Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/compiler/nir/nir_format_convert.h
4549 views
1
/*
2
* Copyright © 2017 Intel Corporation
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice (including the next
12
* paragraph) shall be included in all copies or substantial portions of the
13
* Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
* IN THE SOFTWARE.
22
*/
23
24
#include "nir_builder.h"
25
26
#include "util/format_rgb9e5.h"
27
28
static inline nir_ssa_def *
29
nir_shift_imm(nir_builder *b, nir_ssa_def *value, int left_shift)
30
{
31
if (left_shift > 0)
32
return nir_ishl(b, value, nir_imm_int(b, left_shift));
33
else if (left_shift < 0)
34
return nir_ushr(b, value, nir_imm_int(b, -left_shift));
35
else
36
return value;
37
}
38
39
static inline nir_ssa_def *
40
nir_shift(nir_builder *b, nir_ssa_def *value, nir_ssa_def *left_shift)
41
{
42
return nir_bcsel(b,
43
nir_ige(b, left_shift, nir_imm_int(b, 0)),
44
nir_ishl(b, value, left_shift),
45
nir_ushr(b, value, nir_ineg(b, left_shift)));
46
}
47
48
static inline nir_ssa_def *
49
nir_mask_shift(struct nir_builder *b, nir_ssa_def *src,
50
uint32_t mask, int left_shift)
51
{
52
return nir_shift_imm(b, nir_iand(b, src, nir_imm_int(b, mask)), left_shift);
53
}
54
55
static inline nir_ssa_def *
56
nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
57
uint32_t src_mask, int src_left_shift)
58
{
59
return nir_ior(b, nir_mask_shift(b, src, src_mask, src_left_shift), dst);
60
}
61
62
static inline nir_ssa_def *
63
nir_format_mask_uvec(nir_builder *b, nir_ssa_def *src, const unsigned *bits)
64
{
65
nir_const_value mask[NIR_MAX_VEC_COMPONENTS];
66
memset(mask, 0, sizeof(mask));
67
for (unsigned i = 0; i < src->num_components; i++) {
68
assert(bits[i] < 32);
69
mask[i].u32 = (1u << bits[i]) - 1;
70
}
71
return nir_iand(b, src, nir_build_imm(b, src->num_components, 32, mask));
72
}
73
74
static inline nir_ssa_def *
75
nir_format_sign_extend_ivec(nir_builder *b, nir_ssa_def *src,
76
const unsigned *bits)
77
{
78
assert(src->num_components <= 4);
79
nir_ssa_def *comps[4];
80
for (unsigned i = 0; i < src->num_components; i++) {
81
nir_ssa_def *shift = nir_imm_int(b, src->bit_size - bits[i]);
82
comps[i] = nir_ishr(b, nir_ishl(b, nir_channel(b, src, i), shift), shift);
83
}
84
return nir_vec(b, comps, src->num_components);
85
}
86
87
88
static inline nir_ssa_def *
89
nir_format_unpack_int(nir_builder *b, nir_ssa_def *packed,
90
const unsigned *bits, unsigned num_components,
91
bool sign_extend)
92
{
93
assert(num_components >= 1 && num_components <= 4);
94
const unsigned bit_size = packed->bit_size;
95
nir_ssa_def *comps[4];
96
97
if (bits[0] >= bit_size) {
98
assert(bits[0] == bit_size);
99
assert(num_components == 1);
100
return packed;
101
}
102
103
unsigned next_chan = 0;
104
unsigned offset = 0;
105
for (unsigned i = 0; i < num_components; i++) {
