Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/gallium/drivers/crocus/crocus_batch.c
4570 views
1
/*
2
* Copyright © 2017 Intel Corporation
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice shall be included
12
* in all copies or substantial portions of the Software.
13
*
14
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20
* DEALINGS IN THE SOFTWARE.
21
*/
22
23
/**
24
* @file crocus_batch.c
25
*
26
* Batchbuffer and command submission module.
27
*
28
* Every API draw call results in a number of GPU commands, which we
29
* collect into a "batch buffer". Typically, many draw calls are grouped
30
* into a single batch to amortize command submission overhead.
31
*
32
* We submit batches to the kernel using the I915_GEM_EXECBUFFER2 ioctl.
33
* One critical piece of data is the "validation list", which contains a
34
* list of the buffer objects (BOs) which the commands in the GPU need.
35
* The kernel will make sure these are resident and pinned at the correct
36
* virtual memory address before executing our batch. If a BO is not in
37
* the validation list, it effectively does not exist, so take care.
38
*/
39
40
#include "crocus_batch.h"
41
#include "crocus_bufmgr.h"
42
#include "crocus_context.h"
43
#include "crocus_fence.h"
44
45
#include "drm-uapi/i915_drm.h"
46
47
#include "intel/common/intel_gem.h"
48
#include "main/macros.h"
49
#include "util/hash_table.h"
50
#include "util/set.h"
51
#include "util/u_upload_mgr.h"
52
53
#include <errno.h>
54
#include <xf86drm.h>
55
56
#if HAVE_VALGRIND
57
#include <memcheck.h>
58
#include <valgrind.h>
59
#define VG(x) x
60
#else
61
#define VG(x)
62
#endif
63
64
#define FILE_DEBUG_FLAG DEBUG_BUFMGR
65
66
/* Terminating the batch takes either 4 bytes for MI_BATCH_BUFFER_END
67
* or 12 bytes for MI_BATCH_BUFFER_START (when chaining). Plus, we may
68
* need an extra 4 bytes to pad out to the nearest QWord. So reserve 16.
69
*/
70
#define BATCH_RESERVED(devinfo) ((devinfo)->is_haswell ? 32 : 16)
71
72
static void crocus_batch_reset(struct crocus_batch *batch);
73
74
static unsigned
75
num_fences(struct crocus_batch *batch)
76
{
77
return util_dynarray_num_elements(&batch->exec_fences,
78
struct drm_i915_gem_exec_fence);
79
}
80
81
/**
82
* Debugging code to dump the fence list, used by INTEL_DEBUG=submit.
83
*/
84
static void
85
dump_fence_list(struct crocus_batch *batch)
86
{
87
fprintf(stderr, "Fence list (length %u): ", num_fences(batch));
88
89
util_dynarray_foreach(&batch->exec_fences,
90
struct drm_i915_gem_exec_fence, f) {
91
fprintf(stderr, "%s%u%s ",
92
(f->flags & I915_EXEC_FENCE_WAIT) ? "..." : "",
93
f->handle,
94
(f->flags & I915_EXEC_FENCE_SIGNAL) ? "!" : "");
95
}
96
97
fprintf(stderr, "\n");
98
}
99
100
/**
101
* Debugging code to dump the validation list, used by INTEL_DEBUG=submit.
102
*/
103
static void
104
dump_validation_list(struct crocus_batch *batch)
105
{
106
fprintf(stderr, "Validation list (length %d):\n", batch->exec_count);
107
108
for (int i = 0; i < batch->exec_count; i++) {
109
uint64_t flags = batch->validation_list[i].flags;
110
assert(batch->validation_list[i].handle ==
111
batch->exec_bos[i]->gem_handle);
112
fprintf(stderr,
113
"[%2d]: %2d %-14s @ 0x%"PRIx64" (%" PRIu64 "B)\t %2d refs %s\n", i,
114
batch->validation_list[i].handle, batch->exec_bos[i]->name,
115
(uint64_t)batch->validation_list[i].offset, batch->exec_bos[i]->size,
116
batch->exec_bos[i]->refcount,
117
(flags & EXEC_OBJECT_WRITE) ? " (write)" : "");
118
}
119
}
120
121
/**
122
* Return BO information to the batch decoder (for debugging).
123
*/
124
static struct intel_batch_decode_bo
125
decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
126
{
127
struct crocus_batch *batch = v_batch;
128
129
for (int i = 0; i < batch->exec_count; i++) {
130
struct crocus_bo *bo = batch->exec_bos[i];
131
/* The decoder zeroes out the top 16 bits, so we need to as well */
132
uint64_t bo_address = bo->gtt_offset & (~0ull >> 16);
133
134
if (address >= bo_address && address < bo_address + bo->size) {
135
return (struct intel_batch_decode_bo){
136
.addr = address,
137
.size = bo->size,
138
.map = crocus_bo_map(batch->dbg, bo, MAP_READ) +
139
(address - bo_address),
140
};
141
}
142
}
143
144
return (struct intel_batch_decode_bo) { };
145
}
146
147
static unsigned
148
decode_get_state_size(void *v_batch, uint64_t address,
149
uint64_t base_address)
150
{
151
struct crocus_batch *batch = v_batch;
152
153
/* The decoder gives us offsets from a base address, which is not great.
