Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/compiler/spirv/vtn_cfg.c
4545 views
1
/*
2
* Copyright © 2015 Intel Corporation
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice (including the next
12
* paragraph) shall be included in all copies or substantial portions of the
13
* Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
* IN THE SOFTWARE.
22
*/
23
24
#include "vtn_private.h"
25
#include "spirv_info.h"
26
#include "nir/nir_vla.h"
27
#include "util/debug.h"
28
29
static struct vtn_block *
30
vtn_block(struct vtn_builder *b, uint32_t value_id)
31
{
32
return vtn_value(b, value_id, vtn_value_type_block)->block;
33
}
34
35
static unsigned
36
glsl_type_count_function_params(const struct glsl_type *type)
37
{
38
if (glsl_type_is_vector_or_scalar(type)) {
39
return 1;
40
} else if (glsl_type_is_array_or_matrix(type)) {
41
return glsl_get_length(type) *
42
glsl_type_count_function_params(glsl_get_array_element(type));
43
} else {
44
assert(glsl_type_is_struct_or_ifc(type));
45
unsigned count = 0;
46
unsigned elems = glsl_get_length(type);
47
for (unsigned i = 0; i < elems; i++) {
48
const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
49
count += glsl_type_count_function_params(elem_type);
50
}
51
return count;
52
}
53
}
54
55
static void
56
glsl_type_add_to_function_params(const struct glsl_type *type,
57
nir_function *func,
58
unsigned *param_idx)
59
{
60
if (glsl_type_is_vector_or_scalar(type)) {
61
func->params[(*param_idx)++] = (nir_parameter) {
62
.num_components = glsl_get_vector_elements(type),
63
.bit_size = glsl_get_bit_size(type),
64
};
65
} else if (glsl_type_is_array_or_matrix(type)) {
66
unsigned elems = glsl_get_length(type);
67
const struct glsl_type *elem_type = glsl_get_array_element(type);
68
for (unsigned i = 0; i < elems; i++)
69
glsl_type_add_to_function_params(elem_type,func, param_idx);
70
} else {
71
assert(glsl_type_is_struct_or_ifc(type));
72
unsigned elems = glsl_get_length(type);
73
for (unsigned i = 0; i < elems; i++) {
74
const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
75
glsl_type_add_to_function_params(elem_type, func, param_idx);
76
}
77
}
78
}
79
80
static void
81
vtn_ssa_value_add_to_call_params(struct vtn_builder *b,
82
struct vtn_ssa_value *value,
83
nir_call_instr *call,
84
unsigned *param_idx)
85
{
86
if (glsl_type_is_vector_or_scalar(value->type)) {
87
call->params[(*param_idx)++] = nir_src_for_ssa(value->def);
88
} else {
89
unsigned elems = glsl_get_length(value->type);
90
for (unsigned i = 0; i < elems; i++) {
91
vtn_ssa_value_add_to_call_params(b, value->elems[i],
92
call, param_idx);
93
}
94
}
95
}
96
97
static void
98
vtn_ssa_value_load_function_param(struct vtn_builder *b,
99
struct vtn_ssa_value *value,
100
unsigned *param_idx)
101
{
102
if (glsl_type_is_vector_or_scalar(value->type)) {
103
value->def = nir_load_param(&b->nb, (*param_idx)++);
104
} else {
105
unsigned elems = glsl_get_length(value->type);
106
for (unsigned i = 0; i < elems; i++)
107
vtn_ssa_value_load_function_param(b, value->elems[i], param_idx);
108
}
109
}
110
111
void
112
vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
113
const uint32_t *w, unsigned count)
114
{
115
struct vtn_function *vtn_callee =
116
vtn_value(b, w[3], vtn_value_type_function)->func;
117
118
vtn_callee->referenced = true;
119
120
nir_call_instr *call = nir_call_instr_create(b->nb.shader,
121
vtn_callee->nir_func);
122
123
unsigned param_idx = 0;
124
125
nir_deref_instr *ret_deref = NULL;
126
struct vtn_type *ret_type = vtn_callee->type->return_type;
127
if (ret_type->base_type != vtn_base_type_void) {
128
nir_variable *ret_tmp =
129
nir_local_variable_create(b->nb.impl,
130
glsl_get_bare_type(ret_type->type),
131
"return_tmp");
132
ret_deref = nir_build_deref_var(&b->nb, ret_tmp);
133
call->params[param_idx++] = nir_src_for_ssa(&ret_deref->dest.ssa);
134
}
135
136
for (unsigned i = 0; i < vtn_callee->type->length; i++) {
137
vtn_ssa_value_add_to_call_params(b, vtn_ssa_value(b, w[4 + i]),
138
call, &param_idx);
139
}
140
assert(param_idx == call->num_params);
141
142
nir_builder_instr_insert(&b->nb, &call->instr);
143
144
if (ret_type->base_type == vtn_base_type_void) {
145
vtn_push_value(b, w[2], vtn_value_type_undef);
146
} else {
147
vtn_push_ssa_value(b, w[2], vtn_local_load(b, ret_deref, 0));
148
}
149
}
150
151
static bool
152
vtn_cfg_handle_prepass_instruction(struct vtn_builder *b, SpvOp opcode,
153
const uint32_t *w, unsigned count)
154
{
155
switch (opcode) {
156
case SpvOpFunction: {
157
vtn_assert(b->func == NULL);
158
b->func = rzalloc(b, struct vtn_function);
159
160
b->func->node.type = vtn_cf_node_type_function;
161
b->func->node.parent = NULL;
162
list_inithead(&b->func->body);
163
b->func->control = w[3];
164
165
UNUSED const struct glsl_type *result_type = vtn_get_type(b, w[1])->type;
166
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_function);
167
val->func = b->func;
168
169
b->func->type = vtn_get_type(b, w[4]);
170
const struct vtn_type *func_type = b->func->type;
171
172
vtn_assert(func_type->return_type->type == result_type);
173
174
nir_function *func =
175
nir_function_create(b->shader, ralloc_strdup(b->shader, val->name));
176
177
unsigned num_params = 0;
178
for (unsigned i = 0; i < func_type->length; i++)
179
num_params += glsl_type_count_function_params(func_type->params[i]->type);
180
181
/* Add one parameter for the function return value */
182
if (func_type->return_type->base_type != vtn_base_type_void)
183
num_params++;
184
185
func->num_params = num_params;
186
func->params = ralloc_array(b->shader, nir_parameter, num_params);
187
188
unsigned idx = 0;
189
if (func_type->return_type->base_type != vtn_base_type_void) {
190
nir_address_format addr_format =
191
vtn_mode_to_address_format(b, vtn_variable_mode_function);
192
/* The return value is a regular pointer */
193
func->params[idx++] = (nir_parameter) {
194
.num_components = nir_address_format_num_components(addr_format),
195
.bit_size = nir_address_format_bit_size(addr_format),
196
};
197
}
198
199
for (unsigned i = 0; i < func_type->length; i++)
200
glsl_type_add_to_function_params(func_type->params[i]->type, func, &idx);
201
assert(idx == num_params);
202
203
b->func->nir_func = func;
204
205
/* Set up a nir_function_impl and the builder so we can load arguments
206
* directly in our OpFunctionParameter handler.
