Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/gallium/drivers/r300/compiler/radeon_pair_regalloc.c
4574 views
1
/*
2
* Copyright (C) 2009 Nicolai Haehnle.
3
* Copyright 2011 Tom Stellard <[email protected]>
4
*
5
* All Rights Reserved.
6
*
7
* Permission is hereby granted, free of charge, to any person obtaining
8
* a copy of this software and associated documentation files (the
9
* "Software"), to deal in the Software without restriction, including
10
* without limitation the rights to use, copy, modify, merge, publish,
11
* distribute, sublicense, and/or sell copies of the Software, and to
12
* permit persons to whom the Software is furnished to do so, subject to
13
* the following conditions:
14
*
15
* The above copyright notice and this permission notice (including the
16
* next paragraph) shall be included in all copies or substantial
17
* portions of the Software.
18
*
19
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
*
27
*/
28
29
#include "radeon_program_pair.h"
30
31
#include <stdio.h>
32
33
#include "main/glheader.h"
34
#include "util/register_allocate.h"
35
#include "util/u_memory.h"
36
#include "util/ralloc.h"
37
38
#include "r300_fragprog_swizzle.h"
39
#include "radeon_compiler.h"
40
#include "radeon_compiler_util.h"
41
#include "radeon_dataflow.h"
42
#include "radeon_list.h"
43
#include "radeon_regalloc.h"
44
#include "radeon_variable.h"
45
46
#define VERBOSE 0
47
48
#define DBG(...) do { if (VERBOSE) fprintf(stderr, __VA_ARGS__); } while(0)
49
50
51
52
struct register_info {
53
struct live_intervals Live[4];
54
55
unsigned int Used:1;
56
unsigned int Allocated:1;
57
unsigned int File:3;
58
unsigned int Index:RC_REGISTER_INDEX_BITS;
59
unsigned int Writemask;
60
};
61
62
struct regalloc_state {
63
struct radeon_compiler * C;
64
65
struct register_info * Input;
66
unsigned int NumInputs;
67
68
struct register_info * Temporary;
69
unsigned int NumTemporaries;
70
71
unsigned int Simple;
72
int LoopEnd;
73
};
74
75
struct rc_class {
76
enum rc_reg_class ID;
77
78
unsigned int WritemaskCount;
79
80
/** List of writemasks that belong to this class */
81
unsigned int Writemasks[3];
82
83
84
};
85
86
static const struct rc_class rc_class_list [] = {
87
{RC_REG_CLASS_SINGLE, 3,
88
{RC_MASK_X,
89
RC_MASK_Y,
90
RC_MASK_Z}},
91
{RC_REG_CLASS_DOUBLE, 3,
92
{RC_MASK_X | RC_MASK_Y,
93
RC_MASK_X | RC_MASK_Z,
94
RC_MASK_Y | RC_MASK_Z}},
95
{RC_REG_CLASS_TRIPLE, 1,
96
{RC_MASK_X | RC_MASK_Y | RC_MASK_Z,
97
RC_MASK_NONE,
98
RC_MASK_NONE}},
99
{RC_REG_CLASS_ALPHA, 1,
100
{RC_MASK_W,
101
RC_MASK_NONE,
102
RC_MASK_NONE}},
103
{RC_REG_CLASS_SINGLE_PLUS_ALPHA, 3,
104
{RC_MASK_X | RC_MASK_W,
105
RC_MASK_Y | RC_MASK_W,
106
RC_MASK_Z | RC_MASK_W}},
107
{RC_REG_CLASS_DOUBLE_PLUS_ALPHA, 3,
108
{RC_MASK_X | RC_MASK_Y | RC_MASK_W,
109
RC_MASK_X | RC_MASK_Z | RC_MASK_W,
110
RC_MASK_Y | RC_MASK_Z | RC_MASK_W}},
111
{RC_REG_CLASS_TRIPLE_PLUS_ALPHA, 1,
112
{RC_MASK_X | RC_MASK_Y | RC_MASK_Z | RC_MASK_W,
113
RC_MASK_NONE,
114
RC_MASK_NONE}},
115
{RC_REG_CLASS_X, 1,
116
{RC_MASK_X,
117
RC_MASK_NONE,
118
RC_MASK_NONE}},
119
{RC_REG_CLASS_Y, 1,
120
{RC_MASK_Y,
121
RC_MASK_NONE,
122
RC_MASK_NONE}},
123
{RC_REG_CLASS_Z, 1,
124
{RC_MASK_Z,
125
RC_MASK_NONE,
126
RC_MASK_NONE}},
127
{RC_REG_CLASS_XY, 1,
128
{RC_MASK_X | RC_MASK_Y,
129
RC_MASK_NONE,