154
* Binding tables are relative to surface state base address, and other
155
* state is relative to dynamic state base address. These could alias,
156
* but in practice it's unlikely because surface offsets are always in
157
* the [0, 64K) range, and we assign dynamic state addresses starting at
158
* the top of the 4GB range. We should fix this but it's likely good
159
* enough for now.
160
*/
161
unsigned size = (uintptr_t)
162
_mesa_hash_table_u64_search(batch->state_sizes, address - base_address);
163
164
return size;
165
}
166
167
/**
168
* Decode the current batch.
169
*/
170
static void
171
decode_batch(struct crocus_batch *batch)
172
{
173
void *map = crocus_bo_map(batch->dbg, batch->exec_bos[0], MAP_READ);
174
intel_print_batch(&batch->decoder, map, batch->primary_batch_size,
175
batch->exec_bos[0]->gtt_offset, false);
176
}
177
178
static void
179
init_reloc_list(struct crocus_reloc_list *rlist, int count)
180
{
181
rlist->reloc_count = 0;
182
rlist->reloc_array_size = count;
183
rlist->relocs = malloc(rlist->reloc_array_size *
184
sizeof(struct drm_i915_gem_relocation_entry));
185
}
186
187
void
188
crocus_init_batch(struct crocus_context *ice,
189
enum crocus_batch_name name,
190
int priority)
191
{
192
struct crocus_batch *batch = &ice->batches[name];
193
struct crocus_screen *screen = (struct crocus_screen *)ice->ctx.screen;
194
struct intel_device_info *devinfo = &screen->devinfo;
195
196
batch->ice = ice;
197
batch->screen = screen;
198
batch->dbg = &ice->dbg;
199
batch->reset = &ice->reset;
200
batch->name = name;
201
batch->contains_fence_signal = false;
202
203
if (devinfo->ver >= 7) {
204
batch->fine_fences.uploader =
205
u_upload_create(&ice->ctx, 4096, PIPE_BIND_CUSTOM,
206
PIPE_USAGE_STAGING, 0);
207
}
208
crocus_fine_fence_init(batch);
209
210
batch->hw_ctx_id = crocus_create_hw_context(screen->bufmgr);
211
assert(batch->hw_ctx_id);
212
213
crocus_hw_context_set_priority(screen->bufmgr, batch->hw_ctx_id, priority);
214
215
batch->valid_reloc_flags = EXEC_OBJECT_WRITE;
216
if (devinfo->ver == 6)
217
batch->valid_reloc_flags |= EXEC_OBJECT_NEEDS_GTT;
218
219
if (INTEL_DEBUG & DEBUG_BATCH) {
220
/* The shadow doesn't get relocs written so state decode fails. */
221
batch->use_shadow_copy = false;
222
} else
223
batch->use_shadow_copy = !devinfo->has_llc;
224
225
util_dynarray_init(&batch->exec_fences, ralloc_context(NULL));
226
util_dynarray_init(&batch->syncobjs, ralloc_context(NULL));
227
228
init_reloc_list(&batch->command.relocs, 250);
229
init_reloc_list(&batch->state.relocs, 250);
230
231
batch->exec_count = 0;
232
batch->exec_array_size = 100;
233
batch->exec_bos =
234
malloc(batch->exec_array_size * sizeof(batch->exec_bos[0]));
235
batch->validation_list =
236
malloc(batch->exec_array_size * sizeof(batch->validation_list[0]));
237
238
batch->cache.render = _mesa_hash_table_create(NULL, NULL,
239
_mesa_key_pointer_equal);
240
batch->cache.depth = _mesa_set_create(NULL, NULL,
241
_mesa_key_pointer_equal);
242
243
memset(batch->other_batches, 0, sizeof(batch->other_batches));
244
245
for (int i = 0, j = 0; i < ice->batch_count; i++) {
246
if (i != name)
247
batch->other_batches[j++] = &ice->batches[i];
248
}
249
250
if (INTEL_DEBUG & DEBUG_BATCH) {
251
252
batch->state_sizes = _mesa_hash_table_u64_create(NULL);
253
const unsigned decode_flags =
254
INTEL_BATCH_DECODE_FULL |
255
((INTEL_DEBUG & DEBUG_COLOR) ? INTEL_BATCH_DECODE_IN_COLOR : 0) |
256
INTEL_BATCH_DECODE_OFFSETS | INTEL_BATCH_DECODE_FLOATS;
257
258
intel_batch_decode_ctx_init(&batch->decoder, &screen->devinfo, stderr,
259
decode_flags, NULL, decode_get_bo,
260
decode_get_state_size, batch);
261
batch->decoder.max_vbo_decoded_lines = 32;
262
}
263
264
crocus_batch_reset(batch);
265
}
266
267
static struct drm_i915_gem_exec_object2 *
268
find_validation_entry(struct crocus_batch *batch, struct crocus_bo *bo)
269
{
270
unsigned index = READ_ONCE(bo->index);
271
272
if (index < batch->exec_count && batch->exec_bos[index] == bo)
273
return &batch->validation_list[index];
274
275
/* May have been shared between multiple active batches */
276