106
assert(bits[i] < bit_size);
107
assert(offset + bits[i] <= bit_size);
108
nir_ssa_def *chan = nir_channel(b, packed, next_chan);
109
nir_ssa_def *lshift = nir_imm_int(b, bit_size - (offset + bits[i]));
110
nir_ssa_def *rshift = nir_imm_int(b, bit_size - bits[i]);
111
if (sign_extend)
112
comps[i] = nir_ishr(b, nir_ishl(b, chan, lshift), rshift);
113
else
114
comps[i] = nir_ushr(b, nir_ishl(b, chan, lshift), rshift);
115
offset += bits[i];
116
if (offset >= bit_size) {
117
next_chan++;
118
offset -= bit_size;
119
}
120
}
121
122
return nir_vec(b, comps, num_components);
123
}
124
125
static inline nir_ssa_def *
126
nir_format_unpack_uint(nir_builder *b, nir_ssa_def *packed,
127
const unsigned *bits, unsigned num_components)
128
{
129
return nir_format_unpack_int(b, packed, bits, num_components, false);
130
}
131
132
static inline nir_ssa_def *
133
nir_format_unpack_sint(nir_builder *b, nir_ssa_def *packed,
134
const unsigned *bits, unsigned num_components)
135
{
136
return nir_format_unpack_int(b, packed, bits, num_components, true);
137
}
138
139
static inline nir_ssa_def *
140
nir_format_pack_uint_unmasked(nir_builder *b, nir_ssa_def *color,
141
const unsigned *bits, unsigned num_components)
142
{
143
assert(num_components >= 1 && num_components <= 4);
144
nir_ssa_def *packed = nir_imm_int(b, 0);
145
unsigned offset = 0;
146
for (unsigned i = 0; i < num_components; i++) {
147
packed = nir_ior(b, packed, nir_shift_imm(b, nir_channel(b, color, i),
148
offset));
149
offset += bits[i];
150
}
151
assert(offset <= packed->bit_size);
152
153
return packed;
154
}
155
156
static inline nir_ssa_def *
157
nir_format_pack_uint_unmasked_ssa(nir_builder *b, nir_ssa_def *color,
158
nir_ssa_def *bits)
159
{
160
nir_ssa_def *packed = nir_imm_int(b, 0);
161
nir_ssa_def *offset = nir_imm_int(b, 0);
162
for (unsigned i = 0; i < bits->num_components; i++) {
163
packed = nir_ior(b, packed, nir_ishl(b, nir_channel(b, color, i), offset));
164
offset = nir_iadd(b, offset, nir_channel(b, bits, i));
165
}
166
return packed;
167
}
168
169
static inline nir_ssa_def *
170
nir_format_pack_uint(nir_builder *b, nir_ssa_def *color,
171
const unsigned *bits, unsigned num_components)
172
{
173
return nir_format_pack_uint_unmasked(b, nir_format_mask_uvec(b, color, bits),
174
bits, num_components);
175
}
176
177
static inline nir_ssa_def *
178
nir_format_bitcast_uvec_unmasked(nir_builder *b, nir_ssa_def *src,
179
unsigned src_bits, unsigned dst_bits)
180
{
181
assert(src->bit_size >= src_bits && src->bit_size >= dst_bits);
182
assert(src_bits == 8 || src_bits == 16 || src_bits == 32);
183
assert(dst_bits == 8 || dst_bits == 16 || dst_bits == 32);
184
185
if (src_bits == dst_bits)
186
return src;
187
188
const unsigned dst_components =
189
DIV_ROUND_UP(src->num_components * src_bits, dst_bits);
190
assert(dst_components <= 4);
191
192