130
RC_MASK_NONE}},
131
{RC_REG_CLASS_YZ, 1,
132
{RC_MASK_Y | RC_MASK_Z,
133
RC_MASK_NONE,
134
RC_MASK_NONE}},
135
{RC_REG_CLASS_XZ, 1,
136
{RC_MASK_X | RC_MASK_Z,
137
RC_MASK_NONE,
138
RC_MASK_NONE}},
139
{RC_REG_CLASS_XW, 1,
140
{RC_MASK_X | RC_MASK_W,
141
RC_MASK_NONE,
142
RC_MASK_NONE}},
143
{RC_REG_CLASS_YW, 1,
144
{RC_MASK_Y | RC_MASK_W,
145
RC_MASK_NONE,
146
RC_MASK_NONE}},
147
{RC_REG_CLASS_ZW, 1,
148
{RC_MASK_Z | RC_MASK_W,
149
RC_MASK_NONE,
150
RC_MASK_NONE}},
151
{RC_REG_CLASS_XYW, 1,
152
{RC_MASK_X | RC_MASK_Y | RC_MASK_W,
153
RC_MASK_NONE,
154
RC_MASK_NONE}},
155
{RC_REG_CLASS_YZW, 1,
156
{RC_MASK_Y | RC_MASK_Z | RC_MASK_W,
157
RC_MASK_NONE,
158
RC_MASK_NONE}},
159
{RC_REG_CLASS_XZW, 1,
160
{RC_MASK_X | RC_MASK_Z | RC_MASK_W,
161
RC_MASK_NONE,
162
RC_MASK_NONE}}
163
};
164
165
static void print_live_intervals(struct live_intervals * src)
166
{
167
if (!src || !src->Used) {
168
DBG("(null)");
169
return;
170
}
171
172
DBG("(%i,%i)", src->Start, src->End);
173
}
174
175
static int overlap_live_intervals(struct live_intervals * a, struct live_intervals * b)
176
{
177
if (VERBOSE) {
178
DBG("overlap_live_intervals: ");
179
print_live_intervals(a);
180
DBG(" to ");
181
print_live_intervals(b);
182
DBG("\n");
183
}
184
185
if (!a->Used || !b->Used) {
186
DBG(" unused interval\n");
187
return 0;
188
}
189
190
if (a->Start > b->Start) {
191
if (a->Start < b->End) {
192
DBG(" overlap\n");
193
return 1;
194
}
195
} else if (b->Start > a->Start) {
196
if (b->Start < a->End) {
197
DBG(" overlap\n");
198
return 1;
199
}
200
} else { /* a->Start == b->Start */
201
if (a->Start != a->End && b->Start != b->End) {
202
DBG(" overlap\n");
203
return 1;
204
}
205
}
206
207
DBG(" no overlap\n");
208
209
return 0;
210
}
211
212
static void scan_read_callback(void * data, struct rc_instruction * inst,
213
rc_register_file file, unsigned int index, unsigned int mask)
214
{
215
struct regalloc_state * s = data;
216
struct register_info * reg;
217
unsigned int i;
218
219
if (file != RC_FILE_INPUT)
220
return;
221
222
s->Input[index].Used = 1;
223
reg = &s->Input[index];
224
225
for (i = 0; i < 4; i++) {
226
if (!((mask >> i) & 0x1)) {
227
continue;
228
}
229
reg->Live[i].Used = 1;
230
reg->Live[i].Start = 0;
231
reg->Live[i].End =
232
s->LoopEnd > inst->IP ? s->LoopEnd : inst->IP;
233
}
234
}
235
236
static void remap_register(void * data, struct rc_instruction * inst,
237
rc_register_file * file, unsigned int * index)
238
{
239
struct regalloc_state * s = data;
240
const struct register_info * reg;
241
242
if (*file == RC_FILE_TEMPORARY && s->Simple)
243
reg = &s->Temporary[*index];
244
else if (*file == RC_FILE_INPUT)
245
reg = &s->Input[*index];
246
else
247
return;
248
249
if (reg->Allocated) {
250
*index = reg->Index;
251
}
252
}
253
254
static void alloc_input_simple(void * data, unsigned int input,
255
unsigned int hwreg)
256
{
257
struct regalloc_state * s = data;
258
259
if (input >= s->NumInputs)
260
return;
261
262
s->Input[input].Allocated = 1;
263
s->Input[input].File = RC_FILE_TEMPORARY;
264
s->Input[input].Index = hwreg;
265
}
266
267
/* This functions offsets the temporary register indices by the number
268
* of input registers, because input registers are actually temporaries and
269
* should not occupy the same space.