for (index = 0; index < batch->exec_count; index++) {
277
if (batch->exec_bos[index] == bo)
278
return &batch->validation_list[index];
279
}
280
281
return NULL;
282
}
283
284
static void
285
ensure_exec_obj_space(struct crocus_batch *batch, uint32_t count)
286
{
287
while (batch->exec_count + count > batch->exec_array_size) {
288
batch->exec_array_size *= 2;
289
batch->exec_bos = realloc(
290
batch->exec_bos, batch->exec_array_size * sizeof(batch->exec_bos[0]));
291
batch->validation_list =
292
realloc(batch->validation_list,
293
batch->exec_array_size * sizeof(batch->validation_list[0]));
294
}
295
}
296
297
static struct drm_i915_gem_exec_object2 *
298
crocus_use_bo(struct crocus_batch *batch, struct crocus_bo *bo, bool writable)
299
{
300
assert(bo->bufmgr == batch->command.bo->bufmgr);
301
302
struct drm_i915_gem_exec_object2 *existing_entry =
303
find_validation_entry(batch, bo);
304
305
if (existing_entry) {
306
/* The BO is already in the validation list; mark it writable */
307
if (writable)
308
existing_entry->flags |= EXEC_OBJECT_WRITE;
309
return existing_entry;
310
}
311
312
if (bo != batch->command.bo && bo != batch->state.bo) {
313
/* This is the first time our batch has seen this BO. Before we use it,
314
* we may need to flush and synchronize with other batches.
315
*/
316
for (int b = 0; b < ARRAY_SIZE(batch->other_batches); b++) {
317
318
if (!batch->other_batches[b])
319
continue;
320
struct drm_i915_gem_exec_object2 *other_entry =
321
find_validation_entry(batch->other_batches[b], bo);
322
323
/* If the buffer is referenced by another batch, and either batch
324
* intends to write it, then flush the other batch and synchronize.
325
*
326
* Consider these cases:
327
*
328
* 1. They read, we read => No synchronization required.
329
* 2. They read, we write => Synchronize (they need the old value)
330
* 3. They write, we read => Synchronize (we need their new value)
331
* 4. They write, we write => Synchronize (order writes)
332
*
333
* The read/read case is very common, as multiple batches usually
334
* share a streaming state buffer or shader assembly buffer, and
335
* we want to avoid synchronizing in this case.
336
*/
337
if (other_entry &&
338
((other_entry->flags & EXEC_OBJECT_WRITE) || writable)) {
339
crocus_batch_flush(batch->other_batches[b]);
340
crocus_batch_add_syncobj(batch,
341
batch->other_batches[b]->last_fence->syncobj,
342
I915_EXEC_FENCE_WAIT);
343
}
344
}
345
}
346
347
/* Bump the ref count since the batch is now using this bo. */
348
crocus_bo_reference(bo);
349
350
ensure_exec_obj_space(batch, 1);
351
352
batch->validation_list[batch->exec_count] =
353
(struct drm_i915_gem_exec_object2) {
354
.handle = bo->gem_handle,
355
.offset = bo->gtt_offset,
356
.flags = bo->kflags | (writable ? EXEC_OBJECT_WRITE : 0),
357
};
358
359
bo->index = batch->exec_count;
360
batch->exec_bos[batch->exec_count] = bo;
361
batch->aperture_space += bo->size;
362
363
batch->exec_count++;
364
365
return &batch->validation_list[batch->exec_count - 1];
366
}
367
368
static uint64_t
369
emit_reloc(struct crocus_batch *batch,
370
struct crocus_reloc_list *rlist, uint32_t offset,
371
struct crocus_bo *target, int32_t target_offset,
372
unsigned int reloc_flags)
373
{
374
assert(target != NULL);
375
376
if (target == batch->ice->workaround_bo)
377
reloc_flags &= ~RELOC_WRITE;
378
379
bool writable = reloc_flags & RELOC_WRITE;
380
381
struct drm_i915_gem_exec_object2 *entry =
382
crocus_use_bo(batch, target, writable);
383
384
if (rlist->reloc_count == rlist->reloc_array_size) {
385
rlist->reloc_array_size *= 2;
386
rlist->relocs = realloc(rlist->relocs,
387
rlist->reloc_array_size *
388
sizeof(struct drm_i915_gem_relocation_entry));
389
}
390
391
if (reloc_flags & RELOC_32BIT) {
392
/* Restrict this buffer to the low 32 bits of the address space.
393
*
394
* Altering the validation list flags restricts it for this batch,
395
* but we also alter the BO's kflags to restrict it permanently
396
* (until the BO is destroyed and put back in the cache). Buffers
397
* may stay bound across batches, and we want keep it constrained.
