Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/gallium/drivers/nouveau/codegen/nv50_ir_target_nvc0.cpp
4574 views
1
/*
2
* Copyright 2011 Christoph Bumiller
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice shall be included in
12
* all copies or substantial portions of the Software.
13
*
14
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20
* OTHER DEALINGS IN THE SOFTWARE.
21
*/
22
23
#include "codegen/nv50_ir_target_nvc0.h"
24
25
namespace nv50_ir {
26
27
Target *getTargetNVC0(unsigned int chipset)
28
{
29
return new TargetNVC0(chipset);
30
}
31
32
TargetNVC0::TargetNVC0(unsigned int card) :
33
Target(card < 0x110, false, card >= 0xe4 && card < 0x140)
34
{
35
chipset = card;
36
initOpInfo();
37
}
38
39
// BULTINS / LIBRARY FUNCTIONS:
40
41
// lazyness -> will just hardcode everything for the time being
42
43
#include "lib/gf100.asm.h"
44
#include "lib/gk104.asm.h"
45
#include "lib/gk110.asm.h"
46
47
void
48
TargetNVC0::getBuiltinCode(const uint32_t **code, uint32_t *size) const
49
{
50
switch (chipset & ~0xf) {
51
case 0xe0:
52
if (chipset < NVISA_GK20A_CHIPSET) {
53
*code = (const uint32_t *)&gk104_builtin_code[0];
54
*size = sizeof(gk104_builtin_code);
55
break;
56
}
57
FALLTHROUGH; /* for GK20A */
58
case 0xf0:
59
case 0x100:
60
*code = (const uint32_t *)&gk110_builtin_code[0];
61
*size = sizeof(gk110_builtin_code);
62
break;
63
default:
64
*code = (const uint32_t *)&gf100_builtin_code[0];
65
*size = sizeof(gf100_builtin_code);
66
break;
67
}
68
}
69
70
uint32_t
71
TargetNVC0::getBuiltinOffset(int builtin) const
72
{
73
assert(builtin < NVC0_BUILTIN_COUNT);
74
75
switch (chipset & ~0xf) {
76
case 0xe0:
77
if (chipset < NVISA_GK20A_CHIPSET)
78
return gk104_builtin_offsets[builtin];
79
FALLTHROUGH; /* for GK20A */
80
case 0xf0:
81
case 0x100:
82
return gk110_builtin_offsets[builtin];
83
default:
84
return gf100_builtin_offsets[builtin];
85
}
86
}
87
88
struct nvc0_opProperties
89
{
90
operation op;
91
unsigned int mNeg : 4;
92
unsigned int mAbs : 4;
93
unsigned int mNot : 4;
94
unsigned int mSat : 4;
95
unsigned int fConst : 3;
96
unsigned int fImmd : 4; // last bit indicates if full immediate is suppoted
97
};
98
99
static const struct nvc0_opProperties _initProps[] =
100
{
101
// neg abs not sat c[] imm
102
{ OP_ADD, 0x3, 0x3, 0x0, 0x8, 0x2, 0x2 | 0x8 },
103
{ OP_SUB, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 | 0x8 },
104
{ OP_MUL, 0x3, 0x0, 0x0, 0x8, 0x2, 0x2 | 0x8 },
105
{ OP_MAX, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
106
{ OP_MIN, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
107
{ OP_MAD, 0x7, 0x0, 0x0, 0x8, 0x6, 0x2 }, // special c[] constraint
108
{ OP_FMA, 0x7, 0x0, 0x0, 0x8, 0x6, 0x2 }, // keep the same as OP_MAD
109
{ OP_SHLADD, 0x5, 0x0, 0x0, 0x0, 0x4, 0x6 },
110
{ OP_MADSP, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
111
{ OP_ABS, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
112
{ OP_NEG, 0x0, 0x1, 0x0, 0x0, 0x1, 0x0 },
113
{ OP_CVT, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
114
{ OP_CEIL, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
115
{ OP_FLOOR, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
116
{ OP_TRUNC, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
