Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/gallium/drivers/radeonsi/si_shader.c
4570 views
1
/*
2
* Copyright 2012 Advanced Micro Devices, Inc.
3
* All Rights Reserved.
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* on the rights to use, copy, modify, merge, publish, distribute, sub
9
* license, and/or sell copies of the Software, and to permit persons to whom
10
* the Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice (including the next
13
* paragraph) shall be included in all copies or substantial portions of the
14
* Software.
15
*
16
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22
* USE OR OTHER DEALINGS IN THE SOFTWARE.
23
*/
24
25
#include "ac_exp_param.h"
26
#include "ac_rtld.h"
27
#include "compiler/nir/nir.h"
28
#include "compiler/nir/nir_serialize.h"
29
#include "si_pipe.h"
30
#include "si_shader_internal.h"
31
#include "sid.h"
32
#include "tgsi/tgsi_from_mesa.h"
33
#include "tgsi/tgsi_strings.h"
34
#include "util/u_memory.h"
35
36
static const char scratch_rsrc_dword0_symbol[] = "SCRATCH_RSRC_DWORD0";
37
38
static const char scratch_rsrc_dword1_symbol[] = "SCRATCH_RSRC_DWORD1";
39
40
static void si_dump_shader_key(const struct si_shader *shader, FILE *f);
41
42
/** Whether the shader runs as a combination of multiple API shaders */
43
bool si_is_multi_part_shader(struct si_shader *shader)
44
{
45
if (shader->selector->screen->info.chip_class <= GFX8)
46
return false;
47
48
return shader->key.as_ls || shader->key.as_es ||
49
shader->selector->info.stage == MESA_SHADER_TESS_CTRL ||
50
shader->selector->info.stage == MESA_SHADER_GEOMETRY;
51
}
52
53
/** Whether the shader runs on a merged HW stage (LSHS or ESGS) */
54
bool si_is_merged_shader(struct si_shader *shader)
55
{
56
return shader->key.as_ngg || si_is_multi_part_shader(shader);
57
}
58
59
/**
60
* Returns a unique index for a per-patch semantic name and index. The index
61
* must be less than 32, so that a 32-bit bitmask of used inputs or outputs
62
* can be calculated.
63
*/
64
unsigned si_shader_io_get_unique_index_patch(unsigned semantic)
65
{
66
switch (semantic) {
67
case VARYING_SLOT_TESS_LEVEL_OUTER:
68
return 0;
69
case VARYING_SLOT_TESS_LEVEL_INNER:
70
return 1;
71
default:
72
if (semantic >= VARYING_SLOT_PATCH0 && semantic < VARYING_SLOT_PATCH0 + 30)
73
return 2 + (semantic - VARYING_SLOT_PATCH0);
74
75
assert(!"invalid semantic");
76
return 0;
77
}
78
}
79
80
/**
81
* Returns a unique index for a semantic name and index. The index must be
82
* less than 64, so that a 64-bit bitmask of used inputs or outputs can be
83
* calculated.
84
*/
85
unsigned si_shader_io_get_unique_index(unsigned semantic, bool is_varying)
86
{
87
switch (semantic) {
88
case VARYING_SLOT_POS:
89
return 0;
90
default:
91
/* Since some shader stages use the highest used IO index
92
* to determine the size to allocate for inputs/outputs
93
* (in LDS, tess and GS rings). GENERIC should be placed right
94
* after POSITION to make that size as small as possible.
95
*/
96
if (semantic >= VARYING_SLOT_VAR0 && semantic <= VARYING_SLOT_VAR31)
97
return 1 + (semantic - VARYING_SLOT_VAR0); /* 1..32 */
98
99
/* Put 16-bit GLES varyings after 32-bit varyings. They can use the same indices as
100
* legacy desktop GL varyings because they are mutually exclusive.
