Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/freedreno/ir3/ir3_nir_analyze_ubo_ranges.c
4565 views
1
/*
2
* Copyright © 2019 Google, Inc.
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice (including the next
12
* paragraph) shall be included in all copies or substantial portions of the
13
* Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
* SOFTWARE.
22
*/
23
24
#include "compiler/nir/nir.h"
25
#include "compiler/nir/nir_builder.h"
26
#include "util/u_math.h"
27
#include "ir3_compiler.h"
28
#include "ir3_nir.h"
29
30
static inline bool
31
get_ubo_load_range(nir_shader *nir, nir_intrinsic_instr *instr,
32
uint32_t alignment, struct ir3_ubo_range *r)
33
{
34
uint32_t offset = nir_intrinsic_range_base(instr);
35
uint32_t size = nir_intrinsic_range(instr);
36
37
/* If the offset is constant, the range is trivial (and NIR may not have
38
* figured it out).
39
*/
40
if (nir_src_is_const(instr->src[1])) {
41
offset = nir_src_as_uint(instr->src[1]);
42
size = nir_intrinsic_dest_components(instr) * 4;
43
}
44
45
/* If we haven't figured out the range accessed in the UBO, bail. */
46
if (size == ~0)
47
return false;
48
49
r->start = ROUND_DOWN_TO(offset, alignment * 16);
50
r->end = ALIGN(offset + size, alignment * 16);
51
52
return true;
53
}
54
55
static bool
56
get_ubo_info(nir_intrinsic_instr *instr, struct ir3_ubo_info *ubo)
57
{
58
if (nir_src_is_const(instr->src[0])) {
59
ubo->block = nir_src_as_uint(instr->src[0]);
60
ubo->bindless_base = 0;
61
ubo->bindless = false;
62
return true;
63
} else {
64
nir_intrinsic_instr *rsrc = ir3_bindless_resource(instr->src[0]);
65
if (rsrc && nir_src_is_const(rsrc->src[0])) {
66
ubo->block = nir_src_as_uint(rsrc->src[0]);
67
ubo->bindless_base = nir_intrinsic_desc_set(rsrc);
68
ubo->bindless = true;
69
return true;
70
}
71
}
72
return false;
73
}
74
75
/**
76
* Finds the given instruction's UBO load in the UBO upload plan, if any.
77
*/
78
static const struct ir3_ubo_range *
79
get_existing_range(nir_intrinsic_instr *instr,
80
const struct ir3_ubo_analysis_state *state,
81
struct ir3_ubo_range *r)
82
{
83
struct ir3_ubo_info ubo = {};
84
85
if (!get_ubo_info(instr, &ubo))
86
return NULL;
87
88
for (int i = 0; i < state->num_enabled; i++) {
89
const struct ir3_ubo_range *range = &state->range[i];
90
if (!memcmp(&range->ubo, &ubo, sizeof(ubo)) && r->start >= range->start &&
91
r->end <= range->end) {
92
return range;
93
}
94
}
95
96
return NULL;
97
}
98
99
/**
100
* Merges together neighboring/overlapping ranges in the range plan with a
101
* newly updated range.
102
*/
103
static void
104
merge_neighbors(struct ir3_ubo_analysis_state *state, int index)
105
{
106
struct ir3_ubo_range *a = &state->range[index];
107
108
/* index is always the first slot that would have neighbored/overlapped with
109
* the new range.
110
*/
111
for (int i = index + 1; i < state->num_enabled; i++) {
112
struct ir3_ubo_range *b = &state->range[i];
113
if (memcmp(&a->ubo, &b->ubo, sizeof(a->ubo)))
114
continue;
115
116
if (a->start > b->end || a->end < b->start)
117
continue;
118
119
/* Merge B into A. */
120
a->start = MIN2(a->start, b->start);
121
a->end = MAX2(a->end, b->end);
122
123
/* Swap the last enabled range into B's now unused slot */
124
*b = state->range[--state->num_enabled];
125
}
126
}
127
128
/**
129
* During the first pass over the shader, makes the plan of which UBO upload
130
* should include the range covering this UBO load.