398
*/
399
target->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
400
entry->flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
401
402
/* RELOC_32BIT is not an EXEC_OBJECT_* flag, so get rid of it. */
403
reloc_flags &= ~RELOC_32BIT;
404
}
405
406
if (reloc_flags)
407
entry->flags |= reloc_flags & batch->valid_reloc_flags;
408
409
rlist->relocs[rlist->reloc_count++] =
410
(struct drm_i915_gem_relocation_entry) {
411
.offset = offset,
412
.delta = target_offset,
413
.target_handle = target->index,
414
.presumed_offset = entry->offset,
415
};
416
417
/* Using the old buffer offset, write in what the right data would be, in
418
* case the buffer doesn't move and we can short-circuit the relocation
419
* processing in the kernel
420
*/
421
return entry->offset + target_offset;
422
}
423
424
uint64_t
425
crocus_command_reloc(struct crocus_batch *batch, uint32_t batch_offset,
426
struct crocus_bo *target, uint32_t target_offset,
427
unsigned int reloc_flags)
428
{
429
assert(batch_offset <= batch->command.bo->size - sizeof(uint32_t));
430
431
return emit_reloc(batch, &batch->command.relocs, batch_offset,
432
target, target_offset, reloc_flags);
433
}
434
435
uint64_t
436
crocus_state_reloc(struct crocus_batch *batch, uint32_t state_offset,
437
struct crocus_bo *target, uint32_t target_offset,
438
unsigned int reloc_flags)
439
{
440
assert(state_offset <= batch->state.bo->size - sizeof(uint32_t));
441
442
return emit_reloc(batch, &batch->state.relocs, state_offset,
443
target, target_offset, reloc_flags);
444
}
445
446
static void
447
recreate_growing_buffer(struct crocus_batch *batch,
448
struct crocus_growing_bo *grow,
449
const char *name, unsigned size)
450
{
451
struct crocus_screen *screen = batch->screen;
452
struct crocus_bufmgr *bufmgr = screen->bufmgr;
453
grow->bo = crocus_bo_alloc(bufmgr, name, size);
454
grow->bo->kflags |= EXEC_OBJECT_CAPTURE;
455
grow->partial_bo = NULL;
456
grow->partial_bo_map = NULL;
457
grow->partial_bytes = 0;
458
if (batch->use_shadow_copy)
459
grow->map = realloc(grow->map, grow->bo->size);
460
else
461
grow->map = crocus_bo_map(NULL, grow->bo, MAP_READ | MAP_WRITE);
462
grow->map_next = grow->map;
463
}
464
465
static void
466
create_batch(struct crocus_batch *batch)
467
{
468
struct crocus_screen *screen = batch->screen;
469
470
recreate_growing_buffer(batch, &batch->command,
471
"command buffer",
472
BATCH_SZ + BATCH_RESERVED(&screen->devinfo));
473
474
crocus_use_bo(batch, batch->command.bo, false);
475
476
/* Always add workaround_bo which contains a driver identifier to be
477
* recorded in error states.
478
*/
479
crocus_use_bo(batch, batch->ice->workaround_bo, false);
480
481
recreate_growing_buffer(batch, &batch->state,
482
"state buffer",
483
STATE_SZ);
484
485
batch->state.used = 1;
486
crocus_use_bo(batch, batch->state.bo, false);
487
}
488
489
static void
490
crocus_batch_maybe_noop(struct crocus_batch *batch)
491
{
492
/* We only insert the NOOP at the beginning of the batch. */
493
assert(crocus_batch_bytes_used(batch) == 0);
494
495
if (batch->noop_enabled) {
496
/* Emit MI_BATCH_BUFFER_END to prevent any further command to be
497
* executed.
498
*/
499
uint32_t *map = batch->command.map_next;
500
501
map[0] = (0xA << 23);
502
503
batch->command.map_next += 4;
504
}
505
}
506
507
static void
508
crocus_batch_reset(struct crocus_batch *batch)
509
{
510
struct crocus_screen *screen = batch->screen;
511
512
crocus_bo_unreference(batch->command.bo);
513
crocus_bo_unreference(batch->state.bo);
514
batch->primary_batch_size = 0;
515
batch->contains_draw = false;
516
batch->contains_fence_signal = false;
517
batch->state_base_address_emitted = false;
518
batch->screen->vtbl.batch_reset_dirty(batch);
519
520
create_batch(batch);
521
assert(batch->command.bo->index == 0);
522
523
if (batch->state_sizes)
524
_mesa_hash_table_u64_clear(batch->state_sizes);
525
struct crocus_syncobj *syncobj = crocus_create_syncobj(screen);
526
crocus_batch_add_syncobj(batch, syncobj, I915_EXEC_FENCE_SIGNAL);
527
crocus_syncobj_reference(screen, &syncobj, NULL);
528
529
crocus_cache_sets_clear(batch);
530
}
531
532
void
533
crocus_batch_free(struct crocus_batch *batch)
534
{
535
struct crocus_screen *screen = batch->screen;
536
struct crocus_bufmgr *bufmgr = screen->bufmgr;
537
538
if (batch->use_shadow_copy) {
539
free(batch->command.map);
540
free(batch->state.map);
541
}
542
