Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/gallium/drivers/nouveau/nv30/nvfx_fragprog.c
4574 views
1
#include <float.h>
2
#include "pipe/p_context.h"
3
#include "pipe/p_defines.h"
4
#include "pipe/p_state.h"
5
#include "util/u_dynarray.h"
6
#include "util/u_inlines.h"
7
#include "util/u_debug.h"
8
#include "util/u_memory.h"
9
10
#include "pipe/p_shader_tokens.h"
11
#include "tgsi/tgsi_parse.h"
12
#include "tgsi/tgsi_util.h"
13
#include "tgsi/tgsi_dump.h"
14
#include "tgsi/tgsi_ureg.h"
15
16
#include "nouveau_debug.h"
17
#include "nv_object.xml.h"
18
#include "nv30/nv30-40_3d.xml.h"
19
#include "nv30/nvfx_shader.h"
20
#include "nv30/nv30_state.h"
21
22
struct nvfx_fpc {
23
struct nv30_fragprog *fp;
24
25
unsigned max_temps;
26
unsigned long long r_temps;
27
unsigned long long r_temps_discard;
28
struct nvfx_reg r_result[PIPE_MAX_SHADER_OUTPUTS];
29
struct nvfx_reg r_input[PIPE_MAX_SHADER_INPUTS];
30
struct nvfx_reg *r_temp;
31
32
int num_regs;
33
34
unsigned inst_offset;
35
unsigned have_const;
36
unsigned is_nv4x;
37
38
struct util_dynarray imm_data;
39
40
struct nvfx_reg* r_imm;
41
unsigned nr_imm;
42
43
struct util_dynarray if_stack;
44
//struct util_dynarray loop_stack;
45
struct util_dynarray label_relocs;
46
};
47
48
static inline struct nvfx_reg
49
temp(struct nvfx_fpc *fpc)
50
{
51
int idx = __builtin_ctzll(~fpc->r_temps);
52
53
if (idx >= fpc->max_temps) {
54
NOUVEAU_ERR("out of temps!!\n");
55
return nvfx_reg(NVFXSR_TEMP, 0);
56
}
57
58
fpc->r_temps |= (1ULL << idx);
59
fpc->r_temps_discard |= (1ULL << idx);
60
return nvfx_reg(NVFXSR_TEMP, idx);
61
}
62
63
static inline void
64
release_temps(struct nvfx_fpc *fpc)
65
{
66
fpc->r_temps &= ~fpc->r_temps_discard;
67
fpc->r_temps_discard = 0ULL;
68
}
69
70
static inline struct nvfx_reg
71
nvfx_fp_imm(struct nvfx_fpc *fpc, float a, float b, float c, float d)
72
{
73
float v[4] = {a, b, c, d};
74
int idx = fpc->imm_data.size >> 4;
75
76
memcpy(util_dynarray_grow(&fpc->imm_data, float, 4), v, 4 * sizeof(float));
77
return nvfx_reg(NVFXSR_IMM, idx);
78
}
79
80
static void
81
grow_insns(struct nvfx_fpc *fpc, int size)
82
{
83
struct nv30_fragprog *fp = fpc->fp;
84
85
fp->insn_len += size;
86
fp->insn = realloc(fp->insn, sizeof(uint32_t) * fp->insn_len);
87
}
88
89
static void
90
emit_src(struct nvfx_fpc *fpc, int pos, struct nvfx_src src)
91
{
92
struct nv30_fragprog *fp = fpc->fp;
93
uint32_t *hw = &fp->insn[fpc->inst_offset];
94
uint32_t sr = 0;
95
96
switch (src.reg.type) {
97
case NVFXSR_INPUT:
98
sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT);
99
hw[0] |= (src.reg.index << NVFX_FP_OP_INPUT_SRC_SHIFT);
100
break;
101
case NVFXSR_OUTPUT:
102
sr |= NVFX_FP_REG_SRC_HALF;
103
FALLTHROUGH;
104
case NVFXSR_TEMP:
105
sr |= (NVFX_FP_REG_TYPE_TEMP << NVFX_FP_REG_TYPE_SHIFT);
106
sr |= (src.reg.index << NVFX_FP_REG_SRC_SHIFT);
107
break;
108
case NVFXSR_IMM:
109
if (!fpc->have_const) {
110
grow_insns(fpc, 4);
111
hw = &fp->insn[fpc->inst_offset];
112
fpc->have_const = 1;
113
}
114
115
memcpy(&fp->insn[fpc->inst_offset + 4],
116
(float*)fpc->imm_data.data + src.reg.index * 4,
117
sizeof(uint32_t) * 4);
118
119
sr |= (NVFX_FP_REG_TYPE_CONST << NVFX_FP_REG_TYPE_SHIFT);
120
break;
121
case NVFXSR_CONST:
122
if (!fpc->have_const) {
123
grow_insns(fpc, 4);
124
hw = &fp->insn[fpc->inst_offset];
125
fpc->have_const = 1;
126
}
127
128
{
129
struct nv30_fragprog_data *fpd;
130
131
fp->consts = realloc(fp->consts, ++fp->nr_consts *
132
sizeof(*fpd));
133
fpd = &fp->consts[fp->nr_consts - 1];
134
fpd->offset = fpc->inst_offset + 4;
135
fpd->index = src.reg.index;
136
memset(&fp->insn[fpd->offset], 0, sizeof(uint32_t) * 4);
137
}
138
139
sr |= (NVFX_FP_REG_TYPE_CONST << NVFX_FP_REG_TYPE_SHIFT);
140
break;
141
case NVFXSR_NONE:
142
sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT);
143
break;
144
default:
145
assert(0);
146
}
147
148
if (src.negate)
149
sr |= NVFX_FP_REG_NEGATE;
150
151
if (src.abs)
152
hw[1] |= (1 << (29 + pos));
153
154
sr |= ((src.swz[0] << NVFX_FP_REG_SWZ_X_SHIFT) |
155
(src.swz[1] << NVFX_FP_REG_SWZ_Y_SHIFT) |
156
(src.swz[2] << NVFX_FP_REG_SWZ_Z_SHIFT) |
157
(src.swz[3] << NVFX_FP_REG_SWZ_W_SHIFT));
158
159
hw[pos + 1] |= sr;
160
}
161
162
static void
163
emit_dst(struct nvfx_fpc *fpc, struct nvfx_reg dst)
164
{
165
struct nv30_fragprog *fp = fpc->fp;
166
uint32_t *hw = &fp->insn[fpc->inst_offset];
167
168
switch (dst.type) {
169
case NVFXSR_OUTPUT:
170
if (dst.index == 1)
171
fp->fp_control |= 0x0000000e;
172
else {
173
hw[0] |= NVFX_FP_OP_OUT_REG_HALF;
174
dst.index <<= 1;
175
}
176
FALLTHROUGH;
177
case NVFXSR_TEMP:
178
