Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/gallium/drivers/r300/r300_emit.c
4570 views
1
/*
2
* Copyright 2008 Corbin Simpson <[email protected]>
3
* Copyright 2009 Marek Olšák <[email protected]>
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* on the rights to use, copy, modify, merge, publish, distribute, sub
9
* license, and/or sell copies of the Software, and to permit persons to whom
10
* the Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice (including the next
13
* paragraph) shall be included in all copies or substantial portions of the
14
* Software.
15
*
16
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22
* USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24
/* r300_emit: Functions for emitting state. */
25
26
#include "util/format/u_format.h"
27
#include "util/u_math.h"
28
29
#include "r300_context.h"
30
#include "r300_cb.h"
31
#include "r300_cs.h"
32
#include "r300_emit.h"
33
#include "r300_fs.h"
34
#include "r300_screen.h"
35
#include "r300_screen_buffer.h"
36
#include "r300_vs.h"
37
38
void r300_emit_blend_state(struct r300_context* r300,
39
unsigned size, void* state)
40
{
41
struct r300_blend_state* blend = (struct r300_blend_state*)state;
42
struct pipe_framebuffer_state* fb =
43
(struct pipe_framebuffer_state*)r300->fb_state.state;
44
struct pipe_surface *cb;
45
CS_LOCALS(r300);
46
47
cb = fb->nr_cbufs ? r300_get_nonnull_cb(fb, 0) : NULL;
48
49
if (cb) {
50
if (cb->format == PIPE_FORMAT_R16G16B16A16_FLOAT) {
51
WRITE_CS_TABLE(blend->cb_noclamp, size);
52
} else if (cb->format == PIPE_FORMAT_R16G16B16X16_FLOAT) {
53
WRITE_CS_TABLE(blend->cb_noclamp_noalpha, size);
54
} else {
55
unsigned swz = r300_surface(cb)->colormask_swizzle;
56
WRITE_CS_TABLE(blend->cb_clamp[swz], size);
57
}
58
} else {
59
WRITE_CS_TABLE(blend->cb_no_readwrite, size);
60
}
61
}
62
63
void r300_emit_blend_color_state(struct r300_context* r300,
64
unsigned size, void* state)
65
{
66
struct r300_blend_color_state* bc = (struct r300_blend_color_state*)state;
67
CS_LOCALS(r300);
68
69
WRITE_CS_TABLE(bc->cb, size);
70
}
71
72
void r300_emit_clip_state(struct r300_context* r300,
73
unsigned size, void* state)
74
{
75
struct r300_clip_state* clip = (struct r300_clip_state*)state;
76
CS_LOCALS(r300);
77
78
WRITE_CS_TABLE(clip->cb, size);
79
}
80
81
void r300_emit_dsa_state(struct r300_context* r300, unsigned size, void* state)
82
{
83
struct r300_dsa_state* dsa = (struct r300_dsa_state*)state;
84
struct pipe_framebuffer_state* fb =
85
(struct pipe_framebuffer_state*)r300->fb_state.state;
86
boolean is_r500 = r300->screen->caps.is_r500;
87
CS_LOCALS(r300);
88
uint32_t alpha_func = dsa->alpha_function;
89
90
/* Choose the alpha ref value between 8-bit (FG_ALPHA_FUNC.AM_VAL) and
91
* 16-bit (FG_ALPHA_VALUE). */
92
if (is_r500 && (alpha_func & R300_FG_ALPHA_FUNC_ENABLE)) {
93
struct pipe_surface *cb = fb->nr_cbufs ? r300_get_nonnull_cb(fb, 0) : NULL;
94
95
if (cb &&
96
(cb->format == PIPE_FORMAT_R16G16B16A16_FLOAT ||
97
cb->format == PIPE_FORMAT_R16G16B16X16_FLOAT)) {
98
alpha_func |= R500_FG_ALPHA_FUNC_FP16_ENABLE;
99
} else {
100
alpha_func |= R500_FG_ALPHA_FUNC_8BIT;
101
}
102
}
103
104
/* Setup alpha-to-coverage. */
105
if (r300->alpha_to_coverage && r300->msaa_enable) {
106
/* Always set 3/6, it improves precision even for 2x and 4x MSAA. */
107
alpha_func |= R300_FG_ALPHA_FUNC_MASK_ENABLE |
108
R300_FG_ALPHA_FUNC_CFG_3_OF_6;
109
}
110
111
BEGIN_CS(size);
112
OUT_CS_REG(R300_FG_ALPHA_FUNC, alpha_func);
113
OUT_CS_TABLE(fb->zsbuf ? &dsa->cb_begin : dsa->cb_zb_no_readwrite, size-2);
114
END_CS;
115
}
116
117
static void get_rc_constant_state(
118
float vec[4],
119
struct r300_context * r300,
120
struct rc_constant * constant)
121
{
122
struct r300_textures_state* texstate = r300->textures_state.state;
123
struct r300_resource *tex;
124
125
assert(constant->Type == RC_CONSTANT_STATE);
126
127
/* vec should either be (0, 0, 0, 1), which should be a relatively safe
128
* RGBA or STRQ value, or it could be one of the RC_CONSTANT_STATE
129
* state factors. */
130
131
switch (constant->u.State[0]) {
132
/* Factor for converting rectangle coords to
133
* normalized coords. Should only show up on non-r500. */
134
case RC_STATE_R300_TEXRECT_FACTOR:
135
tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
136
vec[0] = 1.0 / tex->tex.width0;
137
vec[1] = 1.0 / tex->tex.height0;
138
vec[2] = 0;
139
vec[3] = 1;
140
break;
141
142
case RC_STATE_R300_TEXSCALE_FACTOR:
143
tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture);
144
/* Add a small number to the texture size to work around rounding errors in hw. */
145
vec[0] = tex->b.width0 / (tex->tex.width0 + 0.001f);
146
vec[1] = tex->b.height0 / (tex->tex.height0 + 0.001f);
147
vec[2] = tex->b.depth0 / (tex->tex.depth0 + 0.001f);
148
vec[3] = 1;
149
break;
150
151
case RC_STATE_R300_VIEWPORT_SCALE:
152
vec[0] = r300->viewport.scale[0];
153
vec[1] = r300->viewport.scale[1];
154
vec[2] = r300->viewport.scale[2];
155
vec[3] = 1;
156
break;
157
158
case RC_STATE_R300_VIEWPORT_OFFSET:
159
vec[0] = r300->viewport.translate[0];
160
vec[1] = r300->viewport.translate[1];
161
vec[2] = r300->viewport.translate[2];
162
vec[3] = 1;
163
break;
164
165
default:
166
fprintf(stderr, "r300: Implementation error: "
167
"Unknown RC_CONSTANT type %d\n", constant->u.State[0]);
168
vec[0] = 0;
169
vec[1] = 0;
170
vec[2] = 0;
171
vec[3] = 1;
172
}
173
}
174
175
/* Convert a normal single-precision float into the 7.16 format
176
* used by the R300 fragment shader.