207
*/
208
nir_function_impl *impl = nir_function_impl_create(func);
209
nir_builder_init(&b->nb, impl);
210
b->nb.cursor = nir_before_cf_list(&impl->body);
211
b->nb.exact = b->exact;
212
213
b->func_param_idx = 0;
214
215
/* The return value is the first parameter */
216
if (func_type->return_type->base_type != vtn_base_type_void)
217
b->func_param_idx++;
218
break;
219
}
220
221
case SpvOpFunctionEnd:
222
b->func->end = w;
223
if (b->func->start_block == NULL) {
224
/* In this case, the function didn't have any actual blocks. It's
225
* just a prototype so delete the function_impl.
226
*/
227
b->func->nir_func->impl = NULL;
228
}
229
b->func = NULL;
230
break;
231
232
case SpvOpFunctionParameter: {
233
vtn_assert(b->func_param_idx < b->func->nir_func->num_params);
234
struct vtn_type *type = vtn_get_type(b, w[1]);
235
struct vtn_ssa_value *value = vtn_create_ssa_value(b, type->type);
236
vtn_ssa_value_load_function_param(b, value, &b->func_param_idx);
237
vtn_push_ssa_value(b, w[2], value);
238
break;
239
}
240
241
case SpvOpLabel: {
242
vtn_assert(b->block == NULL);
243
b->block = rzalloc(b, struct vtn_block);
244
b->block->node.type = vtn_cf_node_type_block;
245
b->block->label = w;
246
vtn_push_value(b, w[1], vtn_value_type_block)->block = b->block;
247
248
if (b->func->start_block == NULL) {
249
/* This is the first block encountered for this function. In this
250
* case, we set the start block and add it to the list of
251
* implemented functions that we'll walk later.
252
*/
253
b->func->start_block = b->block;
254
list_addtail(&b->func->node.link, &b->functions);
255
}
256
break;
257
}
258
259
case SpvOpSelectionMerge:
260
case SpvOpLoopMerge:
261
vtn_assert(b->block && b->block->merge == NULL);
262
b->block->merge = w;
263
break;
264
265
case SpvOpBranch:
266
case SpvOpBranchConditional:
267
case SpvOpSwitch:
268
case SpvOpKill:
269
case SpvOpTerminateInvocation:
270
case SpvOpIgnoreIntersectionKHR:
271
case SpvOpTerminateRayKHR:
272
case SpvOpReturn:
273
case SpvOpReturnValue:
274
case SpvOpUnreachable:
275
vtn_assert(b->block && b->block->branch == NULL);
276
b->block->branch = w;
277
b->block = NULL;
278
break;
279
280
default:
281
/* Continue on as per normal */
282
return true;
283
}
284
285
return true;
286
}
287
288
/* This function performs a depth-first search of the cases and puts them
289
* in fall-through order.
290
*/
291
static void
292
vtn_order_case(struct vtn_switch *swtch, struct vtn_case *cse)
293
{
294
if (cse->visited)
295
return;
296
297
cse->visited = true;
298
299
list_del(&cse->node.link);
300
301
if (cse->fallthrough) {
302
vtn_order_case(swtch, cse->fallthrough);
303
304
/* If we have a fall-through, place this case right before the case it
305
* falls through to. This ensures that fallthroughs come one after
306
* the other. These two can never get separated because that would
307
* imply something else falling through to the same case. Also, this
308
* can't break ordering because the DFS ensures that this case is
309
* visited before anything that falls through to it.
310
*/
311
list_addtail(&cse->node.link, &cse->fallthrough->node.link);
312
} else {
313
list_add(&cse->node.link, &swtch->cases);
314
}
315
}
316
317
static void
318
vtn_switch_order_cases(struct vtn_switch *swtch)
319
{
320
struct list_head cases;
321
list_replace(&swtch->cases, &cases);
322
list_inithead(&swtch->cases);
323
while (!list_is_empty(&cases)) {
324
struct vtn_case *cse =
325
list_first_entry(&cases, struct vtn_case, node.link);
326
vtn_order_case(swtch, cse);
327
}
328
}
329
330
static void
331
vtn_block_set_merge_cf_node(struct vtn_builder *b, struct vtn_block *block,
332
struct vtn_cf_node *cf_node)
333
{
334
vtn_fail_if(block->merge_cf_node != NULL,
335
"The merge block declared by a header block cannot be a "
336
"merge block declared by any other header block.");
337
338
block->merge_cf_node = cf_node;
339
}
340
341
#define VTN_DECL_CF_NODE_FIND(_type) \
342
static inline struct vtn_##_type * \
343
vtn_cf_node_find_##_type(struct vtn_cf_node *node) \
344
{ \
345
while (node && node->type != vtn_cf_node_type_##_type) \
346
node = node->parent; \
347
return (struct vtn_##_type *)node; \
348
}
349
350
VTN_DECL_CF_NODE_FIND(if)
351
VTN_DECL_CF_NODE_FIND(loop)
352
VTN_DECL_CF_NODE_FIND(case)
353
VTN_DECL_CF_NODE_FIND(switch)
354
VTN_DECL_CF_NODE_FIND(function)
355
356
static enum vtn_branch_type
357
vtn_handle_branch(struct vtn_builder *b,
358
struct vtn_cf_node *cf_parent,
359
struct vtn_block *target_block)
360
{
361
struct vtn_loop *loop = vtn_cf_node_find_loop(cf_parent);
362
363
/* Detect a loop back-edge first. That way none of the code below
364
* accidentally operates on a loop back-edge.
365
*/
366
if (loop && target_block == loop->header_block)
367
return vtn_branch_type_loop_back_edge;
368
369
/* Try to detect fall-through */
370
if (target_block->switch_case) {
371
/* When it comes to handling switch cases, we can break calls to
372
* vtn_handle_branch into two cases: calls from within a case construct
373
* and calls for the jump to each case construct. In the second case,
374
* cf_parent is the vtn_switch itself and vtn_cf_node_find_case() will
375
* return the outer switch case in which this switch is contained. It's
376
* fine if the target block is a switch case from an outer switch as
377
* long as it is also the switch break for this switch.
