Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/gallium/auxiliary/gallivm/lp_bld_format_float.c
4565 views
1
/**************************************************************************
2
*
3
* Copyright 2013 VMware, Inc.
4
* All Rights Reserved.
5
*
6
* Permission is hereby granted, free of charge, to any person obtaining a
7
* copy of this software and associated documentation files (the
8
* "Software"), to deal in the Software without restriction, including
9
* without limitation the rights to use, copy, modify, merge, publish,
10
* distribute, sub license, and/or sell copies of the Software, and to
11
* permit persons to whom the Software is furnished to do so, subject to
12
* the following conditions:
13
*
14
* The above copyright notice and this permission notice (including the
15
* next paragraph) shall be included in all copies or substantial portions
16
* of the Software.
17
*
18
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
*
26
**************************************************************************/
27
28
29
/**
30
* @file
31
* Format conversion code for "special" float formats.
32
*
33
* @author Roland Scheidegger <[email protected]>
34
*/
35
36
37
#include "util/u_debug.h"
38
39
#include "lp_bld_type.h"
40
#include "lp_bld_const.h"
41
#include "lp_bld_arit.h"
42
#include "lp_bld_bitarit.h"
43
#include "lp_bld_logic.h"
44
#include "lp_bld_format.h"
45
46
47
/**
48
* Convert float32 to a float-like value with less exponent and mantissa
49
* bits. The mantissa is still biased, and the mantissa still has an implied 1,
50
* and there may be a sign bit.
51
*
52
* @param src (vector) float value to convert
53
* @param mantissa_bits the number of mantissa bits
54
* @param exponent_bits the number of exponent bits
55
* @param mantissa_start the start position of the small float in result value
56
* @param has_sign if the small float has a sign bit
57
*
58
* This implements round-towards-zero (trunc) hence too large numbers get
59
* converted to largest representable number, not infinity.
60
* Small numbers may get converted to denorms, depending on normal
61
* float denorm handling of the cpu.
62
* Note that compared to the references, below, we skip any rounding bias
63
* since we do rounding towards zero - OpenGL allows rounding towards zero
64
* (though not preferred) and DX10 even seems to require it.
65
* Note that this will pack mantissa, exponent and sign bit (if any) together,
66
* and shift the result to mantissa_start.
67
*
68
* ref http://fgiesen.wordpress.com/2012/03/28/half-to-float-done-quic/
69
* ref https://gist.github.com/rygorous/2156668
70
*/
71
LLVMValueRef
72
lp_build_float_to_smallfloat(struct gallivm_state *gallivm,
73
struct lp_type i32_type,
74
LLVMValueRef src,
75
unsigned mantissa_bits,
76
unsigned exponent_bits,
77
unsigned mantissa_start,
78
boolean has_sign)
79
{
80
LLVMBuilderRef builder = gallivm->builder;
81
LLVMValueRef i32_floatexpmask, i32_smallexpmask, magic, normal;
82
LLVMValueRef rescale_src, i32_roundmask, small_max;
83
LLVMValueRef i32_qnanbit, shift, res;
84
LLVMValueRef is_nan_or_inf, nan_or_inf, mask, i32_src;
85
struct lp_type f32_type = lp_type_float_vec(32, 32 * i32_type.length);
86
struct lp_build_context f32_bld, i32_bld;
87
LLVMValueRef zero = lp_build_const_vec(gallivm, f32_type, 0.0f);
88
unsigned exponent_start = mantissa_start + mantissa_bits;
89
boolean always_preserve_nans = true;
90
boolean maybe_correct_denorm_rounding = true;
91
92
lp_build_context_init(&f32_bld, gallivm, f32_type);
93
lp_build_context_init(&i32_bld, gallivm, i32_type);
94
95
i32_smallexpmask = lp_build_const_int_vec(gallivm, i32_type,
96
((1 << exponent_bits) - 1) << 23);
97
i32_floatexpmask = lp_build_const_int_vec(gallivm, i32_type, 0xff << 23);
98
99
i32_src = LLVMBuildBitCast(builder, src, i32_bld.vec_type, "");
100
101
if (has_sign) {
102
rescale_src = src;
103
}
104
else {
105
/* clamp to pos range (can still have sign bit if NaN or negative zero) */
106
rescale_src = lp_build_max(&f32_bld, zero, src);
107
}
108
rescale_src = LLVMBuildBitCast(builder, rescale_src, i32_bld.vec_type, "");
109
110
/* "ordinary" number */
111
/*
112
* get rid of excess mantissa bits and sign bit
113
* This is only really needed for correct rounding of denorms I think
114
* but only if we use the preserve NaN path does using
115
* src_abs instead save us any instruction.