270
*
271
* This pass is supposed to be used to maintain correct allocation of inputs
272
* if the standard register allocation is disabled. */
273
static void do_regalloc_inputs_only(struct regalloc_state * s)
274
{
275
for (unsigned i = 0; i < s->NumTemporaries; i++) {
276
s->Temporary[i].Allocated = 1;
277
s->Temporary[i].File = RC_FILE_TEMPORARY;
278
s->Temporary[i].Index = i + s->NumInputs;
279
}
280
}
281
282
static unsigned int is_derivative(rc_opcode op)
283
{
284
return (op == RC_OPCODE_DDX || op == RC_OPCODE_DDY);
285
}
286
287
static int find_class(
288
const struct rc_class * classes,
289
unsigned int writemask,
290
unsigned int max_writemask_count)
291
{
292
unsigned int i;
293
for (i = 0; i < RC_REG_CLASS_COUNT; i++) {
294
unsigned int j;
295
if (classes[i].WritemaskCount > max_writemask_count) {
296
continue;
297
}
298
for (j = 0; j < 3; j++) {
299
if (classes[i].Writemasks[j] == writemask) {
300
return i;
301
}
302
}
303
}
304
return -1;
305
}
306
307
struct variable_get_class_cb_data {
308
unsigned int * can_change_writemask;
309
unsigned int conversion_swizzle;
310
};
311
312
static void variable_get_class_read_cb(
313
void * userdata,
314
struct rc_instruction * inst,
315
struct rc_pair_instruction_arg * arg,
316
struct rc_pair_instruction_source * src)
317
{
318
struct variable_get_class_cb_data * d = userdata;
319
unsigned int new_swizzle = rc_adjust_channels(arg->Swizzle,
320
d->conversion_swizzle);
321
if (!r300_swizzle_is_native_basic(new_swizzle)) {
322
*d->can_change_writemask = 0;
323
}
324
}
325
326
static enum rc_reg_class variable_get_class(
327
struct rc_variable * variable,
328
const struct rc_class * classes)
329
{
330
unsigned int i;
331
unsigned int can_change_writemask= 1;
332
unsigned int writemask = rc_variable_writemask_sum(variable);
333
struct rc_list * readers = rc_variable_readers_union(variable);
334
int class_index;
335
336
if (!variable->C->is_r500) {
337
struct rc_class c;
338
struct rc_variable * var_ptr;
339
/* The assumption here is that if an instruction has type
340
* RC_INSTRUCTION_NORMAL then it is a TEX instruction.