378
*/
379
struct vtn_case *switch_case = vtn_cf_node_find_case(cf_parent);
380
381
/* This doesn't get called for the OpSwitch */
382
vtn_fail_if(switch_case == NULL,
383
"A switch case can only be entered through an OpSwitch or "
384
"falling through from another switch case.");
385
386
/* Because block->switch_case is only set on the entry block for a given
387
* switch case, we only ever get here if we're jumping to the start of a
388
* switch case. It's possible, however, that a switch case could jump
389
* to itself via a back-edge. That *should* get caught by the loop
390
* handling case above but if we have a back edge without a loop merge,
391
* we could en up here.
392
*/
393
vtn_fail_if(target_block->switch_case == switch_case,
394
"A switch cannot fall-through to itself. Likely, there is "
395
"a back-edge which is not to a loop header.");
396
397
vtn_fail_if(target_block->switch_case->node.parent !=
398
switch_case->node.parent,
399
"A switch case fall-through must come from the same "
400
"OpSwitch construct");
401
402
vtn_fail_if(switch_case->fallthrough != NULL &&
403
switch_case->fallthrough != target_block->switch_case,
404
"Each case construct can have at most one branch to "
405
"another case construct");
406
407
switch_case->fallthrough = target_block->switch_case;
408
409
/* We don't immediately return vtn_branch_type_switch_fallthrough
410
* because it may also be a loop or switch break for an inner loop or
411
* switch and that takes precedence.
412
*/
413
}
414
415
if (loop && target_block == loop->cont_block)
416
return vtn_branch_type_loop_continue;
417
418
/* We walk blocks as a breadth-first search on the control-flow construct
419
* tree where, when we find a construct, we add the vtn_cf_node for that
420
* construct and continue iterating at the merge target block (if any).
421
* Therefore, we want merges whose with parent == cf_parent to be treated
422
* as regular branches. We only want to consider merges if they break out
423
* of the current CF construct.
424
*/
425
if (target_block->merge_cf_node != NULL &&
426
target_block->merge_cf_node->parent != cf_parent) {
427
switch (target_block->merge_cf_node->type) {
428
case vtn_cf_node_type_if:
429
for (struct vtn_cf_node *node = cf_parent;
430
node != target_block->merge_cf_node; node = node->parent) {
431
vtn_fail_if(node == NULL || node->type != vtn_cf_node_type_if,
432
"Branching to the merge block of a selection "
433
"construct can only be used to break out of a "
434
"selection construct");
435
436
struct vtn_if *if_stmt = vtn_cf_node_as_if(node);
437
438
/* This should be guaranteed by our iteration */
439
assert(if_stmt->merge_block != target_block);
440
441
vtn_fail_if(if_stmt->merge_block != NULL,
442
"Branching to the merge block of a selection "
443
"construct can only be used to break out of the "
444
"inner most nested selection level");
445
}
446
return vtn_branch_type_if_merge;
447
448
case vtn_cf_node_type_loop:
449
vtn_fail_if(target_block->merge_cf_node != &loop->node,
450
"Loop breaks can only break out of the inner most "
451
"nested loop level");
452
return vtn_branch_type_loop_break;
453
454
case vtn_cf_node_type_switch: {
455
struct vtn_switch *swtch = vtn_cf_node_find_switch(cf_parent);
456
vtn_fail_if(target_block->merge_cf_node != &swtch->node,
457
"Switch breaks can only break out of the inner most "
458
"nested switch level");
459
return vtn_branch_type_switch_break;
460
}
461
462
default:
463
unreachable("Invalid CF node type for a merge");
464
}
465
}
466
467
if (target_block->switch_case)
468
return vtn_branch_type_switch_fallthrough;
469
470
return vtn_branch_type_none;
471
}
472
473
struct vtn_cfg_work_item {
474
struct list_head link;
475
476
struct vtn_cf_node *cf_parent;
477
struct list_head *cf_list;
478
struct vtn_block *start_block;
479
};
480
481
static void
482
vtn_add_cfg_work_item(struct vtn_builder *b,
483
struct list_head *work_list,
484
struct vtn_cf_node *cf_parent,
485
struct list_head *cf_list,
486
struct vtn_block *start_block)
487
{
488
struct vtn_cfg_work_item *work = ralloc(b, struct vtn_cfg_work_item);
489
work->cf_parent = cf_parent;
490
work->cf_list = cf_list;
491
work->start_block = start_block;
492
list_addtail(&work->link, work_list);
493
}
494
495
/* returns the default block */
496
static void
497
vtn_parse_switch(struct vtn_builder *b,
498
struct vtn_switch *swtch,
499
const uint32_t *branch,
500
struct list_head *case_list)
501
{
502
const uint32_t *branch_end = branch + (branch[0] >> SpvWordCountShift);
503
504
struct vtn_value *sel_val = vtn_untyped_value(b, branch[1]);
505
vtn_fail_if(!sel_val->type ||
506
sel_val->type->base_type != vtn_base_type_scalar,
507
"Selector of OpSwitch must have a type of OpTypeInt");
508
509
nir_alu_type sel_type =
510
nir_get_nir_type_for_glsl_type(sel_val->type->type);
511
vtn_fail_if(nir_alu_type_get_base_type(sel_type) != nir_type_int &&
512
nir_alu_type_get_base_type(sel_type) != nir_type_uint,
513
"Selector of OpSwitch must have a type of OpTypeInt");
514
515
struct hash_table *block_to_case = _mesa_pointer_hash_table_create(b);
516
517
bool is_default = true;
518
const unsigned bitsize = nir_alu_type_get_type_size(sel_type);
519
for (const uint32_t *w = branch + 2; w < branch_end;) {
520
uint64_t literal = 0;
521
if (!is_default) {
522
if (bitsize <= 32) {
523
literal = *(w++);
524
} else {
525
assert(bitsize == 64);
526
literal = vtn_u64_literal(w);
527
w += 2;
528
}
529
}
530
struct vtn_block *case_block = vtn_block(b, *(w++));
531
532
struct hash_entry *case_entry =
533
_mesa_hash_table_search(block_to_case, case_block);
534
535
struct vtn_case *cse;
536
if (case_entry) {
537
cse = case_entry->data;
538
} else {
539
cse = rzalloc(b, struct vtn_case);
540
541
cse->node.type = vtn_cf_node_type_case;
542
cse->node.parent = swtch ? &swtch->node : NULL;
543
cse->block = case_block;
544
list_inithead(&cse->body);
545
util_dynarray_init(&cse->values, b);
546
547
list_addtail(&cse->node.link, case_list);
548
_mesa_hash_table_insert(block_to_case, case_block, cse);
549
}
550
551
if (is_default) {
552
cse->is_default = true;
553
} else {
554
util_dynarray_append(&cse->values, uint64_t, literal);
555
}
556
557
is_default = false;
558
}
559
560
_mesa_hash_table_destroy(block_to_case, NULL);
561
}
562
563
/* Processes a block and returns the next block to process or NULL if we've
564
* reached the end of the construct.