nir_ssa_def *dst_chan[4] = {0};
193
if (dst_bits > src_bits) {
194
unsigned shift = 0;
195
unsigned dst_idx = 0;
196
for (unsigned i = 0; i < src->num_components; i++) {
197
nir_ssa_def *shifted = nir_ishl(b, nir_channel(b, src, i),
198
nir_imm_int(b, shift));
199
if (shift == 0) {
200
dst_chan[dst_idx] = shifted;
201
} else {
202
dst_chan[dst_idx] = nir_ior(b, dst_chan[dst_idx], shifted);
203
}
204
205
shift += src_bits;
206
if (shift >= dst_bits) {
207
dst_idx++;
208
shift = 0;
209
}
210
}
211
} else {
212
nir_ssa_def *mask = nir_imm_int(b, ~0u >> (32 - dst_bits));
213
214
unsigned src_idx = 0;
215
unsigned shift = 0;
216
for (unsigned i = 0; i < dst_components; i++) {
217
dst_chan[i] = nir_iand(b, nir_ushr_imm(b, nir_channel(b, src, src_idx),
218
shift),
219
mask);
220
shift += dst_bits;
221
if (shift >= src_bits) {
222
src_idx++;
223
shift = 0;
224
}
225
}
226
}
227
228
return nir_vec(b, dst_chan, dst_components);
229
}
230
231
static inline nir_ssa_def *
232
_nir_format_norm_factor(nir_builder *b, const unsigned *bits,
233
unsigned num_components,
234
bool is_signed)
235
{
236
nir_const_value factor[NIR_MAX_VEC_COMPONENTS];
237
memset(factor, 0, sizeof(factor));
238
for (unsigned i = 0; i < num_components; i++) {
239
assert(bits[i] <= 32);
240
factor[i].f32 = (1ull << (bits[i] - is_signed)) - 1;
241
}
242
return nir_build_imm(b, num_components, 32, factor);
243
}
244
245
static inline nir_ssa_def *
246
nir_format_unorm_to_float(nir_builder *b, nir_ssa_def *u, const unsigned *bits)
247
{
248
nir_ssa_def *factor =
249
_nir_format_norm_factor(b, bits, u->num_components, false);
250
251
return nir_fdiv(b, nir_u2f32(b, u), factor);
252
}
253
254
static inline nir_ssa_def *
255
nir_format_snorm_to_float(nir_builder *b, nir_ssa_def *s, const unsigned *bits)
256
{
257
nir_ssa_def *factor =
258
_nir_format_norm_factor(b, bits, s->num_components, true);
259
260
return nir_fmax(b, nir_fdiv(b, nir_i2f32(b, s), factor),
261
nir_imm_float(b, -1.0f));
262
}
263
264
static inline nir_ssa_def *
265
nir_format_float_to_unorm(nir_builder *b, nir_ssa_def *f, const unsigned *bits)
266
{
267
nir_ssa_def *factor =
268
_nir_format_norm_factor(b, bits, f->num_components, false);
269
270
/* Clamp to the range [0, 1] */
271
f = nir_fsat(b, f);
272
273
return nir_f2u32(b, nir_fround_even(b, nir_fmul(b, f, factor)));
274
}
275
276
static inline nir_ssa_def *
277
nir_format_float_to_snorm(nir_builder *b, nir_ssa_def *f, const unsigned *bits)
278
{
279
nir_ssa_def *factor =
280
_nir_format_norm_factor(b, bits, f->num_components, true);
281
282
/* Clamp to the range [-1, 1] */
283
f = nir_fmin(b, nir_fmax(b, f, nir_imm_float(b, -1)), nir_imm_float(b, 1));
284
285
return nir_f2i32(b, nir_fround_even(b, nir_fmul(b, f, factor)));
286
}
287
288
/* Converts a vector of floats to a vector of half-floats packed in the low 16
289
* bits.