341
* r300 and r400 can't swizzle the result of a TEX lookup. */
342
for (var_ptr = variable; var_ptr; var_ptr = var_ptr->Friend) {
343
if (var_ptr->Inst->Type == RC_INSTRUCTION_NORMAL) {
344
writemask = RC_MASK_XYZW;
345
}
346
}
347
348
/* Check if it is possible to do swizzle packing for r300/r400
349
* without creating non-native swizzles. */
350
class_index = find_class(classes, writemask, 3);
351
if (class_index < 0) {
352
goto error;
353
}
354
c = classes[class_index];
355
if (c.WritemaskCount == 1) {
356
goto done;
357
}
358
for (i = 0; i < c.WritemaskCount; i++) {
359
struct rc_variable * var_ptr;
360
for (var_ptr = variable; var_ptr;
361
var_ptr = var_ptr->Friend) {
362
int j;
363
unsigned int conversion_swizzle =
364
rc_make_conversion_swizzle(
365
writemask, c.Writemasks[i]);
366
struct variable_get_class_cb_data d;
367
d.can_change_writemask = &can_change_writemask;
368
d.conversion_swizzle = conversion_swizzle;
369
/* If we get this far var_ptr->Inst has to
370
* be a pair instruction. If variable or any
371
* of its friends are normal instructions,
372
* then the writemask will be set to RC_MASK_XYZW
373
* and the function will return before it gets
374
* here. */
375
rc_pair_for_all_reads_arg(var_ptr->Inst,
376
variable_get_class_read_cb, &d);
377
378
for (j = 0; j < var_ptr->ReaderCount; j++) {
379
unsigned int old_swizzle;
380
unsigned int new_swizzle;
381
struct rc_reader r = var_ptr->Readers[j];
382
if (r.Inst->Type ==
383
RC_INSTRUCTION_PAIR ) {
384
old_swizzle = r.U.P.Arg->Swizzle;
385
} else {
386
/* Source operands of TEX
387
* instructions can't be
388
* swizzle on r300/r400 GPUs.
389
*/
390
can_change_writemask = 0;
391
break;
392
}
393
new_swizzle = rc_adjust_channels(
394
old_swizzle, conversion_swizzle);
395
if (!r300_swizzle_is_native_basic(
396
new_swizzle)) {
397
can_change_writemask = 0;
398
break;
399
}
400
}
401
if (!can_change_writemask) {
402
break;
403
}
404
}
405
if (!can_change_writemask) {
406
break;
407
}
408
}
409
}
410
411
if (variable->Inst->Type == RC_INSTRUCTION_PAIR) {
412
/* DDX/DDY seem to always fail when their writemasks are
413
* changed.*/
414
if (is_derivative(variable->Inst->U.P.RGB.Opcode)
415
|| is_derivative(variable->Inst->U.P.Alpha.Opcode)) {
416
can_change_writemask = 0;
417
}
418
}
419
for ( ; readers; readers = readers->Next) {
420
struct rc_reader * r = readers->Item;
421
if (r->Inst->Type == RC_INSTRUCTION_PAIR) {
422
if (r->U.P.Arg->Source == RC_PAIR_PRESUB_SRC) {
423
can_change_writemask = 0;
424
break;
425
}
426
/* DDX/DDY also fail when their swizzles are changed. */
427
if (is_derivative(r->Inst->U.P.RGB.Opcode)
428
|| is_derivative(r->Inst->U.P.Alpha.Opcode)) {
429
can_change_writemask = 0;
430
break;
431
}
432
}
433
}
434
435
class_index = find_class(classes, writemask,
436
can_change_writemask ? 3 : 1);
437
done:
438
if (class_index > -1) {
439
return classes[class_index].ID;
440
} else {
441
error:
442
rc_error(variable->C,
443
"Could not find class for index=%u mask=%u\n",
444
variable->Dst.Index, writemask);
445
return 0;
446
}
447
}
448
449
static unsigned int overlap_live_intervals_array(
450
struct live_intervals * a,
451
struct live_intervals * b)
452
{
453
unsigned int a_chan, b_chan;
454
for (a_chan = 0; a_chan < 4; a_chan++) {
