Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/gallium/drivers/radeonsi/si_fence.c
4570 views
1
/*
2
* Copyright 2013-2017 Advanced Micro Devices, Inc.
3
* All Rights Reserved.
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
* and/or sell copies of the Software, and to permit persons to whom the
10
* Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice (including the next
13
* paragraph) shall be included in all copies or substantial portions of the
14
* Software.
15
*
16
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*
24
*/
25
26
#include "si_build_pm4.h"
27
#include "util/os_time.h"
28
#include "util/u_memory.h"
29
#include "util/u_queue.h"
30
#include "util/u_upload_mgr.h"
31
32
#include <libsync.h>
33
34
struct si_fine_fence {
35
struct si_resource *buf;
36
unsigned offset;
37
};
38
39
struct si_fence {
40
struct pipe_reference reference;
41
struct pipe_fence_handle *gfx;
42
struct tc_unflushed_batch_token *tc_token;
43
struct util_queue_fence ready;
44
45
/* If the context wasn't flushed at fence creation, this is non-NULL. */
46
struct {
47
struct si_context *ctx;
48
unsigned ib_index;
49
} gfx_unflushed;
50
51
struct si_fine_fence fine;
52
};
53
54
/**
55
* Write an EOP event.
56
*
57
* \param event EVENT_TYPE_*
58
* \param event_flags Optional cache flush flags (TC)
59
* \param dst_sel MEM or TC_L2
60
* \param int_sel NONE or SEND_DATA_AFTER_WR_CONFIRM
61
* \param data_sel DISCARD, VALUE_32BIT, TIMESTAMP, or GDS
62
* \param buf Buffer
63
* \param va GPU address
64
* \param old_value Previous fence value (for a bug workaround)
65
* \param new_value Fence value to write for this event.
66
*/
67
void si_cp_release_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, unsigned event,
68
unsigned event_flags, unsigned dst_sel, unsigned int_sel, unsigned data_sel,
69
struct si_resource *buf, uint64_t va, uint32_t new_fence,
70
unsigned query_type)
71
{
72
unsigned op = EVENT_TYPE(event) |
73
EVENT_INDEX(event == V_028A90_CS_DONE || event == V_028A90_PS_DONE ? 6 : 5) |
74
event_flags;
75
unsigned sel = EOP_DST_SEL(dst_sel) | EOP_INT_SEL(int_sel) | EOP_DATA_SEL(data_sel);
76
bool compute_ib = !ctx->has_graphics || cs == &ctx->prim_discard_compute_cs;
77
78
radeon_begin(cs);
79
80
if (ctx->chip_class >= GFX9 || (compute_ib && ctx->chip_class >= GFX7)) {
81
/* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
82
* counters) must immediately precede every timestamp event to
83
* prevent a GPU hang on GFX9.
84
*
85
* Occlusion queries don't need to do it here, because they
86
* always do ZPASS_DONE before the timestamp.
87
*/
88
if (ctx->chip_class == GFX9 && !compute_ib && query_type != PIPE_QUERY_OCCLUSION_COUNTER &&
89
query_type != PIPE_QUERY_OCCLUSION_PREDICATE &&
90
query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) {
91
struct si_resource *scratch = unlikely(ctx->ws->cs_is_secure(&ctx->gfx_cs)) ?
92
ctx->eop_bug_scratch_tmz : ctx->eop_bug_scratch;
93
94
assert(16 * ctx->screen->info.max_render_backends <= scratch->b.b.width0);
95
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
96
radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
97
radeon_emit(cs, scratch->gpu_address);
98
radeon_emit(cs, scratch->gpu_address >> 32);
99
100
radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch, RADEON_USAGE_WRITE,
101
RADEON_PRIO_QUERY);
102
}
103
104
radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, ctx->chip_class >= GFX9 ? 6 : 5, 0));
105
radeon_emit(cs, op);
106
radeon_emit(cs, sel);
107
radeon_emit(cs, va); /* address lo */
108
radeon_emit(cs, va >> 32); /* address hi */
109
radeon_emit(cs, new_fence); /* immediate data lo */
110
radeon_emit(cs, 0); /* immediate data hi */
111
if (ctx->chip_class >= GFX9)
112
radeon_emit(cs, 0); /* unused */
113
} else {
114
if (ctx->chip_class == GFX7 || ctx->chip_class == GFX8) {
115
struct si_resource *scratch = ctx->eop_bug_scratch;
116
uint64_t va = scratch->gpu_address;
117
118
/* Two EOP events are required to make all engines go idle
119
* (and optional cache flushes executed) before the timestamp
120
* is written.