if (fpc->num_regs < (dst.index + 1))
179
fpc->num_regs = dst.index + 1;
180
break;
181
case NVFXSR_NONE:
182
hw[0] |= (1 << 30);
183
break;
184
default:
185
assert(0);
186
}
187
188
hw[0] |= (dst.index << NVFX_FP_OP_OUT_REG_SHIFT);
189
}
190
191
static void
192
nvfx_fp_emit(struct nvfx_fpc *fpc, struct nvfx_insn insn)
193
{
194
struct nv30_fragprog *fp = fpc->fp;
195
uint32_t *hw;
196
197
fpc->inst_offset = fp->insn_len;
198
fpc->have_const = 0;
199
grow_insns(fpc, 4);
200
hw = &fp->insn[fpc->inst_offset];
201
memset(hw, 0, sizeof(uint32_t) * 4);
202
203
if (insn.op == NVFX_FP_OP_OPCODE_KIL)
204
fp->fp_control |= NV30_3D_FP_CONTROL_USES_KIL;
205
hw[0] |= (insn.op << NVFX_FP_OP_OPCODE_SHIFT);
206
hw[0] |= (insn.mask << NVFX_FP_OP_OUTMASK_SHIFT);
207
hw[2] |= (insn.scale << NVFX_FP_OP_DST_SCALE_SHIFT);
208
209
if (insn.sat)
210
hw[0] |= NVFX_FP_OP_OUT_SAT;
211
212
if (insn.cc_update)
213
hw[0] |= NVFX_FP_OP_COND_WRITE_ENABLE;
214
hw[1] |= (insn.cc_test << NVFX_FP_OP_COND_SHIFT);
215
hw[1] |= ((insn.cc_swz[0] << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
216
(insn.cc_swz[1] << NVFX_FP_OP_COND_SWZ_Y_SHIFT) |
217
(insn.cc_swz[2] << NVFX_FP_OP_COND_SWZ_Z_SHIFT) |
218
(insn.cc_swz[3] << NVFX_FP_OP_COND_SWZ_W_SHIFT));
219
220
if(insn.unit >= 0)
221
{
222
hw[0] |= (insn.unit << NVFX_FP_OP_TEX_UNIT_SHIFT);
223
}
224
225
emit_dst(fpc, insn.dst);
226
emit_src(fpc, 0, insn.src[0]);
227
emit_src(fpc, 1, insn.src[1]);
228
emit_src(fpc, 2, insn.src[2]);
229
}
230
231
#define arith(s,o,d,m,s0,s1,s2) \
232
nvfx_insn((s), NVFX_FP_OP_OPCODE_##o, -1, \
233
(d), (m), (s0), (s1), (s2))
234
235
#define tex(s,o,u,d,m,s0,s1,s2) \
236
nvfx_insn((s), NVFX_FP_OP_OPCODE_##o, (u), \
237
(d), (m), (s0), none, none)
238
239
/* IF src.x != 0, as TGSI specifies */
240
static void
241
nv40_fp_if(struct nvfx_fpc *fpc, struct nvfx_src src)
242
{
243
const struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0));
244
struct nvfx_insn insn = arith(0, MOV, none.reg, NVFX_FP_MASK_X, src, none, none);
245
uint32_t *hw;
246
insn.cc_update = 1;
247
nvfx_fp_emit(fpc, insn);
248
249
fpc->inst_offset = fpc->fp->insn_len;
250
grow_insns(fpc, 4);
251
hw = &fpc->fp->insn[fpc->inst_offset];
252
/* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
253
hw[0] = (NV40_FP_OP_BRA_OPCODE_IF << NVFX_FP_OP_OPCODE_SHIFT) |
254
NV40_FP_OP_OUT_NONE |
255
(NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
256
/* Use .xxxx swizzle so that we check only src[0].x*/
257
hw[1] = (0 << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
258
(0 << NVFX_FP_OP_COND_SWZ_Y_SHIFT) |
259
(0 << NVFX_FP_OP_COND_SWZ_Z_SHIFT) |
260
(0 << NVFX_FP_OP_COND_SWZ_W_SHIFT) |
261
(NVFX_FP_OP_COND_NE << NVFX_FP_OP_COND_SHIFT);
262
hw[2] = 0; /* | NV40_FP_OP_OPCODE_IS_BRANCH | else_offset */
263
hw[3] = 0; /* | endif_offset */
264
util_dynarray_append(&fpc->if_stack, unsigned, fpc->inst_offset);
265
}
266
267
/* IF src.x != 0, as TGSI specifies */
268
static void
269
nv40_fp_cal(struct nvfx_fpc *fpc, unsigned target)
270
{
271
struct nvfx_relocation reloc;
272
uint32_t *hw;
273
fpc->inst_offset = fpc->fp->insn_len;
274
grow_insns(fpc, 4);
275
hw = &fpc->fp->insn[fpc->inst_offset];
276
/* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
277
hw[0] = (NV40_FP_OP_BRA_OPCODE_CAL << NVFX_FP_OP_OPCODE_SHIFT);
278
/* Use .xxxx swizzle so that we check only src[0].x*/
279
hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
280
(NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
281
hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | call_offset */
282
hw[3] = 0;
283
reloc.target = target;
284
reloc.location = fpc->inst_offset + 2;
285
util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
286
}
287
288
static void
289
nv40_fp_ret(struct nvfx_fpc *fpc)
290
{
291
uint32_t *hw;
292
fpc->inst_offset = fpc->fp->insn_len;
293
grow_insns(fpc, 4);
294
hw = &fpc->fp->insn[fpc->inst_offset];
295
/* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
296
hw[0] = (NV40_FP_OP_BRA_OPCODE_RET << NVFX_FP_OP_OPCODE_SHIFT);
297
/* Use .xxxx swizzle so that we check only src[0].x*/
298
hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
299
(NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
300
hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | call_offset */
301
hw[3] = 0;
302
}
303
304
static void
305
nv40_fp_rep(struct nvfx_fpc *fpc, unsigned count, unsigned target)
306
{
307
struct nvfx_relocation reloc;
308
uint32_t *hw;
309
fpc->inst_offset = fpc->fp->insn_len;
310
grow_insns(fpc, 4);
311
hw = &fpc->fp->insn[fpc->inst_offset];
312
/* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
313