177
*/
178
uint32_t pack_float24(float f)
179
{
180
union {
181
float fl;
182
uint32_t u;
183
} u;
184
float mantissa;
185
int exponent;
186
uint32_t float24 = 0;
187
188
if (f == 0.0)
189
return 0;
190
191
u.fl = f;
192
193
mantissa = frexpf(f, &exponent);
194
195
/* Handle -ve */
196
if (mantissa < 0) {
197
float24 |= (1 << 23);
198
mantissa = mantissa * -1.0;
199
}
200
/* Handle exponent, bias of 63 */
201
exponent += 62;
202
float24 |= (exponent << 16);
203
/* Kill 7 LSB of mantissa */
204
float24 |= (u.u & 0x7FFFFF) >> 7;
205
206
return float24;
207
}
208
209
void r300_emit_fs(struct r300_context* r300, unsigned size, void *state)
210
{
211
struct r300_fragment_shader *fs = r300_fs(r300);
212
CS_LOCALS(r300);
213
214
WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
215
}
216
217
void r300_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
218
{
219
struct r300_fragment_shader *fs = r300_fs(r300);
220
struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
221
unsigned count = fs->shader->externals_count;
222
unsigned i, j;
223
CS_LOCALS(r300);
224
225
if (count == 0)
226
return;
227
228
BEGIN_CS(size);
229
OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X, count * 4);
230
if (buf->remap_table){
231
for (i = 0; i < count; i++) {
232
float *data = (float*)&buf->ptr[buf->remap_table[i]*4];
233
for (j = 0; j < 4; j++)
234
OUT_CS(pack_float24(data[j]));
235
}
236
} else {
237
for (i = 0; i < count; i++)
238
for (j = 0; j < 4; j++)
239
OUT_CS(pack_float24(*(float*)&buf->ptr[i*4+j]));
240
}
241
242
END_CS;
243
}
244
245
void r300_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
246
{
247
struct r300_fragment_shader *fs = r300_fs(r300);
248
struct rc_constant_list *constants = &fs->shader->code.constants;
249
unsigned i;
250
unsigned count = fs->shader->rc_state_count;
251
unsigned first = fs->shader->externals_count;
252
unsigned end = constants->Count;
253
unsigned j;
254
CS_LOCALS(r300);
255
256
if (count == 0)
257
return;
258
259
BEGIN_CS(size);
260
for(i = first; i < end; ++i) {
261
if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
262
float data[4];
263
264
get_rc_constant_state(data, r300, &constants->Constants[i]);
265
266
OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X + i * 16, 4);
267
for (j = 0; j < 4; j++)
268
OUT_CS(pack_float24(data[j]));
269
}
270
}
271
END_CS;
272
}
273
274
void r500_emit_fs(struct r300_context* r300, unsigned size, void *state)
275
{
276
struct r300_fragment_shader *fs = r300_fs(r300);
277
CS_LOCALS(r300);
278
279
WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size);
280
}
281
282
void r500_emit_fs_constants(struct r300_context* r300, unsigned size, void *state)
283
{
284
struct r300_fragment_shader *fs = r300_fs(r300);
285
struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
286
unsigned count = fs->shader->externals_count;
287
CS_LOCALS(r300);
288
289
if (count == 0)
290
return;
291
292
BEGIN_CS(size);
293
OUT_CS_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_CONST);
294
OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, count * 4);
295
if (buf->remap_table){
296
for (unsigned i = 0; i < count; i++) {
297
uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
298
OUT_CS_TABLE(data, 4);
299
}
300
} else {
301
OUT_CS_TABLE(buf->ptr, count * 4);
302
}
303
END_CS;
304
}
305
306
void r500_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state)
307
{
308
struct r300_fragment_shader *fs = r300_fs(r300);
309
struct rc_constant_list *constants = &fs->shader->code.constants;
310
unsigned i;
311
unsigned count = fs->shader->rc_state_count;
312
unsigned first = fs->shader->externals_count;
313
unsigned end = constants->Count;
314
CS_LOCALS(r300);
315
316
if (count == 0)
317
return;
318
319
BEGIN_CS(size);
320
for(i = first; i < end; ++i) {
321
if (constants->Constants[i].Type == RC_CONSTANT_STATE) {
322
float data[4];
323
324
get_rc_constant_state(data, r300, &constants->Constants[i]);
325
326
OUT_CS_REG(R500_GA_US_VECTOR_INDEX,
327
R500_GA_US_VECTOR_INDEX_TYPE_CONST |
328
(i & R500_GA_US_VECTOR_INDEX_MASK));
329
OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, 4);
330
OUT_CS_TABLE(data, 4);
331
}
332
}
333
END_CS;
334
}
335
336
void r300_emit_gpu_flush(struct r300_context *r300, unsigned size, void *state)
337
{
338
struct r300_gpu_flush *gpuflush = (struct r300_gpu_flush*)state;
339
struct pipe_framebuffer_state* fb =
340
(struct pipe_framebuffer_state*)r300->fb_state.state;
341
uint32_t height = fb->height;
342
uint32_t width = fb->width;
343
CS_LOCALS(r300);
344
345
if (r300->cbzb_clear) {
346
struct r300_surface *surf = r300_surface(fb->cbufs[0]);
347
348
height = surf->cbzb_height;
349
width = surf->cbzb_width;
350
}
351
352
DBG(r300, DBG_SCISSOR,
353
"r300: Scissor width: %i, height: %i, CBZB clear: %s\n",
354
width, height, r300->cbzb_clear ? "YES" : "NO");
355
356
BEGIN_CS(size);
357
358
/* Set up scissors.
359
* By writing to the SC registers, SC & US assert idle. */
360
OUT_CS_REG_SEQ(R300_SC_SCISSORS_TL, 2);
361
if (r300->screen->caps.is_r500) {
362
OUT_CS(0);
363
OUT_CS(((width - 1) << R300_SCISSORS_X_SHIFT) |
364
((height - 1) << R300_SCISSORS_Y_SHIFT));
365
} else {
366
OUT_CS((1440 << R300_SCISSORS_X_SHIFT) |
367
(1440 << R300_SCISSORS_Y_SHIFT));
368
OUT_CS(((width + 1440-1) << R300_SCISSORS_X_SHIFT) |
369
((height + 1440-1) << R300_SCISSORS_Y_SHIFT));
370
}
371
372
/* Flush CB & ZB caches and wait until the 3D engine is idle and clean. */
373
OUT_CS_TABLE(gpuflush->cb_flush_clean, 6);
374
END_CS;
375
}
376
377
void r300_emit_aa_state(struct r300_context *r300, unsigned size, void *state)
378
{
379
struct r300_aa_state *aa = (struct r300_aa_state*)state;
380
CS_LOCALS(r300);
381
382
BEGIN_CS(size);
383