455
for (b_chan = 0; b_chan < 4; b_chan++) {
456
if (overlap_live_intervals(&a[a_chan], &b[b_chan])) {
457
return 1;
458
}
459
}
460
}
461
return 0;
462
}
463
464
static unsigned int reg_get_index(int reg)
465
{
466
return reg / RC_MASK_XYZW;
467
}
468
469
static unsigned int reg_get_writemask(int reg)
470
{
471
return (reg % RC_MASK_XYZW) + 1;
472
}
473
474
static int get_reg_id(unsigned int index, unsigned int writemask)
475
{
476
assert(writemask);
477
if (writemask == 0) {
478
return 0;
479
}
480
return (index * RC_MASK_XYZW) + (writemask - 1);
481
}
482
483
#if VERBOSE
484
static void print_reg(int reg)
485
{
486
unsigned int index = reg_get_index(reg);
487
unsigned int mask = reg_get_writemask(reg);
488
fprintf(stderr, "Temp[%u].%c%c%c%c", index,
489
mask & RC_MASK_X ? 'x' : '_',
490
mask & RC_MASK_Y ? 'y' : '_',
491
mask & RC_MASK_Z ? 'z' : '_',
492
mask & RC_MASK_W ? 'w' : '_');
493
}
494
#endif
495
496
static void add_register_conflicts(
497
struct ra_regs * regs,
498
unsigned int max_temp_regs)
499
{
500
unsigned int index, a_mask, b_mask;
501
for (index = 0; index < max_temp_regs; index++) {
502
for(a_mask = 1; a_mask <= RC_MASK_XYZW; a_mask++) {
503
for (b_mask = a_mask + 1; b_mask <= RC_MASK_XYZW;
504
b_mask++) {
505
if (a_mask & b_mask) {
506
ra_add_reg_conflict(regs,
507
get_reg_id(index, a_mask),
508
get_reg_id(index, b_mask));
509
}
510
}
511
}
512
}
513
}
514
515
static void do_advanced_regalloc(struct regalloc_state * s)
516
{
517
518
unsigned int i, input_node, node_count, node_index;
519
struct ra_class ** node_classes;
520
struct rc_instruction * inst;
521
struct rc_list * var_ptr;
522
struct rc_list * variables;
523
struct ra_graph * graph;
524
const struct rc_regalloc_state *ra_state = s->C->regalloc_state;
525
526
/* Get list of program variables */
527
variables = rc_get_variables(s->C);
528
node_count = rc_list_count(variables);
529
node_classes = memory_pool_malloc(&s->C->Pool,
530
node_count * sizeof(struct ra_class *));
531
532
for (var_ptr = variables, node_index = 0; var_ptr;
533
var_ptr = var_ptr->Next, node_index++) {
534
unsigned int class_index;
535
/* Compute the live intervals */
536
rc_variable_compute_live_intervals(var_ptr->Item);
537
538
class_index = variable_get_class(var_ptr->Item, rc_class_list);
539
node_classes[node_index] = ra_state->classes[class_index];
540
}
541
542
543
/* Calculate live intervals for input registers */
544
for (inst = s->C->Program.Instructions.Next;
545
inst != &s->C->Program.Instructions;
546
inst = inst->Next) {
547
rc_opcode op = rc_get_flow_control_inst(inst);
548
if (op == RC_OPCODE_BGNLOOP) {
549
struct rc_instruction * endloop =
550
rc_match_bgnloop(inst);
551
if (endloop->IP > s->LoopEnd) {
552
s->LoopEnd = endloop->IP;
553
}
554
}
555
rc_for_all_reads_mask(inst, scan_read_callback, s);
556
}
557
558
/* Compute the writemask for inputs. */
559
for (i = 0; i < s->NumInputs; i++) {
560
unsigned int chan, writemask = 0;
561
for (chan = 0; chan < 4; chan++) {
562
if (s->Input[i].Live[chan].Used) {
563
writemask |= (1 << chan);
564
}
565
}
566
s->Input[i].Writemask = writemask;
567
}
568
569
graph = ra_alloc_interference_graph(ra_state->regs,
570
node_count + s->NumInputs);
571
572