131
*
132
* We are passed in an upload_remaining of how much space is left for us in
133
* the const file, and we make sure our plan doesn't exceed that.
134
*/
135
static void
136
gather_ubo_ranges(nir_shader *nir, nir_intrinsic_instr *instr,
137
struct ir3_ubo_analysis_state *state, uint32_t alignment,
138
uint32_t *upload_remaining)
139
{
140
if (ir3_shader_debug & IR3_DBG_NOUBOOPT)
141
return;
142
143
struct ir3_ubo_info ubo = {};
144
if (!get_ubo_info(instr, &ubo))
145
return;
146
147
struct ir3_ubo_range r;
148
if (!get_ubo_load_range(nir, instr, alignment, &r))
149
return;
150
151
/* See if there's an existing range for this UBO we want to merge into. */
152
for (int i = 0; i < state->num_enabled; i++) {
153
struct ir3_ubo_range *plan_r = &state->range[i];
154
if (memcmp(&plan_r->ubo, &ubo, sizeof(ubo)))
155
continue;
156
157
/* Don't extend existing uploads unless they're
158
* neighboring/overlapping.
159
*/
160
if (r.start > plan_r->end || r.end < plan_r->start)
161
continue;
162
163
r.start = MIN2(r.start, plan_r->start);
164
r.end = MAX2(r.end, plan_r->end);
165
166
uint32_t added = (plan_r->start - r.start) + (r.end - plan_r->end);
167
if (added >= *upload_remaining)
168
return;
169
170
plan_r->start = r.start;
171
plan_r->end = r.end;
172
*upload_remaining -= added;
173
174
merge_neighbors(state, i);
175
return;
176
}
177
178
if (state->num_enabled == ARRAY_SIZE(state->range))
179
return;
180
181
uint32_t added = r.end - r.start;
182
if (added >= *upload_remaining)
183
return;
184
185
struct ir3_ubo_range *plan_r = &state->range[state->num_enabled++];
186
plan_r->ubo = ubo;
187
plan_r->start = r.start;
188
plan_r->end = r.end;
189
*upload_remaining -= added;
190
}
191
192
/* For indirect offset, it is common to see a pattern of multiple
193
* loads with the same base, but different constant offset, ie:
194
*
195
* vec1 32 ssa_33 = iadd ssa_base, const_offset
196
* vec4 32 ssa_34 = intrinsic load_uniform (ssa_33) (base=N, 0, 0)
197
*
198
* Detect this, and peel out the const_offset part, to end up with:
199
*
200
* vec4 32 ssa_34 = intrinsic load_uniform (ssa_base) (base=N+const_offset,
201
* 0, 0)
202
*
203
* Or similarly:
204
*
205
* vec1 32 ssa_33 = imad24_ir3 a, b, const_offset
206
* vec4 32 ssa_34 = intrinsic load_uniform (ssa_33) (base=N, 0, 0)
207
*
208
* Can be converted to:
209
*
210
* vec1 32 ssa_base = imul24 a, b
211
* vec4 32 ssa_34 = intrinsic load_uniform (ssa_base) (base=N+const_offset,
212
* 0, 0)
213
*
214
* This gives the other opt passes something much easier to work
215
* with (ie. not requiring value range tracking)
216
*/
217
static void
218
handle_partial_const(nir_builder *b, nir_ssa_def **srcp, int *offp)
219
{
220
if ((*srcp)->parent_instr->type != nir_instr_type_alu)
221
return;
222
223
nir_alu_instr *alu = nir_instr_as_alu((*srcp)->parent_instr);
224
225
if (alu->op == nir_op_imad24_ir3) {
226
/* This case is slightly more complicated as we need to
227
* replace the imad24_ir3 with an imul24:
228
*/
229
if (!nir_src_is_const(alu->src[2].src))
230
return;
231
232
*offp += nir_src_as_uint(alu->src[2].src);
233
*srcp = nir_imul24(b, nir_ssa_for_alu_src(b, alu, 0),
234
nir_ssa_for_alu_src(b, alu, 1));
235
236
return;
237
}
238
239
if (alu->op != nir_op_iadd)
240
return;
241
242
if (!(alu->src[0].src.is_ssa && alu->src[1].src.is_ssa))
243
return;
244
245
if (nir_src_is_const(alu->src[0].src)) {
246
*offp += nir_src_as_uint(alu->src[0].src);
247
*srcp = alu->src[1].src.ssa;
248
} else if (nir_src_is_const(alu->src[1].src)) {
249
*srcp = alu->src[0].src.ssa;
250
*offp += nir_src_as_uint(alu->src[1].src);
251
}
252
}
253
254
/* Tracks the maximum bindful UBO accessed so that we reduce the UBO
255
* descriptors emitted in the fast path for GL.