290
*/
291
static inline nir_ssa_def *
292
nir_format_float_to_half(nir_builder *b, nir_ssa_def *f)
293
{
294
nir_ssa_def *zero = nir_imm_float(b, 0);
295
nir_ssa_def *f16comps[4];
296
for (unsigned i = 0; i < f->num_components; i++)
297
f16comps[i] = nir_pack_half_2x16_split(b, nir_channel(b, f, i), zero);
298
return nir_vec(b, f16comps, f->num_components);
299
}
300
301
static inline nir_ssa_def *
302
nir_format_linear_to_srgb(nir_builder *b, nir_ssa_def *c)
303
{
304
nir_ssa_def *linear = nir_fmul(b, c, nir_imm_float(b, 12.92f));
305
nir_ssa_def *curved =
306
nir_fsub(b, nir_fmul(b, nir_imm_float(b, 1.055f),
307
nir_fpow(b, c, nir_imm_float(b, 1.0 / 2.4))),
308
nir_imm_float(b, 0.055f));
309
310
return nir_fsat(b, nir_bcsel(b, nir_flt(b, c, nir_imm_float(b, 0.0031308f)),
311
linear, curved));
312
}
313
314
static inline nir_ssa_def *
315
nir_format_srgb_to_linear(nir_builder *b, nir_ssa_def *c)
316
{
317
nir_ssa_def *linear = nir_fdiv(b, c, nir_imm_float(b, 12.92f));
318
nir_ssa_def *curved =
319
nir_fpow(b, nir_fdiv(b, nir_fadd(b, c, nir_imm_float(b, 0.055f)),
320
nir_imm_float(b, 1.055f)),
321
nir_imm_float(b, 2.4f));
322
323
return nir_fsat(b, nir_bcsel(b, nir_fge(b, nir_imm_float(b, 0.04045f), c),
324
linear, curved));
325
}
326
327
/* Clamps a vector of uints so they don't extend beyond the given number of
328
* bits per channel.
329
*/
330
static inline nir_ssa_def *
331
nir_format_clamp_uint(nir_builder *b, nir_ssa_def *f, const unsigned *bits)
332
{
333
if (bits[0] == 32)
334
return f;
335
336
nir_const_value max[NIR_MAX_VEC_COMPONENTS];
337
memset(max, 0, sizeof(max));
338
for (unsigned i = 0; i < f->num_components; i++) {
339
assert(bits[i] < 32);
340
max[i].u32 = (1 << bits[i]) - 1;
341
}
342
return nir_umin(b, f, nir_build_imm(b, f->num_components, 32, max));
343
}
344
345
/* Clamps a vector of sints so they don't extend beyond the given number of
346
* bits per channel.
347
*/
348
static inline nir_ssa_def *
349
nir_format_clamp_sint(nir_builder *b, nir_ssa_def *f, const unsigned *bits)
350
{
351
if (bits[0] == 32)
352
return f;
353
354
nir_const_value min[NIR_MAX_VEC_COMPONENTS], max[NIR_MAX_VEC_COMPONENTS];
355
memset(min, 0, sizeof(min));
356
memset(max, 0, sizeof(max));
357
for (unsigned i = 0; i < f->num_components; i++) {
358
assert(bits[i] < 32);
359
max[i].i32 = (1 << (bits[i] - 1)) - 1;
360
min[i].i32 = -(1 << (bits[i] - 1));
361
}
362
f = nir_imin(b, f, nir_build_imm(b, f->num_components, 32, max));
363
f = nir_imax(b, f, nir_build_imm(b, f->num_components, 32, min));
364
365
return f;
366
}
367
368
static inline nir_ssa_def *
369
nir_format_unpack_11f11f10f(nir_builder *b, nir_ssa_def *packed)
370
{
371
nir_ssa_def *chans[3];
372
chans[0] = nir_mask_shift(b, packed, 0x000007ff, 4);
373
chans[1] = nir_mask_shift(b, packed, 0x003ff800, -7);
374
chans[2] = nir_mask_shift(b, packed, 0xffc00000, -17);
375
376
for (unsigned i = 0; i < 3; i++)
377
chans[i] = nir_unpack_half_2x16_split_x(b, chans[i]);
378
379
return nir_vec(b, chans, 3);
380
}
381
382
static inline nir_ssa_def *
383
nir_format_pack_11f11f10f(nir_builder *b, nir_ssa_def *color)
384
{
385
/* 10 and 11-bit floats are unsigned. Clamp to non-negative */
386
nir_ssa_def *clamped = nir_fmax(b, color, nir_imm_float(b, 0));
387
388
nir_ssa_def *undef = nir_ssa_undef(b, 1, color->bit_size);
389
nir_ssa_def *p1 = nir_pack_half_2x16_split(b, nir_channel(b, clamped, 0),
390
nir_channel(b, clamped, 1));
391
nir_ssa_def *p2 = nir_pack_half_2x16_split(b, nir_channel(b, clamped, 2),
392
undef);
393
394
/* A 10 or 11-bit float has the same exponent as a 16-bit float but with
395
* fewer mantissa bits and no sign bit. All we have to do is throw away
396
* the sign bit and the bottom mantissa bits and shift it into place.