for (node_index = 0; node_index < node_count; node_index++) {
573
ra_set_node_class(graph, node_index, node_classes[node_index]);
574
}
575
576
/* Build the interference graph */
577
for (var_ptr = variables, node_index = 0; var_ptr;
578
var_ptr = var_ptr->Next,node_index++) {
579
struct rc_list * a, * b;
580
unsigned int b_index;
581
582
for (a = var_ptr, b = var_ptr->Next, b_index = node_index + 1;
583
b; b = b->Next, b_index++) {
584
struct rc_variable * var_a = a->Item;
585
while (var_a) {
586
struct rc_variable * var_b = b->Item;
587
while (var_b) {
588
if (overlap_live_intervals_array(var_a->Live, var_b->Live)) {
589
ra_add_node_interference(graph,
590
node_index, b_index);
591
}
592
var_b = var_b->Friend;
593
}
594
var_a = var_a->Friend;
595
}
596
}
597
}
598
599
/* Add input registers to the interference graph */
600
for (i = 0, input_node = 0; i< s->NumInputs; i++) {
601
if (!s->Input[i].Writemask) {
602
continue;
603
}
604
for (var_ptr = variables, node_index = 0;
605
var_ptr; var_ptr = var_ptr->Next, node_index++) {
606
struct rc_variable * var = var_ptr->Item;
607
if (overlap_live_intervals_array(s->Input[i].Live,
608
var->Live)) {
609
ra_add_node_interference(graph, node_index,
610
node_count + input_node);
611
}
612
}
613
/* Manually allocate a register for this input */
614
ra_set_node_reg(graph, node_count + input_node, get_reg_id(
615
s->Input[i].Index, s->Input[i].Writemask));
616
input_node++;
617
}
618
619
if (!ra_allocate(graph)) {
620
rc_error(s->C, "Ran out of hardware temporaries\n");
621
return;
622
}
623
624
/* Rewrite the registers */
625
for (var_ptr = variables, node_index = 0; var_ptr;
626
var_ptr = var_ptr->Next, node_index++) {
627
int reg = ra_get_node_reg(graph, node_index);
628
unsigned int writemask = reg_get_writemask(reg);
629
unsigned int index = reg_get_index(reg);
630
struct rc_variable * var = var_ptr->Item;
631
632
if (!s->C->is_r500 && var->Inst->Type == RC_INSTRUCTION_NORMAL) {
633
writemask = rc_variable_writemask_sum(var);
634
}
635
636
if (var->Dst.File == RC_FILE_INPUT) {
637
continue;
638
}
639
rc_variable_change_dst(var, index, writemask);
640
}
641
642
ralloc_free(graph);
643
}
644
645
void rc_init_regalloc_state(struct rc_regalloc_state *s)
646
{
647
unsigned i, j, index;
648
unsigned **ra_q_values;
649
650
/* Pre-computed q values. This array describes the maximum number of
651
* a class's [row] registers that are in conflict with a single
652
* register from another class [column].
653
*
654
* For example:
655
* q_values[0][2] is 3, because a register from class 2
656
* (RC_REG_CLASS_TRIPLE) may conflict with at most 3 registers from
657
* class 0 (RC_REG_CLASS_SINGLE) e.g. T0.xyz conflicts with T0.x, T0.y,
658
* and T0.z.
659
*
660
* q_values[2][0] is 1, because a register from class 0
661
* (RC_REG_CLASS_SINGLE) may conflict with at most 1 register from
662
* class 2 (RC_REG_CLASS_TRIPLE) e.g. T0.x conflicts with T0.xyz
663
*
664
* The q values for each register class [row] will never be greater
665
* than the maximum number of writemask combinations for that class.
666
*
667
* For example:
668
*
669
* Class 2 (RC_REG_CLASS_TRIPLE) only has 1 writemask combination,
670
* so no value in q_values[2][0..RC_REG_CLASS_COUNT] will be greater
671
* than 1.