116
*/
117
if (maybe_correct_denorm_rounding || !always_preserve_nans) {
118
i32_roundmask = lp_build_const_int_vec(gallivm, i32_type,
119
~((1 << (23 - mantissa_bits)) - 1) &
120
0x7fffffff);
121
rescale_src = LLVMBuildBitCast(builder, rescale_src, i32_bld.vec_type, "");
122
rescale_src = lp_build_and(&i32_bld, rescale_src, i32_roundmask);
123
rescale_src = LLVMBuildBitCast(builder, rescale_src, f32_bld.vec_type, "");
124
}
125
else {
126
rescale_src = lp_build_abs(&f32_bld, src);
127
}
128
129
/* bias exponent (and denormalize if necessary) */
130
magic = lp_build_const_int_vec(gallivm, i32_type,
131
((1 << (exponent_bits - 1)) - 1) << 23);
132
magic = LLVMBuildBitCast(builder, magic, f32_bld.vec_type, "");
133
normal = lp_build_mul(&f32_bld, rescale_src, magic);
134
135
/* clamp to max value - largest non-infinity number */
136
small_max = lp_build_const_int_vec(gallivm, i32_type,
137
(((1 << exponent_bits) - 2) << 23) |
138
(((1 << mantissa_bits) - 1) << (23 - mantissa_bits)));
139
small_max = LLVMBuildBitCast(builder, small_max, f32_bld.vec_type, "");
140
normal = lp_build_min(&f32_bld, normal, small_max);
141
normal = LLVMBuildBitCast(builder, normal, i32_bld.vec_type, "");
142
143
/*
144
* handle nan/inf cases
145
* a little bit tricky since -Inf -> 0, +Inf -> +Inf, +-Nan -> +Nan
146
* (for no sign) else ->Inf -> ->Inf too.
147
* could use explicit "unordered" comparison checking for NaNs
148
* which might save us from calculating src_abs too.
149
* (Cannot actually save the comparison since we need to distinguish
150
* Inf and NaN cases anyway, but it would be better for AVX.)
151
*/
152
if (always_preserve_nans) {
153
LLVMValueRef infcheck_src, is_inf, is_nan;
154
LLVMValueRef src_abs = lp_build_abs(&f32_bld, src);
155
src_abs = LLVMBuildBitCast(builder, src_abs, i32_bld.vec_type, "");
156
157
if (has_sign) {
158
infcheck_src = src_abs;
159
}
160
else {
161
infcheck_src = i32_src;
162
}
163
is_nan = lp_build_compare(gallivm, i32_type, PIPE_FUNC_GREATER,
164
src_abs, i32_floatexpmask);
165
is_inf = lp_build_compare(gallivm, i32_type, PIPE_FUNC_EQUAL,
166
infcheck_src, i32_floatexpmask);
167
is_nan_or_inf = lp_build_or(&i32_bld, is_nan, is_inf);
168
/* could also set more mantissa bits but need at least the highest mantissa bit */
169
i32_qnanbit = lp_build_const_vec(gallivm, i32_type, 1 << 22);
170
/* combine maxexp with qnanbit */
171
nan_or_inf = lp_build_or(&i32_bld, i32_smallexpmask,
172
lp_build_and(&i32_bld, is_nan, i32_qnanbit));
173
}
174
else {
175
/*
176
* A couple simplifications, with mostly 2 drawbacks (so disabled):
177
* - it will promote some SNaNs (those which only had bits set
178
* in the mantissa part which got chopped off) to +-Infinity.
179
* (Those bits get chopped off anyway later so can as well use
180
* rescale_src instead of src_abs here saving the calculation of that.)