121
*/
122
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
123
radeon_emit(cs, op);
124
radeon_emit(cs, va);
125
radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
126
radeon_emit(cs, 0); /* immediate data */
127
radeon_emit(cs, 0); /* unused */
128
129
radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch, RADEON_USAGE_WRITE,
130
RADEON_PRIO_QUERY);
131
}
132
133
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
134
radeon_emit(cs, op);
135
radeon_emit(cs, va);
136
radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
137
radeon_emit(cs, new_fence); /* immediate data */
138
radeon_emit(cs, 0); /* unused */
139
}
140
141
radeon_end();
142
143
if (buf) {
144
radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
145
}
146
}
147
148
unsigned si_cp_write_fence_dwords(struct si_screen *screen)
149
{
150
unsigned dwords = 6;
151
152
if (screen->info.chip_class == GFX7 || screen->info.chip_class == GFX8)
153
dwords *= 2;
154
155
return dwords;
156
}
157
158
void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, uint64_t va, uint32_t ref,
159
uint32_t mask, unsigned flags)
160
{
161
radeon_begin(cs);
162
radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
163
radeon_emit(cs, WAIT_REG_MEM_MEM_SPACE(1) | flags);
164
radeon_emit(cs, va);
165
radeon_emit(cs, va >> 32);
166
radeon_emit(cs, ref); /* reference value */
167
radeon_emit(cs, mask); /* mask */
168
radeon_emit(cs, 4); /* poll interval */
169
radeon_end();
170
}
171
172
static void si_add_fence_dependency(struct si_context *sctx, struct pipe_fence_handle *fence)
173
{
174
struct radeon_winsys *ws = sctx->ws;
175
176
ws->cs_add_fence_dependency(&sctx->gfx_cs, fence, 0);
177
}
178
179
static void si_add_syncobj_signal(struct si_context *sctx, struct pipe_fence_handle *fence)
180
{
181
sctx->ws->cs_add_syncobj_signal(&sctx->gfx_cs, fence);
182
}
183
184
static void si_fence_reference(struct pipe_screen *screen, struct pipe_fence_handle **dst,
185
struct pipe_fence_handle *src)
186
{
187
struct radeon_winsys *ws = ((struct si_screen *)screen)->ws;
188
struct si_fence **sdst = (struct si_fence **)dst;
189
struct si_fence *ssrc = (struct si_fence *)src;
190
191
if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) {
192
ws->fence_reference(&(*sdst)->gfx, NULL);
193
tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL);
194
si_resource_reference(&(*sdst)->fine.buf, NULL);
195
FREE(*sdst);
196
}
197
*sdst = ssrc;
198
}
199
200
static struct si_fence *si_create_multi_fence()
201
{
202
struct si_fence *fence = CALLOC_STRUCT(si_fence);
203
if (!fence)
204
return NULL;
205
206
pipe_reference_init(&fence->reference, 1);
207
util_queue_fence_init(&fence->ready);
208
209
return fence;
210
}
211
212
struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
213
struct tc_unflushed_batch_token *tc_token)
214
{
215
struct si_fence *fence = si_create_multi_fence();
216
if (!fence)
217
return NULL;
218
219
util_queue_fence_reset(&fence->ready);
220
tc_unflushed_batch_token_reference(&fence->tc_token, tc_token);
221
222
return (struct pipe_fence_handle *)fence;
223
}
224
225
static bool si_fine_fence_signaled(struct radeon_winsys *rws, const struct si_fine_fence *fine)
226
{
227
char *map =
228
rws->buffer_map(rws, fine->buf->buf, NULL, PIPE_MAP_READ | PIPE_MAP_UNSYNCHRONIZED);
229
if (!map)
230
return false;
231
232
uint32_t *fence = (uint32_t *)(map + fine->offset);
233
return *fence != 0;
234
}
235
236
static void si_fine_fence_set(struct si_context *ctx, struct si_fine_fence *fine, unsigned flags)
237
{
238
uint32_t *fence_ptr;
239
240
assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