672
*/
673
const unsigned q_values[RC_REG_CLASS_COUNT][RC_REG_CLASS_COUNT] = {
674
{1, 2, 3, 0, 1, 2, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2},
675
{2, 3, 3, 0, 2, 3, 3, 2, 2, 2, 3, 3, 3, 2, 2, 2, 3, 3, 3},
676
{1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
677
{0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1},
678
{1, 2, 3, 3, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3},
679
{2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3},
680
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
681
{1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1},
682
{1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0},
683
{1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1},
684
{1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1},
685
{1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1},
686
{1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1},
687
{1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1},
688
{1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1},
689
{1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1},
690
{1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1},
691
{1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
692
{1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
693
};
694
695
/* Allocate the main ra data structure */
696
s->regs = ra_alloc_reg_set(NULL, R500_PFS_NUM_TEMP_REGS * RC_MASK_XYZW,
697
true);
698
699
/* Create the register classes */
700
for (i = 0; i < RC_REG_CLASS_COUNT; i++) {
701
const struct rc_class *class = &rc_class_list[i];
702
s->classes[class->ID] = ra_alloc_reg_class(s->regs);
703
704
/* Assign registers to the classes */
705
for (index = 0; index < R500_PFS_NUM_TEMP_REGS; index++) {
706
for (j = 0; j < class->WritemaskCount; j++) {
707
int reg_id = get_reg_id(index,
708
class->Writemasks[j]);
709
ra_class_add_reg(s->classes[class->ID], reg_id);
710
}
711
}
712
}
713
714
/* Set the q values. The q_values array is indexed based on
715
* the rc_reg_class ID (RC_REG_CLASS_*) which might be
716
* different than the ID assigned to that class by ra.
717
* This why we need to manually construct this list.
718
*/
719
ra_q_values = MALLOC(RC_REG_CLASS_COUNT * sizeof(unsigned *));
720
721
for (i = 0; i < RC_REG_CLASS_COUNT; i++) {
722
ra_q_values[i] = MALLOC(RC_REG_CLASS_COUNT * sizeof(unsigned));
723
for (j = 0; j < RC_REG_CLASS_COUNT; j++) {
724
ra_q_values[i][j] = q_values[i][j];
725
}
726
}
727
728
/* Add register conflicts */
729
add_register_conflicts(s->regs, R500_PFS_NUM_TEMP_REGS);
730
731
ra_set_finalize(s->regs, ra_q_values);
732
733
for (i = 0; i < RC_REG_CLASS_COUNT; i++) {
734
FREE(ra_q_values[i]);
735
}
736
FREE(ra_q_values);
737
}
738
739
void rc_destroy_regalloc_state(struct rc_regalloc_state *s)
740
{
741
ralloc_free(s->regs);
742
}
743
744
/**
745
* @param user This parameter should be a pointer to an integer value. If this
746
* integer value is zero, then a simple register allocator will be used that
747
* only allocates space for input registers (\sa do_regalloc_inputs_only). If
748
* user is non-zero, then the regular register allocator will be used
749
* (\sa do_regalloc).
750
*/
751
void rc_pair_regalloc(struct radeon_compiler *cc, void *user)
752
{
753
struct r300_fragment_program_compiler *c =
754
(struct r300_fragment_program_compiler*)cc;
755
struct regalloc_state s;
756
int * do_full_regalloc = (int*)user;
757
758
memset(&s, 0, sizeof(s));
759
s.C = cc;
760
s.NumInputs = rc_get_max_index(cc, RC_FILE_INPUT) + 1;
761
s.Input = memory_pool_malloc(&cc->Pool,
762
s.NumInputs * sizeof(struct register_info));
763
memset(s.Input, 0, s.NumInputs * sizeof(struct register_info));
764
765
s.NumTemporaries = rc_get_max_index(cc, RC_FILE_TEMPORARY) + 1;
766
s.Temporary = memory_pool_malloc(&cc->Pool,
767
s.NumTemporaries * sizeof(struct register_info));
768
memset(s.Temporary, 0, s.NumTemporaries * sizeof(struct register_info));
769
770
rc_recompute_ips(s.C);
771
772
c->AllocateHwInputs(c, &alloc_input_simple, &s);
773
if (*do_full_regalloc) {
774
do_advanced_regalloc(&s);
775
} else {
776
s.Simple = 1;
777
do_regalloc_inputs_only(&s);
778
}
779
780
/* Rewrite inputs and if we are doing the simple allocation, rewrite
781
* temporaries too. */
782
for (struct rc_instruction *inst = s.C->Program.Instructions.Next;
783
inst != &s.C->Program.Instructions;
784
inst = inst->Next) {
785
rc_remap_registers(inst, &remap_register, &s);
786
}
787
}
788
789