117
{ OP_AND, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
118
{ OP_OR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
119
{ OP_XOR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
120
{ OP_SHL, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
121
{ OP_SHR, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
122
{ OP_SET, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
123
{ OP_SLCT, 0x4, 0x0, 0x0, 0x0, 0x6, 0x2 }, // special c[] constraint
124
{ OP_PREEX2, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
125
{ OP_PRESIN, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
126
{ OP_COS, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
127
{ OP_SIN, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
128
{ OP_EX2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
129
{ OP_LG2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
130
{ OP_RCP, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
131
{ OP_RSQ, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
132
{ OP_SQRT, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
133
{ OP_DFDX, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
134
{ OP_DFDY, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
135
{ OP_CALL, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
136
{ OP_POPCNT, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 },
137
{ OP_INSBF, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
138
{ OP_EXTBF, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
139
{ OP_BFIND, 0x0, 0x0, 0x1, 0x0, 0x1, 0x1 },
140
{ OP_PERMT, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
141
{ OP_SET_AND, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
142
{ OP_SET_OR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
143
{ OP_SET_XOR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
144
// saturate only:
145
{ OP_LINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
146
{ OP_PINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
147
};
148
149
static const struct nvc0_opProperties _initPropsNVE4[] = {
150
{ OP_SULDB, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
151
{ OP_SUSTB, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
152
{ OP_SUSTP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
153
{ OP_SUCLAMP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
154
{ OP_SUBFM, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
155
{ OP_SUEAU, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 }
156
};
157
158
static const struct nvc0_opProperties _initPropsGM107[] = {
159
{ OP_SULDB, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2 },
160
{ OP_SULDP, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2 },
161
{ OP_SUSTB, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4 },
162
{ OP_SUSTP, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4 },
163
{ OP_SUREDB, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4 },
164
{ OP_SUREDP, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4 },
165
{ OP_XMAD, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
166
};
167
168
void TargetNVC0::initProps(const struct nvc0_opProperties *props, int size)
169
{
170
for (int i = 0; i < size; ++i) {
171