565
*/
566
static struct vtn_block *
567
vtn_process_block(struct vtn_builder *b,
568
struct list_head *work_list,
569
struct vtn_cf_node *cf_parent,
570
struct list_head *cf_list,
571
struct vtn_block *block)
572
{
573
if (!list_is_empty(cf_list)) {
574
/* vtn_process_block() acts like an iterator: it processes the given
575
* block and then returns the next block to process. For a given
576
* control-flow construct, vtn_build_cfg() calls vtn_process_block()
577
* repeatedly until it finally returns NULL. Therefore, we know that
578
* the only blocks on which vtn_process_block() can be called are either
579
* the first block in a construct or a block that vtn_process_block()
580
* returned for the current construct. If cf_list is empty then we know
581
* that we're processing the first block in the construct and we have to
582
* add it to the list.
583
*
584
* If cf_list is not empty, then it must be the block returned by the
585
* previous call to vtn_process_block(). We know a priori that
586
* vtn_process_block only returns either normal branches
587
* (vtn_branch_type_none) or merge target blocks.
588
*/
589
switch (vtn_handle_branch(b, cf_parent, block)) {
590
case vtn_branch_type_none:
591
/* For normal branches, we want to process them and add them to the
592
* current construct. Merge target blocks also look like normal
593
* branches from the perspective of this construct. See also
594
* vtn_handle_branch().
595
*/
596
break;
597
598
case vtn_branch_type_loop_continue:
599
case vtn_branch_type_switch_fallthrough:
600
/* The two cases where we can get early exits from a construct that
601
* are not to that construct's merge target are loop continues and
602
* switch fall-throughs. In these cases, we need to break out of the
603
* current construct by returning NULL.
604
*/
605
return NULL;
606
607
default:
608
/* The only way we can get here is if something was used as two kinds
609
* of merges at the same time and that's illegal.
610
*/
611
vtn_fail("A block was used as a merge target from two or more "
612
"structured control-flow constructs");
613
}
614
}
615
616
/* Once a block has been processed, it is placed into and the list link
617
* will point to something non-null. If we see a node we've already
618
* processed here, it either exists in multiple functions or it's an
619
* invalid back-edge.
620
*/
621
if (block->node.parent != NULL) {
622
vtn_fail_if(vtn_cf_node_find_function(&block->node) !=
623
vtn_cf_node_find_function(cf_parent),
624
"A block cannot exist in two functions at the "
625
"same time");
626
627
vtn_fail("Invalid back or cross-edge in the CFG");
628
}
629
630
if (block->merge && (*block->merge & SpvOpCodeMask) == SpvOpLoopMerge &&
631
block->loop == NULL) {
632
vtn_fail_if((*block->branch & SpvOpCodeMask) != SpvOpBranch &&
633
(*block->branch & SpvOpCodeMask) != SpvOpBranchConditional,
634
"An OpLoopMerge instruction must immediately precede "
635
"either an OpBranch or OpBranchConditional instruction.");
636
637
struct vtn_loop *loop = rzalloc(b, struct vtn_loop);
638
639
loop->node.type = vtn_cf_node_type_loop;
640
loop->node.parent = cf_parent;
641
list_inithead(&loop->body);
642
list_inithead(&loop->cont_body);
643
loop->header_block = block;
644
loop->break_block = vtn_block(b, block->merge[1]);
645
loop->cont_block = vtn_block(b, block->merge[2]);
646
loop->control = block->merge[3];
647
648
list_addtail(&loop->node.link, cf_list);
649
block->loop = loop;
650
651
/* Note: The work item for the main loop body will start with the
652
* current block as its start block. If we weren't careful, we would
653
* get here again and end up in an infinite loop. This is why we set
654
* block->loop above and check for it before creating one. This way,
655
* we only create the loop once and the second iteration that tries to
656
* handle this loop goes to the cases below and gets handled as a
657
* regular block.
658
*/
659
vtn_add_cfg_work_item(b, work_list, &loop->node,
660
&loop->body, loop->header_block);
661
662
/* For continue targets, SPIR-V guarantees the following:
663
*
664
* - the Continue Target must dominate the back-edge block
665
* - the back-edge block must post dominate the Continue Target
666
*
667
* If the header block is the same as the continue target, this
668
* condition is trivially satisfied and there is no real continue
669
* section.
670
*/
671
if (loop->cont_block != loop->header_block) {
672
vtn_add_cfg_work_item(b, work_list, &loop->node,
673
&loop->cont_body, loop->cont_block);
674
}
675
676
vtn_block_set_merge_cf_node(b, loop->break_block, &loop->node);
677
678
return loop->break_block;
679
}
680
681
/* Add the block to the CF list */
682
block->node.parent = cf_parent;
683
list_addtail(&block->node.link, cf_list);
684
685
switch (*block->branch & SpvOpCodeMask) {
686
case SpvOpBranch: {
687
struct vtn_block *branch_block = vtn_block(b, block->branch[1]);
688
689
block->branch_type = vtn_handle_branch(b, cf_parent, branch_block);
690
691
if (block->branch_type == vtn_branch_type_none)
692
return branch_block;
693
else
694
return NULL;
695
}
696
697
case SpvOpReturn:
698
case SpvOpReturnValue:
699
block->branch_type = vtn_branch_type_return;
700
return NULL;
701
702
case SpvOpKill:
703
block->branch_type = vtn_branch_type_discard;
704
return NULL;
705
706
case SpvOpTerminateInvocation:
707
block->branch_type = vtn_branch_type_terminate_invocation;
708
return NULL;
709
710
case SpvOpIgnoreIntersectionKHR:
711
block->branch_type = vtn_branch_type_ignore_intersection;
712
return NULL;
713
714
case SpvOpTerminateRayKHR:
715
block->branch_type = vtn_branch_type_terminate_ray;
716
return NULL;
717
718
case SpvOpBranchConditional: {
719
struct vtn_value *cond_val = vtn_untyped_value(b, block->branch[1]);
720
vtn_fail_if(!cond_val->type ||
721
cond_val->type->base_type != vtn_base_type_scalar ||
722
cond_val->type->type != glsl_bool_type(),
723
"Condition must be a Boolean type scalar");
724
725
struct vtn_if *if_stmt = rzalloc(b, struct vtn_if);
726
727
if_stmt->node.type = vtn_cf_node_type_if;
728
if_stmt->node.parent = cf_parent;
729
if_stmt->header_block = block;
730
list_inithead(&if_stmt->then_body);
731
list_inithead(&if_stmt->else_body);
732
733
list_addtail(&if_stmt->node.link, cf_list);
734
735
if (block->merge &&
736
(*block->merge & SpvOpCodeMask) == SpvOpSelectionMerge) {
737
/* We may not always have a merge block and that merge doesn't
738
* technically have to be an OpSelectionMerge. We could have a block
739
* with an OpLoopMerge which ends in an OpBranchConditional.