101
*/
102
if (semantic >= VARYING_SLOT_VAR0_16BIT && semantic <= VARYING_SLOT_VAR15_16BIT)
103
return 33 + (semantic - VARYING_SLOT_VAR0_16BIT); /* 33..48 */
104
105
assert(!"invalid generic index");
106
return 0;
107
108
/* Legacy desktop GL varyings. */
109
case VARYING_SLOT_FOGC:
110
return 33;
111
case VARYING_SLOT_COL0:
112
return 34;
113
case VARYING_SLOT_COL1:
114
return 35;
115
case VARYING_SLOT_BFC0:
116
/* If it's a varying, COLOR and BCOLOR alias. */
117
if (is_varying)
118
return 34;
119
else
120
return 36;
121
case VARYING_SLOT_BFC1:
122
if (is_varying)
123
return 35;
124
else
125
return 37;
126
case VARYING_SLOT_TEX0:
127
case VARYING_SLOT_TEX1:
128
case VARYING_SLOT_TEX2:
129
case VARYING_SLOT_TEX3:
130
case VARYING_SLOT_TEX4:
131
case VARYING_SLOT_TEX5:
132
case VARYING_SLOT_TEX6:
133
case VARYING_SLOT_TEX7:
134
return 38 + (semantic - VARYING_SLOT_TEX0);
135
case VARYING_SLOT_CLIP_VERTEX:
136
return 46;
137
138
/* Varyings present in both GLES and desktop GL must start at 49 after 16-bit varyings. */
139
case VARYING_SLOT_CLIP_DIST0:
140
return 49;
141
case VARYING_SLOT_CLIP_DIST1:
142
return 50;
143
case VARYING_SLOT_PSIZ:
144
return 51;
145
146
/* These can't be written by LS, HS, and ES. */
147
case VARYING_SLOT_LAYER:
148
return 52;
149
case VARYING_SLOT_VIEWPORT:
150
return 53;
151
case VARYING_SLOT_PRIMITIVE_ID:
152
return 54;
153
}
154
}
155
156
static void si_dump_streamout(struct pipe_stream_output_info *so)
157
{
158
unsigned i;
159
160
if (so->num_outputs)
161
fprintf(stderr, "STREAMOUT\n");
162
163
for (i = 0; i < so->num_outputs; i++) {
164
unsigned mask = ((1 << so->output[i].num_components) - 1) << so->output[i].start_component;
165
fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n", i, so->output[i].output_buffer,
166
so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
167
so->output[i].register_index, mask & 1 ? "x" : "", mask & 2 ? "y" : "",
168
mask & 4 ? "z" : "", mask & 8 ? "w" : "");
169
}
170
}
171
172
static void declare_streamout_params(struct si_shader_context *ctx,
173
struct pipe_stream_output_info *so)
174
{
175
if (ctx->screen->use_ngg_streamout) {
176
if (ctx->stage == MESA_SHADER_TESS_EVAL)
177
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
178
return;
179
}
180
181
/* Streamout SGPRs. */
182
if (so->num_outputs) {
183
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.streamout_config);
184
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.streamout_write_index);
185
} else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
186
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
187
}
188
189
/* A streamout buffer offset is loaded if the stride is non-zero. */
190
for (int i = 0; i < 4; i++) {
191
if (!so->stride[i])
192
continue;
193
194
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.streamout_offset[i]);
195
}
196
}
197
198
unsigned si_get_max_workgroup_size(const struct si_shader *shader)
199
{
200
switch (shader->selector->info.stage) {
201
case MESA_SHADER_VERTEX:
202
case MESA_SHADER_TESS_EVAL:
203
return shader->key.as_ngg ? 128 : 0;
204
205
case MESA_SHADER_TESS_CTRL:
206
/* Return this so that LLVM doesn't remove s_barrier
207
* instructions on chips where we use s_barrier. */
208
return shader->selector->screen->info.chip_class >= GFX7 ? 128 : 0;
209
210
case MESA_SHADER_GEOMETRY:
211
return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 0;
212
213
case MESA_SHADER_COMPUTE:
214
break; /* see below */
215
216
default:
217
return 0;
218
}
219
220
/* Compile a variable block size using the maximum variable size. */
221
if (shader->selector->info.base.workgroup_size_variable)
222
return SI_MAX_VARIABLE_THREADS_PER_BLOCK;
223
224
uint16_t *local_size = shader->selector->info.base.workgroup_size;
225
unsigned max_work_group_size = (uint32_t)local_size[0] *
226
(uint32_t)local_size[1] *
227
(uint32_t)local_size[2];
228
assert(max_work_group_size);
229
return max_work_group_size;
230
}
231
232
static void declare_const_and_shader_buffers(struct si_shader_context *ctx, bool assign_params)
233
{
234
enum ac_arg_type const_shader_buf_type;
235
236
if (ctx->shader->selector->info.base.num_ubos == 1 &&
237
ctx->shader->selector->info.base.num_ssbos == 0)
238
const_shader_buf_type = AC_ARG_CONST_FLOAT_PTR;
239
else
240
const_shader_buf_type = AC_ARG_CONST_DESC_PTR;
241
242
ac_add_arg(
243
&ctx->args, AC_ARG_SGPR, 1, const_shader_buf_type,
244
assign_params ? &ctx->const_and_shader_buffers : &ctx->other_const_and_shader_buffers);
245
}
246
247
static void declare_samplers_and_images(struct si_shader_context *ctx, bool assign_params)
248
{
249
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR,
250
assign_params ? &ctx->samplers_and_images : &ctx->other_samplers_and_images);
251
}
252
253
static void declare_per_stage_desc_pointers(struct si_shader_context *ctx, bool assign_params)
254
{
255
declare_const_and_shader_buffers(ctx, assign_params);
256
declare_samplers_and_images(ctx, assign_params);
257
}
258
259
static void declare_global_desc_pointers(struct si_shader_context *ctx)
260
{
261
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->internal_bindings);
262
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR,
263
&ctx->bindless_samplers_and_images);
264
}
265
266
static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx)
267
{
268
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
269
if (!ctx->shader->is_gs_copy_shader) {
270
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.base_vertex);
271
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.draw_id);
272
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.start_instance);
273
}
274
}
275
276
static void declare_vb_descriptor_input_sgprs(struct si_shader_context *ctx)
277
{
278
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->args.vertex_buffers);
279
280
unsigned num_vbos_in_user_sgprs = ctx->shader->selector->num_vbos_in_user_sgprs;
281
if (num_vbos_in_user_sgprs) {
282
unsigned user_sgprs = ctx->args.num_sgprs_used;
283
284
if (si_is_merged_shader(ctx->shader))
285
user_sgprs -= 8;
286
assert(user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST);
287
288
/* Declare unused SGPRs to align VB descriptors to 4 SGPRs (hw requirement). */
289
for (unsigned i = user_sgprs; i < SI_SGPR_VS_VB_DESCRIPTOR_FIRST; i++)
290