543
for (int i = 0; i < batch->exec_count; i++) {
544
crocus_bo_unreference(batch->exec_bos[i]);
545
}
546
547
pipe_resource_reference(&batch->fine_fences.ref.res, NULL);
548
549
free(batch->command.relocs.relocs);
550
free(batch->state.relocs.relocs);
551
free(batch->exec_bos);
552
free(batch->validation_list);
553
554
ralloc_free(batch->exec_fences.mem_ctx);
555
556
util_dynarray_foreach(&batch->syncobjs, struct crocus_syncobj *, s)
557
crocus_syncobj_reference(screen, s, NULL);
558
ralloc_free(batch->syncobjs.mem_ctx);
559
560
crocus_fine_fence_reference(batch->screen, &batch->last_fence, NULL);
561
if (batch_has_fine_fence(batch))
562
u_upload_destroy(batch->fine_fences.uploader);
563
564
crocus_bo_unreference(batch->command.bo);
565
crocus_bo_unreference(batch->state.bo);
566
batch->command.bo = NULL;
567
batch->command.map = NULL;
568
batch->command.map_next = NULL;
569
570
crocus_destroy_hw_context(bufmgr, batch->hw_ctx_id);
571
572
_mesa_hash_table_destroy(batch->cache.render, NULL);
573
_mesa_set_destroy(batch->cache.depth, NULL);
574
575
if (batch->state_sizes) {
576
_mesa_hash_table_u64_destroy(batch->state_sizes);
577
intel_batch_decode_ctx_finish(&batch->decoder);
578
}
579
}
580
581
/**
582
* If we've chained to a secondary batch, or are getting near to the end,
583
* then flush. This should only be called between draws.
584
*/
585
void
586
crocus_batch_maybe_flush(struct crocus_batch *batch, unsigned estimate)
587
{
588
if (batch->command.bo != batch->exec_bos[0] ||
589
crocus_batch_bytes_used(batch) + estimate >= BATCH_SZ) {
590
crocus_batch_flush(batch);
591
}
592
}
593
594
/**
595
* Finish copying the old batch/state buffer's contents to the new one
596
* after we tried to "grow" the buffer in an earlier operation.
597
*/
598
static void
599
finish_growing_bos(struct crocus_growing_bo *grow)
600
{
601
struct crocus_bo *old_bo = grow->partial_bo;
602
if (!old_bo)
603
return;
604
605
memcpy(grow->map, grow->partial_bo_map, grow->partial_bytes);
606
607
grow->partial_bo = NULL;
608
grow->partial_bo_map = NULL;
609
grow->partial_bytes = 0;
610
611
crocus_bo_unreference(old_bo);
612
}
613
614
void
615
crocus_grow_buffer(struct crocus_batch *batch, bool grow_state,
616
unsigned used,
617
unsigned new_size)
618
{
619
struct crocus_screen *screen = batch->screen;
620
struct crocus_bufmgr *bufmgr = screen->bufmgr;
621
struct crocus_growing_bo *grow = grow_state ? &batch->state : &batch->command;
622
struct crocus_bo *bo = grow->bo;
623
624
if (grow->partial_bo) {
625
/* We've already grown once, and now we need to do it again.
626
* Finish our last grow operation so we can start a new one.
627
* This should basically never happen.
628
*/
629
finish_growing_bos(grow);
630
}
631
632
struct crocus_bo *new_bo = crocus_bo_alloc(bufmgr, bo->name, new_size);
633
634
/* Copy existing data to the new larger buffer */
635
grow->partial_bo_map = grow->map;
636
637
if (batch->use_shadow_copy) {
638
/* We can't safely use realloc, as it may move the existing buffer,
639
* breaking existing pointers the caller may still be using. Just
640
* malloc a new copy and memcpy it like the normal BO path.
641
*
642
* Use bo->size rather than new_size because the bufmgr may have
643
* rounded up the size, and we want the shadow size to match.
644
*/
645
grow->map = malloc(new_bo->size);
646
} else {
647
grow->map = crocus_bo_map(NULL, new_bo, MAP_READ | MAP_WRITE);
648
}
649
/* Try to put the new BO at the same GTT offset as the old BO (which
650
* we're throwing away, so it doesn't need to be there).
651
*
652
* This guarantees that our relocations continue to work: values we've
653
* already written into the buffer, values we're going to write into the
654
* buffer, and the validation/relocation lists all will match.
655
*
656
* Also preserve kflags for EXEC_OBJECT_CAPTURE.
657
*/
658
new_bo->gtt_offset = bo->gtt_offset;
659
new_bo->index = bo->index;
660
new_bo->kflags = bo->kflags;
661
662
/* Batch/state buffers are per-context, and if we've run out of space,
663
* we must have actually used them before, so...they will be in the list.
664
*/
665
assert(bo->index < batch->exec_count);
666
assert(batch->exec_bos[bo->index] == bo);
667
668
/* Update the validation list to use the new BO. */
669
batch->validation_list[bo->index].handle = new_bo->gem_handle;
670
/* Exchange the two BOs...without breaking pointers to the old BO.