OUT_CS_REG(R300_GB_AA_CONFIG, aa->aa_config);
384
385
if (aa->dest) {
386
OUT_CS_REG_SEQ(R300_RB3D_AARESOLVE_OFFSET, 3);
387
OUT_CS(aa->dest->offset);
388
OUT_CS(aa->dest->pitch & R300_RB3D_AARESOLVE_PITCH_MASK);
389
OUT_CS(R300_RB3D_AARESOLVE_CTL_AARESOLVE_MODE_RESOLVE |
390
R300_RB3D_AARESOLVE_CTL_AARESOLVE_ALPHA_AVERAGE);
391
OUT_CS_RELOC(aa->dest);
392
} else {
393
OUT_CS_REG(R300_RB3D_AARESOLVE_CTL, 0);
394
}
395
396
END_CS;
397
}
398
399
void r300_emit_fb_state(struct r300_context* r300, unsigned size, void* state)
400
{
401
struct pipe_framebuffer_state* fb = (struct pipe_framebuffer_state*)state;
402
struct r300_surface* surf;
403
unsigned i;
404
uint32_t rb3d_cctl = 0;
405
406
CS_LOCALS(r300);
407
408
BEGIN_CS(size);
409
410
if (r300->screen->caps.is_r500) {
411
rb3d_cctl = R300_RB3D_CCTL_INDEPENDENT_COLORFORMAT_ENABLE_ENABLE;
412
}
413
/* NUM_MULTIWRITES replicates COLOR[0] to all colorbuffers. */
414
if (fb->nr_cbufs && r300->fb_multiwrite) {
415
rb3d_cctl |= R300_RB3D_CCTL_NUM_MULTIWRITES(fb->nr_cbufs);
416
}
417
if (r300->cmask_in_use) {
418
rb3d_cctl |= R300_RB3D_CCTL_AA_COMPRESSION_ENABLE |
419
R300_RB3D_CCTL_CMASK_ENABLE;
420
}
421
422
OUT_CS_REG(R300_RB3D_CCTL, rb3d_cctl);
423
424
/* Set up colorbuffers. */
425
for (i = 0; i < fb->nr_cbufs; i++) {
426
surf = r300_surface(r300_get_nonnull_cb(fb, i));
427
428
OUT_CS_REG(R300_RB3D_COLOROFFSET0 + (4 * i), surf->offset);
429
OUT_CS_RELOC(surf);
430
431
OUT_CS_REG(R300_RB3D_COLORPITCH0 + (4 * i), surf->pitch);
432
OUT_CS_RELOC(surf);
433
434
if (r300->cmask_in_use && i == 0) {
435
OUT_CS_REG(R300_RB3D_CMASK_OFFSET0, 0);
436
OUT_CS_REG(R300_RB3D_CMASK_PITCH0, surf->pitch_cmask);
437
OUT_CS_REG(R300_RB3D_COLOR_CLEAR_VALUE, r300->color_clear_value);
438
if (r300->screen->caps.is_r500 && r300->screen->info.drm_minor >= 29) {
439
OUT_CS_REG_SEQ(R500_RB3D_COLOR_CLEAR_VALUE_AR, 2);
440
OUT_CS(r300->color_clear_value_ar);
441
OUT_CS(r300->color_clear_value_gb);
442
}
443
}
444
}
445
446
/* Set up the ZB part of the CBZB clear. */
447
if (r300->cbzb_clear) {
448
surf = r300_surface(fb->cbufs[0]);
449
450
OUT_CS_REG(R300_ZB_FORMAT, surf->cbzb_format);
451
452
OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->cbzb_midpoint_offset);
453
OUT_CS_RELOC(surf);
454
455
OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->cbzb_pitch);
456
OUT_CS_RELOC(surf);
457
458
DBG(r300, DBG_CBZB,
459
"CBZB clearing cbuf %08x %08x\n", surf->cbzb_format,
460
surf->cbzb_pitch);
461
}
462
/* Set up a zbuffer. */
463
else if (fb->zsbuf) {
464
surf = r300_surface(fb->zsbuf);
465
466
OUT_CS_REG(R300_ZB_FORMAT, surf->format);
467
468
OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->offset);
469
OUT_CS_RELOC(surf);
470
471
OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->pitch);
472
OUT_CS_RELOC(surf);
473
474
if (r300->hyperz_enabled) {
475
/* HiZ RAM. */
476
OUT_CS_REG(R300_ZB_HIZ_OFFSET, 0);
477
OUT_CS_REG(R300_ZB_HIZ_PITCH, surf->pitch_hiz);
478
/* Z Mask RAM. (compressed zbuffer) */
479
OUT_CS_REG(R300_ZB_ZMASK_OFFSET, 0);
480
OUT_CS_REG(R300_ZB_ZMASK_PITCH, surf->pitch_zmask);
481
}
482
}
483
484
END_CS;
485
}
486
487
void r300_emit_hyperz_state(struct r300_context *r300,
488
unsigned size, void *state)
489
{
490
struct r300_hyperz_state *z = state;
491
CS_LOCALS(r300);
492
493
if (z->flush)
494
WRITE_CS_TABLE(&z->cb_flush_begin, size);
495
else
496
WRITE_CS_TABLE(&z->cb_begin, size - 2);
497
}
498
499
void r300_emit_hyperz_end(struct r300_context *r300)
500
{
501
struct r300_hyperz_state z =
502
*(struct r300_hyperz_state*)r300->hyperz_state.state;
503
504
z.flush = 1;
505
z.zb_bw_cntl = 0;
506
z.zb_depthclearvalue = 0;
507
z.sc_hyperz = R300_SC_HYPERZ_ADJ_2;
508
z.gb_z_peq_config = 0;
509
510
r300_emit_hyperz_state(r300, r300->hyperz_state.size, &z);
511
}
512
513
#define R300_NIBBLES(x0, y0, x1, y1, x2, y2, d0y, d0x) \
514
(((x0) & 0xf) | (((y0) & 0xf) << 4) | \
515
(((x1) & 0xf) << 8) | (((y1) & 0xf) << 12) | \
516
(((x2) & 0xf) << 16) | (((y2) & 0xf) << 20) | \
517
(((d0y) & 0xf) << 24) | (((d0x) & 0xf) << 28))
518
519
static unsigned r300_get_mspos(int index, unsigned *p)
520
{
521
unsigned reg, i, distx, disty, dist;
522
523
if (index == 0) {
524
/* MSPOS0 contains positions for samples 0,1,2 as (X,Y) pairs of nibbles,
525
* followed by a (Y,X) pair containing the minimum distance from the pixel
526
* edge:
527
* X0, Y0, X1, Y1, X2, Y2, D0_Y, D0_X
528
*
529
* There is a quirk when setting D0_X. The value represents the distance
530
* from the left edge of the pixel quad to the first sample in subpixels.
531
* All values less than eight should use the actual value, but „7‟ should
532
* be used for the distance „8‟. The hardware will convert 7 into 8 internally.
533
*/
534
distx = 11;
535
for (i = 0; i < 12; i += 2) {
536
if (p[i] < distx)
537
distx = p[i];
538
}
539
540
disty = 11;
541
for (i = 1; i < 12; i += 2) {
542
if (p[i] < disty)
543
disty = p[i];
544
}
545
546
if (distx == 8)
547
distx = 7;
548
549
reg = R300_NIBBLES(p[0], p[1], p[2], p[3], p[4], p[5], disty, distx);
550
} else {
551
/* MSPOS1 contains positions for samples 3,4,5 as (X,Y) pairs of nibbles,
552
* followed by the minimum distance from the pixel edge (not sure if X or Y):
553
* X3, Y3, X4, Y4, X5, Y5, D1
554
*/
555
dist = 11;
556
for (i = 0; i < 12; i++) {
557
if (p[i] < dist)
558
dist = p[i];
559
}
560
561
reg = R300_NIBBLES(p[6], p[7], p[8], p[9], p[10], p[11], dist, 0);
562
}
563
return reg;
564
}
565
566
void r300_emit_fb_state_pipelined(struct r300_context *r300,
567
unsigned size, void *state)
568
{
569
/* The sample coordinates are in the range [0,11], because
570
* GB_TILE_CONFIG.SUBPIXEL is set to the 1/12 subpixel precision.
571
*
572
* Some sample coordinates reach to neighboring pixels and should not be used.