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
291
292
assert(num_vbos_in_user_sgprs <= ARRAY_SIZE(ctx->vb_descriptors));
293
for (unsigned i = 0; i < num_vbos_in_user_sgprs; i++)
294
ac_add_arg(&ctx->args, AC_ARG_SGPR, 4, AC_ARG_INT, &ctx->vb_descriptors[i]);
295
}
296
}
297
298
static void declare_vs_input_vgprs(struct si_shader_context *ctx, unsigned *num_prolog_vgprs)
299
{
300
struct si_shader *shader = ctx->shader;
301
302
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vertex_id);
303
if (shader->key.as_ls) {
304
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vs_rel_patch_id);
305
if (ctx->screen->info.chip_class >= GFX10) {
306
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */
307
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
308
} else {
309
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
310
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* unused */
311
}
312
} else if (ctx->screen->info.chip_class >= GFX10) {
313
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */
314
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT,
315
&ctx->args.vs_prim_id); /* user vgpr or PrimID (legacy) */
316
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
317
} else {
318
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
319
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vs_prim_id);
320
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* unused */
321
}
322
323
if (!shader->is_gs_copy_shader) {
324
/* Vertex load indices. */
325
if (shader->selector->info.num_inputs) {
326
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->vertex_index0);
327
for (unsigned i = 1; i < shader->selector->info.num_inputs; i++)
328
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL);
329
}
330
*num_prolog_vgprs += shader->selector->info.num_inputs;
331
}
332
}
333
334
static void declare_vs_blit_inputs(struct si_shader_context *ctx, unsigned vs_blit_property)
335
{
336
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_blit_inputs); /* i16 x1, y1 */
337
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* i16 x1, y1 */
338
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* depth */
339
340
if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
341
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color0 */
342
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color1 */
343
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color2 */
344
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color3 */
345
} else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
346
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.x1 */
347
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.y1 */
348
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.x2 */
349
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.y2 */
350
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.z */
351
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.w */
352
}
353
}
354
355
static void declare_tes_input_vgprs(struct si_shader_context *ctx)
356
{
357
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.tes_u);
358
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.tes_v);
359
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tes_rel_patch_id);
360
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tes_patch_id);
361
}
362
363
enum
364
{
365
/* Convenient merged shader definitions. */
366
SI_SHADER_MERGED_VERTEX_TESSCTRL = MESA_ALL_SHADER_STAGES,
367
SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
368
};
369
370
void si_add_arg_checked(struct ac_shader_args *args, enum ac_arg_regfile file, unsigned registers,
371
enum ac_arg_type type, struct ac_arg *arg, unsigned idx)
372
{
373
assert(args->arg_count == idx);
374
ac_add_arg(args, file, registers, type, arg);
375
}
376
377
void si_init_shader_args(struct si_shader_context *ctx, bool ngg_cull_shader)
378
{
379
struct si_shader *shader = ctx->shader;
380
unsigned i, num_returns, num_return_sgprs;
381
unsigned num_prolog_vgprs = 0;
382
unsigned stage = ctx->stage;
383
384
memset(&ctx->args, 0, sizeof(ctx->args));
385
386
/* Set MERGED shaders. */
387
if (ctx->screen->info.chip_class >= GFX9) {
388
if (shader->key.as_ls || stage == MESA_SHADER_TESS_CTRL)
389
stage = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
390
else if (shader->key.as_es || shader->key.as_ngg || stage == MESA_SHADER_GEOMETRY)
391
stage = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
392
}
393
394
switch (stage) {
395
case MESA_SHADER_VERTEX:
396
declare_global_desc_pointers(ctx);
397
398
if (shader->selector->info.base.vs.blit_sgprs_amd) {
399
declare_vs_blit_inputs(ctx, shader->selector->info.base.vs.blit_sgprs_amd);
400
401
/* VGPRs */
402
declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
403
break;
404
}
405
406
declare_per_stage_desc_pointers(ctx, true);
407
declare_vs_specific_input_sgprs(ctx);
408
if (!shader->is_gs_copy_shader)
409
declare_vb_descriptor_input_sgprs(ctx);
410
411
if (shader->key.as_es) {
412
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.es2gs_offset);
413
} else if (shader->key.as_ls) {
414
/* no extra parameters */
415
} else {
416
/* The locations of the other parameters are assigned dynamically. */
417
declare_streamout_params(ctx, &shader->selector->so);
418
}
419
420
/* VGPRs */
421
declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
422
423
/* Return values */
424
if (shader->key.opt.vs_as_prim_discard_cs) {
425
for (i = 0; i < 4; i++)
426
ac_add_return(&ctx->args, AC_ARG_VGPR);
427
}
428
break;
429
430
case MESA_SHADER_TESS_CTRL: /* GFX6-GFX8 */
431
declare_global_desc_pointers(ctx);
432
declare_per_stage_desc_pointers(ctx, true);
433
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
434
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_offsets);
435
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout);
436
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
437
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
438
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tcs_factor_offset);
439
440
/* VGPRs */
441
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_patch_id);
442
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_rel_ids);
443
444
/* param_tcs_offchip_offset and param_tcs_factor_offset are
445
* placed after the user SGPRs.