671
*
672
* Consider this scenario:
673
*
674
* 1. Somebody calls brw_state_batch() to get a region of memory, and
675
* and then creates a brw_address pointing to brw->batch.state.bo.
676
* 2. They then call brw_state_batch() a second time, which happens to
677
* grow and replace the state buffer. They then try to emit a
678
* relocation to their first section of memory.
679
*
680
* If we replace the brw->batch.state.bo pointer at step 2, we would
681
* break the address created in step 1. They'd have a pointer to the
682
* old destroyed BO. Emitting a relocation would add this dead BO to
683
* the validation list...causing /both/ statebuffers to be in the list,
684
* and all kinds of disasters.
685
*
686
* This is not a contrived case - BLORP vertex data upload hits this.
687
*
688
* There are worse scenarios too. Fences for GL sync objects reference
689
* brw->batch.batch.bo. If we replaced the batch pointer when growing,
690
* we'd need to chase down every fence and update it to point to the
691
* new BO. Otherwise, it would refer to a "batch" that never actually
692
* gets submitted, and would fail to trigger.
693
*
694
* To work around both of these issues, we transmutate the buffers in
695
* place, making the existing struct brw_bo represent the new buffer,
696
* and "new_bo" represent the old BO. This is highly unusual, but it
697
* seems like a necessary evil.
698
*
699
* We also defer the memcpy of the existing batch's contents. Callers
700
* may make multiple brw_state_batch calls, and retain pointers to the
701
* old BO's map. We'll perform the memcpy in finish_growing_bo() when
702
* we finally submit the batch, at which point we've finished uploading
703
* state, and nobody should have any old references anymore.
704
*
705
* To do that, we keep a reference to the old BO in grow->partial_bo,
706
* and store the number of bytes to copy in grow->partial_bytes. We
707
* can monkey with the refcounts directly without atomics because these
708
* are per-context BOs and they can only be touched by this thread.
709
*/
710
assert(new_bo->refcount == 1);
711
new_bo->refcount = bo->refcount;
712
bo->refcount = 1;
713
714
struct crocus_bo tmp;
715
memcpy(&tmp, bo, sizeof(struct crocus_bo));
716
memcpy(bo, new_bo, sizeof(struct crocus_bo));
717
memcpy(new_bo, &tmp, sizeof(struct crocus_bo));
718
719
grow->partial_bo = new_bo; /* the one reference of the OLD bo */
720
grow->partial_bytes = used;
721
}
722
723
static void
724
finish_seqno(struct crocus_batch *batch)
725
{
726
struct crocus_fine_fence *sq = crocus_fine_fence_new(batch, CROCUS_FENCE_END);
727
if (!sq)
728
return;
729
730
crocus_fine_fence_reference(batch->screen, &batch->last_fence, sq);
731
crocus_fine_fence_reference(batch->screen, &sq, NULL);
732
}
733
734
/**
735
* Terminate a batch with MI_BATCH_BUFFER_END.
736
*/
737
static void
738
crocus_finish_batch(struct crocus_batch *batch)
739
{
740
741
batch->no_wrap = true;
742
if (batch->screen->vtbl.finish_batch)
743
batch->screen->vtbl.finish_batch(batch);
744
745
finish_seqno(batch);
746
747
/* Emit MI_BATCH_BUFFER_END to finish our batch. */
748
uint32_t *map = batch->command.map_next;
749
750
map[0] = (0xA << 23);
751
752
batch->command.map_next += 4;
753
VG(VALGRIND_CHECK_MEM_IS_DEFINED(batch->command.map, crocus_batch_bytes_used(batch)));
754
755
if (batch->command.bo == batch->exec_bos[0])
756
batch->primary_batch_size = crocus_batch_bytes_used(batch);
757
batch->no_wrap = false;
758
}
759
760
/**
761
* Replace our current GEM context with a new one (in case it got banned).
762
*/
763
static bool
764
replace_hw_ctx(struct crocus_batch *batch)
765
{
766
struct crocus_screen *screen = batch->screen;
767
struct crocus_bufmgr *bufmgr = screen->bufmgr;
768
769
uint32_t new_ctx = crocus_clone_hw_context(bufmgr, batch->hw_ctx_id);
770
if (!new_ctx)
771
return false;
772
773
crocus_destroy_hw_context(bufmgr, batch->hw_ctx_id);
774
batch->hw_ctx_id = new_ctx;
775
776
/* Notify the context that state must be re-initialized. */
777
crocus_lost_context_state(batch);
778
779
return true;
780
}
781
782
enum pipe_reset_status
783
crocus_batch_check_for_reset(struct crocus_batch *batch)
784
{
785
struct crocus_screen *screen = batch->screen;
786
enum pipe_reset_status status = PIPE_NO_RESET;
787
struct drm_i915_reset_stats stats = { .ctx_id = batch->hw_ctx_id };
788
789
if (drmIoctl(screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats))
790
DBG("DRM_IOCTL_I915_GET_RESET_STATS failed: %s\n", strerror(errno));
791
792
if (stats.batch_active != 0) {
793
/* A reset was observed while a batch from this hardware context was
794
* executing. Assume that this context was at fault.