181
* - for no sign case, it relies on the max() being used for rescale_src
182
* to give back the NaN (which is NOT ieee754r behavior, but should work
183
* with sse2 on a full moon (rather if I got the operand order right) -
184
* we _don't_ have well-defined behavior specified with min/max wrt NaNs,
185
* however, and if it gets converted to cmp/select it may not work (we
186
* don't really have specified behavior for cmp wrt NaNs neither).
187
*/
188
rescale_src = LLVMBuildBitCast(builder, rescale_src, i32_bld.vec_type, "");
189
is_nan_or_inf = lp_build_compare(gallivm, i32_type, PIPE_FUNC_GEQUAL,
190
rescale_src, i32_floatexpmask);
191
/* note this will introduce excess exponent bits */
192
nan_or_inf = rescale_src;
193
}
194
res = lp_build_select(&i32_bld, is_nan_or_inf, nan_or_inf, normal);
195
196
if (mantissa_start > 0 || !always_preserve_nans) {
197
/* mask off excess bits */
198
unsigned maskbits = (1 << (mantissa_bits + exponent_bits)) - 1;
199
mask = lp_build_const_int_vec(gallivm, i32_type,
200
maskbits << (23 - mantissa_bits));
201
res = lp_build_and(&i32_bld, res, mask);
202
}
203
204
/* add back sign bit at right position */
205
if (has_sign) {
206
LLVMValueRef sign;
207
struct lp_type u32_type = lp_type_uint_vec(32, 32 * i32_type.length);
208
struct lp_build_context u32_bld;
209
lp_build_context_init(&u32_bld, gallivm, u32_type);
210
211
mask = lp_build_const_int_vec(gallivm, i32_type, 0x80000000);
212
shift = lp_build_const_int_vec(gallivm, i32_type, 8 - exponent_bits);
213
sign = lp_build_and(&i32_bld, mask, i32_src);
214
sign = lp_build_shr(&u32_bld, sign, shift);
215
res = lp_build_or(&i32_bld, sign, res);
216
}
217
218
/* shift to final position */
219
if (exponent_start < 23) {
220
shift = lp_build_const_int_vec(gallivm, i32_type, 23 - exponent_start);
221
res = lp_build_shr(&i32_bld, res, shift);
222
}
223
else {
224
shift = lp_build_const_int_vec(gallivm, i32_type, exponent_start - 23);
225
res = lp_build_shl(&i32_bld, res, shift);
226
}
227
return res;
228
}
229
230
231
/**
232
* Convert rgba float SoA values to packed r11g11b10 values.
233
*
234
* @param src SoA float (vector) values to convert.
235
*/
236
LLVMValueRef
237
lp_build_float_to_r11g11b10(struct gallivm_state *gallivm,
238
const LLVMValueRef *src)
239
{
240
LLVMValueRef dst, rcomp, bcomp, gcomp;
241
struct lp_build_context i32_bld;
242
LLVMTypeRef src_type = LLVMTypeOf(*src);
243
unsigned src_length = LLVMGetTypeKind(src_type) == LLVMVectorTypeKind ?
244
LLVMGetVectorSize(src_type) : 1;
245
struct lp_type i32_type = lp_type_int_vec(32, 32 * src_length);
246
247
lp_build_context_init(&i32_bld, gallivm, i32_type);
248
249
/* "rescale" and put in right position */
250
rcomp = lp_build_float_to_smallfloat(gallivm, i32_type, src[0], 6, 5, 0, false);
251
gcomp = lp_build_float_to_smallfloat(gallivm, i32_type, src[1], 6, 5, 11, false);
252
bcomp = lp_build_float_to_smallfloat(gallivm, i32_type, src[2], 5, 5, 22, false);
253
254
/* combine the values */
255
dst = lp_build_or(&i32_bld, rcomp, gcomp);
256
return lp_build_or(&i32_bld, dst, bcomp);
257
}
258
259
260
/**
261
* Convert a float-like value with less exponent and mantissa
262
* bits than a normal float32 to a float32. The mantissa of
263
* the source value is assumed to have an implied 1, and the exponent
264
* is biased. There may be a sign bit.