446
*/
447
for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
448
ac_add_return(&ctx->args, AC_ARG_SGPR);
449
for (i = 0; i < 11; i++)
450
ac_add_return(&ctx->args, AC_ARG_VGPR);
451
break;
452
453
case SI_SHADER_MERGED_VERTEX_TESSCTRL:
454
/* Merged stages have 8 system SGPRs at the beginning. */
455
/* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
456
declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_TESS_CTRL);
457
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
458
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.merged_wave_info);
459
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tcs_factor_offset);
460
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.scratch_offset);
461
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
462
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
463
464
declare_global_desc_pointers(ctx);
465
declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_VERTEX);
466
declare_vs_specific_input_sgprs(ctx);
467
468
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
469
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_offsets);
470
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout);
471
if (ctx->stage == MESA_SHADER_VERTEX)
472
declare_vb_descriptor_input_sgprs(ctx);
473
474
/* VGPRs (first TCS, then VS) */
475
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_patch_id);
476
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_rel_ids);
477
478
if (ctx->stage == MESA_SHADER_VERTEX) {
479
declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
480
481
/* LS return values are inputs to the TCS main shader part. */
482
for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
483
ac_add_return(&ctx->args, AC_ARG_SGPR);
484
for (i = 0; i < 2; i++)
485
ac_add_return(&ctx->args, AC_ARG_VGPR);
486
487
/* VS outputs passed via VGPRs to TCS. */
488
if (shader->key.opt.same_patch_vertices) {
489
unsigned num_outputs = util_last_bit64(shader->selector->outputs_written);
490
for (i = 0; i < num_outputs * 4; i++)
491
ac_add_return(&ctx->args, AC_ARG_VGPR);
492
}
493
} else {
494
/* TCS inputs are passed via VGPRs from VS. */
495
if (shader->key.opt.same_patch_vertices) {
496
unsigned num_inputs = util_last_bit64(shader->previous_stage_sel->outputs_written);
497
for (i = 0; i < num_inputs * 4; i++)
498
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL);
499
}
500
501
/* TCS return values are inputs to the TCS epilog.
502
*
503
* param_tcs_offchip_offset, param_tcs_factor_offset,
504
* param_tcs_offchip_layout, and internal_bindings
505
* should be passed to the epilog.
506
*/
507
for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
508
ac_add_return(&ctx->args, AC_ARG_SGPR);
509
for (i = 0; i < 11; i++)
510
ac_add_return(&ctx->args, AC_ARG_VGPR);
511
}
512
break;
513
514
case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
515
/* Merged stages have 8 system SGPRs at the beginning. */
516
/* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
517
declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_GEOMETRY);
518
519
if (ctx->shader->key.as_ngg)
520
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs_tg_info);
521
else
522
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs2vs_offset);
523
524
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.merged_wave_info);
525
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
526
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.scratch_offset);
527
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR,
528
&ctx->small_prim_cull_info); /* SPI_SHADER_PGM_LO_GS << 8 */
529
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT,
530
NULL); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
531
532
declare_global_desc_pointers(ctx);
533
if (ctx->stage != MESA_SHADER_VERTEX || !shader->selector->info.base.vs.blit_sgprs_amd) {
534
declare_per_stage_desc_pointers(
535
ctx, (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL));
536
}
537
538
if (ctx->stage == MESA_SHADER_VERTEX) {
539
if (shader->selector->info.base.vs.blit_sgprs_amd)
540
declare_vs_blit_inputs(ctx, shader->selector->info.base.vs.blit_sgprs_amd);
541
else
542
declare_vs_specific_input_sgprs(ctx);
543
} else {
544
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
545
546
if (ctx->stage == MESA_SHADER_TESS_EVAL) {
547
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
548
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tes_offchip_addr);
549
}
550
}
551
552
if (ctx->stage == MESA_SHADER_VERTEX)
553
declare_vb_descriptor_input_sgprs(ctx);
554
555
/* VGPRs (first GS, then VS/TES) */
556
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx01_offset);
557
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx23_offset);
558
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_prim_id);
559
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_invocation_id);
560
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx45_offset);
561
562
if (ctx->stage == MESA_SHADER_VERTEX) {
563
declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
564
} else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
565
declare_tes_input_vgprs(ctx);
566
}
567
568
if ((ctx->shader->key.as_es || ngg_cull_shader) &&
569
(ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL)) {
570
unsigned num_user_sgprs, num_vgprs;
571
572
if (ctx->stage == MESA_SHADER_VERTEX && ngg_cull_shader) {
573
/* For the NGG cull shader, add 1 SGPR to hold
574
* the vertex buffer pointer.
575
*/
576
num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR + 1;
577
578
if (shader->selector->num_vbos_in_user_sgprs) {
579
assert(num_user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST);
580
num_user_sgprs =
581
SI_SGPR_VS_VB_DESCRIPTOR_FIRST + shader->selector->num_vbos_in_user_sgprs * 4;
582
}
583
} else if (ctx->stage == MESA_SHADER_TESS_EVAL && ngg_cull_shader) {
584
num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
585
} else {
586
num_user_sgprs = SI_NUM_VS_STATE_RESOURCE_SGPRS;
587
}
588
589
/* The NGG cull shader has to return all 9 VGPRs.
590
*
591
* The normal merged ESGS shader only has to return the 5 VGPRs
592
* for the GS stage.