740
*/
741
if_stmt->merge_block = vtn_block(b, block->merge[1]);
742
vtn_block_set_merge_cf_node(b, if_stmt->merge_block, &if_stmt->node);
743
744
if_stmt->control = block->merge[2];
745
}
746
747
struct vtn_block *then_block = vtn_block(b, block->branch[2]);
748
if_stmt->then_type = vtn_handle_branch(b, &if_stmt->node, then_block);
749
if (if_stmt->then_type == vtn_branch_type_none) {
750
vtn_add_cfg_work_item(b, work_list, &if_stmt->node,
751
&if_stmt->then_body, then_block);
752
}
753
754
struct vtn_block *else_block = vtn_block(b, block->branch[3]);
755
if (then_block != else_block) {
756
if_stmt->else_type = vtn_handle_branch(b, &if_stmt->node, else_block);
757
if (if_stmt->else_type == vtn_branch_type_none) {
758
vtn_add_cfg_work_item(b, work_list, &if_stmt->node,
759
&if_stmt->else_body, else_block);
760
}
761
}
762
763
return if_stmt->merge_block;
764
}
765
766
case SpvOpSwitch: {
767
struct vtn_switch *swtch = rzalloc(b, struct vtn_switch);
768
769
swtch->node.type = vtn_cf_node_type_switch;
770
swtch->node.parent = cf_parent;
771
swtch->selector = block->branch[1];
772
list_inithead(&swtch->cases);
773
774
list_addtail(&swtch->node.link, cf_list);
775
776
/* We may not always have a merge block */
777
if (block->merge) {
778
vtn_fail_if((*block->merge & SpvOpCodeMask) != SpvOpSelectionMerge,
779
"An OpLoopMerge instruction must immediately precede "
780
"either an OpBranch or OpBranchConditional "
781
"instruction.");
782
swtch->break_block = vtn_block(b, block->merge[1]);
783
vtn_block_set_merge_cf_node(b, swtch->break_block, &swtch->node);
784
}
785
786
/* First, we go through and record all of the cases. */
787
vtn_parse_switch(b, swtch, block->branch, &swtch->cases);
788
789
/* Gather the branch types for the switch */
790
vtn_foreach_cf_node(case_node, &swtch->cases) {
791
struct vtn_case *cse = vtn_cf_node_as_case(case_node);
792
793
cse->type = vtn_handle_branch(b, &swtch->node, cse->block);
794
switch (cse->type) {
795
case vtn_branch_type_none:
796
/* This is a "real" cases which has stuff in it */
797
vtn_fail_if(cse->block->switch_case != NULL,
798
"OpSwitch has a case which is also in another "
799
"OpSwitch construct");
800
cse->block->switch_case = cse;
801
vtn_add_cfg_work_item(b, work_list, &cse->node,
802
&cse->body, cse->block);
803
break;
804
805
case vtn_branch_type_switch_break:
806
case vtn_branch_type_loop_break:
807
case vtn_branch_type_loop_continue:
808
/* Switch breaks as well as loop breaks and continues can be
809
* used to break out of a switch construct or as direct targets
810
* of the OpSwitch.
811
*/
812
break;
813
814
default:
815
vtn_fail("Target of OpSwitch is not a valid structured exit "
816
"from the switch construct.");
817
}
818
}
819
820
return swtch->break_block;
821
}
822
823
case SpvOpUnreachable:
824
return NULL;
825
826
default:
827
vtn_fail("Block did not end with a valid branch instruction");
828
}
829
}
830
831
void
832
vtn_build_cfg(struct vtn_builder *b, const uint32_t *words, const uint32_t *end)
833
{
834
vtn_foreach_instruction(b, words, end,
835
vtn_cfg_handle_prepass_instruction);
836
837
if (b->shader->info.stage == MESA_SHADER_KERNEL)
838
return;
839
840
vtn_foreach_cf_node(func_node, &b->functions) {
841
struct vtn_function *func = vtn_cf_node_as_function(func_node);
842
843
/* We build the CFG for each function by doing a breadth-first search on
844
* the control-flow graph. We keep track of our state using a worklist.
845
* Doing a BFS ensures that we visit each structured control-flow
846
* construct and its merge node before we visit the stuff inside the
847
* construct.
848
*/
849
struct list_head work_list;
850
list_inithead(&work_list);
851
vtn_add_cfg_work_item(b, &work_list, &func->node, &func->body,
852
func->start_block);
853
854
while (!list_is_empty(&work_list)) {
855
struct vtn_cfg_work_item *work =
856
list_first_entry(&work_list, struct vtn_cfg_work_item, link);
857
list_del(&work->link);
858
859
for (struct vtn_block *block = work->start_block; block; ) {
860
block = vtn_process_block(b, &work_list, work->cf_parent,
861
work->cf_list, block);
862
}
863
}
864
}
865
}
866
867
static bool
868
vtn_handle_phis_first_pass(struct vtn_builder *b, SpvOp opcode,
869
const uint32_t *w, unsigned count)
870
{
871
if (opcode == SpvOpLabel)
872
return true; /* Nothing to do */
873
874
/* If this isn't a phi node, stop. */
875
if (opcode != SpvOpPhi)
876
return false;
877
878
/* For handling phi nodes, we do a poor-man's out-of-ssa on the spot.
879
* For each phi, we create a variable with the appropreate type and
880
* do a load from that variable. Then, in a second pass, we add
881
* stores to that variable to each of the predecessor blocks.
882
*
883
* We could do something more intelligent here. However, in order to
884
* handle loops and things properly, we really need dominance
885
* information. It would end up basically being the into-SSA
886
* algorithm all over again. It's easier if we just let
887
* lower_vars_to_ssa do that for us instead of repeating it here.
888
*/
889
struct vtn_type *type = vtn_get_type(b, w[1]);
890
nir_variable *phi_var =
891
nir_local_variable_create(b->nb.impl, type->type, "phi");
892
_mesa_hash_table_insert(b->phi_table, w, phi_var);
893
894
vtn_push_ssa_value(b, w[2],
895
vtn_local_load(b, nir_build_deref_var(&b->nb, phi_var), 0));
896
897
return true;
898
}
899
900
static bool
901
vtn_handle_phi_second_pass(struct vtn_builder *b, SpvOp opcode,
902
const uint32_t *w, unsigned count)
903
{
904
if (opcode != SpvOpPhi)
905
return true;
906
907
struct hash_entry *phi_entry = _mesa_hash_table_search(b->phi_table, w);
908
909
/* It's possible that this phi is in an unreachable block in which case it
910
* may never have been emitted and therefore may not be in the hash table.
911
* In this case, there's no var for it and it's safe to just bail.