265
* The source value to extract must be in a 32bit int (bits not part of
266
* the value to convert will be masked off).
267
* This works for things like 11-bit floats or half-floats,
268
* mantissa, exponent (and sign if present) must be packed
269
* the same as they are in a ordinary float.
270
*
271
* @param src (vector) value to convert
272
* @param mantissa_bits the number of mantissa bits
273
* @param exponent_bits the number of exponent bits
274
* @param mantissa_start the bit start position of the packed component
275
* @param has_sign if the small float has a sign bit
276
*
277
* ref http://fgiesen.wordpress.com/2012/03/28/half-to-float-done-quic/
278
* ref https://gist.github.com/rygorous/2156668
279
*/
280
LLVMValueRef
281
lp_build_smallfloat_to_float(struct gallivm_state *gallivm,
282
struct lp_type f32_type,
283
LLVMValueRef src,
284
unsigned mantissa_bits,
285
unsigned exponent_bits,
286
unsigned mantissa_start,
287
boolean has_sign)
288
{
289
LLVMBuilderRef builder = gallivm->builder;
290
LLVMValueRef smallexpmask, i32_floatexpmask, magic;
291
LLVMValueRef wasinfnan, tmp, res, shift, maskabs, srcabs, sign;
292
unsigned exponent_start = mantissa_start + mantissa_bits;
293
struct lp_type i32_type = lp_type_int_vec(32, 32 * f32_type.length);
294
struct lp_build_context f32_bld, i32_bld;
295
296
lp_build_context_init(&f32_bld, gallivm, f32_type);
297
lp_build_context_init(&i32_bld, gallivm, i32_type);
298
299
/* extract the component to "float position" */
300
if (exponent_start < 23) {
301
shift = lp_build_const_int_vec(gallivm, i32_type, 23 - exponent_start);
302
src = lp_build_shl(&i32_bld, src, shift);
303
}
304
else {
305
shift = lp_build_const_int_vec(gallivm, i32_type, exponent_start - 23);
306
src = lp_build_shr(&i32_bld, src, shift);
307
}
308
maskabs = lp_build_const_int_vec(gallivm, i32_type,
309
((1 << (mantissa_bits + exponent_bits)) - 1)
310
<< (23 - mantissa_bits));
311
srcabs = lp_build_and(&i32_bld, src, maskabs);
312
313
/* now do the actual scaling */
314
smallexpmask = lp_build_const_int_vec(gallivm, i32_type,
315
((1 << exponent_bits) - 1) << 23);
316
i32_floatexpmask = lp_build_const_int_vec(gallivm, i32_type, 0xff << 23);
317
318
if (0) {
319
/*
320
* Note that this code path, while simpler, will convert small
321
* float denorms to floats according to current cpu denorm mode, if
322
* denorms are disabled it will flush them to zero!
323
* If cpu denorms are enabled, it should be faster though as long as
324
* there's no denorms in the inputs, but if there are actually denorms
325
* it's likely to be an order of magnitude slower (on x86 cpus).
326
*/
327
328
srcabs = LLVMBuildBitCast(builder, srcabs, f32_bld.vec_type, "");
329
330
/*
331
* magic number has exponent new exp bias + (new exp bias - old exp bias),
332
* mantissa is 0.