593
*/
594
num_vgprs = ngg_cull_shader ? 9 : 5;
595
596
/* ES return values are inputs to GS. */
597
for (i = 0; i < 8 + num_user_sgprs; i++)
598
ac_add_return(&ctx->args, AC_ARG_SGPR);
599
for (i = 0; i < num_vgprs; i++)
600
ac_add_return(&ctx->args, AC_ARG_VGPR);
601
}
602
break;
603
604
case MESA_SHADER_TESS_EVAL:
605
declare_global_desc_pointers(ctx);
606
declare_per_stage_desc_pointers(ctx, true);
607
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
608
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
609
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tes_offchip_addr);
610
611
if (shader->key.as_es) {
612
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
613
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
614
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.es2gs_offset);
615
} else {
616
declare_streamout_params(ctx, &shader->selector->so);
617
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
618
}
619
620
/* VGPRs */
621
declare_tes_input_vgprs(ctx);
622
break;
623
624
case MESA_SHADER_GEOMETRY:
625
declare_global_desc_pointers(ctx);
626
declare_per_stage_desc_pointers(ctx, true);
627
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs2vs_offset);
628
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs_wave_id);
629
630
/* VGPRs */
631
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[0]);
632
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[1]);
633
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_prim_id);
634
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[2]);
635
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[3]);
636
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[4]);
637
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[5]);
638
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_invocation_id);
639
break;
640
641
case MESA_SHADER_FRAGMENT:
642
declare_global_desc_pointers(ctx);
643
declare_per_stage_desc_pointers(ctx, true);
644
si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL, SI_PARAM_ALPHA_REF);
645
si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.prim_mask,
646
SI_PARAM_PRIM_MASK);
647
648
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_sample,
649
SI_PARAM_PERSP_SAMPLE);
650
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_center,
651
SI_PARAM_PERSP_CENTER);
652
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_centroid,
653
SI_PARAM_PERSP_CENTROID);
654
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_INT, NULL, SI_PARAM_PERSP_PULL_MODEL);
655
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_sample,
656
SI_PARAM_LINEAR_SAMPLE);
657
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_center,
658
SI_PARAM_LINEAR_CENTER);
659
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_centroid,
660
SI_PARAM_LINEAR_CENTROID);
661
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_FLOAT, NULL, SI_PARAM_LINE_STIPPLE_TEX);
662
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[0],
663
SI_PARAM_POS_X_FLOAT);
664
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[1],
665
SI_PARAM_POS_Y_FLOAT);
666
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[2],
667
SI_PARAM_POS_Z_FLOAT);
668
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[3],
669
SI_PARAM_POS_W_FLOAT);
670
shader->info.face_vgpr_index = ctx->args.num_vgprs_used;
671
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.front_face,
672
SI_PARAM_FRONT_FACE);
673
shader->info.ancillary_vgpr_index = ctx->args.num_vgprs_used;
674
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.ancillary,
675
SI_PARAM_ANCILLARY);
676
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.sample_coverage,
677
SI_PARAM_SAMPLE_COVERAGE);
678
si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->pos_fixed_pt,
679
SI_PARAM_POS_FIXED_PT);
680
681
/* Color inputs from the prolog. */
682
if (shader->selector->info.colors_read) {
683
unsigned num_color_elements = util_bitcount(shader->selector->info.colors_read);
684
685
for (i = 0; i < num_color_elements; i++)
686
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL);
687
688
num_prolog_vgprs += num_color_elements;
689
}
690
691
/* Outputs for the epilog. */
692
num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
693
num_returns = num_return_sgprs + util_bitcount(shader->selector->info.colors_written) * 4 +
694
shader->selector->info.writes_z + shader->selector->info.writes_stencil +
695
shader->selector->info.writes_samplemask + 1 /* SampleMaskIn */;
696
697
num_returns = MAX2(num_returns, num_return_sgprs + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
698
699
for (i = 0; i < num_return_sgprs; i++)
700
ac_add_return(&ctx->args, AC_ARG_SGPR);
701
for (; i < num_returns; i++)
702
ac_add_return(&ctx->args, AC_ARG_VGPR);
703
break;
704
705
case MESA_SHADER_COMPUTE:
706
declare_global_desc_pointers(ctx);
707
declare_per_stage_desc_pointers(ctx, true);
708
if (shader->selector->info.uses_grid_size)
709
ac_add_arg(&ctx->args, AC_ARG_SGPR, 3, AC_ARG_INT, &ctx->args.num_work_groups);
710
if (shader->selector->info.uses_variable_block_size)
711
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->block_size);
712
713
unsigned cs_user_data_dwords =