795
*/
796
status = PIPE_GUILTY_CONTEXT_RESET;
797
} else if (stats.batch_pending != 0) {
798
/* A reset was observed while a batch from this context was in progress,
799
* but the batch was not executing. In this case, assume that the
800
* context was not at fault.
801
*/
802
status = PIPE_INNOCENT_CONTEXT_RESET;
803
}
804
805
if (status != PIPE_NO_RESET) {
806
/* Our context is likely banned, or at least in an unknown state.
807
* Throw it away and start with a fresh context. Ideally this may
808
* catch the problem before our next execbuf fails with -EIO.
809
*/
810
replace_hw_ctx(batch);
811
}
812
813
return status;
814
}
815
816
/**
817
* Submit the batch to the GPU via execbuffer2.
818
*/
819
static int
820
submit_batch(struct crocus_batch *batch)
821
{
822
823
if (batch->use_shadow_copy) {
824
void *bo_map = crocus_bo_map(batch->dbg, batch->command.bo, MAP_WRITE);
825
memcpy(bo_map, batch->command.map, crocus_batch_bytes_used(batch));
826
827
bo_map = crocus_bo_map(batch->dbg, batch->state.bo, MAP_WRITE);
828
memcpy(bo_map, batch->state.map, batch->state.used);
829
}
830
831
crocus_bo_unmap(batch->command.bo);
832
crocus_bo_unmap(batch->state.bo);
833
834
/* The requirement for using I915_EXEC_NO_RELOC are:
835
*
836
* The addresses written in the objects must match the corresponding
837
* reloc.gtt_offset which in turn must match the corresponding
838
* execobject.offset.
839
*
840
* Any render targets written to in the batch must be flagged with
841
* EXEC_OBJECT_WRITE.
842
*
843
* To avoid stalling, execobject.offset should match the current
844
* address of that object within the active context.
845
*/
846
/* Set statebuffer relocations */
847
const unsigned state_index = batch->state.bo->index;
848
if (state_index < batch->exec_count &&
849
batch->exec_bos[state_index] == batch->state.bo) {
850
struct drm_i915_gem_exec_object2 *entry =
851
&batch->validation_list[state_index];
852
assert(entry->handle == batch->state.bo->gem_handle);
853
entry->relocation_count = batch->state.relocs.reloc_count;
854
entry->relocs_ptr = (uintptr_t)batch->state.relocs.relocs;
855
}
856
857
/* Set batchbuffer relocations */
858
struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[0];
859
assert(entry->handle == batch->command.bo->gem_handle);
860
entry->relocation_count = batch->command.relocs.reloc_count;
861
entry->relocs_ptr = (uintptr_t)batch->command.relocs.relocs;
862
863
struct drm_i915_gem_execbuffer2 execbuf = {
864
.buffers_ptr = (uintptr_t)batch->validation_list,
865
.buffer_count = batch->exec_count,
866
.batch_start_offset = 0,
867
/* This must be QWord aligned. */
868
.batch_len = ALIGN(batch->primary_batch_size, 8),
869
.flags = I915_EXEC_RENDER |
870
I915_EXEC_NO_RELOC |
871
I915_EXEC_BATCH_FIRST |
872
I915_EXEC_HANDLE_LUT,
873
.rsvd1 = batch->hw_ctx_id, /* rsvd1 is actually the context ID */
874
};
875
876
if (num_fences(batch)) {
877
execbuf.flags |= I915_EXEC_FENCE_ARRAY;
878
execbuf.num_cliprects = num_fences(batch);
879
execbuf.cliprects_ptr =
880
(uintptr_t)util_dynarray_begin(&batch->exec_fences);
881
}
882
883
int ret = 0;
884
if (!batch->screen->no_hw &&
885
intel_ioctl(batch->screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf))
886
ret = -errno;
887
888
for (int i = 0; i < batch->exec_count; i++) {
889
struct crocus_bo *bo = batch->exec_bos[i];
890
891
bo->idle = false;
892
bo->index = -1;
893
894
/* Update brw_bo::gtt_offset */
895
if (batch->validation_list[i].offset != bo->gtt_offset) {
896
DBG("BO %d migrated: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
897
bo->gem_handle, bo->gtt_offset,
898
(uint64_t)batch->validation_list[i].offset);
899
assert(!(bo->kflags & EXEC_OBJECT_PINNED));
900
bo->gtt_offset = batch->validation_list[i].offset;
901
}
902
}
903
904
return ret;
905
}
906
907
static const char *
908
batch_name_to_string(enum crocus_batch_name name)
909
{
910
const char *names[CROCUS_BATCH_COUNT] = {
911
[CROCUS_BATCH_RENDER] = "render",
912
[CROCUS_BATCH_COMPUTE] = "compute",
913
};
914
return names[name];
915
}
916
917
/**
918
* Flush the batch buffer, submitting it to the GPU and resetting it so
919
* we're ready to emit the next batch.
920
*
921
* \param in_fence_fd is ignored if -1. Otherwise, this function takes
922
* ownership of the fd.