573
* (e.g. Y=11)
574
*
575
* The unused samples must be set to the positions of other valid samples. */
576
static unsigned sample_locs_1x[12] = {
577
6,6, 6,6, 6,6, 6,6, 6,6, 6,6
578
};
579
static unsigned sample_locs_2x[12] = {
580
3,9, 9,3, 9,3, 9,3, 9,3, 9,3
581
};
582
static unsigned sample_locs_4x[12] = {
583
4,4, 8,8, 2,10, 10,2, 10,2, 10,2
584
};
585
static unsigned sample_locs_6x[12] = {
586
3,1, 7,3, 11,5, 1,7, 5,9, 9,10
587
};
588
589
struct pipe_framebuffer_state* fb =
590
(struct pipe_framebuffer_state*)r300->fb_state.state;
591
unsigned i, num_cbufs = fb->nr_cbufs;
592
unsigned mspos0, mspos1;
593
CS_LOCALS(r300);
594
595
/* If we use the multiwrite feature, the colorbuffers 2,3,4 must be
596
* marked as UNUSED in the US block. */
597
if (r300->fb_multiwrite) {
598
num_cbufs = MIN2(num_cbufs, 1);
599
}
600
601
BEGIN_CS(size);
602
603
/* Colorbuffer format in the US block.
604
* (must be written after unpipelined regs) */
605
OUT_CS_REG_SEQ(R300_US_OUT_FMT_0, 4);
606
for (i = 0; i < num_cbufs; i++) {
607
OUT_CS(r300_surface(r300_get_nonnull_cb(fb, i))->format);
608
}
609
for (; i < 1; i++) {
610
OUT_CS(R300_US_OUT_FMT_C4_8 |
611
R300_C0_SEL_B | R300_C1_SEL_G |
612
R300_C2_SEL_R | R300_C3_SEL_A);
613
}
614
for (; i < 4; i++) {
615
OUT_CS(R300_US_OUT_FMT_UNUSED);
616
}
617
618
/* Set sample positions. It depends on the framebuffer sample count.
619
* These are pipelined regs and as such cannot be moved to the AA state.
620
*/
621
switch (r300->num_samples) {
622
default:
623
mspos0 = r300_get_mspos(0, sample_locs_1x);
624
mspos1 = r300_get_mspos(1, sample_locs_1x);
625
break;
626
case 2:
627
mspos0 = r300_get_mspos(0, sample_locs_2x);
628
mspos1 = r300_get_mspos(1, sample_locs_2x);
629
break;
630
case 4:
631
mspos0 = r300_get_mspos(0, sample_locs_4x);
632
mspos1 = r300_get_mspos(1, sample_locs_4x);
633
break;
634
case 6:
635
mspos0 = r300_get_mspos(0, sample_locs_6x);
636
mspos1 = r300_get_mspos(1, sample_locs_6x);
637
break;
638
}
639
640
OUT_CS_REG_SEQ(R300_GB_MSPOS0, 2);
641
OUT_CS(mspos0);
642
OUT_CS(mspos1);
643
END_CS;
644
}
645
646
void r300_emit_query_start(struct r300_context *r300, unsigned size, void*state)
647
{
648
struct r300_query *query = r300->query_current;
649
CS_LOCALS(r300);
650
651
if (!query)
652
return;
653
654
BEGIN_CS(size);
655
if (r300->screen->caps.family == CHIP_RV530) {
656
OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
657
} else {
658
OUT_CS_REG(R300_SU_REG_DEST, R300_RASTER_PIPE_SELECT_ALL);
659
}
660
OUT_CS_REG(R300_ZB_ZPASS_DATA, 0);
661
END_CS;
662
query->begin_emitted = TRUE;
663
}
664
665
static void r300_emit_query_end_frag_pipes(struct r300_context *r300,
666
struct r300_query *query)
667
{
668
struct r300_capabilities* caps = &r300->screen->caps;
669
uint32_t gb_pipes = r300->screen->info.r300_num_gb_pipes;
670
CS_LOCALS(r300);
671
672
assert(gb_pipes);
673
674
BEGIN_CS(6 * gb_pipes + 2);
675
/* I'm not so sure I like this switch, but it's hard to be elegant
676
* when there's so many special cases...
677
*
678
* So here's the basic idea. For each pipe, enable writes to it only,
679
* then put out the relocation for ZPASS_ADDR, taking into account a
680
* 4-byte offset for each pipe. RV380 and older are special; they have
681
* only two pipes, and the second pipe's enable is on bit 3, not bit 1,
682
* so there's a chipset cap for that. */
683
switch (gb_pipes) {
684
case 4:
685
/* pipe 3 only */
686
OUT_CS_REG(R300_SU_REG_DEST, 1 << 3);
687
OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 3) * 4);
688
OUT_CS_RELOC(r300->query_current);
689
FALLTHROUGH;
690
case 3:
691
/* pipe 2 only */
692
OUT_CS_REG(R300_SU_REG_DEST, 1 << 2);
693
OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 2) * 4);
694
OUT_CS_RELOC(r300->query_current);
695
FALLTHROUGH;
696
case 2:
697
/* pipe 1 only */
698
/* As mentioned above, accommodate RV380 and older. */
699
OUT_CS_REG(R300_SU_REG_DEST,
700
1 << (caps->high_second_pipe ? 3 : 1));
701
OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
702
OUT_CS_RELOC(r300->query_current);
703
FALLTHROUGH;
704
case 1:
705
/* pipe 0 only */
706
OUT_CS_REG(R300_SU_REG_DEST, 1 << 0);
707
OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
708
OUT_CS_RELOC(r300->query_current);
709
break;
710
default:
711
fprintf(stderr, "r300: Implementation error: Chipset reports %d"
712
" pixel pipes!\n", gb_pipes);
713
abort();
714
}
715
716
/* And, finally, reset it to normal... */
717
OUT_CS_REG(R300_SU_REG_DEST, 0xF);
718
END_CS;
719
}
720
721
static void rv530_emit_query_end_single_z(struct r300_context *r300,
722
struct r300_query *query)
723
{
724
CS_LOCALS(r300);
725
726
BEGIN_CS(8);
727
OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
728
OUT_CS_REG(R300_ZB_ZPASS_ADDR, query->num_results * 4);
729
OUT_CS_RELOC(r300->query_current);
730
OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
731
END_CS;
732
}
733
734
static void rv530_emit_query_end_double_z(struct r300_context *r300,
735
struct r300_query *query)
736
{
737
CS_LOCALS(r300);
738
739
BEGIN_CS(14);
740
OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
741
OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4);
742
OUT_CS_RELOC(r300->query_current);
743
OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_1);
744
OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4);
745
OUT_CS_RELOC(r300->query_current);
746
OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
747
END_CS;
748
}
749
750
void r300_emit_query_end(struct r300_context* r300)
751
{
752
struct r300_capabilities *caps = &r300->screen->caps;
753
struct r300_query *query = r300->query_current;
754
755
if (!query)
756
return;
757
758
if (query->begin_emitted == FALSE)
759
return;
760
761
if (caps->family == CHIP_RV530) {
762
if (r300->screen->info.r300_num_z_pipes == 2)
763
rv530_emit_query_end_double_z(r300, query);
764
else
765
rv530_emit_query_end_single_z(r300, query);
766
} else
767
r300_emit_query_end_frag_pipes(r300, query);
768
769
query->begin_emitted = FALSE;
770
query->num_results += query->num_pipes;
771
772
/* XXX grab all the results and reset the counter. */
773
if (query->num_results >= query->buf->size / 4 - 4) {
774
query->num_results = (query->buf->size / 4) / 2;