const struct nvc0_opProperties *prop = &props[i];
172
173
for (int s = 0; s < 3; ++s) {
174
if (prop->mNeg & (1 << s))
175
opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NEG;
176
if (prop->mAbs & (1 << s))
177
opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_ABS;
178
if (prop->mNot & (1 << s))
179
opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NOT;
180
if (prop->fConst & (1 << s))
181
opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_CONST;
182
if (prop->fImmd & (1 << s))
183
opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_IMMEDIATE;
184
if (prop->fImmd & 8)
185
opInfo[prop->op].immdBits = 0xffffffff;
186
}
187
if (prop->mSat & 8)
188
opInfo[prop->op].dstMods = NV50_IR_MOD_SAT;
189
}
190
}
191
192
void TargetNVC0::initOpInfo()
193
{
194
unsigned int i, j;
195
196
static const operation commutative[] =
197
{
198
OP_ADD, OP_MUL, OP_MAD, OP_FMA, OP_AND, OP_OR, OP_XOR, OP_MAX, OP_MIN,
199
OP_SET_AND, OP_SET_OR, OP_SET_XOR, OP_SET, OP_SELP, OP_SLCT
200
};
201
202
static const operation shortForm[] =
203
{
204
OP_ADD, OP_MUL, OP_MAD, OP_FMA, OP_AND, OP_OR, OP_XOR, OP_MAX, OP_MIN
205
};
206
207
static const operation noDest[] =
208
{
209
OP_STORE, OP_WRSV, OP_EXPORT, OP_BRA, OP_CALL, OP_RET, OP_EXIT,
210
OP_DISCARD, OP_CONT, OP_BREAK, OP_PRECONT, OP_PREBREAK, OP_PRERET,
211
OP_JOIN, OP_JOINAT, OP_BRKPT, OP_MEMBAR, OP_EMIT, OP_RESTART,
212
OP_QUADON, OP_QUADPOP, OP_TEXBAR, OP_SUSTB, OP_SUSTP, OP_SUREDP,
213
OP_SUREDB, OP_BAR
214
};
215
216
static const operation noPred[] =
217
{
218
OP_CALL, OP_PRERET, OP_QUADON, OP_QUADPOP,
219
OP_JOINAT, OP_PREBREAK, OP_PRECONT, OP_BRKPT
220
};
221
222
for (i = 0; i < DATA_FILE_COUNT; ++i)
223
nativeFileMap[i] = (DataFile)i;
224
nativeFileMap[FILE_ADDRESS] = FILE_GPR;
225
226
for (i = 0; i < OP_LAST; ++i) {
227
opInfo[i].variants = NULL;
228
opInfo[i].op = (operation)i;
229
opInfo[i].srcTypes = 1 << (int)TYPE_F32;
230
opInfo[i].dstTypes = 1 << (int)TYPE_F32;
231
opInfo[i].immdBits = 0;
232
opInfo[i].srcNr = operationSrcNr[i];
233
234
for (j = 0; j < opInfo[i].srcNr; ++j) {
235
opInfo[i].srcMods[j] = 0;
236
opInfo[i].srcFiles[j] = 1 << (int)FILE_GPR;
237
}
238
opInfo[i].dstMods = 0;
239
opInfo[i].dstFiles = 1 << (int)FILE_GPR;
240
241
opInfo[i].hasDest = 1;
242
opInfo[i].vector = (i >= OP_TEX && i <= OP_TEXCSAA);
243
opInfo[i].commutative = false; /* set below */
244
opInfo[i].pseudo = (i < OP_MOV);
245
opInfo[i].predicate = !opInfo[i].pseudo;
246
opInfo[i].flow = (i >= OP_BRA && i <= OP_JOIN);
247
opInfo[i].minEncSize = 8; /* set below */
248
}
249
for (i = 0; i < ARRAY_SIZE(commutative); ++i)
250
opInfo[commutative[i]].commutative = true;
251
for (i = 0; i < ARRAY_SIZE(shortForm); ++i)
252
opInfo[shortForm[i]].minEncSize = 4;
253
for (i = 0; i < ARRAY_SIZE(noDest); ++i)
254
opInfo[noDest[i]].hasDest = 0;
255
for (i = 0; i < ARRAY_SIZE(noPred); ++i)
256
opInfo[noPred[i]].predicate = 0;
257
258
initProps(_initProps, ARRAY_SIZE(_initProps));
259
if (chipset >= NVISA_GM107_CHIPSET)
260
initProps(_initPropsGM107, ARRAY_SIZE(_initPropsGM107));
261
else if (chipset >= NVISA_GK104_CHIPSET)
262
initProps(_initPropsNVE4, ARRAY_SIZE(_initPropsNVE4));
263
}
264
265
unsigned int
266