241
242
/* Use cached system memory for the fence. */
243
u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, &fine->offset,
244
(struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
245
if (!fine->buf)
246
return;
247
248
*fence_ptr = 0;
249
250
if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
251
uint32_t value = 0x80000000;
252
253
si_cp_write_data(ctx, fine->buf, fine->offset, 4, V_370_MEM, V_370_PFP, &value);
254
} else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
255
uint64_t fence_va = fine->buf->gpu_address + fine->offset;
256
257
radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, fine->buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
258
si_cp_release_mem(ctx, &ctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM,
259
EOP_INT_SEL_NONE, EOP_DATA_SEL_VALUE_32BIT, NULL, fence_va, 0x80000000,
260
PIPE_QUERY_GPU_FINISHED);
261
} else {
262
assert(false);
263
}
264
}
265
266
static bool si_fence_finish(struct pipe_screen *screen, struct pipe_context *ctx,
267
struct pipe_fence_handle *fence, uint64_t timeout)
268
{
269
struct radeon_winsys *rws = ((struct si_screen *)screen)->ws;
270
struct si_fence *sfence = (struct si_fence *)fence;
271
struct si_context *sctx;
272
int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
273
274
ctx = threaded_context_unwrap_sync(ctx);
275
sctx = (struct si_context *)(ctx ? ctx : NULL);
276
277
if (!util_queue_fence_is_signalled(&sfence->ready)) {
278
if (sfence->tc_token) {
279
/* Ensure that si_flush_from_st will be called for
280
* this fence, but only if we're in the API thread
281
* where the context is current.
282
*
283
* Note that the batch containing the flush may already
284
* be in flight in the driver thread, so the fence
285
* may not be ready yet when this call returns.
286
*/
287
threaded_context_flush(ctx, sfence->tc_token, timeout == 0);
288
}
289
290
if (!timeout)
291
return false;
292
293
if (timeout == PIPE_TIMEOUT_INFINITE) {
294
util_queue_fence_wait(&sfence->ready);
295
} else {
296
if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout))
297
return false;
298
}
299
300
if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
301
int64_t time = os_time_get_nano();
302
timeout = abs_timeout > time ? abs_timeout - time : 0;
303
}
304
}
305
306
if (!sfence->gfx)
307
return true;
308
309
if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) {
310
rws->fence_reference(&sfence->gfx, NULL);
311
si_resource_reference(&sfence->fine.buf, NULL);
312
return true;
313
}
314
315
/* Flush the gfx IB if it hasn't been flushed yet. */
316
if (sctx && sfence->gfx_unflushed.ctx == sctx &&
317
sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) {
318
/* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
319
* spec says:
320
*
321
* "If the sync object being blocked upon will not be
322
* signaled in finite time (for example, by an associated
323
* fence command issued previously, but not yet flushed to
324
* the graphics pipeline), then ClientWaitSync may hang
325
* forever. To help prevent this behavior, if
326
* ClientWaitSync is called and all of the following are
327
* true:
328
*
329
* * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
330
* * sync is unsignaled when ClientWaitSync is called,
331
* * and the calls to ClientWaitSync and FenceSync were
332
* issued from the same context,
333
*
334
* then the GL will behave as if the equivalent of Flush
335
* were inserted immediately after the creation of sync."
336
*
337
* This means we need to flush for such fences even when we're
338
* not going to wait.