923
*
924
* \param out_fence_fd is ignored if NULL. Otherwise, the caller must
925
* take ownership of the returned fd.
926
*/
927
void
928
_crocus_batch_flush(struct crocus_batch *batch, const char *file, int line)
929
{
930
struct crocus_screen *screen = batch->screen;
931
932
/* If a fence signals we need to flush it. */
933
if (crocus_batch_bytes_used(batch) == 0 && !batch->contains_fence_signal)
934
return;
935
936
assert(!batch->no_wrap);
937
crocus_finish_batch(batch);
938
939
finish_growing_bos(&batch->command);
940
finish_growing_bos(&batch->state);
941
int ret = submit_batch(batch);
942
943
if (unlikely(INTEL_DEBUG &
944
(DEBUG_BATCH | DEBUG_SUBMIT | DEBUG_PIPE_CONTROL))) {
945
int bytes_for_commands = crocus_batch_bytes_used(batch);
946
int second_bytes = 0;
947
if (batch->command.bo != batch->exec_bos[0]) {
948
second_bytes = bytes_for_commands;
949
bytes_for_commands += batch->primary_batch_size;
950
}
951
fprintf(stderr, "%19s:%-3d: %s batch [%u] flush with %5d+%5db (%0.1f%%) "
952
"(cmds), %4d BOs (%0.1fMb aperture),"
953
" %4d command relocs, %4d state relocs\n",
954
file, line, batch_name_to_string(batch->name), batch->hw_ctx_id,
955
batch->primary_batch_size, second_bytes,
956
100.0f * bytes_for_commands / BATCH_SZ,
957
batch->exec_count,
958
(float) batch->aperture_space / (1024 * 1024),
959
batch->command.relocs.reloc_count,
960
batch->state.relocs.reloc_count);
961
962
if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
963
dump_fence_list(batch);
964
dump_validation_list(batch);
965
}
966
967
if (INTEL_DEBUG & DEBUG_BATCH) {
968
decode_batch(batch);
969
}
970
}
971
972
for (int i = 0; i < batch->exec_count; i++) {
973
struct crocus_bo *bo = batch->exec_bos[i];
974
crocus_bo_unreference(bo);
975
}
976
977
batch->command.relocs.reloc_count = 0;
978
batch->state.relocs.reloc_count = 0;
979
batch->exec_count = 0;
980
batch->aperture_space = 0;
981
982
util_dynarray_foreach(&batch->syncobjs, struct crocus_syncobj *, s)
983
crocus_syncobj_reference(screen, s, NULL);
984
util_dynarray_clear(&batch->syncobjs);
985
986
util_dynarray_clear(&batch->exec_fences);
987
988
if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
989
dbg_printf("waiting for idle\n");
990
crocus_bo_wait_rendering(batch->command.bo); /* if execbuf failed; this is a nop */
991
}
992
993
/* Start a new batch buffer. */
994
crocus_batch_reset(batch);
995
996
/* EIO means our context is banned. In this case, try and replace it
997
* with a new logical context, and inform crocus_context that all state
998
* has been lost and needs to be re-initialized. If this succeeds,
999
* dubiously claim success...
1000
*/
1001
if (ret == -EIO && replace_hw_ctx(batch)) {
1002
if (batch->reset->reset) {
1003
/* Tell the state tracker the device is lost and it was our fault. */
1004
batch->reset->reset(batch->reset->data, PIPE_GUILTY_CONTEXT_RESET);
1005
}
1006
1007
ret = 0;
1008
}
1009
1010
if (ret < 0) {
1011
#ifdef DEBUG
1012
const bool color = INTEL_DEBUG & DEBUG_COLOR;
1013
fprintf(stderr, "%scrocus: Failed to submit batchbuffer: %-80s%s\n",
1014
color ? "\e[1;41m" : "", strerror(-ret), color ? "\e[0m" : "");
1015
#endif
1016
abort();
1017
}
1018
}
1019
1020
/**
1021
* Does the current batch refer to the given BO?
1022
*
1023
* (In other words, is the BO in the current batch's validation list?)
1024
*/
1025
bool
1026
crocus_batch_references(struct crocus_batch *batch, struct crocus_bo *bo)
1027
{
1028
return find_validation_entry(batch, bo) != NULL;
1029
}
1030
1031
/**
1032
* Updates the state of the noop feature. Returns true if there was a noop
1033
* transition that led to state invalidation.
1034
*/
1035
bool
1036
crocus_batch_prepare_noop(struct crocus_batch *batch, bool noop_enable)
1037
{
1038
if (batch->noop_enabled == noop_enable)
1039
return 0;
1040
1041
batch->noop_enabled = noop_enable;
1042
1043
crocus_batch_flush(batch);
1044
1045
/* If the batch was empty, flush had no effect, so insert our noop. */
1046
if (crocus_batch_bytes_used(batch) == 0)
1047
crocus_batch_maybe_noop(batch);
1048
1049
/* We only need to update the entire state if we transition from noop ->
1050
* not-noop.
1051
*/
1052
return !batch->noop_enabled;
1053
}
1054
1055