912
*/
913
if (phi_entry == NULL)
914
return true;
915
916
nir_variable *phi_var = phi_entry->data;
917
918
for (unsigned i = 3; i < count; i += 2) {
919
struct vtn_block *pred = vtn_block(b, w[i + 1]);
920
921
/* If block does not have end_nop, that is because it is an unreacheable
922
* block, and hence it is not worth to handle it */
923
if (!pred->end_nop)
924
continue;
925
926
b->nb.cursor = nir_after_instr(&pred->end_nop->instr);
927
928
struct vtn_ssa_value *src = vtn_ssa_value(b, w[i]);
929
930
vtn_local_store(b, src, nir_build_deref_var(&b->nb, phi_var), 0);
931
}
932
933
return true;
934
}
935
936
static void
937
vtn_emit_branch(struct vtn_builder *b, enum vtn_branch_type branch_type,
938
nir_variable *switch_fall_var, bool *has_switch_break)
939
{
940
switch (branch_type) {
941
case vtn_branch_type_if_merge:
942
break; /* Nothing to do */
943
case vtn_branch_type_switch_break:
944
nir_store_var(&b->nb, switch_fall_var, nir_imm_false(&b->nb), 1);
945
*has_switch_break = true;
946
break;
947
case vtn_branch_type_switch_fallthrough:
948
break; /* Nothing to do */
949
case vtn_branch_type_loop_break:
950
nir_jump(&b->nb, nir_jump_break);
951
break;
952
case vtn_branch_type_loop_continue:
953
nir_jump(&b->nb, nir_jump_continue);
954
break;
955
case vtn_branch_type_loop_back_edge:
956
break;
957
case vtn_branch_type_return:
958
nir_jump(&b->nb, nir_jump_return);
959
break;
960
case vtn_branch_type_discard:
961
if (b->convert_discard_to_demote)
962
nir_demote(&b->nb);
963
else
964
nir_discard(&b->nb);
965
break;
966
case vtn_branch_type_terminate_invocation:
967
nir_terminate(&b->nb);
968
break;
969
case vtn_branch_type_ignore_intersection:
970
nir_ignore_ray_intersection(&b->nb);
971
nir_jump(&b->nb, nir_jump_halt);
972
break;
973
case vtn_branch_type_terminate_ray:
974
nir_terminate_ray(&b->nb);
975
nir_jump(&b->nb, nir_jump_halt);
976
break;
977
default:
978
vtn_fail("Invalid branch type");
979
}
980
}
981
982
static nir_ssa_def *
983
vtn_switch_case_condition(struct vtn_builder *b, struct vtn_switch *swtch,
984
nir_ssa_def *sel, struct vtn_case *cse)
985
{
986
if (cse->is_default) {
987
nir_ssa_def *any = nir_imm_false(&b->nb);
988
vtn_foreach_cf_node(other_node, &swtch->cases) {
989
struct vtn_case *other = vtn_cf_node_as_case(other_node);
990
if (other->is_default)
991
continue;
992
993
any = nir_ior(&b->nb, any,
994
vtn_switch_case_condition(b, swtch, sel, other));
995
}
996
return nir_inot(&b->nb, any);
997
} else {
998
nir_ssa_def *cond = nir_imm_false(&b->nb);
999
util_dynarray_foreach(&cse->values, uint64_t, val)
1000
cond = nir_ior(&b->nb, cond, nir_ieq_imm(&b->nb, sel, *val));
1001
return cond;
1002
}
1003
}
1004
1005
static nir_loop_control
1006
vtn_loop_control(struct vtn_builder *b, struct vtn_loop *vtn_loop)
1007
{
1008
if (vtn_loop->control == SpvLoopControlMaskNone)
1009
return nir_loop_control_none;
1010
else if (vtn_loop->control & SpvLoopControlDontUnrollMask)
1011
return nir_loop_control_dont_unroll;
1012
else if (vtn_loop->control & SpvLoopControlUnrollMask)
1013
return nir_loop_control_unroll;
1014
else if (vtn_loop->control & SpvLoopControlDependencyInfiniteMask ||
1015
vtn_loop->control & SpvLoopControlDependencyLengthMask ||
1016
vtn_loop->control & SpvLoopControlMinIterationsMask ||
1017
vtn_loop->control & SpvLoopControlMaxIterationsMask ||
1018
vtn_loop->control & SpvLoopControlIterationMultipleMask ||
1019
vtn_loop->control & SpvLoopControlPeelCountMask ||
1020
vtn_loop->control & SpvLoopControlPartialCountMask) {
1021
/* We do not do anything special with these yet. */
1022
return nir_loop_control_none;
1023
} else {
1024
vtn_fail("Invalid loop control");
1025
}
1026
}
1027
1028
static nir_selection_control
1029
vtn_selection_control(struct vtn_builder *b, struct vtn_if *vtn_if)
1030
{
1031
if (vtn_if->control == SpvSelectionControlMaskNone)
1032
return nir_selection_control_none;
1033
else if (vtn_if->control & SpvSelectionControlDontFlattenMask)
1034
return nir_selection_control_dont_flatten;
1035
else if (vtn_if->control & SpvSelectionControlFlattenMask)
1036
return nir_selection_control_flatten;
1037
else
1038
vtn_fail("Invalid selection control");
1039
}
1040
1041
static void
1042
vtn_emit_ret_store(struct vtn_builder *b, struct vtn_block *block)
1043
{
1044
if ((*block->branch & SpvOpCodeMask) != SpvOpReturnValue)
1045
return;
1046
1047
vtn_fail_if(b->func->type->return_type->base_type == vtn_base_type_void,
1048
"Return with a value from a function returning void");
1049
struct vtn_ssa_value *src = vtn_ssa_value(b, block->branch[1]);
1050
const struct glsl_type *ret_type =
1051
glsl_get_bare_type(b->func->type->return_type->type);
1052
nir_deref_instr *ret_deref =
1053
nir_build_deref_cast(&b->nb, nir_load_param(&b->nb, 0),
1054
nir_var_function_temp, ret_type, 0);
1055
vtn_local_store(b, src, ret_deref, 0);
1056
}
1057
1058
static void
1059
vtn_emit_cf_list_structured(struct vtn_builder *b, struct list_head *cf_list,
1060
nir_variable *switch_fall_var,
1061
bool *has_switch_break,
1062
vtn_instruction_handler handler)
1063
{
1064
vtn_foreach_cf_node(node, cf_list) {
1065
switch (node->type) {
1066
case vtn_cf_node_type_block: {
1067
struct vtn_block *block = vtn_cf_node_as_block(node);
1068
1069
const uint32_t *block_start = block->label;
1070
const uint32_t *block_end = block->merge ? block->merge :
1071
block->branch;
1072
1073
block_start = vtn_foreach_instruction(b, block_start, block_end,
1074
vtn_handle_phis_first_pass);
1075
1076
vtn_foreach_instruction(b, block_start, block_end, handler);
1077
1078
block->end_nop = nir_nop(&b->nb);
1079
1080
vtn_emit_ret_store(b, block);
1081
1082
if (block->branch_type != vtn_branch_type_none) {
1083
vtn_emit_branch(b, block->branch_type,
1084
switch_fall_var, has_switch_break);
1085
return;
1086
}
1087
1088
break;
1089
}
1090
1091
case vtn_cf_node_type_if: {
1092
struct vtn_if *vtn_if = vtn_cf_node_as_if(node);
1093
const uint32_t *branch = vtn_if->header_block->branch;
1094
vtn_assert((branch[0] & SpvOpCodeMask) == SpvOpBranchConditional);
1095
1096
/* If both branches are the same, just emit the first block, which is
1097
* the only one we filled when building the CFG.