hw[0] = (NV40_FP_OP_BRA_OPCODE_REP << NVFX_FP_OP_OPCODE_SHIFT) |
314
NV40_FP_OP_OUT_NONE |
315
(NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
316
/* Use .xxxx swizzle so that we check only src[0].x*/
317
hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
318
(NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
319
hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH |
320
(count << NV40_FP_OP_REP_COUNT1_SHIFT) |
321
(count << NV40_FP_OP_REP_COUNT2_SHIFT) |
322
(count << NV40_FP_OP_REP_COUNT3_SHIFT);
323
hw[3] = 0; /* | end_offset */
324
reloc.target = target;
325
reloc.location = fpc->inst_offset + 3;
326
util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
327
//util_dynarray_append(&fpc->loop_stack, unsigned, target);
328
}
329
330
#if 0
331
/* documentation only */
332
/* warning: this only works forward, and probably only if not inside any IF */
333
static void
334
nv40_fp_bra(struct nvfx_fpc *fpc, unsigned target)
335
{
336
struct nvfx_relocation reloc;
337
uint32_t *hw;
338
fpc->inst_offset = fpc->fp->insn_len;
339
grow_insns(fpc, 4);
340
hw = &fpc->fp->insn[fpc->inst_offset];
341
/* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
342
hw[0] = (NV40_FP_OP_BRA_OPCODE_IF << NVFX_FP_OP_OPCODE_SHIFT) |
343
NV40_FP_OP_OUT_NONE |
344
(NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
345
/* Use .xxxx swizzle so that we check only src[0].x*/
346
hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
347
(NVFX_FP_OP_COND_FL << NVFX_FP_OP_COND_SHIFT);
348
hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | else_offset */
349
hw[3] = 0; /* | endif_offset */
350
reloc.target = target;
351
reloc.location = fpc->inst_offset + 2;
352
util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
353
reloc.target = target;
354
reloc.location = fpc->inst_offset + 3;
355
util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
356
}
357
#endif
358
359
static void
360
nv40_fp_brk(struct nvfx_fpc *fpc)
361
{
362
uint32_t *hw;
363
fpc->inst_offset = fpc->fp->insn_len;
364
grow_insns(fpc, 4);
365
hw = &fpc->fp->insn[fpc->inst_offset];
366
/* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
367
hw[0] = (NV40_FP_OP_BRA_OPCODE_BRK << NVFX_FP_OP_OPCODE_SHIFT) |
368
NV40_FP_OP_OUT_NONE;
369
/* Use .xxxx swizzle so that we check only src[0].x*/
370
hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
371
(NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
372
hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH;
373
hw[3] = 0;
374
}
375
376
static inline struct nvfx_src
377
tgsi_src(struct nvfx_fpc *fpc, const struct tgsi_full_src_register *fsrc)
378
{
379
struct nvfx_src src;
380
381
switch (fsrc->Register.File) {
382
case TGSI_FILE_INPUT:
383
src.reg = fpc->r_input[fsrc->Register.Index];
384
break;
385
case TGSI_FILE_CONSTANT:
386
src.reg = nvfx_reg(NVFXSR_CONST, fsrc->Register.Index);
387
break;
388
case TGSI_FILE_IMMEDIATE:
389
assert(fsrc->Register.Index < fpc->nr_imm);
390
src.reg = fpc->r_imm[fsrc->Register.Index];
391
break;
392
case TGSI_FILE_TEMPORARY:
393
src.reg = fpc->r_temp[fsrc->Register.Index];
394
break;
395
/* NV40 fragprog result regs are just temps, so this is simple */
396
case TGSI_FILE_OUTPUT:
397
src.reg = fpc->r_result[fsrc->Register.Index];
398
break;
399
default:
400
NOUVEAU_ERR("bad src file\n");
401
src.reg.index = 0;
402
src.reg.type = 0;
403
break;
404
}
405
406
src.abs = fsrc->Register.Absolute;
407
src.negate = fsrc->Register.Negate;
408
src.swz[0] = fsrc->Register.SwizzleX;
409
src.swz[1] = fsrc->Register.SwizzleY;
410
src.swz[2] = fsrc->Register.SwizzleZ;
411
src.swz[3] = fsrc->Register.SwizzleW;
412
src.indirect = 0;
413
src.indirect_reg = 0;
414
src.indirect_swz = 0;
415
return src;
416
}
417
418
static inline struct nvfx_reg
419
tgsi_dst(struct nvfx_fpc *fpc, const struct tgsi_full_dst_register *fdst) {
420
switch (fdst->Register.File) {
421
case TGSI_FILE_OUTPUT:
422
return fpc->r_result[fdst->Register.Index];
423
case TGSI_FILE_TEMPORARY:
424
return fpc->r_temp[fdst->Register.Index];
425
case TGSI_FILE_NULL:
426
return nvfx_reg(NVFXSR_NONE, 0);
427
default:
428
NOUVEAU_ERR("bad dst file %d\n", fdst->Register.File);
429
return nvfx_reg(NVFXSR_NONE, 0);
430
}
431
}
432
433
static inline int
434
tgsi_mask(uint tgsi)
435
{
436
int mask = 0;
437
438
if (tgsi & TGSI_WRITEMASK_X) mask |= NVFX_FP_MASK_X;
439
if (tgsi & TGSI_WRITEMASK_Y) mask |= NVFX_FP_MASK_Y;
440
if (tgsi & TGSI_WRITEMASK_Z) mask |= NVFX_FP_MASK_Z;
441
if (tgsi & TGSI_WRITEMASK_W) mask |= NVFX_FP_MASK_W;
442
return mask;
443
}
444
445
static bool
446
nvfx_fragprog_parse_instruction(struct nvfx_fpc *fpc,