256
*/
257
static void
258
track_ubo_use(nir_intrinsic_instr *instr, nir_builder *b, int *num_ubos)
259
{
260
if (ir3_bindless_resource(instr->src[0])) {
261
assert(!b->shader->info.first_ubo_is_default_ubo); /* only set for GL */
262
return;
263
}
264
265
if (nir_src_is_const(instr->src[0])) {
266
int block = nir_src_as_uint(instr->src[0]);
267
*num_ubos = MAX2(*num_ubos, block + 1);
268
} else {
269
*num_ubos = b->shader->info.num_ubos;
270
}
271
}
272
273
static bool
274
lower_ubo_load_to_uniform(nir_intrinsic_instr *instr, nir_builder *b,
275
const struct ir3_ubo_analysis_state *state,
276
int *num_ubos, uint32_t alignment)
277
{
278
b->cursor = nir_before_instr(&instr->instr);
279
280
struct ir3_ubo_range r;
281
if (!get_ubo_load_range(b->shader, instr, alignment, &r)) {
282
track_ubo_use(instr, b, num_ubos);
283
return false;
284
}
285
286
/* We don't lower dynamic block index UBO loads to load_uniform, but we
287
* could probably with some effort determine a block stride in number of
288
* registers.
289
*/
290
const struct ir3_ubo_range *range = get_existing_range(instr, state, &r);
291
if (!range) {
292
track_ubo_use(instr, b, num_ubos);
293
return false;
294
}
295
296
nir_ssa_def *ubo_offset = nir_ssa_for_src(b, instr->src[1], 1);
297
int const_offset = 0;
298
299
handle_partial_const(b, &ubo_offset, &const_offset);
300
301
/* UBO offset is in bytes, but uniform offset is in units of
302
* dwords, so we need to divide by 4 (right-shift by 2). For ldc the
303
* offset is in units of 16 bytes, so we need to multiply by 4. And
304
* also the same for the constant part of the offset:
305
*/
306
const int shift = -2;
307
nir_ssa_def *new_offset = ir3_nir_try_propagate_bit_shift(b, ubo_offset, -2);
308
nir_ssa_def *uniform_offset = NULL;
309
if (new_offset) {
310
uniform_offset = new_offset;
311
} else {
312
uniform_offset = shift > 0
313
? nir_ishl(b, ubo_offset, nir_imm_int(b, shift))
314
: nir_ushr(b, ubo_offset, nir_imm_int(b, -shift));
315
}
316
317
debug_assert(!(const_offset & 0x3));
318
const_offset >>= 2;
319
320
const int range_offset = ((int)range->offset - (int)range->start) / 4;
321
const_offset += range_offset;
322
323
/* The range_offset could be negative, if if only part of the UBO
324
* block is accessed, range->start can be greater than range->offset.