775
fprintf(stderr, "r300: Rewinding OQBO...\n");
776
}
777
}
778
779
void r300_emit_invariant_state(struct r300_context *r300,
780
unsigned size, void *state)
781
{
782
CS_LOCALS(r300);
783
WRITE_CS_TABLE(state, size);
784
}
785
786
void r300_emit_rs_state(struct r300_context* r300, unsigned size, void* state)
787
{
788
struct r300_rs_state* rs = state;
789
CS_LOCALS(r300);
790
791
BEGIN_CS(size);
792
OUT_CS_TABLE(rs->cb_main, RS_STATE_MAIN_SIZE);
793
if (rs->polygon_offset_enable) {
794
if (r300->zbuffer_bpp == 16) {
795
OUT_CS_TABLE(rs->cb_poly_offset_zb16, 5);
796
} else {
797
OUT_CS_TABLE(rs->cb_poly_offset_zb24, 5);
798
}
799
}
800
END_CS;
801
}
802
803
void r300_emit_rs_block_state(struct r300_context* r300,
804
unsigned size, void* state)
805
{
806
struct r300_rs_block* rs = (struct r300_rs_block*)state;
807
unsigned i;
808
/* It's the same for both INST and IP tables */
809
unsigned count = (rs->inst_count & R300_RS_INST_COUNT_MASK) + 1;
810
CS_LOCALS(r300);
811
812
if (DBG_ON(r300, DBG_RS_BLOCK)) {
813
r500_dump_rs_block(rs);
814
815
fprintf(stderr, "r300: RS emit:\n");
816
817
for (i = 0; i < count; i++)
818
fprintf(stderr, " : ip %d: 0x%08x\n", i, rs->ip[i]);
819
820
for (i = 0; i < count; i++)
821
fprintf(stderr, " : inst %d: 0x%08x\n", i, rs->inst[i]);
822
823
fprintf(stderr, " : count: 0x%08x inst_count: 0x%08x\n",
824
rs->count, rs->inst_count);
825
}
826
827
BEGIN_CS(size);
828
OUT_CS_REG_SEQ(R300_VAP_VTX_STATE_CNTL, 2);
829
OUT_CS(rs->vap_vtx_state_cntl);
830
OUT_CS(rs->vap_vsm_vtx_assm);
831
OUT_CS_REG_SEQ(R300_VAP_OUTPUT_VTX_FMT_0, 2);
832
OUT_CS(rs->vap_out_vtx_fmt[0]);
833
OUT_CS(rs->vap_out_vtx_fmt[1]);
834
OUT_CS_REG_SEQ(R300_GB_ENABLE, 1);
835
OUT_CS(rs->gb_enable);
836
837
if (r300->screen->caps.is_r500) {
838
OUT_CS_REG_SEQ(R500_RS_IP_0, count);
839
} else {
840
OUT_CS_REG_SEQ(R300_RS_IP_0, count);
841
}
842
OUT_CS_TABLE(rs->ip, count);
843
844
OUT_CS_REG_SEQ(R300_RS_COUNT, 2);
845
OUT_CS(rs->count);
846
OUT_CS(rs->inst_count);
847
848
if (r300->screen->caps.is_r500) {
849
OUT_CS_REG_SEQ(R500_RS_INST_0, count);
850
} else {
851
OUT_CS_REG_SEQ(R300_RS_INST_0, count);
852
}
853
OUT_CS_TABLE(rs->inst, count);
854
END_CS;
855
}
856
857
void r300_emit_sample_mask(struct r300_context *r300,
858
unsigned size, void *state)
859
{
860
unsigned mask = (*(unsigned*)state) & ((1 << 6)-1);
861
CS_LOCALS(r300);
862
863
BEGIN_CS(size);
864
OUT_CS_REG(R300_SC_SCREENDOOR,
865
mask | (mask << 6) | (mask << 12) | (mask << 18));
866
END_CS;
867
}
868
869
void r300_emit_scissor_state(struct r300_context* r300,
870
unsigned size, void* state)
871
{
872
struct pipe_scissor_state* scissor = (struct pipe_scissor_state*)state;
873
CS_LOCALS(r300);
874
875
BEGIN_CS(size);
876
OUT_CS_REG_SEQ(R300_SC_CLIPRECT_TL_0, 2);
877
if (r300->screen->caps.is_r500) {
878
OUT_CS((scissor->minx << R300_CLIPRECT_X_SHIFT) |
879
(scissor->miny << R300_CLIPRECT_Y_SHIFT));
880
OUT_CS(((scissor->maxx - 1) << R300_CLIPRECT_X_SHIFT) |
881
((scissor->maxy - 1) << R300_CLIPRECT_Y_SHIFT));
882
} else {
883
OUT_CS(((scissor->minx + 1440) << R300_CLIPRECT_X_SHIFT) |
884
((scissor->miny + 1440) << R300_CLIPRECT_Y_SHIFT));
885
OUT_CS(((scissor->maxx + 1440-1) << R300_CLIPRECT_X_SHIFT) |
886
((scissor->maxy + 1440-1) << R300_CLIPRECT_Y_SHIFT));
887
}
888
END_CS;
889
}
890
891
void r300_emit_textures_state(struct r300_context *r300,
892
unsigned size, void *state)
893
{
894
struct r300_textures_state *allstate = (struct r300_textures_state*)state;
895
struct r300_texture_sampler_state *texstate;
896
struct r300_resource *tex;
897
unsigned i;
898
boolean has_us_format = r300->screen->caps.has_us_format;
899
CS_LOCALS(r300);
900
901
BEGIN_CS(size);
902
OUT_CS_REG(R300_TX_ENABLE, allstate->tx_enable);
903
904
for (i = 0; i < allstate->count; i++) {
905
if ((1 << i) & allstate->tx_enable) {
906
texstate = &allstate->regs[i];
907
tex = r300_resource(allstate->sampler_views[i]->base.texture);
908
909
OUT_CS_REG(R300_TX_FILTER0_0 + (i * 4), texstate->filter0);
910
OUT_CS_REG(R300_TX_FILTER1_0 + (i * 4), texstate->filter1);
911
OUT_CS_REG(R300_TX_BORDER_COLOR_0 + (i * 4),
912
texstate->border_color);
913
914
OUT_CS_REG(R300_TX_FORMAT0_0 + (i * 4), texstate->format.format0);
915
OUT_CS_REG(R300_TX_FORMAT1_0 + (i * 4), texstate->format.format1);
916
OUT_CS_REG(R300_TX_FORMAT2_0 + (i * 4), texstate->format.format2);
917
918
OUT_CS_REG(R300_TX_OFFSET_0 + (i * 4), texstate->format.tile_config);
919
OUT_CS_RELOC(tex);
920
921
if (has_us_format) {
922
OUT_CS_REG(R500_US_FORMAT0_0 + (i * 4),
923
texstate->format.us_format0);
924
}
925
}
926
}
927
END_CS;
928
}
929
930
void r300_emit_vertex_arrays(struct r300_context* r300, int offset,
931
boolean indexed, int instance_id)
932
{
933
struct pipe_vertex_buffer *vbuf = r300->vertex_buffer;
934
struct pipe_vertex_element *velem = r300->velems->velem;
935
struct r300_resource *buf;
936
int i;
937
unsigned vertex_array_count = r300->velems->count;
938
unsigned packet_size = (vertex_array_count * 3 + 1) / 2;
939
struct pipe_vertex_buffer *vb1, *vb2;
940
unsigned *hw_format_size = r300->velems->format_size;
941
unsigned size1, size2, offset1, offset2, stride1, stride2;
942
CS_LOCALS(r300);
943
944
BEGIN_CS(2 + packet_size + vertex_array_count * 2);
945
OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, packet_size);
946
OUT_CS(vertex_array_count | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
947
948
if (instance_id == -1) {
949
/* Non-instanced arrays. This ignores instance_divisor and instance_id. */
950
for (i = 0; i < vertex_array_count - 1; i += 2) {
951
vb1 = &vbuf[velem[i].vertex_buffer_index];
952
vb2 = &vbuf[velem[i+1].vertex_buffer_index];
953
size1 = hw_format_size[i];
954
size2 = hw_format_size[i+1];
955
956
OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride) |
957
R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(vb2->stride));
958
OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
959
OUT_CS(vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride);
960
}
961
962
if (vertex_array_count & 1) {
963
vb1 = &vbuf[velem[i].vertex_buffer_index];
964
size1 = hw_format_size[i];
965
966
OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride));
967
OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
968
}
969
970
for (i = 0; i < vertex_array_count; i++) {
971
buf = r300_resource(vbuf[velem[i].vertex_buffer_index].buffer.resource);
972
OUT_CS_RELOC(buf);
973
}
974
} else {
975
/* Instanced arrays. */
976
for (i = 0; i < vertex_array_count - 1; i += 2) {
977
vb1 = &vbuf[velem[i].vertex_buffer_index];
978
vb2 = &vbuf[velem[i+1].vertex_buffer_index];
979
size1 = hw_format_size[i];
980
size2 = hw_format_size[i+1];
981
982
if (velem[i].instance_divisor) {
983
stride1 = 0;
984
offset1 = vb1->buffer_offset + velem[i].src_offset +
985
(instance_id / velem[i].instance_divisor) * vb1->stride;
986
} else {
987
stride1 = vb1->stride;
988
offset1 = vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride;
989
}
990
if (velem[i+1].instance_divisor) {
991
stride2 = 0;
992
offset2 = vb2->buffer_offset + velem[i+1].src_offset +
993
(instance_id / velem[i+1].instance_divisor) * vb2->stride;
994
} else {
995
stride2 = vb2->stride;
996
offset2 = vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride;
997
}
998
999
OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(stride1) |
1000
R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(stride2));
1001
OUT_CS(offset1);
1002
OUT_CS(offset2);
1003
}
1004
1005
if (vertex_array_count & 1) {
1006
vb1 = &vbuf[velem[i].vertex_buffer_index];
1007
size1 = hw_format_size[i];
1008
1009
if (velem[i].instance_divisor) {
1010
stride1 = 0;
1011
offset1 = vb1->buffer_offset + velem[i].src_offset +
1012
(instance_id / velem[i].instance_divisor) * vb1->stride;
1013
} else {
1014
stride1 = vb1->stride;
1015
offset1 = vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride;
1016
}
1017
1018
OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(stride1));
1019
OUT_CS(offset1);
1020
}
1021
1022
for (i = 0; i < vertex_array_count; i++) {
1023
buf = r300_resource(vbuf[velem[i].vertex_buffer_index].buffer.resource);
1024
OUT_CS_RELOC(buf);
1025
}
1026
}
1027
END_CS;
1028
}
1029
1030
void r300_emit_vertex_arrays_swtcl(struct r300_context *r300, boolean indexed)
1031
{
1032
CS_LOCALS(r300);
1033
1034
DBG(r300, DBG_SWTCL, "r300: Preparing vertex buffer %p for render, "
1035
"vertex size %d\n", r300->vbo,
1036
r300->vertex_info.size);
1037
/* Set the pointer to our vertex buffer. The emitted values are this:
1038
* PACKET3 [3D_LOAD_VBPNTR]
1039
* COUNT [1]
1040
* FORMAT [size | stride << 8]
1041
* OFFSET [offset into BO]
1042
* VBPNTR [relocated BO]
1043
*/
1044
BEGIN_CS(7);
1045
OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, 3);
1046
OUT_CS(1 | (!indexed ? R300_VC_FORCE_PREFETCH : 0));
1047
OUT_CS(r300->vertex_info.size |
1048
(r300->vertex_info.size << 8));
1049
OUT_CS(r300->draw_vbo_offset);
1050
OUT_CS(0);
1051
1052
assert(r300->vbo);
1053
OUT_CS(0xc0001000); /* PKT3_NOP */
1054
OUT_CS(r300->rws->cs_lookup_buffer(&r300->cs, r300->vbo) * 4);
1055
END_CS;
1056
}
1057
1058
void r300_emit_vertex_stream_state(struct r300_context* r300,
1059
unsigned size, void* state)
1060
{
1061
struct r300_vertex_stream_state *streams =
1062
(struct r300_vertex_stream_state*)state;
1063
unsigned i;
1064
CS_LOCALS(r300);
1065
1066
if (DBG_ON(r300, DBG_PSC)) {
1067
fprintf(stderr, "r300: PSC emit:\n");
1068
1069
for (i = 0; i < streams->count; i++) {
1070
fprintf(stderr, " : prog_stream_cntl%d: 0x%08x\n", i,
1071
streams->vap_prog_stream_cntl[i]);
1072
}
1073
1074
for (i = 0; i < streams->count; i++) {
1075
fprintf(stderr, " : prog_stream_cntl_ext%d: 0x%08x\n", i,
1076
streams->vap_prog_stream_cntl_ext[i]);
1077
}
1078
}
1079
1080
BEGIN_CS(size);
1081
OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_0, streams->count);
1082
OUT_CS_TABLE(streams->vap_prog_stream_cntl, streams->count);
1083
OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_EXT_0, streams->count);
1084
OUT_CS_TABLE(streams->vap_prog_stream_cntl_ext, streams->count);
1085
END_CS;
1086
}
1087
1088
void r300_emit_pvs_flush(struct r300_context* r300, unsigned size, void* state)
1089
{
1090
CS_LOCALS(r300);
1091
1092
BEGIN_CS(size);
1093
OUT_CS_REG(R300_VAP_PVS_STATE_FLUSH_REG, 0x0);
1094
END_CS;
1095
}
1096
1097
void r300_emit_vap_invariant_state(struct r300_context *r300,
1098
unsigned size, void *state)
1099
{
1100
CS_LOCALS(r300);
1101
WRITE_CS_TABLE(state, size);
1102
}
1103
1104
void r300_emit_vs_state(struct r300_context* r300, unsigned size, void* state)
1105
{
1106
struct r300_vertex_shader* vs = (struct r300_vertex_shader*)state;
1107
struct r300_vertex_program_code* code = &vs->code;
1108
struct r300_screen* r300screen = r300->screen;
1109
unsigned instruction_count = code->length / 4;
1110
1111
unsigned vtx_mem_size = r300screen->caps.is_r500 ? 128 : 72;
1112
unsigned input_count = MAX2(util_bitcount(code->InputsRead), 1);
1113
unsigned output_count = MAX2(util_bitcount(code->OutputsWritten), 1);
1114
unsigned temp_count = MAX2(code->num_temporaries, 1);
1115
1116
unsigned pvs_num_slots = MIN3(vtx_mem_size / input_count,
1117
vtx_mem_size / output_count, 10);
1118
unsigned pvs_num_controllers = MIN2(vtx_mem_size / temp_count, 5);
1119
1120
CS_LOCALS(r300);
1121
1122
BEGIN_CS(size);
1123
1124
/* R300_VAP_PVS_CODE_CNTL_0
1125
* R300_VAP_PVS_CONST_CNTL
1126
* R300_VAP_PVS_CODE_CNTL_1
1127
* See the r5xx docs for instructions on how to use these. */
1128
OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_0, R300_PVS_FIRST_INST(0) |
1129
R300_PVS_XYZW_VALID_INST(instruction_count - 1) |
1130
R300_PVS_LAST_INST(instruction_count - 1));
1131
OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_1, instruction_count - 1);
1132
1133
OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG, 0);
1134
OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, code->length);
1135
OUT_CS_TABLE(code->body.d, code->length);
1136
1137
OUT_CS_REG(R300_VAP_CNTL, R300_PVS_NUM_SLOTS(pvs_num_slots) |
1138
R300_PVS_NUM_CNTLRS(pvs_num_controllers) |
1139
R300_PVS_NUM_FPUS(r300screen->caps.num_vert_fpus) |
1140
R300_PVS_VF_MAX_VTX_NUM(12) |
1141
(r300->clip_halfz ? R300_DX_CLIP_SPACE_DEF : 0) |
1142
(r300screen->caps.is_r500 ? R500_TCL_STATE_OPTIMIZATION : 0));
1143
1144
/* Emit flow control instructions. Even if there are no fc instructions,
1145