447
const struct tgsi_full_instruction *finst)
448
{
449
const struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0));
450
struct nvfx_insn insn;
451
struct nvfx_src src[3], tmp;
452
struct nvfx_reg dst;
453
int mask, sat, unit = 0;
454
int ai = -1, ci = -1, ii = -1;
455
int i;
456
457
if (finst->Instruction.Opcode == TGSI_OPCODE_END)
458
return true;
459
460
for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
461
const struct tgsi_full_src_register *fsrc;
462
463
fsrc = &finst->Src[i];
464
if (fsrc->Register.File == TGSI_FILE_TEMPORARY) {
465
src[i] = tgsi_src(fpc, fsrc);
466
}
467
}
468
469
for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
470
const struct tgsi_full_src_register *fsrc;
471
472
fsrc = &finst->Src[i];
473
474
switch (fsrc->Register.File) {
475
case TGSI_FILE_INPUT:
476
if(fpc->fp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_FOG && (0
477
|| fsrc->Register.SwizzleX == PIPE_SWIZZLE_W
478
|| fsrc->Register.SwizzleY == PIPE_SWIZZLE_W
479
|| fsrc->Register.SwizzleZ == PIPE_SWIZZLE_W
480
|| fsrc->Register.SwizzleW == PIPE_SWIZZLE_W
481
)) {
482
/* hardware puts 0 in fogcoord.w, but GL/Gallium want 1 there */
483
struct nvfx_src addend = nvfx_src(nvfx_fp_imm(fpc, 0, 0, 0, 1));
484
addend.swz[0] = fsrc->Register.SwizzleX;
485
addend.swz[1] = fsrc->Register.SwizzleY;
486
addend.swz[2] = fsrc->Register.SwizzleZ;
487
addend.swz[3] = fsrc->Register.SwizzleW;
488
src[i] = nvfx_src(temp(fpc));
489
nvfx_fp_emit(fpc, arith(0, ADD, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), addend, none));
490
} else if (ai == -1 || ai == fsrc->Register.Index) {
491
ai = fsrc->Register.Index;
492
src[i] = tgsi_src(fpc, fsrc);
493
} else {
494
src[i] = nvfx_src(temp(fpc));
495
nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
496
}
497
break;
498
case TGSI_FILE_CONSTANT:
499
if ((ci == -1 && ii == -1) ||
500
ci == fsrc->Register.Index) {
501
ci = fsrc->Register.Index;
502
src[i] = tgsi_src(fpc, fsrc);
503
} else {
504
src[i] = nvfx_src(temp(fpc));
505
nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
506
}
507
break;
508
case TGSI_FILE_IMMEDIATE:
509
if ((ci == -1 && ii == -1) ||
510
ii == fsrc->Register.Index) {
511
ii = fsrc->Register.Index;
512
src[i] = tgsi_src(fpc, fsrc);
513
} else {
514
src[i] = nvfx_src(temp(fpc));
515
nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
516
}
517
break;
518
case TGSI_FILE_TEMPORARY:
519
/* handled above */
520
break;
521
case TGSI_FILE_SAMPLER:
522
unit = fsrc->Register.Index;
523
break;
524
case TGSI_FILE_OUTPUT:
525
break;
526
default:
527
NOUVEAU_ERR("bad src file\n");
528
return false;
529
}
530
}
531
532
dst = tgsi_dst(fpc, &finst->Dst[0]);
533
mask = tgsi_mask(finst->Dst[0].Register.WriteMask);
534
sat = finst->Instruction.Saturate;
535
536
switch (finst->Instruction.Opcode) {
537
case TGSI_OPCODE_ADD:
538
nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, src[0], src[1], none));
539
break;
540
case TGSI_OPCODE_CEIL:
541
tmp = nvfx_src(temp(fpc));
542
nvfx_fp_emit(fpc, arith(0, FLR, tmp.reg, mask, neg(src[0]), none, none));
543
nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, neg(tmp), none, none));
544
break;
545
case TGSI_OPCODE_CMP:
546
insn = arith(0, MOV, none.reg, mask, src[0], none, none);
547
insn.cc_update = 1;
548
nvfx_fp_emit(fpc, insn);
549
550
insn = arith(sat, MOV, dst, mask, src[2], none, none);
551
insn.cc_test = NVFX_COND_GE;
552
nvfx_fp_emit(fpc, insn);
553
554
insn = arith(sat, MOV, dst, mask, src[1], none, none);
555
insn.cc_test = NVFX_COND_LT;
556
nvfx_fp_emit(fpc, insn);
557
break;
558
case TGSI_OPCODE_COS:
559
nvfx_fp_emit(fpc, arith(sat, COS, dst, mask, src[0], none, none));
560
break;
561
case TGSI_OPCODE_DDX:
562
if (mask & (NVFX_FP_MASK_Z | NVFX_FP_MASK_W)) {
563
tmp = nvfx_src(temp(fpc));
564
nvfx_fp_emit(fpc, arith(sat, DDX, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, swz(src[0], Z, W, Z, W), none, none));
565
nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_Z | NVFX_FP_MASK_W, swz(tmp, X, Y, X, Y), none, none));
566
nvfx_fp_emit(fpc, arith(sat, DDX, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], none, none));
567
nvfx_fp_emit(fpc, arith(0, MOV, dst, mask, tmp, none, none));
568
} else {
569
nvfx_fp_emit(fpc, arith(sat, DDX, dst, mask, src[0], none, none));
570
}
571
break;
572
case TGSI_OPCODE_DDY:
573
if (mask & (NVFX_FP_MASK_Z | NVFX_FP_MASK_W)) {
574
tmp = nvfx_src(temp(fpc));
575
nvfx_fp_emit(fpc, arith(sat, DDY, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, swz(src[0], Z, W, Z, W), none, none));
576
nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_Z | NVFX_FP_MASK_W, swz(tmp, X, Y, X, Y), none, none));
577
nvfx_fp_emit(fpc, arith(sat, DDY, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], none, none));
578
nvfx_fp_emit(fpc, arith(0, MOV, dst, mask, tmp, none, none));
579
} else {
580
nvfx_fp_emit(fpc, arith(sat, DDY, dst, mask, src[0], none, none));
581
}
582
break;
583
case TGSI_OPCODE_DP2:
584
tmp = nvfx_src(temp(fpc));
585
nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], src[1], none));
586
nvfx_fp_emit(fpc, arith(0, ADD, dst, mask, swz(tmp, X, X, X, X), swz(tmp, Y, Y, Y, Y), none));
587
break;
588
case TGSI_OPCODE_DP3:
589
nvfx_fp_emit(fpc, arith(sat, DP3, dst, mask, src[0], src[1], none));
590
break;
591
case TGSI_OPCODE_DP4:
592
nvfx_fp_emit(fpc, arith(sat, DP4, dst, mask, src[0], src[1], none));
593
break;
594
case TGSI_OPCODE_DST:
595
nvfx_fp_emit(fpc, arith(sat, DST, dst, mask, src[0], src[1], none));
596
break;
597
case TGSI_OPCODE_EX2:
598
nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, src[0], none, none));
599
break;
600
case TGSI_OPCODE_FLR:
601
nvfx_fp_emit(fpc, arith(sat, FLR, dst, mask, src[0], none, none));
602
break;
603
case TGSI_OPCODE_FRC:
604
nvfx_fp_emit(fpc, arith(sat, FRC, dst, mask, src[0], none, none));
605
break;
606
case TGSI_OPCODE_KILL:
607
nvfx_fp_emit(fpc, arith(0, KIL, none.reg, 0, none, none, none));
608
break;
609
case TGSI_OPCODE_KILL_IF:
610
insn = arith(0, MOV, none.reg, NVFX_FP_MASK_ALL, src[0], none, none);
611
insn.cc_update = 1;
612
nvfx_fp_emit(fpc, insn);
613
614
insn = arith(0, KIL, none.reg, 0, none, none, none);
615
insn.cc_test = NVFX_COND_LT;
616
nvfx_fp_emit(fpc, insn);
617
break;
618
case TGSI_OPCODE_LG2:
619
nvfx_fp_emit(fpc, arith(sat, LG2, dst, mask, src[0], none, none));
620
break;
621
case TGSI_OPCODE_LIT:
622
if(!fpc->is_nv4x)
623
nvfx_fp_emit(fpc, arith(sat, LIT_NV30, dst, mask, src[0], none, none));
624
else {
625
/* we use FLT_MIN, so that log2 never gives -infinity, and thus multiplication by
626
* specular 0 always gives 0, so that ex2 gives 1, to satisfy the 0^0 = 1 requirement
627
*
628
* NOTE: if we start using half precision, we might need an fp16 FLT_MIN here instead
629
*/
630
struct nvfx_src maxs = nvfx_src(nvfx_fp_imm(fpc, 0, FLT_MIN, 0, 0));
631
tmp = nvfx_src(temp(fpc));
632
if (ci>= 0 || ii >= 0) {
633
nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, maxs, none, none));
634
maxs = tmp;
635
}
636
nvfx_fp_emit(fpc, arith(0, MAX, tmp.reg, NVFX_FP_MASK_Y | NVFX_FP_MASK_W, swz(src[0], X, X, X, Y), swz(maxs, X, X, Y, Y), none));
637
nvfx_fp_emit(fpc, arith(0, LG2, tmp.reg, NVFX_FP_MASK_W, swz(tmp, W, W, W, W), none, none));
638
nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_W, swz(tmp, W, W, W, W), swz(src[0], W, W, W, W), none));
639
nvfx_fp_emit(fpc, arith(sat, LITEX2_NV40, dst, mask, swz(tmp, Y, Y, W, W), none, none));
640
}
641
break;
642
case TGSI_OPCODE_LRP:
643
if(!fpc->is_nv4x)
644
nvfx_fp_emit(fpc, arith(sat, LRP_NV30, dst, mask, src[0], src[1], src[2]));
645
else {
646
tmp = nvfx_src(temp(fpc));
647
nvfx_fp_emit(fpc, arith(0, MAD, tmp.reg, mask, neg(src[0]), src[2], src[2]));
648
nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, src[0], src[1], tmp));
649
}
650
break;
651
case TGSI_OPCODE_MAD:
652
nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, src[0], src[1], src[2]));
653
break;
654
case TGSI_OPCODE_MAX:
655
nvfx_fp_emit(fpc, arith(sat, MAX, dst, mask, src[0], src[1], none));
656
break;
657
case TGSI_OPCODE_MIN:
658
nvfx_fp_emit(fpc, arith(sat, MIN, dst, mask, src[0], src[1], none));
659
break;
660
case TGSI_OPCODE_MOV:
661
nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, src[0], none, none));
662
break;
663
case TGSI_OPCODE_MUL:
664
nvfx_fp_emit(fpc, arith(sat, MUL, dst, mask, src[0], src[1], none));
665
break;
666
case TGSI_OPCODE_NOP:
667
break;
668
case TGSI_OPCODE_POW:
669
if(!fpc->is_nv4x)
670
nvfx_fp_emit(fpc, arith(sat, POW_NV30, dst, mask, src[0], src[1], none));
671
else {
672
tmp = nvfx_src(temp(fpc));
673
nvfx_fp_emit(fpc, arith(0, LG2, tmp.reg, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none));
674
nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_X, swz(tmp, X, X, X, X), swz(src[1], X, X, X, X), none));
675
nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, swz(tmp, X, X, X, X), none, none));
676
}
677
break;
678
case TGSI_OPCODE_RCP:
679
nvfx_fp_emit(fpc, arith(sat, RCP, dst, mask, src[0], none, none));
680
break;
681
case TGSI_OPCODE_RSQ:
682
if(!fpc->is_nv4x)
683
nvfx_fp_emit(fpc, arith(sat, RSQ_NV30, dst, mask, abs(swz(src[0], X, X, X, X)), none, none));
684
else {
685
tmp = nvfx_src(temp(fpc));