714
shader->selector->info.base.cs.user_data_components_amd;
715
if (cs_user_data_dwords) {
716
ac_add_arg(&ctx->args, AC_ARG_SGPR, cs_user_data_dwords, AC_ARG_INT, &ctx->cs_user_data);
717
}
718
719
/* Some descriptors can be in user SGPRs. */
720
/* Shader buffers in user SGPRs. */
721
for (unsigned i = 0; i < shader->selector->cs_num_shaderbufs_in_user_sgprs; i++) {
722
while (ctx->args.num_sgprs_used % 4 != 0)
723
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
724
725
ac_add_arg(&ctx->args, AC_ARG_SGPR, 4, AC_ARG_INT, &ctx->cs_shaderbuf[i]);
726
}
727
/* Images in user SGPRs. */
728
for (unsigned i = 0; i < shader->selector->cs_num_images_in_user_sgprs; i++) {
729
unsigned num_sgprs = shader->selector->info.base.image_buffers & (1 << i) ? 4 : 8;
730
731
while (ctx->args.num_sgprs_used % num_sgprs != 0)
732
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
733
734
ac_add_arg(&ctx->args, AC_ARG_SGPR, num_sgprs, AC_ARG_INT, &ctx->cs_image[i]);
735
}
736
737
/* Hardware SGPRs. */
738
for (i = 0; i < 3; i++) {
739
if (shader->selector->info.uses_block_id[i]) {
740
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.workgroup_ids[i]);
741
}
742
}
743
if (shader->selector->info.uses_subgroup_info)
744
ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tg_size);
745
746
/* Hardware VGPRs. */
747
if (!ctx->screen->info.has_graphics && ctx->screen->info.family >= CHIP_ALDEBARAN)
748
ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.local_invocation_ids);
749
else
750
ac_add_arg(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_INT, &ctx->args.local_invocation_ids);
751
break;
752
default:
753
assert(0 && "unimplemented shader");
754
return;
755
}
756
757
shader->info.num_input_sgprs = ctx->args.num_sgprs_used;
758
shader->info.num_input_vgprs = ctx->args.num_vgprs_used;
759
760
assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
761
shader->info.num_input_vgprs -= num_prolog_vgprs;
762
}
763
764
/* For the UMR disassembler. */
765
#define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
766
#define DEBUGGER_NUM_MARKERS 5
767
768
static bool si_shader_binary_open(struct si_screen *screen, struct si_shader *shader,
769
struct ac_rtld_binary *rtld)
770
{
771
const struct si_shader_selector *sel = shader->selector;
772
const char *part_elfs[5];
773
size_t part_sizes[5];
774
unsigned num_parts = 0;
775
776
#define add_part(shader_or_part) \
777
if (shader_or_part) { \
778
part_elfs[num_parts] = (shader_or_part)->binary.elf_buffer; \
779
part_sizes[num_parts] = (shader_or_part)->binary.elf_size; \
780
num_parts++; \
781
}
782
783
add_part(shader->prolog);
784
add_part(shader->previous_stage);
785
add_part(shader->prolog2);
786
add_part(shader);
787
add_part(shader->epilog);
788
789
#undef add_part
790
791
struct ac_rtld_symbol lds_symbols[2];
792
unsigned num_lds_symbols = 0;
793
794
if (sel && screen->info.chip_class >= GFX9 && !shader->is_gs_copy_shader &&
795
(sel->info.stage == MESA_SHADER_GEOMETRY || shader->key.as_ngg)) {
796
struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
797
sym->name = "esgs_ring";
798
sym->size = shader->gs_info.esgs_ring_size * 4;
799
sym->align = 64 * 1024;
800
}
801
802
if (shader->key.as_ngg && sel->info.stage == MESA_SHADER_GEOMETRY) {
803
struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
804
sym->name = "ngg_emit";
805
sym->size = shader->ngg.ngg_emit_size * 4;
806
sym->align = 4;
807
}
808
809
bool ok = ac_rtld_open(
810
rtld, (struct ac_rtld_open_info){.info = &screen->info,
811
.options =
812
{
813
.halt_at_entry = screen->options.halt_shaders,
814
},
815
.shader_type = sel->info.stage,
816
.wave_size = si_get_shader_wave_size(shader),
817
.num_parts = num_parts,
818
.elf_ptrs = part_elfs,
819
.elf_sizes = part_sizes,
820
.num_shared_lds_symbols = num_lds_symbols,
821
.shared_lds_symbols = lds_symbols});
822
823
if (rtld->lds_size > 0) {
824
unsigned alloc_granularity = screen->info.chip_class >= GFX7 ? 512 : 256;
825
shader->config.lds_size = align(rtld->lds_size, alloc_granularity) / alloc_granularity;
826
}
827
828
return ok;
829
}
830
831
static unsigned si_get_shader_binary_size(struct si_screen *screen, struct si_shader *shader)
832
{
833
struct ac_rtld_binary rtld;
834
si_shader_binary_open(screen, shader, &rtld);
835
return rtld.exec_size;
836
}
837
838
static bool si_get_external_symbol(void *data, const char *name, uint64_t *value)
839
{
840
uint64_t *scratch_va = data;
841
842
if (!strcmp(scratch_rsrc_dword0_symbol, name)) {
843
*value = (uint32_t)*scratch_va;
844
return true;
845
}
846
if (!strcmp(scratch_rsrc_dword1_symbol, name)) {
847
/* Enable scratch coalescing. */
848
*value = S_008F04_BASE_ADDRESS_HI(*scratch_va >> 32) | S_008F04_SWIZZLE_ENABLE(1);
849
return true;
850
}
851
852
return false;
853
}
854
855
bool si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader,
856
uint64_t scratch_va)
857
{
858
struct ac_rtld_binary binary;
859
if (!si_shader_binary_open(sscreen, shader, &binary))
860
return false;
861
862
si_resource_reference(&shader->bo, NULL);
863
shader->bo = si_aligned_buffer_create(
864
&sscreen->b,
865
(sscreen->info.cpdma_prefetch_writes_memory ?