325
* But we can't underflow const_offset. If necessary we need to
326
* insert nir instructions to compensate (which can hopefully be
327
* optimized away)
328
*/
329
if (const_offset < 0) {
330
uniform_offset = nir_iadd_imm(b, uniform_offset, const_offset);
331
const_offset = 0;
332
}
333
334
nir_ssa_def *uniform =
335
nir_load_uniform(b, instr->num_components, instr->dest.ssa.bit_size,
336
uniform_offset, .base = const_offset);
337
338
nir_ssa_def_rewrite_uses(&instr->dest.ssa, uniform);
339
340
nir_instr_remove(&instr->instr);
341
342
return true;
343
}
344
345
static bool
346
instr_is_load_ubo(nir_instr *instr)
347
{
348
if (instr->type != nir_instr_type_intrinsic)
349
return false;
350
351
nir_intrinsic_op op = nir_instr_as_intrinsic(instr)->intrinsic;
352
353
/* nir_lower_ubo_vec4 happens after this pass. */
354
assert(op != nir_intrinsic_load_ubo_vec4);
355
356
return op == nir_intrinsic_load_ubo;
357
}
358
359
void
360
ir3_nir_analyze_ubo_ranges(nir_shader *nir, struct ir3_shader_variant *v)
361
{
362
struct ir3_const_state *const_state = ir3_const_state(v);
363
struct ir3_ubo_analysis_state *state = &const_state->ubo_state;
364
struct ir3_compiler *compiler = v->shader->compiler;
365
366
/* Limit our uploads to the amount of constant buffer space available in
367
* the hardware, minus what the shader compiler may need for various
368
* driver params. We do this UBO-to-push-constant before the real
369
* allocation of the driver params' const space, because UBO pointers can
370
* be driver params but this pass usually eliminatings them.
371
*/
372
struct ir3_const_state worst_case_const_state = {};
373
ir3_setup_const_state(nir, v, &worst_case_const_state);
374
const uint32_t max_upload =
375
(ir3_max_const(v) - worst_case_const_state.offsets.immediate) * 16;
376
377
memset(state, 0, sizeof(*state));
378
379
uint32_t upload_remaining = max_upload;
380
nir_foreach_function (function, nir) {
381
if (function->impl) {
382
nir_foreach_block (block, function->impl) {
383
nir_foreach_instr (instr, block) {
384
if (instr_is_load_ubo(instr))
385
gather_ubo_ranges(nir, nir_instr_as_intrinsic(instr), state,
386
compiler->const_upload_unit,
387
&upload_remaining);
388
}
389
}
390
}
391
}
392
393
/* For now, everything we upload is accessed statically and thus will be
394
* used by the shader. Once we can upload dynamically indexed data, we may
395
* upload sparsely accessed arrays, at which point we probably want to
396
* give priority to smaller UBOs, on the assumption that big UBOs will be
397
* accessed dynamically. Alternatively, we can track statically and
398
* dynamically accessed ranges separately and upload static rangtes
399
* first.