686
insn = arith(0, LG2, tmp.reg, NVFX_FP_MASK_X, abs(swz(src[0], X, X, X, X)), none, none);
687
insn.scale = NVFX_FP_OP_DST_SCALE_INV_2X;
688
nvfx_fp_emit(fpc, insn);
689
nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, neg(swz(tmp, X, X, X, X)), none, none));
690
}
691
break;
692
case TGSI_OPCODE_SEQ:
693
nvfx_fp_emit(fpc, arith(sat, SEQ, dst, mask, src[0], src[1], none));
694
break;
695
case TGSI_OPCODE_SGE:
696
nvfx_fp_emit(fpc, arith(sat, SGE, dst, mask, src[0], src[1], none));
697
break;
698
case TGSI_OPCODE_SGT:
699
nvfx_fp_emit(fpc, arith(sat, SGT, dst, mask, src[0], src[1], none));
700
break;
701
case TGSI_OPCODE_SIN:
702
nvfx_fp_emit(fpc, arith(sat, SIN, dst, mask, src[0], none, none));
703
break;
704
case TGSI_OPCODE_SLE:
705
nvfx_fp_emit(fpc, arith(sat, SLE, dst, mask, src[0], src[1], none));
706
break;
707
case TGSI_OPCODE_SLT:
708
nvfx_fp_emit(fpc, arith(sat, SLT, dst, mask, src[0], src[1], none));
709
break;
710
case TGSI_OPCODE_SNE:
711
nvfx_fp_emit(fpc, arith(sat, SNE, dst, mask, src[0], src[1], none));
712
break;
713
case TGSI_OPCODE_SSG:
714
{
715
struct nvfx_src minones = swz(nvfx_src(nvfx_fp_imm(fpc, -1, -1, -1, -1)), X, X, X, X);
716
717
insn = arith(sat, MOV, dst, mask, src[0], none, none);
718
insn.cc_update = 1;
719
nvfx_fp_emit(fpc, insn);
720
721
insn = arith(0, STR, dst, mask, none, none, none);
722
insn.cc_test = NVFX_COND_GT;
723
nvfx_fp_emit(fpc, insn);
724
725
if(!sat) {
726
insn = arith(0, MOV, dst, mask, minones, none, none);
727
insn.cc_test = NVFX_COND_LT;
728
nvfx_fp_emit(fpc, insn);
729
}
730
break;
731
}
732
case TGSI_OPCODE_TEX:
733
nvfx_fp_emit(fpc, tex(sat, TEX, unit, dst, mask, src[0], none, none));
734
break;
735
case TGSI_OPCODE_TRUNC:
736
tmp = nvfx_src(temp(fpc));
737
insn = arith(0, MOV, none.reg, mask, src[0], none, none);
738
insn.cc_update = 1;
739
nvfx_fp_emit(fpc, insn);
740
741
nvfx_fp_emit(fpc, arith(0, FLR, tmp.reg, mask, abs(src[0]), none, none));
742
nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, tmp, none, none));
743
744
insn = arith(sat, MOV, dst, mask, neg(tmp), none, none);
745
insn.cc_test = NVFX_COND_LT;
746
nvfx_fp_emit(fpc, insn);
747
break;
748
case TGSI_OPCODE_TXB:
749
nvfx_fp_emit(fpc, tex(sat, TXB, unit, dst, mask, src[0], none, none));
750
break;
751
case TGSI_OPCODE_TXL:
752
if(fpc->is_nv4x)
753
nvfx_fp_emit(fpc, tex(sat, TXL_NV40, unit, dst, mask, src[0], none, none));
754
else /* unsupported on nv30, use TEX and hope they like it */
755
nvfx_fp_emit(fpc, tex(sat, TEX, unit, dst, mask, src[0], none, none));
756
break;
757
case TGSI_OPCODE_TXP:
758
nvfx_fp_emit(fpc, tex(sat, TXP, unit, dst, mask, src[0], none, none));
759
break;
760
761
case TGSI_OPCODE_IF:
762
// MOVRC0 R31 (TR0.xyzw), R<src>:
763
// IF (NE.xxxx) ELSE <else> END <end>
764
if(!fpc->is_nv4x)
765
goto nv3x_cflow;
766
nv40_fp_if(fpc, src[0]);
767
break;
768
769
case TGSI_OPCODE_ELSE:
770
{
771
uint32_t *hw;
772
if(!fpc->is_nv4x)
773
goto nv3x_cflow;
774
assert(util_dynarray_contains(&fpc->if_stack, unsigned));
775
hw = &fpc->fp->insn[util_dynarray_top(&fpc->if_stack, unsigned)];
776
hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | fpc->fp->insn_len;
777
break;
778
}
779
780
case TGSI_OPCODE_ENDIF:
781
{
782
uint32_t *hw;
783
if(!fpc->is_nv4x)
784
goto nv3x_cflow;
785
assert(util_dynarray_contains(&fpc->if_stack, unsigned));
786
hw = &fpc->fp->insn[util_dynarray_pop(&fpc->if_stack, unsigned)];
787
if(!hw[2])
788
hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | fpc->fp->insn_len;
789
hw[3] = fpc->fp->insn_len;
790
break;
791
}
792
793
case TGSI_OPCODE_BGNSUB:
794
case TGSI_OPCODE_ENDSUB:
795
/* nothing to do here */
796
break;
797
798
case TGSI_OPCODE_CAL:
799
if(!fpc->is_nv4x)
800
goto nv3x_cflow;
801
nv40_fp_cal(fpc, finst->Label.Label);
802
break;
803
804
case TGSI_OPCODE_RET:
805
if(!fpc->is_nv4x)
806
goto nv3x_cflow;
807
nv40_fp_ret(fpc);
808
break;
809
810
case TGSI_OPCODE_BGNLOOP:
811
if(!fpc->is_nv4x)
812
goto nv3x_cflow;
813
/* TODO: we should support using two nested REPs to allow a > 255 iteration count */
814
nv40_fp_rep(fpc, 255, finst->Label.Label);
815
break;
816
817
case TGSI_OPCODE_ENDLOOP:
818
break;
819
820
case TGSI_OPCODE_BRK:
821
if(!fpc->is_nv4x)
822
goto nv3x_cflow;
823
nv40_fp_brk(fpc);
824
break;
825
826
case TGSI_OPCODE_CONT:
827
{
828
static int warned = 0;
829
if(!warned) {
830
NOUVEAU_ERR("Sorry, the continue keyword is not implemented: ignoring it.\n");
831
warned = 1;
832
}
833
break;
834
}
835
836
default:
837
NOUVEAU_ERR("invalid opcode %d\n", finst->Instruction.Opcode);
838
return false;
839
}
840
841
out:
842