333
*/
334
magic = lp_build_const_int_vec(gallivm, i32_type,
335
(255 - (1 << (exponent_bits - 1))) << 23);
336
magic = LLVMBuildBitCast(builder, magic, f32_bld.vec_type, "");
337
338
/* adjust exponent and fix denorms */
339
res = lp_build_mul(&f32_bld, srcabs, magic);
340
341
/*
342
* if exp was max (== NaN or Inf) set new exp to max (keep mantissa),
343
* so a simple "or" will do (because exp adjust will leave mantissa intact)
344
*/
345
/* use float compare (better for AVX 8-wide / no AVX2 but else should use int) */
346
smallexpmask = LLVMBuildBitCast(builder, smallexpmask, f32_bld.vec_type, "");
347
wasinfnan = lp_build_compare(gallivm, f32_type, PIPE_FUNC_GEQUAL, srcabs, smallexpmask);
348
res = LLVMBuildBitCast(builder, res, i32_bld.vec_type, "");
349
tmp = lp_build_and(&i32_bld, i32_floatexpmask, wasinfnan);
350
res = lp_build_or(&i32_bld, tmp, res);
351
}
352
353
else {
354
LLVMValueRef exp_one, isdenorm, denorm, normal, exp_adj;
355
356
/* denorm (or zero) if exponent is zero */
357
exp_one = lp_build_const_int_vec(gallivm, i32_type, 1 << 23);
358
isdenorm = lp_build_cmp(&i32_bld, PIPE_FUNC_LESS, srcabs, exp_one);
359
360
/* inf or nan if exponent is max */
361
wasinfnan = lp_build_cmp(&i32_bld, PIPE_FUNC_GEQUAL, srcabs, smallexpmask);
362
363
/* for denormal (or zero), add (== or) magic exp to mantissa (== srcabs) (as int)
364
* then subtract it (as float).
365
* Another option would be to just do inttofp then do a rescale mul.
366
*/
367
magic = lp_build_const_int_vec(gallivm, i32_type,
368
(127 - ((1 << (exponent_bits - 1)) - 2)) << 23);
369
denorm = lp_build_or(&i32_bld, srcabs, magic);
370
denorm = LLVMBuildBitCast(builder, denorm, f32_bld.vec_type, "");
371
denorm = lp_build_sub(&f32_bld, denorm,
372
LLVMBuildBitCast(builder, magic, f32_bld.vec_type, ""));
373
denorm = LLVMBuildBitCast(builder, denorm, i32_bld.vec_type, "");
374
375
/* for normals, Infs, Nans fix up exponent */
376
exp_adj = lp_build_const_int_vec(gallivm, i32_type,
377
(127 - ((1 << (exponent_bits - 1)) - 1)) << 23);
378
normal = lp_build_add(&i32_bld, srcabs, exp_adj);
379
tmp = lp_build_and(&i32_bld, wasinfnan, i32_floatexpmask);
380
normal = lp_build_or(&i32_bld, tmp, normal);
381
382
res = lp_build_select(&i32_bld, isdenorm, denorm, normal);
383
}
384
385
if (has_sign) {
386
LLVMValueRef signmask = lp_build_const_int_vec(gallivm, i32_type, 0x80000000);
387
shift = lp_build_const_int_vec(gallivm, i32_type, 8 - exponent_bits);
388
sign = lp_build_shl(&i32_bld, src, shift);
389
sign = lp_build_and(&i32_bld, signmask, sign);
390
res = lp_build_or(&i32_bld, res, sign);
391
}
392
393
return LLVMBuildBitCast(builder, res, f32_bld.vec_type, "");
394
}
395
396
397
/**
398
* Convert packed float format (r11g11b10) value(s) to rgba float SoA values.
399
*
400
* @param src packed AoS r11g11b10 values (as (vector) int32)
401
* @param dst pointer to the SoA result values
402
*/
403
void
404
lp_build_r11g11b10_to_float(struct gallivm_state *gallivm,
405
LLVMValueRef src,
406
LLVMValueRef *dst)
407
{
408
LLVMTypeRef src_type = LLVMTypeOf(src);
409
unsigned src_length = LLVMGetTypeKind(src_type) == LLVMVectorTypeKind ?
