2514
2515
extern void
2516
reparent_ir(exec_list *list, void *mem_ctx);
2517
2518
extern void
2519
do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2520
gl_shader_stage shader_stage);
2521
2522
extern char *
2523
prototype_string(const glsl_type *return_type, const char *name,
2524
exec_list *parameters);
2525
2526
const char *
2527
mode_string(const ir_variable *var);
2528
2529
/**
2530
* Built-in / reserved GL variables names start with "gl_"
2531
*/
2532
static inline bool
2533
is_gl_identifier(const char *s)
2534
{
2535
return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2536
}
2537
2538
extern "C" {
2539
#endif /* __cplusplus */
2540
2541
extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2542
struct _mesa_glsl_parse_state *state);
2543
2544
extern void
2545
fprint_ir(FILE *f, const void *instruction);
2546
2547
extern const struct gl_builtin_uniform_desc *
2548
_mesa_glsl_get_builtin_uniform_desc(const char *name);
2549
2550
#ifdef __cplusplus
2551
} /* extern "C" */
2552
#endif
2553
2554
unsigned
2555
vertices_per_prim(GLenum prim);
2556
2557
#endif /* IR_H */
2558
2559