release_temps(fpc);
843
return true;
844
nv3x_cflow:
845
{
846
static int warned = 0;
847
if(!warned) {
848
NOUVEAU_ERR(
849
"Sorry, control flow instructions are not supported in hardware on nv3x: ignoring them\n"
850
"If rendering is incorrect, try to disable GLSL support in the application.\n");
851
warned = 1;
852
}
853
}
854
goto out;
855
}
856
857
static bool
858
nvfx_fragprog_parse_decl_input(struct nvfx_fpc *fpc,
859
const struct tgsi_full_declaration *fdec)
860
{
861
unsigned idx = fdec->Range.First;
862
unsigned hw;
863
864
switch (fdec->Semantic.Name) {
865
case TGSI_SEMANTIC_POSITION:
866
hw = NVFX_FP_OP_INPUT_SRC_POSITION;
867
break;
868
case TGSI_SEMANTIC_COLOR:
869
hw = NVFX_FP_OP_INPUT_SRC_COL0 + fdec->Semantic.Index;
870
break;
871
case TGSI_SEMANTIC_FOG:
872
hw = NVFX_FP_OP_INPUT_SRC_FOGC;
873
break;
874
case TGSI_SEMANTIC_FACE:
875
hw = NV40_FP_OP_INPUT_SRC_FACING;
876
break;
877
case TGSI_SEMANTIC_TEXCOORD:
878
assert(fdec->Semantic.Index < 8);
879
fpc->fp->texcoord[fdec->Semantic.Index] = fdec->Semantic.Index;
880
fpc->fp->texcoords |= (1 << fdec->Semantic.Index);
881
fpc->fp->vp_or |= (0x00004000 << fdec->Semantic.Index);
882
hw = NVFX_FP_OP_INPUT_SRC_TC(fdec->Semantic.Index);
883
break;
884
case TGSI_SEMANTIC_GENERIC:
885
case TGSI_SEMANTIC_PCOORD:
886
/* will be assigned to remaining TC slots later */
887
return true;
888
default:
889
assert(0);
890
return false;
891
}
892
893
fpc->r_input[idx] = nvfx_reg(NVFXSR_INPUT, hw);
894
return true;
895
}
896
897
static bool
898
nvfx_fragprog_assign_generic(struct nvfx_fpc *fpc,
899
const struct tgsi_full_declaration *fdec)
900
{
901
unsigned num_texcoords = fpc->is_nv4x ? 10 : 8;
902
unsigned idx = fdec->Range.First;
903
unsigned hw;
904
905
switch (fdec->Semantic.Name) {
906
case TGSI_SEMANTIC_GENERIC:
907
case TGSI_SEMANTIC_PCOORD:
908
for (hw = 0; hw < num_texcoords; hw++) {
909
if (fpc->fp->texcoord[hw] == 0xffff) {
910
if (hw <= 7) {
911
fpc->fp->texcoords |= (0x1 << hw);
912
fpc->fp->vp_or |= (0x00004000 << hw);
913
} else {
914
fpc->fp->vp_or |= (0x00001000 << (hw - 8));
915
}
916
if (fdec->Semantic.Name == TGSI_SEMANTIC_PCOORD) {
917
fpc->fp->texcoord[hw] = 0xfffe;
918
fpc->fp->point_sprite_control |= (0x00000100 << hw);
919
} else {
920
fpc->fp->texcoord[hw] = fdec->Semantic.Index + 8;
921
}
922
hw = NVFX_FP_OP_INPUT_SRC_TC(hw);
923
fpc->r_input[idx] = nvfx_reg(NVFXSR_INPUT, hw);
924
return true;
925
}
926
}
927
return false;
928
default:
929
return true;
930
}
931
}
932
933
static bool
934
nvfx_fragprog_parse_decl_output(struct nvfx_fpc *fpc,
935
const struct tgsi_full_declaration *fdec)
936
{
937
unsigned idx = fdec->Range.First;
938
unsigned hw;
939
940
switch (fdec->Semantic.Name) {
941
case TGSI_SEMANTIC_POSITION:
942
hw = 1;
943
break;
944
case TGSI_SEMANTIC_COLOR:
945
hw = ~0;
946
switch (fdec->Semantic.Index) {
947
case 0: hw = 0; break;
948
case 1: hw = 2; break;
949
case 2: hw = 3; break;
950
case 3: hw = 4; break;
951
}
952
if(hw > ((fpc->is_nv4x) ? 4 : 2)) {
953
NOUVEAU_ERR("bad rcol index\n");
954
return false;
955
}
956
break;
957
default:
958
NOUVEAU_ERR("bad output semantic\n");
959
return false;
960
}
961
962
fpc->r_result[idx] = nvfx_reg(NVFXSR_OUTPUT, hw);
963
fpc->r_temps |= (1ULL << hw);
964
return true;
965
}
966
967
static bool
968
nvfx_fragprog_prepare(struct nvfx_fpc *fpc)
969
{
970
struct tgsi_parse_context p;
971
int high_temp = -1, i;
972
973
fpc->r_imm = CALLOC(fpc->fp->info.immediate_count, sizeof(struct nvfx_reg));
974
975
tgsi_parse_init(&p, fpc->fp->pipe.tokens);
976
while (!tgsi_parse_end_of_tokens(&p)) {
977
const union tgsi_full_token *tok = &p.FullToken;
978
979
tgsi_parse_token(&p);
980
switch(tok->Token.Type) {
981
case TGSI_TOKEN_TYPE_DECLARATION:
982
{
983
const struct tgsi_full_declaration *fdec;
984
fdec = &p.FullToken.FullDeclaration;
985
switch (fdec->Declaration.File) {
986
case TGSI_FILE_INPUT:
987
if (!nvfx_fragprog_parse_decl_input(fpc, fdec))
988
goto out_err;
989
break;
990
case TGSI_FILE_OUTPUT:
991
if (!nvfx_fragprog_parse_decl_output(fpc, fdec))
992
goto out_err;
993
break;
994
case TGSI_FILE_TEMPORARY:
995
if (fdec->Range.Last > high_temp) {
996
high_temp =
997
fdec->Range.Last;
998
}
999
break;
1000
default:
1001
break;
1002
}
1003
}
1004
break;
1005
case TGSI_TOKEN_TYPE_IMMEDIATE:
1006
{
1007
struct tgsi_full_immediate *imm;
1008
1009
imm = &p.FullToken.FullImmediate;
1010
assert(imm->Immediate.DataType == TGSI_IMM_FLOAT32);
1011
assert(fpc->nr_imm < fpc->fp->info.immediate_count);
1012
1013
fpc->r_imm[fpc->nr_imm++] = nvfx_fp_imm(fpc, imm->u[0].Float, imm->u[1].Float, imm->u[2].Float, imm->u[3].Float);