1098
*/
1099
if (branch[2] == branch[3]) {
1100
vtn_emit_cf_list_structured(b, &vtn_if->then_body,
1101
switch_fall_var, has_switch_break, handler);
1102
break;
1103
}
1104
1105
bool sw_break = false;
1106
1107
nir_if *nif =
1108
nir_push_if(&b->nb, vtn_get_nir_ssa(b, branch[1]));
1109
1110
nif->control = vtn_selection_control(b, vtn_if);
1111
1112
if (vtn_if->then_type == vtn_branch_type_none) {
1113
vtn_emit_cf_list_structured(b, &vtn_if->then_body,
1114
switch_fall_var, &sw_break, handler);
1115
} else {
1116
vtn_emit_branch(b, vtn_if->then_type, switch_fall_var, &sw_break);
1117
}
1118
1119
nir_push_else(&b->nb, nif);
1120
if (vtn_if->else_type == vtn_branch_type_none) {
1121
vtn_emit_cf_list_structured(b, &vtn_if->else_body,
1122
switch_fall_var, &sw_break, handler);
1123
} else {
1124
vtn_emit_branch(b, vtn_if->else_type, switch_fall_var, &sw_break);
1125
}
1126
1127
nir_pop_if(&b->nb, nif);
1128
1129
/* If we encountered a switch break somewhere inside of the if,
1130
* then it would have been handled correctly by calling
1131
* emit_cf_list or emit_branch for the interrior. However, we
1132
* need to predicate everything following on wether or not we're
1133
* still going.
1134
*/
1135
if (sw_break) {
1136
*has_switch_break = true;
1137
nir_push_if(&b->nb, nir_load_var(&b->nb, switch_fall_var));
1138
}
1139
break;
1140
}
1141
1142
case vtn_cf_node_type_loop: {
1143
struct vtn_loop *vtn_loop = vtn_cf_node_as_loop(node);
1144
1145
nir_loop *loop = nir_push_loop(&b->nb);
1146
loop->control = vtn_loop_control(b, vtn_loop);
1147
1148
vtn_emit_cf_list_structured(b, &vtn_loop->body, NULL, NULL, handler);
1149
1150
if (!list_is_empty(&vtn_loop->cont_body)) {
1151
/* If we have a non-trivial continue body then we need to put
1152
* it at the beginning of the loop with a flag to ensure that
1153
* it doesn't get executed in the first iteration.
1154
*/
1155
nir_variable *do_cont =
1156
nir_local_variable_create(b->nb.impl, glsl_bool_type(), "cont");
1157
1158
b->nb.cursor = nir_before_cf_node(&loop->cf_node);
1159
nir_store_var(&b->nb, do_cont, nir_imm_false(&b->nb), 1);
1160
1161
b->nb.cursor = nir_before_cf_list(&loop->body);
1162
1163
nir_if *cont_if =
1164
nir_push_if(&b->nb, nir_load_var(&b->nb, do_cont));
1165
1166
vtn_emit_cf_list_structured(b, &vtn_loop->cont_body, NULL, NULL,
1167
handler);
1168
1169
nir_pop_if(&b->nb, cont_if);
1170
1171
nir_store_var(&b->nb, do_cont, nir_imm_true(&b->nb), 1);
1172
}
1173
1174
nir_pop_loop(&b->nb, loop);
1175
break;
1176
}
1177
1178
case vtn_cf_node_type_switch: {
1179
struct vtn_switch *vtn_switch = vtn_cf_node_as_switch(node);
1180
1181
/* Before we can emit anything, we need to sort the list of cases in
1182
* fall-through order.
1183
*/
1184
vtn_switch_order_cases(vtn_switch);
1185
1186
/* First, we create a variable to keep track of whether or not the
1187
* switch is still going at any given point. Any switch breaks
1188
* will set this variable to false.
1189
*/
1190
nir_variable *fall_var =
1191
nir_local_variable_create(b->nb.impl, glsl_bool_type(), "fall");
1192
nir_store_var(&b->nb, fall_var, nir_imm_false(&b->nb), 1);
1193
1194
nir_ssa_def *sel = vtn_get_nir_ssa(b, vtn_switch->selector);
1195
1196
/* Now we can walk the list of cases and actually emit code */
1197
vtn_foreach_cf_node(case_node, &vtn_switch->cases) {
1198
struct vtn_case *cse = vtn_cf_node_as_case(case_node);
1199
1200
/* If this case jumps directly to the break block, we don't have
1201
* to handle the case as the body is empty and doesn't fall
1202
* through.