TargetNVC0::getFileSize(DataFile file) const
267
{
268
const unsigned int gprs = (chipset >= NVISA_GK20A_CHIPSET) ? 255 : 63;
269
const unsigned int smregs = (chipset >= NVISA_GK104_CHIPSET) ? 65536 : 32768;
270
const unsigned int bs = (chipset >= NVISA_GV100_CHIPSET) ? 16 : 0;
271
switch (file) {
272
case FILE_NULL: return 0;
273
case FILE_GPR: return MIN2(gprs, smregs / threads);
274
case FILE_PREDICATE: return 7;
275
case FILE_FLAGS: return 1;
276
case FILE_ADDRESS: return 0;
277
case FILE_BARRIER: return bs;
278
case FILE_IMMEDIATE: return 0;
279
case FILE_MEMORY_CONST: return 65536;
280
case FILE_SHADER_INPUT: return 0x400;
281
case FILE_SHADER_OUTPUT: return 0x400;
282
case FILE_MEMORY_BUFFER: return 0xffffffff;
283
case FILE_MEMORY_GLOBAL: return 0xffffffff;
284
case FILE_MEMORY_SHARED: return 16 << 10;
285
case FILE_MEMORY_LOCAL: return 48 << 10;
286
case FILE_SYSTEM_VALUE: return 32;
287
case FILE_THREAD_STATE: return bs;
288
default:
289
assert(!"invalid file");
290
return 0;
291
}
292
}
293
294
unsigned int
295
TargetNVC0::getFileUnit(DataFile file) const
296
{
297
if (file == FILE_GPR || file == FILE_ADDRESS || file == FILE_SYSTEM_VALUE ||
298
file == FILE_BARRIER || file == FILE_THREAD_STATE)
299
return 2;
300
return 0;
301
}
302
303
uint32_t
304
TargetNVC0::getSVAddress(DataFile shaderFile, const Symbol *sym) const
305
{
306
const int idx = sym->reg.data.sv.index;
307
const SVSemantic sv = sym->reg.data.sv.sv;
308
309
const bool isInput = shaderFile == FILE_SHADER_INPUT;
310
const bool kepler = getChipset() >= NVISA_GK104_CHIPSET;
311
312
switch (sv) {
313
case SV_POSITION: return 0x070 + idx * 4;
314
case SV_INSTANCE_ID: return 0x2f8;
315
case SV_VERTEX_ID: return 0x2fc;
316
case SV_PRIMITIVE_ID: return isInput ? 0x060 : 0x040;
317
case SV_LAYER: return 0x064;
318
case SV_VIEWPORT_INDEX: return 0x068;
319
case SV_POINT_SIZE: return 0x06c;
320
case SV_CLIP_DISTANCE: return 0x2c0 + idx * 4;
321
case SV_POINT_COORD: return 0x2e0 + idx * 4;
322
case SV_FACE: return 0x3fc;
323
case SV_TESS_OUTER: return 0x000 + idx * 4;
324
case SV_TESS_INNER: return 0x010 + idx * 4;
325
case SV_TESS_COORD: return 0x2f0 + idx * 4;
326
case SV_NTID: return kepler ? (0x00 + idx * 4) : ~0;
327
case SV_NCTAID: return kepler ? (0x0c + idx * 4) : ~0;
328
case SV_GRIDID: return kepler ? 0x18 : ~0;
329
case SV_WORK_DIM: return 0x1c;
330
case SV_SAMPLE_INDEX: return 0;
331
case SV_SAMPLE_POS: return 0;
332
case SV_SAMPLE_MASK: return 0;
333
case SV_BASEVERTEX: return 0;
334
case SV_BASEINSTANCE: return 0;
335
case SV_DRAWID: return 0;
336
default:
337
return 0xffffffff;
338
}
339
}
340
341
bool
342
TargetNVC0::insnCanLoad(const Instruction *i, int s,
343
const Instruction *ld) const
344
{
345
DataFile sf = ld->src(0).getFile();
346
347
// immediate 0 can be represented by GPR $r63/$r255
348
if (sf == FILE_IMMEDIATE && ld->getSrc(0)->reg.data.u64 == 0)
349
return (!i->isPseudo() &&
350
!i->asTex() &&
351
i->op != OP_EXPORT && i->op != OP_STORE);
352
353
if (s >= opInfo[i->op].srcNr)
354
return false;
355
if (!(opInfo[i->op].srcFiles[s] & (1 << (int)sf)))
356
return false;
357
358
// indirect loads can only be done by OP_LOAD/VFETCH/INTERP on nvc0
359
if (ld->src(0).isIndirect(0))
360