397
*/
398
nir_ssa_def *packed = nir_imm_int(b, 0);
399
packed = nir_mask_shift_or(b, packed, p1, 0x00007ff0, -4);
400
packed = nir_mask_shift_or(b, packed, p1, 0x7ff00000, -9);
401
packed = nir_mask_shift_or(b, packed, p2, 0x00007fe0, 17);
402
403
return packed;
404
}
405
406
static inline nir_ssa_def *
407
nir_format_pack_r9g9b9e5(nir_builder *b, nir_ssa_def *color)
408
{
409
/* See also float3_to_rgb9e5 */
410
411
/* First, we need to clamp it to range. */
412
nir_ssa_def *clamped = nir_fmin(b, color, nir_imm_float(b, MAX_RGB9E5));
413
414
/* Get rid of negatives and NaN */
415
clamped = nir_bcsel(b, nir_ult(b, nir_imm_int(b, 0x7f800000), color),
416
nir_imm_float(b, 0), clamped);
417
418
/* maxrgb.u = MAX3(rc.u, gc.u, bc.u); */
419
nir_ssa_def *maxu = nir_umax(b, nir_channel(b, clamped, 0),
420
nir_umax(b, nir_channel(b, clamped, 1),
421
nir_channel(b, clamped, 2)));
422
423
/* maxrgb.u += maxrgb.u & (1 << (23-9)); */
424
maxu = nir_iadd(b, maxu, nir_iand(b, maxu, nir_imm_int(b, 1 << 14)));
425
426
/* exp_shared = MAX2((maxrgb.u >> 23), -RGB9E5_EXP_BIAS - 1 + 127) +
427
* 1 + RGB9E5_EXP_BIAS - 127;
428
*/
429
nir_ssa_def *exp_shared =
430
nir_iadd(b, nir_umax(b, nir_ushr_imm(b, maxu, 23),
431
nir_imm_int(b, -RGB9E5_EXP_BIAS - 1 + 127)),
432
nir_imm_int(b, 1 + RGB9E5_EXP_BIAS - 127));
433
434
/* revdenom_biasedexp = 127 - (exp_shared - RGB9E5_EXP_BIAS -
435
* RGB9E5_MANTISSA_BITS) + 1;
436
*/
437
nir_ssa_def *revdenom_biasedexp =
438
nir_isub(b, nir_imm_int(b, 127 + RGB9E5_EXP_BIAS +
439
RGB9E5_MANTISSA_BITS + 1),
440
exp_shared);
441
442
/* revdenom.u = revdenom_biasedexp << 23; */
443
nir_ssa_def *revdenom =
444
nir_ishl(b, revdenom_biasedexp, nir_imm_int(b, 23));
445
446
/* rm = (int) (rc.f * revdenom.f);
447
* gm = (int) (gc.f * revdenom.f);
448
* bm = (int) (bc.f * revdenom.f);
449
*/
450
nir_ssa_def *mantissa =
451
nir_f2i32(b, nir_fmul(b, clamped, revdenom));
452
453
/* rm = (rm & 1) + (rm >> 1);
454
* gm = (gm & 1) + (gm >> 1);
455
* bm = (bm & 1) + (bm >> 1);
456
*/
457
mantissa = nir_iadd(b, nir_iand_imm(b, mantissa, 1),
458
nir_ushr_imm(b, mantissa, 1));
459
460
nir_ssa_def *packed = nir_channel(b, mantissa, 0);
461
packed = nir_mask_shift_or(b, packed, nir_channel(b, mantissa, 1), ~0, 9);
462
packed = nir_mask_shift_or(b, packed, nir_channel(b, mantissa, 2), ~0, 18);
463
packed = nir_mask_shift_or(b, packed, exp_shared, ~0, 27);
464
465
return packed;
466
}
467
468