1203
*/
1204
if (cse->block == vtn_switch->break_block)
1205
continue;
1206
1207
/* Figure out the condition */
1208
nir_ssa_def *cond =
1209
vtn_switch_case_condition(b, vtn_switch, sel, cse);
1210
/* Take fallthrough into account */
1211
cond = nir_ior(&b->nb, cond, nir_load_var(&b->nb, fall_var));
1212
1213
nir_if *case_if = nir_push_if(&b->nb, cond);
1214
1215
bool has_break = false;
1216
nir_store_var(&b->nb, fall_var, nir_imm_true(&b->nb), 1);
1217
vtn_emit_cf_list_structured(b, &cse->body, fall_var, &has_break,
1218
handler);
1219
(void)has_break; /* We don't care */
1220
1221
nir_pop_if(&b->nb, case_if);
1222
}
1223
1224
break;
1225
}
1226
1227
default:
1228
vtn_fail("Invalid CF node type");
1229
}
1230
}
1231
}
1232
1233
static struct nir_block *
1234
vtn_new_unstructured_block(struct vtn_builder *b, struct vtn_function *func)
1235
{
1236
struct nir_block *n = nir_block_create(b->shader);
1237
exec_list_push_tail(&func->nir_func->impl->body, &n->cf_node.node);
1238
n->cf_node.parent = &func->nir_func->impl->cf_node;
1239
return n;
1240
}
1241
1242
static void
1243
vtn_add_unstructured_block(struct vtn_builder *b,
1244
struct vtn_function *func,
1245
struct list_head *work_list,
1246
struct vtn_block *block)
1247
{
1248
if (!block->block) {
1249
block->block = vtn_new_unstructured_block(b, func);
1250
list_addtail(&block->node.link, work_list);
1251
}
1252
}
1253
1254
static void
1255
vtn_emit_cf_func_unstructured(struct vtn_builder *b, struct vtn_function *func,
1256
vtn_instruction_handler handler)
1257
{
1258
struct list_head work_list;
1259
list_inithead(&work_list);
1260
1261
func->start_block->block = nir_start_block(func->nir_func->impl);
1262
list_addtail(&func->start_block->node.link, &work_list);
1263
while (!list_is_empty(&work_list)) {
1264
struct vtn_block *block =
1265
list_first_entry(&work_list, struct vtn_block, node.link);
1266
list_del(&block->node.link);
1267
1268
vtn_assert(block->block);
1269
1270
const uint32_t *block_start = block->label;
1271
const uint32_t *block_end = block->branch;
1272
1273
b->nb.cursor = nir_after_block(block->block);
1274
block_start = vtn_foreach_instruction(b, block_start, block_end,
1275
vtn_handle_phis_first_pass);
1276
vtn_foreach_instruction(b, block_start, block_end, handler);
1277
block->end_nop = nir_nop(&b->nb);
1278
1279
SpvOp op = *block_end & SpvOpCodeMask;
1280
switch (op) {
1281
case SpvOpBranch: {
1282
struct vtn_block *branch_block = vtn_block(b, block->branch[1]);
1283
vtn_add_unstructured_block(b, func, &work_list, branch_block);
1284
nir_goto(&b->nb, branch_block->block);
1285
break;
1286
}
1287
1288
case SpvOpBranchConditional: {
1289
nir_ssa_def *cond = vtn_ssa_value(b, block->branch[1])->def;
1290
struct vtn_block *then_block = vtn_block(b, block->branch[2]);
1291
struct vtn_block *else_block = vtn_block(b, block->branch[3]);
1292
1293
vtn_add_unstructured_block(b, func, &work_list, then_block);
1294
if (then_block == else_block) {
1295
nir_goto(&b->nb, then_block->block);
1296
} else {
1297
vtn_add_unstructured_block(b, func, &work_list, else_block);
1298
nir_goto_if(&b->nb, then_block->block, nir_src_for_ssa(cond),
1299
else_block->block);
1300
}
1301
1302
break;
1303
}
1304
1305
case SpvOpSwitch: {
1306
struct list_head cases;
1307
list_inithead(&cases);
1308
vtn_parse_switch(b, NULL, block->branch, &cases);
1309
1310
nir_ssa_def *sel = vtn_get_nir_ssa(b, block->branch[1]);
1311
1312
struct vtn_case *def = NULL;
1313
vtn_foreach_cf_node(case_node, &cases) {
1314
struct vtn_case *cse = vtn_cf_node_as_case(case_node);
1315
if (cse->is_default) {
1316
assert(def == NULL);
1317
def = cse;
1318
continue;
1319
}
1320
1321
nir_ssa_def *cond = nir_imm_false(&b->nb);
1322
util_dynarray_foreach(&cse->values, uint64_t, val)
1323
cond = nir_ior(&b->nb, cond, nir_ieq_imm(&b->nb, sel, *val));
1324
1325
/* block for the next check */
1326
nir_block *e = vtn_new_unstructured_block(b, func);
1327
vtn_add_unstructured_block(b, func, &work_list, cse->block);
1328
1329
/* add branching */
1330
nir_goto_if(&b->nb, cse->block->block, nir_src_for_ssa(cond), e);
1331
b->nb.cursor = nir_after_block(e);
1332
}
1333
1334
vtn_assert(def != NULL);
1335
vtn_add_unstructured_block(b, func, &work_list, def->block);
1336
1337
/* now that all cases are handled, branch into the default block */
1338
nir_goto(&b->nb, def->block->block);
1339
break;
1340
}
1341
1342
case SpvOpKill: {
1343
nir_discard(&b->nb);
1344
nir_goto(&b->nb, b->func->nir_func->impl->end_block);
1345
break;
1346
}
1347
1348
case SpvOpUnreachable:
1349
case SpvOpReturn:
1350
case SpvOpReturnValue: {
1351
vtn_emit_ret_store(b, block);
1352
nir_goto(&b->nb, b->func->nir_func->impl->end_block);
1353
break;
1354
}
1355
1356
default:
1357
vtn_fail("Unhandled opcode %s", spirv_op_to_string(op));
1358
}
1359
}
1360
}
1361
1362
void
1363
vtn_function_emit(struct vtn_builder *b, struct vtn_function *func,
1364
vtn_instruction_handler instruction_handler)
1365
{
1366
static int force_unstructured = -1;
1367
if (force_unstructured < 0) {
1368
force_unstructured =
1369
env_var_as_boolean("MESA_SPIRV_FORCE_UNSTRUCTURED", false);
1370
}
1371
1372
nir_function_impl *impl = func->nir_func->impl;
1373
nir_builder_init(&b->nb, impl);
1374
b->func = func;
1375
b->nb.cursor = nir_after_cf_list(&impl->body);
1376
b->nb.exact = b->exact;
1377
b->phi_table = _mesa_pointer_hash_table_create(b);
1378
1379
if (b->shader->info.stage == MESA_SHADER_KERNEL || force_unstructured) {
1380
impl->structured = false;
1381
vtn_emit_cf_func_unstructured(b, func, instruction_handler);
1382
} else {
1383
vtn_emit_cf_list_structured(b, &func->body, NULL, NULL,
1384
instruction_handler);
1385
}
1386
1387
vtn_foreach_instruction(b, func->start_block->label, func->end,
1388
vtn_handle_phi_second_pass);
1389
1390
nir_rematerialize_derefs_in_use_blocks_impl(impl);
1391
1392
/*
1393
* There are some cases where we need to repair SSA to insert
1394
* the needed phi nodes:
1395
*
1396
* - Continue blocks for loops get inserted before the body of the loop
1397
* but instructions in the continue may use SSA defs in the loop body.
1398
*
1399
* - Early termination instructions `OpKill` and `OpTerminateInvocation`,
1400
* in NIR. They're represented by regular intrinsics with no control-flow
1401
* semantics. This means that the SSA form from the SPIR-V may not
1402
* 100% match NIR.
1403
*
1404
* - Switches with only default case may also define SSA which may
1405
* subsequently be used out of the switch.
1406
*/
1407
if (func->nir_func->impl->structured)
1408
nir_repair_ssa_impl(impl);
1409
1410
func->emitted = true;
1411
}
1412
1413