* we still need to write the registers to make sure they are cleared. */
1146
OUT_CS_REG(R300_VAP_PVS_FLOW_CNTL_OPC, code->fc_ops);
1147
if (r300screen->caps.is_r500) {
1148
OUT_CS_REG_SEQ(R500_VAP_PVS_FLOW_CNTL_ADDRS_LW_0, R300_VS_MAX_FC_OPS * 2);
1149
OUT_CS_TABLE(code->fc_op_addrs.r500, R300_VS_MAX_FC_OPS * 2);
1150
} else {
1151
OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_ADDRS_0, R300_VS_MAX_FC_OPS);
1152
OUT_CS_TABLE(code->fc_op_addrs.r300, R300_VS_MAX_FC_OPS);
1153
}
1154
OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_LOOP_INDEX_0, R300_VS_MAX_FC_OPS);
1155
OUT_CS_TABLE(code->fc_loop_index, R300_VS_MAX_FC_OPS);
1156
1157
END_CS;
1158
}
1159
1160
void r300_emit_vs_constants(struct r300_context* r300,
1161
unsigned size, void *state)
1162
{
1163
unsigned count =
1164
((struct r300_vertex_shader*)r300->vs_state.state)->externals_count;
1165
struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state;
1166
struct r300_vertex_shader *vs = (struct r300_vertex_shader*)r300->vs_state.state;
1167
unsigned i;
1168
int imm_first = vs->externals_count;
1169
int imm_end = vs->code.constants.Count;
1170
int imm_count = vs->immediates_count;
1171
CS_LOCALS(r300);
1172
1173
BEGIN_CS(size);
1174
OUT_CS_REG(R300_VAP_PVS_CONST_CNTL,
1175
R300_PVS_CONST_BASE_OFFSET(buf->buffer_base) |
1176
R300_PVS_MAX_CONST_ADDR(MAX2(imm_end - 1, 0)));
1177
if (vs->externals_count) {
1178
OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1179
(r300->screen->caps.is_r500 ?
1180
R500_PVS_CONST_START : R300_PVS_CONST_START) + buf->buffer_base);
1181
OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, count * 4);
1182
if (buf->remap_table){
1183
for (i = 0; i < count; i++) {
1184
uint32_t *data = &buf->ptr[buf->remap_table[i]*4];
1185
OUT_CS_TABLE(data, 4);
1186
}
1187
} else {
1188
OUT_CS_TABLE(buf->ptr, count * 4);
1189
}
1190
}
1191
1192
/* Emit immediates. */
1193
if (imm_count) {
1194
OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
1195
(r300->screen->caps.is_r500 ?
1196
R500_PVS_CONST_START : R300_PVS_CONST_START) +
1197
buf->buffer_base + imm_first);
1198
OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, imm_count * 4);
1199
for (i = imm_first; i < imm_end; i++) {
1200
const float *data = vs->code.constants.Constants[i].u.Immediate;
1201
OUT_CS_TABLE(data, 4);
1202
}
1203
}
1204
END_CS;
1205
}
1206
1207
void r300_emit_viewport_state(struct r300_context* r300,
1208
unsigned size, void* state)
1209
{
1210
struct r300_viewport_state* viewport = (struct r300_viewport_state*)state;
1211
CS_LOCALS(r300);
1212
1213
BEGIN_CS(size);
1214
OUT_CS_REG_SEQ(R300_SE_VPORT_XSCALE, 6);
1215
OUT_CS_TABLE(&viewport->xscale, 6);
1216
OUT_CS_REG(R300_VAP_VTE_CNTL, viewport->vte_control);
1217
END_CS;
1218
}
1219
1220
void r300_emit_hiz_clear(struct r300_context *r300, unsigned size, void *state)
1221
{
1222
struct pipe_framebuffer_state *fb =
1223
(struct pipe_framebuffer_state*)r300->fb_state.state;
1224
struct r300_resource* tex;
1225
CS_LOCALS(r300);
1226
1227
tex = r300_resource(fb->zsbuf->texture);
1228
1229
BEGIN_CS(size);
1230
OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_HIZ, 2);
1231
OUT_CS(0);
1232
OUT_CS(tex->tex.hiz_dwords[fb->zsbuf->u.tex.level]);
1233
OUT_CS(r300->hiz_clear_value);
1234
END_CS;
1235
1236
/* Mark the current zbuffer's hiz ram as in use. */
1237
r300->hiz_in_use = TRUE;
1238
r300->hiz_func = HIZ_FUNC_NONE;
1239
r300_mark_atom_dirty(r300, &r300->hyperz_state);
1240
}
1241
1242
void r300_emit_zmask_clear(struct r300_context *r300, unsigned size, void *state)
1243
{
1244
struct pipe_framebuffer_state *fb =
1245
(struct pipe_framebuffer_state*)r300->fb_state.state;
1246
struct r300_resource *tex;
1247
CS_LOCALS(r300);
1248
1249
tex = r300_resource(fb->zsbuf->texture);
1250
1251
BEGIN_CS(size);
1252
OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_ZMASK, 2);
1253
OUT_CS(0);
1254
OUT_CS(tex->tex.zmask_dwords[fb->zsbuf->u.tex.level]);
1255
OUT_CS(0);
1256
END_CS;
1257
1258
/* Mark the current zbuffer's zmask as in use. */
1259
r300->zmask_in_use = TRUE;
1260
r300_mark_atom_dirty(r300, &r300->hyperz_state);
1261
}
1262
1263
void r300_emit_cmask_clear(struct r300_context *r300, unsigned size, void *state)
1264
{
1265
struct pipe_framebuffer_state *fb =
1266
(struct pipe_framebuffer_state*)r300->fb_state.state;
1267
struct r300_resource *tex;
1268
CS_LOCALS(r300);
1269
1270
tex = r300_resource(fb->cbufs[0]->texture);
1271
1272
BEGIN_CS(size);
1273
OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_CMASK, 2);
1274
OUT_CS(0);
1275
OUT_CS(tex->tex.cmask_dwords);
1276
OUT_CS(0);
1277
END_CS;
1278
1279
/* Mark the current zbuffer's zmask as in use. */
1280
r300->cmask_in_use = TRUE;
1281
r300_mark_fb_state_dirty(r300, R300_CHANGED_CMASK_ENABLE);
1282
}
1283
1284
void r300_emit_ztop_state(struct r300_context* r300,
1285
unsigned size, void* state)
1286
{
1287
struct r300_ztop_state* ztop = (struct r300_ztop_state*)state;
1288
CS_LOCALS(r300);
1289
1290
BEGIN_CS(size);
1291
OUT_CS_REG(R300_ZB_ZTOP, ztop->z_buffer_top);
1292
END_CS;
1293
}
1294
1295
void r300_emit_texture_cache_inval(struct r300_context* r300, unsigned size, void* state)
1296
{
1297
CS_LOCALS(r300);
1298
1299
BEGIN_CS(size);
1300
OUT_CS_REG(R300_TX_INVALTAGS, 0);
1301
END_CS;
1302
}
1303
1304
boolean r300_emit_buffer_validate(struct r300_context *r300,
1305
boolean do_validate_vertex_buffers,
1306
struct pipe_resource *index_buffer)
1307
{
1308
struct pipe_framebuffer_state *fb =
1309
(struct pipe_framebuffer_state*)r300->fb_state.state;
1310
struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state;
1311
struct r300_textures_state *texstate =
1312
(struct r300_textures_state*)r300->textures_state.state;
1313
struct r300_resource *tex;
1314
unsigned i;
1315
boolean flushed = FALSE;
1316
1317
validate:
1318
if (r300->fb_state.dirty) {
1319
/* Color buffers... */
1320
for (i = 0; i < fb->nr_cbufs; i++) {
1321
if (!fb->cbufs[i])
1322
continue;
1323
tex = r300_resource(fb->cbufs[i]->texture);
1324
assert(tex && tex->buf && "cbuf is marked, but NULL!");
1325
r300->rws->cs_add_buffer(&r300->cs, tex->buf,
1326
RADEON_USAGE_READWRITE | RADEON_USAGE_SYNCHRONIZED,
1327
r300_surface(fb->cbufs[i])->domain,
1328
tex->b.nr_samples > 1 ?