339
*/
340
si_flush_gfx_cs(sctx, (timeout ? 0 : PIPE_FLUSH_ASYNC) | RADEON_FLUSH_START_NEXT_GFX_IB_NOW,
341
NULL);
342
sfence->gfx_unflushed.ctx = NULL;
343
344
if (!timeout)
345
return false;
346
347
/* Recompute the timeout after all that. */
348
if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
349
int64_t time = os_time_get_nano();
350
timeout = abs_timeout > time ? abs_timeout - time : 0;
351
}
352
}
353
354
if (rws->fence_wait(rws, sfence->gfx, timeout))
355
return true;
356
357
/* Re-check in case the GPU is slow or hangs, but the commands before
358
* the fine-grained fence have completed. */
359
if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine))
360
return true;
361
362
return false;
363
}
364
365
static void si_create_fence_fd(struct pipe_context *ctx, struct pipe_fence_handle **pfence, int fd,
366
enum pipe_fd_type type)
367
{
368
struct si_screen *sscreen = (struct si_screen *)ctx->screen;
369
struct radeon_winsys *ws = sscreen->ws;
370
struct si_fence *sfence;
371
372
*pfence = NULL;
373
374
sfence = si_create_multi_fence();
375
if (!sfence)
376
return;
377
378
switch (type) {
379
case PIPE_FD_TYPE_NATIVE_SYNC:
380
if (!sscreen->info.has_fence_to_handle)
381
goto finish;
382
383
sfence->gfx = ws->fence_import_sync_file(ws, fd);
384
break;
385
386
case PIPE_FD_TYPE_SYNCOBJ:
387
if (!sscreen->info.has_syncobj)
388
goto finish;
389
390
sfence->gfx = ws->fence_import_syncobj(ws, fd);
391
break;
392
393
default:
394
unreachable("bad fence fd type when importing");
395
}
396
397
finish:
398
if (!sfence->gfx) {
399
FREE(sfence);
400
return;
401
}
402
403
*pfence = (struct pipe_fence_handle *)sfence;
404
}
405
406
static int si_fence_get_fd(struct pipe_screen *screen, struct pipe_fence_handle *fence)
407
{
408
struct si_screen *sscreen = (struct si_screen *)screen;
409
struct radeon_winsys *ws = sscreen->ws;
410
struct si_fence *sfence = (struct si_fence *)fence;
411
int gfx_fd = -1;
412
413
if (!sscreen->info.has_fence_to_handle)
414
return -1;
415
416
util_queue_fence_wait(&sfence->ready);
417
418
/* Deferred fences aren't supported. */
419
assert(!sfence->gfx_unflushed.ctx);
420
if (sfence->gfx_unflushed.ctx)
421
return -1;
422
423
if (sfence->gfx) {
424
gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx);
425
if (gfx_fd == -1) {
426
return -1;
427
}
428
}
429
430
/* If we don't have FDs at this point, it means we don't have fences
431
* either. */
432
if (gfx_fd == -1)
433
return ws->export_signalled_sync_file(ws);
434
435
return gfx_fd;
436
}
437
438
static void si_flush_all_queues(struct pipe_context *ctx,
439
struct pipe_fence_handle **fence,
440
unsigned flags, bool force_flush)
441
{
442
struct pipe_screen *screen = ctx->screen;
443
struct si_context *sctx = (struct si_context *)ctx;
444
struct radeon_winsys *ws = sctx->ws;
445
struct pipe_fence_handle *gfx_fence = NULL;
446
bool deferred_fence = false;
447
struct si_fine_fence fine = {};
448
unsigned rflags = PIPE_FLUSH_ASYNC;
449
450
if (!(flags & PIPE_FLUSH_DEFERRED)) {
451
si_flush_implicit_resources(sctx);
452
}
453
454
if (flags & PIPE_FLUSH_END_OF_FRAME)
455
rflags |= PIPE_FLUSH_END_OF_FRAME;
456
457
if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
458
assert(flags & PIPE_FLUSH_DEFERRED);
459
assert(fence);
460
461
si_fine_fence_set(sctx, &fine, flags);
462
}
463
464
if (force_flush) {
465
sctx->initial_gfx_cs_size = 0;
466
}
467
468
if (!radeon_emitted(&sctx->gfx_cs, sctx->initial_gfx_cs_size)) {
469
if (fence)
470
ws->fence_reference(&gfx_fence, sctx->last_gfx_fence);
471
if (!(flags & PIPE_FLUSH_DEFERRED))
472
ws->cs_sync_flush(&sctx->gfx_cs);
473
474
tc_driver_internal_flush_notify(sctx->tc);
475
} else {
476
/* Instead of flushing, create a deferred fence. Constraints:
477
* - the gallium frontend must allow a deferred flush.
478
* - the gallium frontend must request a fence.
479
* - fence_get_fd is not allowed.
480
* Thread safety in fence_finish must be ensured by the gallium frontend.