1014
break;
1015
}
1016
default:
1017
break;
1018
}
1019
}
1020
tgsi_parse_free(&p);
1021
1022
tgsi_parse_init(&p, fpc->fp->pipe.tokens);
1023
while (!tgsi_parse_end_of_tokens(&p)) {
1024
const struct tgsi_full_declaration *fdec;
1025
tgsi_parse_token(&p);
1026
switch(p.FullToken.Token.Type) {
1027
case TGSI_TOKEN_TYPE_DECLARATION:
1028
fdec = &p.FullToken.FullDeclaration;
1029
switch (fdec->Declaration.File) {
1030
case TGSI_FILE_INPUT:
1031
if (!nvfx_fragprog_assign_generic(fpc, fdec))
1032
goto out_err;
1033
break;
1034
default:
1035
break;
1036
}
1037
break;
1038
default:
1039
break;
1040
}
1041
}
1042
tgsi_parse_free(&p);
1043
1044
if (++high_temp) {
1045
fpc->r_temp = CALLOC(high_temp, sizeof(struct nvfx_reg));
1046
for (i = 0; i < high_temp; i++)
1047
fpc->r_temp[i] = temp(fpc);
1048
fpc->r_temps_discard = 0ULL;
1049
}
1050
1051
return true;
1052
1053
out_err:
1054
FREE(fpc->r_temp);
1055
fpc->r_temp = NULL;
1056
1057
tgsi_parse_free(&p);
1058
return false;
1059
}
1060
1061
DEBUG_GET_ONCE_BOOL_OPTION(nvfx_dump_fp, "NVFX_DUMP_FP", false)
1062
1063
void
1064
_nvfx_fragprog_translate(uint16_t oclass, struct nv30_fragprog *fp)
1065
{
1066
struct tgsi_parse_context parse;
1067
struct nvfx_fpc *fpc = NULL;
1068
struct util_dynarray insns;
1069
1070
fp->translated = false;
1071
fp->point_sprite_control = 0;
1072
fp->vp_or = 0;
1073
1074
fpc = CALLOC_STRUCT(nvfx_fpc);
1075
if (!fpc)
1076
goto out_err;
1077
1078
fpc->is_nv4x = (oclass >= NV40_3D_CLASS) ? ~0 : 0;
1079
fpc->max_temps = fpc->is_nv4x ? 48 : 32;
1080
fpc->fp = fp;
1081
fpc->num_regs = 2;
1082
memset(fp->texcoord, 0xff, sizeof(fp->texcoord));
1083
1084
if (fp->info.properties[TGSI_PROPERTY_FS_COORD_ORIGIN])
1085
fp->coord_conventions |= NV30_3D_COORD_CONVENTIONS_ORIGIN_INVERTED;
1086
if (fp->info.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER])
1087
fp->coord_conventions |= NV30_3D_COORD_CONVENTIONS_CENTER_INTEGER;
1088
if (fp->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS])
1089
fp->rt_enable |= NV30_3D_RT_ENABLE_MRT;
1090
1091
if (!nvfx_fragprog_prepare(fpc))
1092
goto out_err;
1093
1094
tgsi_parse_init(&parse, fp->pipe.tokens);
1095
util_dynarray_init(&insns, NULL);
1096
1097
while (!tgsi_parse_end_of_tokens(&parse)) {
1098
tgsi_parse_token(&parse);
1099
1100
switch (parse.FullToken.Token.Type) {
1101
case TGSI_TOKEN_TYPE_INSTRUCTION:
1102
{
1103
const struct tgsi_full_instruction *finst;
1104
1105
util_dynarray_append(&insns, unsigned, fp->insn_len);
1106
finst = &parse.FullToken.FullInstruction;
1107
if (!nvfx_fragprog_parse_instruction(fpc, finst))
1108
goto out_err;
1109
}
1110
break;
1111
default:
1112
break;
1113
}
1114
}
1115
util_dynarray_append(&insns, unsigned, fp->insn_len);
1116
1117
for(unsigned i = 0; i < fpc->label_relocs.size; i += sizeof(struct nvfx_relocation))
1118
{
1119
struct nvfx_relocation* label_reloc = (struct nvfx_relocation*)((char*)fpc->label_relocs.data + i);
1120
fp->insn[label_reloc->location] |= ((unsigned*)insns.data)[label_reloc->target];
1121
}
1122
util_dynarray_fini(&insns);
1123
1124
if(!fpc->is_nv4x)
1125
fp->fp_control |= (fpc->num_regs-1)/2;
1126
else
1127
fp->fp_control |= fpc->num_regs << NV40_3D_FP_CONTROL_TEMP_COUNT__SHIFT;
1128
1129
/* Terminate final instruction */
1130
if(fp->insn)
1131
fp->insn[fpc->inst_offset] |= 0x00000001;
1132
1133
/* Append NOP + END instruction for branches to the end of the program */
1134
fpc->inst_offset = fp->insn_len;
1135
grow_insns(fpc, 4);
1136
fp->insn[fpc->inst_offset + 0] = 0x00000001;
1137
fp->insn[fpc->inst_offset + 1] = 0x00000000;
1138
fp->insn[fpc->inst_offset + 2] = 0x00000000;
1139
fp->insn[fpc->inst_offset + 3] = 0x00000000;
1140
1141
if(debug_get_option_nvfx_dump_fp())
1142
{
1143
debug_printf("\n");
1144
tgsi_dump(fp->pipe.tokens, 0);
1145
1146
debug_printf("\n%s fragment program:\n", fpc->is_nv4x ? "nv4x" : "nv3x");
1147
for (unsigned i = 0; i < fp->insn_len; i += 4)
1148
debug_printf("%3u: %08x %08x %08x %08x\n", i >> 2, fp->insn[i], fp->insn[i + 1], fp->insn[i + 2], fp->insn[i + 3]);
1149
debug_printf("\n");
1150
}
1151
1152
fp->translated = true;
1153
1154
out:
1155
tgsi_parse_free(&parse);
1156
if (fpc)
1157
{
1158
FREE(fpc->r_temp);
1159
FREE(fpc->r_imm);
1160
util_dynarray_fini(&fpc->if_stack);
1161
util_dynarray_fini(&fpc->label_relocs);
1162
util_dynarray_fini(&fpc->imm_data);
1163
//util_dynarray_fini(&fpc->loop_stack);
1164
FREE(fpc);
1165
}
1166
1167
return;
1168
1169
out_err:
1170
_debug_printf("Error: failed to compile this fragment program:\n");
1171
tgsi_dump(fp->pipe.tokens, 0);
1172
goto out;
1173
}
1174
1175