return false;
361
// these are implemented using shf.r and shf.l which can't load consts
362
if ((i->op == OP_SHL || i->op == OP_SHR) && typeSizeof(i->sType) == 8 &&
363
sf == FILE_MEMORY_CONST)
364
return false;
365
// constant buffer loads can't be used with cbcc xmads
366
if (i->op == OP_XMAD && sf == FILE_MEMORY_CONST &&
367
(i->subOp & NV50_IR_SUBOP_XMAD_CMODE_MASK) == NV50_IR_SUBOP_XMAD_CBCC)
368
return false;
369
// constant buffer loads for the third operand can't be used with psl/mrg xmads
370
if (i->op == OP_XMAD && sf == FILE_MEMORY_CONST && s == 2 &&
371
(i->subOp & (NV50_IR_SUBOP_XMAD_PSL | NV50_IR_SUBOP_XMAD_MRG)))
372
return false;
373
// for xmads, immediates can't have the h1 flag set
374
if (i->op == OP_XMAD && sf == FILE_IMMEDIATE && s < 2 &&
375
i->subOp & NV50_IR_SUBOP_XMAD_H1(s))
376
return false;
377
378
for (int k = 0; i->srcExists(k); ++k) {
379
if (i->src(k).getFile() == FILE_IMMEDIATE) {
380
if (k == 2 && i->op == OP_SUCLAMP) // special case
381
continue;
382
if (k == 1 && i->op == OP_SHLADD) // special case
383
continue;
384
if (i->getSrc(k)->reg.data.u64 != 0)
385
return false;
386
} else
387
if (i->src(k).getFile() != FILE_GPR &&
388
i->src(k).getFile() != FILE_PREDICATE &&
389
i->src(k).getFile() != FILE_FLAGS) {
390
return false;
391
}
392
}
393
394
// only loads can do sub 4 byte addressing
395
if (sf == FILE_MEMORY_CONST &&
396
(ld->getSrc(0)->reg.data.offset & 0x3)
397
&& i->op != OP_LOAD)
398
return false;
399
400
// not all instructions support full 32 bit immediates
401
if (sf == FILE_IMMEDIATE) {
402
Storage &reg = ld->getSrc(0)->asImm()->reg;
403
404
if (opInfo[i->op].immdBits != 0xffffffff || typeSizeof(i->sType) > 4) {
405
switch (i->sType) {
406
case TYPE_F64:
407
if (reg.data.u64 & 0x00000fffffffffffULL)
408
return false;
409
break;
410
case TYPE_F32:
411
if (reg.data.u32 & 0xfff)
412
return false;
413
break;
414
case TYPE_S32:
415
case TYPE_U32:
416
// with u32, 0xfffff counts as 0xffffffff as well
417
if (reg.data.s32 > 0x7ffff || reg.data.s32 < -0x80000)
418
return false;
419
// XMADs can only have 16-bit immediates
420
if (i->op == OP_XMAD && reg.data.u32 > 0xffff)
421
return false;
422
break;
423
case TYPE_U8:
424
case TYPE_S8:
425
case TYPE_U16:
426
case TYPE_S16:
427
case TYPE_F16:
428
break;
429
default:
430
return false;
431
}
432
} else
433
if (i->op == OP_ADD && i->sType == TYPE_F32) {
434
// add f32 LIMM cannot saturate
435
if (i->saturate && (reg.data.u32 & 0xfff))
436
return false;
437
}
438
}
439
440
return true;
441
}
442
443
bool
444
TargetNVC0::insnCanLoadOffset(const Instruction *insn, int s, int offset) const
445
{
446
const ValueRef& ref = insn->src(s);
447
offset += insn->src(s).get()->reg.data.offset;
448
if (ref.getFile() == FILE_MEMORY_CONST &&
449
(insn->op != OP_LOAD || insn->subOp != NV50_IR_SUBOP_LDC_IS))
450
return offset >= -0x8000 && offset < 0x8000;
451
return true;
452
}
453
454
bool
455
TargetNVC0::isAccessSupported(DataFile file, DataType ty) const
456
{
457
if (ty == TYPE_NONE)
458
return false;
459
if (file == FILE_MEMORY_CONST) {
460
if (getChipset() >= NVISA_GM107_CHIPSET)
461
return typeSizeof(ty) <= 4;
462
else
463
if (getChipset() >= NVISA_GK104_CHIPSET) // wrong encoding ?