481
*/
482
if (flags & PIPE_FLUSH_DEFERRED && !(flags & PIPE_FLUSH_FENCE_FD) && fence) {
483
gfx_fence = sctx->ws->cs_get_next_fence(&sctx->gfx_cs);
484
deferred_fence = true;
485
} else {
486
si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL);
487
}
488
}
489
490
/* Both engines can signal out of order, so we need to keep both fences. */
491
if (fence) {
492
struct si_fence *new_fence;
493
494
if (flags & TC_FLUSH_ASYNC) {
495
new_fence = (struct si_fence *)*fence;
496
assert(new_fence);
497
} else {
498
new_fence = si_create_multi_fence();
499
if (!new_fence) {
500
ws->fence_reference(&gfx_fence, NULL);
501
goto finish;
502
}
503
504
screen->fence_reference(screen, fence, NULL);
505
*fence = (struct pipe_fence_handle *)new_fence;
506
}
507
508
/* If both fences are NULL, fence_finish will always return true. */
509
new_fence->gfx = gfx_fence;
510
511
if (deferred_fence) {
512
new_fence->gfx_unflushed.ctx = sctx;
513
new_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes;
514
}
515
516
new_fence->fine = fine;
517
fine.buf = NULL;
518
519
if (flags & TC_FLUSH_ASYNC) {
520
util_queue_fence_signal(&new_fence->ready);
521
tc_unflushed_batch_token_reference(&new_fence->tc_token, NULL);
522
}
523
}
524
assert(!fine.buf);
525
finish:
526
if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) {
527
ws->cs_sync_flush(&sctx->gfx_cs);
528
}
529
}
530
531
static void si_flush_from_st(struct pipe_context *ctx, struct pipe_fence_handle **fence,
532
unsigned flags)
533
{
534
return si_flush_all_queues(ctx, fence, flags, false);
535
}
536
537
static void si_fence_server_signal(struct pipe_context *ctx, struct pipe_fence_handle *fence)
538
{
539
struct si_context *sctx = (struct si_context *)ctx;
540
struct si_fence *sfence = (struct si_fence *)fence;
541
542
assert(sfence->gfx);
543
544
if (sfence->gfx)
545
si_add_syncobj_signal(sctx, sfence->gfx);
546
547
/**
548
* The spec does not require a flush here. We insert a flush
549
* because syncobj based signals are not directly placed into
550
* the command stream. Instead the signal happens when the
551
* submission associated with the syncobj finishes execution.
552
*
553
* Therefore, we must make sure that we flush the pipe to avoid
554
* new work being emitted and getting executed before the signal
555
* operation.
556
*
557
* Forces a flush even if the GFX CS is empty.
558
*/
559
si_flush_all_queues(ctx, NULL, PIPE_FLUSH_ASYNC, true);
560
}
561
562
static void si_fence_server_sync(struct pipe_context *ctx, struct pipe_fence_handle *fence)
563
{
564
struct si_context *sctx = (struct si_context *)ctx;
565
struct si_fence *sfence = (struct si_fence *)fence;
566
567
util_queue_fence_wait(&sfence->ready);
568
569
/* Unflushed fences from the same context are no-ops. */
570
if (sfence->gfx_unflushed.ctx && sfence->gfx_unflushed.ctx == sctx)
571
return;
572
573
/* All unflushed commands will not start execution before this fence
574
* dependency is signalled. That's fine. Flushing is very expensive
575
* if we get fence_server_sync after every draw call. (which happens
576
* with Android/SurfaceFlinger)
577
*
578
* In a nutshell, when CPU overhead is greater than GPU overhead,
579
* or when the time it takes to execute an IB on the GPU is less than
580
* the time it takes to create and submit that IB, flushing decreases
581
* performance. Therefore, DO NOT FLUSH.
582
*/
583
if (sfence->gfx)
584
si_add_fence_dependency(sctx, sfence->gfx);
585
}
586
587
void si_init_fence_functions(struct si_context *ctx)
588
{
589
ctx->b.flush = si_flush_from_st;
590
ctx->b.create_fence_fd = si_create_fence_fd;
591
ctx->b.fence_server_sync = si_fence_server_sync;
592
ctx->b.fence_server_signal = si_fence_server_signal;
593
}
594
595
void si_init_screen_fence_functions(struct si_screen *screen)
596
{
597
screen->b.fence_finish = si_fence_finish;
598
screen->b.fence_reference = si_fence_reference;
599
screen->b.fence_get_fd = si_fence_get_fd;
600
}
601
602