400
*/
401
402
uint32_t offset = v->shader->num_reserved_user_consts * 16;
403
for (uint32_t i = 0; i < state->num_enabled; i++) {
404
uint32_t range_size = state->range[i].end - state->range[i].start;
405
406
debug_assert(offset <= max_upload);
407
state->range[i].offset = offset;
408
assert(offset <= max_upload);
409
offset += range_size;
410
}
411
state->size = offset;
412
}
413
414
bool
415
ir3_nir_lower_ubo_loads(nir_shader *nir, struct ir3_shader_variant *v)
416
{
417
struct ir3_compiler *compiler = v->shader->compiler;
418
/* For the binning pass variant, we re-use the corresponding draw-pass
419
* variants const_state and ubo state. To make these clear, in this
420
* pass it is const (read-only)
421
*/
422
const struct ir3_const_state *const_state = ir3_const_state(v);
423
const struct ir3_ubo_analysis_state *state = &const_state->ubo_state;
424
425
int num_ubos = 0;
426
bool progress = false;
427
nir_foreach_function (function, nir) {
428
if (function->impl) {
429
nir_builder builder;
430
nir_builder_init(&builder, function->impl);
431
nir_foreach_block (block, function->impl) {
432
nir_foreach_instr_safe (instr, block) {
433
if (!instr_is_load_ubo(instr))
434
continue;
435
progress |= lower_ubo_load_to_uniform(
436
nir_instr_as_intrinsic(instr), &builder, state, &num_ubos,
437
compiler->const_upload_unit);
438
}
439
}
440
441
nir_metadata_preserve(
442
function->impl, nir_metadata_block_index | nir_metadata_dominance);
443
}
444
}
445
/* Update the num_ubos field for GL (first_ubo_is_default_ubo). With
446
* Vulkan's bindless, we don't use the num_ubos field, so we can leave it
447
* incremented.
448
*/
449
if (nir->info.first_ubo_is_default_ubo)
450
nir->info.num_ubos = num_ubos;
451
452
return progress;
453
}
454
455
static bool
456
fixup_load_uniform_filter(const nir_instr *instr, const void *arg)
457
{
458
if (instr->type != nir_instr_type_intrinsic)
459
return false;
460
return nir_instr_as_intrinsic(instr)->intrinsic ==
461
nir_intrinsic_load_uniform;
462
}
463
464
static nir_ssa_def *
465
fixup_load_uniform_instr(struct nir_builder *b, nir_instr *instr, void *arg)
466
{
467
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
468
469
/* We don't need to worry about non-indirect case: */
470
if (nir_src_is_const(intr->src[0]))
471
return NULL;
472
473
const unsigned base_offset_limit = (1 << 9); /* 9 bits */
474
unsigned base_offset = nir_intrinsic_base(intr);
475
476
/* Or cases were base offset is lower than the hw limit: */
477
if (base_offset < base_offset_limit)
478
return NULL;
479
480
b->cursor = nir_before_instr(instr);
481
482
nir_ssa_def *offset = nir_ssa_for_src(b, intr->src[0], 1);
483
484
/* We'd like to avoid a sequence like:
485
*
486
* vec4 32 ssa_18 = intrinsic load_uniform (ssa_4) (1024, 0, 0)
487
* vec4 32 ssa_19 = intrinsic load_uniform (ssa_4) (1072, 0, 0)
488
* vec4 32 ssa_20 = intrinsic load_uniform (ssa_4) (1120, 0, 0)
489
*
490
* From turning into a unique offset value (which requires reloading
491
* a0.x for each instruction). So instead of just adding the constant
492
* base_offset to the non-const offset, be a bit more clever and only
493
* extract the part that cannot be encoded. Afterwards CSE should
494
* turn the result into:
495
*
496
* vec1 32 ssa_5 = load_const (1024)
497
* vec4 32 ssa_6 = iadd ssa4_, ssa_5
498
* vec4 32 ssa_18 = intrinsic load_uniform (ssa_5) (0, 0, 0)
499
* vec4 32 ssa_19 = intrinsic load_uniform (ssa_5) (48, 0, 0)
500
* vec4 32 ssa_20 = intrinsic load_uniform (ssa_5) (96, 0, 0)
501
*/
502
unsigned new_base_offset = base_offset % base_offset_limit;
503
504
nir_intrinsic_set_base(intr, new_base_offset);
505
offset = nir_iadd_imm(b, offset, base_offset - new_base_offset);
506
507
nir_instr_rewrite_src(instr, &intr->src[0], nir_src_for_ssa(offset));
508
509
return NIR_LOWER_INSTR_PROGRESS;
510
}
511
512
/**
513
* For relative CONST file access, we can only encode 10b worth of fixed offset,
514
* so in cases where the base offset is larger, we need to peel it out into
515
* ALU instructions.