464
return typeSizeof(ty) <= 8;
465
}
466
if (ty == TYPE_B96)
467
return false;
468
return true;
469
}
470
471
bool
472
TargetNVC0::isOpSupported(operation op, DataType ty) const
473
{
474
if (op == OP_SAD && ty != TYPE_S32 && ty != TYPE_U32)
475
return false;
476
if (op == OP_POW || op == OP_SQRT || op == OP_DIV || op == OP_MOD)
477
return false;
478
if (op == OP_XMAD)
479
return false;
480
return true;
481
}
482
483
bool
484
TargetNVC0::isModSupported(const Instruction *insn, int s, Modifier mod) const
485
{
486
if (!isFloatType(insn->dType)) {
487
switch (insn->op) {
488
case OP_ABS:
489
case OP_NEG:
490
case OP_CVT:
491
case OP_CEIL:
492
case OP_FLOOR:
493
case OP_TRUNC:
494
case OP_AND:
495
case OP_OR:
496
case OP_XOR:
497
case OP_POPCNT:
498
case OP_BFIND:
499
case OP_XMAD:
500
break;
501
case OP_SET:
502
if (insn->sType != TYPE_F32)
503
return false;
504
break;
505
case OP_ADD:
506
if (mod.abs())
507
return false;
508
if (insn->src(s ? 0 : 1).mod.neg())
509
return false;
510
break;
511
case OP_SUB:
512
if (s == 0)
513
return insn->src(1).mod.neg() ? false : true;
514
break;
515
case OP_SHLADD:
516
if (s == 1)
517
return false;
518
if (insn->src(s ? 0 : 2).mod.neg())
519
return false;
520
break;
521
default:
522
return false;
523
}
524
}
525
if (s >= opInfo[insn->op].srcNr || s >= 3)
526
return false;
527
return (mod & Modifier(opInfo[insn->op].srcMods[s])) == mod;
528
}
529
530
bool
531
TargetNVC0::mayPredicate(const Instruction *insn, const Value *pred) const
532
{
533
if (insn->getPredicate())
534
return false;
535
return opInfo[insn->op].predicate;
536
}
537
538
bool
539
TargetNVC0::isSatSupported(const Instruction *insn) const
540
{
541
if (insn->op == OP_CVT)
542
return true;
543
if (!(opInfo[insn->op].dstMods & NV50_IR_MOD_SAT))
544
return false;
545
546
if (insn->dType == TYPE_U32)
547
return (insn->op == OP_ADD) || (insn->op == OP_MAD);
548
549
// add f32 LIMM cannot saturate
550
if (insn->op == OP_ADD && insn->sType == TYPE_F32) {
551
if (insn->getSrc(1)->asImm() &&
552
insn->getSrc(1)->reg.data.u32 & 0xfff)
553
return false;
554
}
555
556
return insn->dType == TYPE_F32;
557
}
558
559
bool
560
TargetNVC0::isPostMultiplySupported(operation op, float f, int& e) const
561
{
562
if (op != OP_MUL)
563
return false;
564
f = fabsf(f);
565
e = static_cast<int>(log2f(f));
566
if (e < -3 || e > 3)
567
return false;
568
return f == exp2f(static_cast<float>(e));
569
}
570
571
// TODO: better values
572
// this could be more precise, e.g. depending on the issue-to-read/write delay
573
// of the depending instruction, but it's good enough
574
int TargetNVC0::getLatency(const Instruction *i) const
575
{
576
if (chipset >= 0xe4) {
577
if (i->dType == TYPE_F64 || i->sType == TYPE_F64)
578
return 20;
579
switch (i->op) {
580
case OP_LINTERP:
581
case OP_PINTERP:
582
return 15;
583
case OP_LOAD:
584
if (i->src(0).getFile() == FILE_MEMORY_CONST)
585
return 9;
586
FALLTHROUGH;
587
case OP_VFETCH:
588
return 24;
589
default:
590
if (Target::getOpClass(i->op) == OPCLASS_TEXTURE)
591
return 17;
592
if (i->op == OP_MUL && i->dType != TYPE_F32)
593
return 15;
594
return 9;
595
}
596
} else {
597
if (i->op == OP_LOAD) {
598
if (i->cache == CACHE_CV)
599
return 700;
600
return 48;
601
}
602
return 24;
603
}
604
return 32;
605
}
606
607
// These are "inverse" throughput values, i.e. the number of cycles required
608
// to issue a specific instruction for a full warp (32 threads).