866
0 : SI_RESOURCE_FLAG_READ_ONLY) | SI_RESOURCE_FLAG_DRIVER_INTERNAL,
867
PIPE_USAGE_IMMUTABLE, align(binary.rx_size, SI_CPDMA_ALIGNMENT), 256);
868
if (!shader->bo)
869
return false;
870
871
/* Upload. */
872
struct ac_rtld_upload_info u = {};
873
u.binary = &binary;
874
u.get_external_symbol = si_get_external_symbol;
875
u.cb_data = &scratch_va;
876
u.rx_va = shader->bo->gpu_address;
877
u.rx_ptr = sscreen->ws->buffer_map(sscreen->ws,
878
shader->bo->buf, NULL,
879
PIPE_MAP_READ_WRITE | PIPE_MAP_UNSYNCHRONIZED | RADEON_MAP_TEMPORARY);
880
if (!u.rx_ptr)
881
return false;
882
883
int size = ac_rtld_upload(&u);
884
885
if (sscreen->debug_flags & DBG(SQTT)) {
886
/* Remember the uploaded code */
887
shader->binary.uploaded_code_size = size;
888
shader->binary.uploaded_code = malloc(size);
889
memcpy(shader->binary.uploaded_code, u.rx_ptr, size);
890
}
891
892
sscreen->ws->buffer_unmap(sscreen->ws, shader->bo->buf);
893
ac_rtld_close(&binary);
894
895
return size >= 0;
896
}
897
898
static void si_shader_dump_disassembly(struct si_screen *screen,
899
const struct si_shader_binary *binary,
900
gl_shader_stage stage, unsigned wave_size,
901
struct pipe_debug_callback *debug, const char *name,
902
FILE *file)
903
{
904
struct ac_rtld_binary rtld_binary;
905
906
if (!ac_rtld_open(&rtld_binary, (struct ac_rtld_open_info){
907
.info = &screen->info,
908
.shader_type = stage,
909
.wave_size = wave_size,
910
.num_parts = 1,
911
.elf_ptrs = &binary->elf_buffer,
912
.elf_sizes = &binary->elf_size}))
913
return;
914
915
const char *disasm;
916
size_t nbytes;
917
918
if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm, &nbytes))
919
goto out;
920
921
if (nbytes > INT_MAX)
922
goto out;
923
924
if (debug && debug->debug_message) {
925
/* Very long debug messages are cut off, so send the
926
* disassembly one line at a time. This causes more
927
* overhead, but on the plus side it simplifies
928
* parsing of resulting logs.
929
*/
930
pipe_debug_message(debug, SHADER_INFO, "Shader Disassembly Begin");
931
932
uint64_t line = 0;
933
while (line < nbytes) {
934
int count = nbytes - line;
935
const char *nl = memchr(disasm + line, '\n', nbytes - line);
936
if (nl)
937
count = nl - (disasm + line);
938
939
if (count) {
940
pipe_debug_message(debug, SHADER_INFO, "%.*s", count, disasm + line);
941
}
942
943
line += count + 1;
944
}
945
946
pipe_debug_message(debug, SHADER_INFO, "Shader Disassembly End");
947
}
948
949
if (file) {
950
fprintf(file, "Shader %s disassembly:\n", name);
951
fprintf(file, "%*s", (int)nbytes, disasm);
952
}
953
954
out:
955
ac_rtld_close(&rtld_binary);
956
}
957
958
static void si_calculate_max_simd_waves(struct si_shader *shader)
959
{
960
struct si_screen *sscreen = shader->selector->screen;
961
struct ac_shader_config *conf = &shader->config;
962
unsigned num_inputs = shader->selector->info.num_inputs;
963
unsigned lds_increment = sscreen->info.chip_class >= GFX7 ? 512 : 256;
964
unsigned lds_per_wave = 0;
965
unsigned max_simd_waves;
966
967
max_simd_waves = sscreen->info.max_wave64_per_simd;
968
969
/* Compute LDS usage for PS. */
970
switch (shader->selector->info.stage) {
971
case MESA_SHADER_FRAGMENT:
972
/* The minimum usage per wave is (num_inputs * 48). The maximum
973
* usage is (num_inputs * 48 * 16).
974
* We can get anything in between and it varies between waves.
975
*
976
* The 48 bytes per input for a single primitive is equal to
977
* 4 bytes/component * 4 components/input * 3 points.
978
*
979
* Other stages don't know the size at compile time or don't
980
* allocate LDS per wave, but instead they do it per thread group.