516
*
517
* This should run late, after constant folding has had a chance to do it's
518
* thing, so we can actually know if it is an indirect uniform offset or not.
519
*/
520
bool
521
ir3_nir_fixup_load_uniform(nir_shader *nir)
522
{
523
return nir_shader_lower_instructions(nir, fixup_load_uniform_filter,
524
fixup_load_uniform_instr, NULL);
525
}
526
static nir_ssa_def *
527
ir3_nir_lower_load_const_instr(nir_builder *b, nir_instr *in_instr, void *data)
528
{
529
struct ir3_const_state *const_state = data;
530
nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in_instr);
531
532
/* Pick a UBO index to use as our constant data. Skip UBO 0 since that's
533
* reserved for gallium's cb0.
534
*/
535
if (const_state->constant_data_ubo == -1) {
536
if (b->shader->info.num_ubos == 0)
537
b->shader->info.num_ubos++;
538
const_state->constant_data_ubo = b->shader->info.num_ubos++;
539
}
540
541
unsigned num_components = instr->num_components;
542
if (nir_dest_bit_size(instr->dest) == 16) {
543
/* We can't do 16b loads -- either from LDC (32-bit only in any of our
544
* traces, and disasm that doesn't look like it really supports it) or
545
* from the constant file (where CONSTANT_DEMOTION_ENABLE means we get
546
* automatic 32b-to-16b conversions when we ask for 16b from it).
547
* Instead, we'll load 32b from a UBO and unpack from there.
548
*/
549
num_components = DIV_ROUND_UP(num_components, 2);
550
}
551
unsigned base = nir_intrinsic_base(instr);
552
nir_ssa_def *index = nir_imm_int(b, const_state->constant_data_ubo);
553
nir_ssa_def *offset =
554
nir_iadd_imm(b, nir_ssa_for_src(b, instr->src[0], 1), base);
555
556
nir_ssa_def *result =
557
nir_load_ubo(b, num_components, 32, index, offset,
558
.align_mul = nir_intrinsic_align_mul(instr),
559
.align_offset = nir_intrinsic_align_offset(instr),
560
.range_base = base, .range = nir_intrinsic_range(instr));
561
562
if (nir_dest_bit_size(instr->dest) == 16) {
563
result = nir_bitcast_vector(b, result, 16);
564
result = nir_channels(b, result, BITSET_MASK(instr->num_components));
565
}
566
567
return result;
568
}
569
570
static bool
571
ir3_lower_load_const_filter(const nir_instr *instr, const void *data)
572
{
573
return (instr->type == nir_instr_type_intrinsic &&
574
nir_instr_as_intrinsic(instr)->intrinsic ==
575
nir_intrinsic_load_constant);
576
}
577
578
/* Lowers load_constant intrinsics to UBO accesses so we can run them through
579
* the general "upload to const file or leave as UBO access" code.
580
*/
581
bool
582
ir3_nir_lower_load_constant(nir_shader *nir, struct ir3_shader_variant *v)
583
{
584
struct ir3_const_state *const_state = ir3_const_state(v);
585
586
const_state->constant_data_ubo = -1;
587
588
bool progress = nir_shader_lower_instructions(
589
nir, ir3_lower_load_const_filter, ir3_nir_lower_load_const_instr,
590
const_state);
591
592
if (progress) {
593
struct ir3_compiler *compiler = v->shader->compiler;
594
595
/* Save a copy of the NIR constant data to the variant for
596
* inclusion in the final assembly.
597
*/
598
v->constant_data_size =
599
align(nir->constant_data_size,
600
compiler->const_upload_unit * 4 * sizeof(uint32_t));
601
v->constant_data = rzalloc_size(v, v->constant_data_size);
602
memcpy(v->constant_data, nir->constant_data, nir->constant_data_size);
603
}
604
605
return progress;
606
}
607
608