410
LLVMGetVectorSize(src_type) : 1;
411
struct lp_type f32_type = lp_type_float_vec(32, 32 * src_length);
412
413
dst[0] = lp_build_smallfloat_to_float(gallivm, f32_type, src, 6, 5, 0, false);
414
dst[1] = lp_build_smallfloat_to_float(gallivm, f32_type, src, 6, 5, 11, false);
415
dst[2] = lp_build_smallfloat_to_float(gallivm, f32_type, src, 5, 5, 22, false);
416
417
/* Just set alpha to one */
418
dst[3] = lp_build_one(gallivm, f32_type);
419
}
420
421
422
static LLVMValueRef
423
lp_build_rgb9_to_float_helper(struct gallivm_state *gallivm,
424
struct lp_type f32_type,
425
LLVMValueRef src,
426
LLVMValueRef scale,
427
unsigned mantissa_start)
428
{
429
LLVMValueRef shift, mask;
430
431
struct lp_type i32_type = lp_type_int_vec(32, 32 * f32_type.length);
432
struct lp_build_context i32_bld, f32_bld;
433
434
lp_build_context_init(&i32_bld, gallivm, i32_type);
435
lp_build_context_init(&f32_bld, gallivm, f32_type);
436
437
/*
438
* This is much easier as other weirdo float formats, since
439
* there's no sign, no Inf/NaN, and there's nothing special
440
* required for normals/denormals neither (as without the implied one
441
* for the mantissa for other formats, everything looks like a denormal).
442
* So just do (float)comp_bits * scale
443
*/
444
shift = lp_build_const_int_vec(gallivm, i32_type, mantissa_start);
445
mask = lp_build_const_int_vec(gallivm, i32_type, 0x1ff);
446
src = lp_build_shr(&i32_bld, src, shift);
447
src = lp_build_and(&i32_bld, src, mask);
448
src = lp_build_int_to_float(&f32_bld, src);
449
return lp_build_mul(&f32_bld, src, scale);
450
}
451
452
453
/**
454
* Convert shared exponent format (rgb9e5) value(s) to rgba float SoA values.
455
*
456
* @param src packed AoS rgb9e5 values (as (vector) int32)
457
* @param dst pointer to the SoA result values
458
*/
459
void
460
lp_build_rgb9e5_to_float(struct gallivm_state *gallivm,
461
LLVMValueRef src,
462
LLVMValueRef *dst)
463
{
464
LLVMBuilderRef builder = gallivm->builder;
465
LLVMTypeRef src_type = LLVMTypeOf(src);
466
LLVMValueRef shift, scale, bias, exp;
467
unsigned src_length = LLVMGetTypeKind(src_type) == LLVMVectorTypeKind ?
468
LLVMGetVectorSize(src_type) : 1;
469
struct lp_type i32_type = lp_type_int_vec(32, 32 * src_length);
470
struct lp_type u32_type = lp_type_uint_vec(32, 32 * src_length);
471
struct lp_type f32_type = lp_type_float_vec(32, 32 * src_length);
472
struct lp_build_context i32_bld, u32_bld, f32_bld;
473
474
lp_build_context_init(&i32_bld, gallivm, i32_type);
475
lp_build_context_init(&u32_bld, gallivm, u32_type);
476
lp_build_context_init(&f32_bld, gallivm, f32_type);
477
478
/* extract exponent */
479
shift = lp_build_const_int_vec(gallivm, i32_type, 27);
480
/* this shift needs to be unsigned otherwise need mask */
481
exp = lp_build_shr(&u32_bld, src, shift);
482
483
/*
484
* scale factor is 2 ^ (exp - bias)
485
* (and additionally corrected here for the mantissa bits)
486
* not using shift because
487
* a) don't have vector shift in a lot of cases
488
* b) shift direction changes hence need 2 shifts + conditional
489
* (or rotate instruction which is even more rare (for instance XOP))
490
* so use whacky float 2 ^ function instead manipulating exponent
491
* (saves us the float conversion at the end too)
492
*/
493
bias = lp_build_const_int_vec(gallivm, i32_type, 127 - (15 + 9));
494
scale = lp_build_add(&i32_bld, exp, bias);
495
shift = lp_build_const_int_vec(gallivm, i32_type, 23);
496
scale = lp_build_shl(&i32_bld, scale, shift);
497
scale = LLVMBuildBitCast(builder, scale, f32_bld.vec_type, "");
498
499
dst[0] = lp_build_rgb9_to_float_helper(gallivm, f32_type, src, scale, 0);
500
dst[1] = lp_build_rgb9_to_float_helper(gallivm, f32_type, src, scale, 9);
501
dst[2] = lp_build_rgb9_to_float_helper(gallivm, f32_type, src, scale, 18);
502
503
/* Just set alpha to one */
504
dst[3] = f32_bld.one;
505
}
506
507