609
//
610
// Assuming we have more than 1 warp in flight, a higher issue latency results
611
// in a lower result latency since the MP will have spent more time with other
612
// warps.
613
// This also helps to determine the number of cycles between instructions in
614
// a single warp.
615
//
616
int TargetNVC0::getThroughput(const Instruction *i) const
617
{
618
// TODO: better values
619
if (i->dType == TYPE_F32) {
620
switch (i->op) {
621
case OP_ADD:
622
case OP_MUL:
623
case OP_MAD:
624
case OP_FMA:
625
return 1;
626
case OP_CVT:
627
case OP_CEIL:
628
case OP_FLOOR:
629
case OP_TRUNC:
630
case OP_SET:
631
case OP_SLCT:
632
case OP_MIN:
633
case OP_MAX:
634
return 2;
635
case OP_RCP:
636
case OP_RSQ:
637
case OP_LG2:
638
case OP_SIN:
639
case OP_COS:
640
case OP_PRESIN:
641
case OP_PREEX2:
642
default:
643
return 8;
644
}
645
} else
646
if (i->dType == TYPE_U32 || i->dType == TYPE_S32) {
647
switch (i->op) {
648
case OP_ADD:
649
case OP_AND:
650
case OP_OR:
651
case OP_XOR:
652
case OP_NOT:
653
return 1;
654
case OP_MUL:
655
case OP_MAD:
656
case OP_CVT:
657
case OP_SET:
658
case OP_SLCT:
659
case OP_SHL:
660
case OP_SHR:
661
case OP_NEG:
662
case OP_ABS:
663
case OP_MIN:
664
case OP_MAX:
665
default:
666
return 2;
667
}
668
} else
669
if (i->dType == TYPE_F64) {
670
return 2;
671
} else {
672
return 1;
673
}
674
}
675
676
bool TargetNVC0::canDualIssue(const Instruction *a, const Instruction *b) const
677
{
678
const OpClass clA = operationClass[a->op];
679
const OpClass clB = operationClass[b->op];
680
681
if (getChipset() >= 0xe4) {
682
// not texturing
683
// not if the 2nd instruction isn't necessarily executed
684
if (clA == OPCLASS_TEXTURE || clA == OPCLASS_FLOW)
685
return false;
686
687
// Check that a and b don't write to the same sources, nor that b reads
688
// anything that a writes.
689
if (!a->canCommuteDefDef(b) || !a->canCommuteDefSrc(b))
690
return false;
691
692
// anything with MOV
693
if (a->op == OP_MOV || b->op == OP_MOV)
694
return true;
695
if (clA == clB) {
696
switch (clA) {
697
// there might be more
698
case OPCLASS_COMPARE:
699
if ((a->op == OP_MIN || a->op == OP_MAX) &&
700
(b->op == OP_MIN || b->op == OP_MAX))
701
break;
702
return false;
703
case OPCLASS_ARITH:
704
break;
705
default:
706
return false;
707
}
708
// only F32 arith or integer additions
709
return (a->dType == TYPE_F32 || a->op == OP_ADD ||
710
b->dType == TYPE_F32 || b->op == OP_ADD);
711
}
712
// nothing with TEXBAR
713
if (a->op == OP_TEXBAR || b->op == OP_TEXBAR)
714
return false;
715
// no loads and stores accessing the same space
716
if ((clA == OPCLASS_LOAD && clB == OPCLASS_STORE) ||
717
(clB == OPCLASS_LOAD && clA == OPCLASS_STORE))
718
if (a->src(0).getFile() == b->src(0).getFile())
719
return false;
720
// no > 32-bit ops
721
if (typeSizeof(a->dType) > 4 || typeSizeof(b->dType) > 4 ||
722
typeSizeof(a->sType) > 4 || typeSizeof(b->sType) > 4)
723
return false;
724
return true;
725
} else {
726
return false; // info not needed (yet)
727
}
728
}
729
730
} // namespace nv50_ir
731
732