1329
RADEON_PRIO_COLOR_BUFFER_MSAA :
1330
RADEON_PRIO_COLOR_BUFFER);
1331
}
1332
/* ...depth buffer... */
1333
if (fb->zsbuf) {
1334
tex = r300_resource(fb->zsbuf->texture);
1335
assert(tex && tex->buf && "zsbuf is marked, but NULL!");
1336
r300->rws->cs_add_buffer(&r300->cs, tex->buf,
1337
RADEON_USAGE_READWRITE | RADEON_USAGE_SYNCHRONIZED,
1338
r300_surface(fb->zsbuf)->domain,
1339
tex->b.nr_samples > 1 ?
1340
RADEON_PRIO_DEPTH_BUFFER_MSAA :
1341
RADEON_PRIO_DEPTH_BUFFER);
1342
}
1343
}
1344
/* The AA resolve buffer. */
1345
if (r300->aa_state.dirty) {
1346
if (aa->dest) {
1347
r300->rws->cs_add_buffer(&r300->cs, aa->dest->buf,
1348
RADEON_USAGE_WRITE | RADEON_USAGE_SYNCHRONIZED,
1349
aa->dest->domain,
1350
RADEON_PRIO_COLOR_BUFFER);
1351
}
1352
}
1353
if (r300->textures_state.dirty) {
1354
/* ...textures... */
1355
for (i = 0; i < texstate->count; i++) {
1356
if (!(texstate->tx_enable & (1 << i))) {
1357
continue;
1358
}
1359
1360
tex = r300_resource(texstate->sampler_views[i]->base.texture);
1361
r300->rws->cs_add_buffer(&r300->cs, tex->buf,
1362
RADEON_USAGE_READ | RADEON_USAGE_SYNCHRONIZED,
1363
tex->domain, RADEON_PRIO_SAMPLER_TEXTURE);
1364
}
1365
}
1366
/* ...occlusion query buffer... */
1367
if (r300->query_current)
1368
r300->rws->cs_add_buffer(&r300->cs, r300->query_current->buf,
1369
RADEON_USAGE_WRITE | RADEON_USAGE_SYNCHRONIZED,
1370
RADEON_DOMAIN_GTT,
1371
RADEON_PRIO_QUERY);
1372
/* ...vertex buffer for SWTCL path... */
1373
if (r300->vbo)
1374
r300->rws->cs_add_buffer(&r300->cs, r300->vbo,
1375
RADEON_USAGE_READ | RADEON_USAGE_SYNCHRONIZED,
1376
RADEON_DOMAIN_GTT,
1377
RADEON_PRIO_VERTEX_BUFFER);
1378
/* ...vertex buffers for HWTCL path... */
1379
if (do_validate_vertex_buffers && r300->vertex_arrays_dirty) {
1380
struct pipe_vertex_buffer *vbuf = r300->vertex_buffer;
1381
struct pipe_vertex_buffer *last = r300->vertex_buffer +
1382
r300->nr_vertex_buffers;
1383
struct pipe_resource *buf;
1384
1385
for (; vbuf != last; vbuf++) {
1386
buf = vbuf->buffer.resource;
1387
if (!buf)
1388
continue;
1389
1390
r300->rws->cs_add_buffer(&r300->cs, r300_resource(buf)->buf,
1391
RADEON_USAGE_READ | RADEON_USAGE_SYNCHRONIZED,
1392
r300_resource(buf)->domain,
1393
RADEON_PRIO_SAMPLER_BUFFER);
1394
}
1395
}
1396
/* ...and index buffer for HWTCL path. */
1397
if (index_buffer)
1398
r300->rws->cs_add_buffer(&r300->cs, r300_resource(index_buffer)->buf,
1399
RADEON_USAGE_READ | RADEON_USAGE_SYNCHRONIZED,
1400
r300_resource(index_buffer)->domain,
1401
RADEON_PRIO_INDEX_BUFFER);
1402
1403
/* Now do the validation (flush is called inside cs_validate on failure). */
1404
if (!r300->rws->cs_validate(&r300->cs)) {
1405
/* Ooops, an infinite loop, give up. */
1406
if (flushed)
1407
return FALSE;
1408
1409
flushed = TRUE;
1410
goto validate;
1411
}
1412
1413
return TRUE;
1414
}
1415
1416
unsigned r300_get_num_dirty_dwords(struct r300_context *r300)
1417
{
1418
struct r300_atom* atom;
1419
unsigned dwords = 0;
1420
1421
foreach_dirty_atom(r300, atom) {
1422
if (atom->dirty) {
1423
dwords += atom->size;
1424
}
1425
}
1426
1427
/* let's reserve some more, just in case */
1428
dwords += 32;
1429
1430
return dwords;
1431
}
1432
1433
unsigned r300_get_num_cs_end_dwords(struct r300_context *r300)
1434
{
1435
unsigned dwords = 0;
1436
1437
/* Emitted in flush. */
1438
dwords += 26; /* emit_query_end */
1439
dwords += r300->hyperz_state.size + 2; /* emit_hyperz_end + zcache flush */
1440
if (r300->screen->caps.is_r500)
1441
dwords += 2; /* emit_index_bias */
1442
dwords += 3; /* MSPOS */
1443
1444
return dwords;
1445
}
1446
1447
/* Emit all dirty state. */
1448
void r300_emit_dirty_state(struct r300_context* r300)
1449
{
1450
struct r300_atom *atom;
1451
1452
foreach_dirty_atom(r300, atom) {
1453
if (atom->dirty) {
1454
atom->emit(r300, atom->size, atom->state);
1455
atom->dirty = FALSE;
1456
}
1457
}
1458
1459
r300->first_dirty = NULL;
1460
r300->last_dirty = NULL;
1461
r300->dirty_hw++;
1462
}
1463
1464