981
*/
982
lds_per_wave = conf->lds_size * lds_increment + align(num_inputs * 48, lds_increment);
983
break;
984
case MESA_SHADER_COMPUTE: {
985
unsigned max_workgroup_size = si_get_max_workgroup_size(shader);
986
lds_per_wave = (conf->lds_size * lds_increment) /
987
DIV_ROUND_UP(max_workgroup_size, sscreen->compute_wave_size);
988
}
989
break;
990
default:;
991
}
992
993
/* Compute the per-SIMD wave counts. */
994
if (conf->num_sgprs) {
995
max_simd_waves =
996
MIN2(max_simd_waves, sscreen->info.num_physical_sgprs_per_simd / conf->num_sgprs);
997
}
998
999
if (conf->num_vgprs) {
1000
/* Always print wave limits as Wave64, so that we can compare
1001
* Wave32 and Wave64 with shader-db fairly. */
1002
unsigned max_vgprs = sscreen->info.num_physical_wave64_vgprs_per_simd;
1003
max_simd_waves = MIN2(max_simd_waves, max_vgprs / conf->num_vgprs);
1004
}
1005
1006
unsigned max_lds_per_simd = sscreen->info.lds_size_per_workgroup / 4;
1007
if (lds_per_wave)
1008
max_simd_waves = MIN2(max_simd_waves, max_lds_per_simd / lds_per_wave);
1009
1010
shader->info.max_simd_waves = max_simd_waves;
1011
}
1012
1013
void si_shader_dump_stats_for_shader_db(struct si_screen *screen, struct si_shader *shader,
1014
struct pipe_debug_callback *debug)
1015
{
1016
const struct ac_shader_config *conf = &shader->config;
1017
1018
if (screen->options.debug_disassembly)
1019
si_shader_dump_disassembly(screen, &shader->binary, shader->selector->info.stage,
1020
si_get_shader_wave_size(shader), debug, "main", NULL);
1021
1022
pipe_debug_message(debug, SHADER_INFO,
1023
"Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
1024
"LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
1025
"Spilled VGPRs: %d PrivMem VGPRs: %d",
1026
conf->num_sgprs, conf->num_vgprs, si_get_shader_binary_size(screen, shader),
1027
conf->lds_size, conf->scratch_bytes_per_wave, shader->info.max_simd_waves,
1028
conf->spilled_sgprs, conf->spilled_vgprs, shader->info.private_mem_vgprs);
1029
}
1030
1031
static void si_shader_dump_stats(struct si_screen *sscreen, struct si_shader *shader, FILE *file,
1032
bool check_debug_option)
1033
{
1034
const struct ac_shader_config *conf = &shader->config;
1035
1036
if (!check_debug_option || si_can_dump_shader(sscreen, shader->selector->info.stage)) {
1037
if (shader->selector->info.stage == MESA_SHADER_FRAGMENT) {
1038
fprintf(file,
1039
"*** SHADER CONFIG ***\n"
1040
"SPI_PS_INPUT_ADDR = 0x%04x\n"
1041
"SPI_PS_INPUT_ENA = 0x%04x\n",
1042
conf->spi_ps_input_addr, conf->spi_ps_input_ena);
1043
}
1044
1045
fprintf(file,
1046
"*** SHADER STATS ***\n"
1047
"SGPRS: %d\n"
1048
"VGPRS: %d\n"
1049
"Spilled SGPRs: %d\n"
1050
"Spilled VGPRs: %d\n"
1051
"Private memory VGPRs: %d\n"
1052
"Code Size: %d bytes\n"
1053
"LDS: %d blocks\n"
1054
"Scratch: %d bytes per wave\n"
1055
"Max Waves: %d\n"
1056
"********************\n\n\n",
1057
conf->num_sgprs, conf->num_vgprs, conf->spilled_sgprs, conf->spilled_vgprs,
1058
shader->info.private_mem_vgprs, si_get_shader_binary_size(sscreen, shader),
1059
conf->lds_size, conf->scratch_bytes_per_wave, shader->info.max_simd_waves);
1060
}
1061
}
1062
1063
const char *si_get_shader_name(const struct si_shader *shader)
1064
{
1065
switch (shader->selector->info.stage) {
1066
case MESA_SHADER_VERTEX:
1067
if (shader->key.as_es)
1068
return "Vertex Shader as ES";
1069
else if (shader->key.as_ls)
1070
return "Vertex Shader as LS";
1071
else if (shader->key.opt.vs_as_prim_discard_cs)
1072
return "Vertex Shader as Primitive Discard CS";
1073
else if (shader->key.as_ngg)
1074
return "Vertex Shader as ESGS";
1075
else
1076
return "Vertex Shader as VS";
1077
case MESA_SHADER_TESS_CTRL:
1078
return "Tessellation Control Shader";
1079
case MESA_SHADER_TESS_EVAL:
1080
if (shader->key.as_es)
1081
return "Tessellation Evaluation Shader as ES";
1082
else if (shader->key.as_ngg)
1083
return "Tessellation Evaluation Shader as ESGS";
1084
else
1085
return "Tessellation Evaluation Shader as VS";
1086
case MESA_SHADER_GEOMETRY:
1087
if (shader->is_gs_copy_shader)
1088
return "GS Copy Shader as VS";
1089
else
1090
return "Geometry Shader";
1091
case MESA_SHADER_FRAGMENT:
1092
return "Pixel Shader";
1093
case MESA_SHADER_COMPUTE:
1094
return "Compute Shader";
1095
default:
1096
return "Unknown Shader";
1097
}
1098
}
1099
1100
void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
1101
struct pipe_debug_callback *debug, FILE *file, bool check_debug_option)
1102
{
1103
gl_shader_stage stage = shader->selector->info.stage;
1104
1105
if (!check_debug_option || si_can_dump_shader(sscreen, stage))
1106
si_dump_shader_key(shader, file);
1107
1108
if (!check_debug_option && shader->binary.llvm_ir_string) {
1109
if (shader->previous_stage && shader->previous_stage->binary.llvm_ir_string) {
1110
fprintf(file, "\n%s - previous stage - LLVM IR:\n\n", si_get_shader_name(shader));
1111
fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
1112
}
1113
1114
fprintf(file, "\n%s - main shader part - LLVM IR:\n\n", si_get_shader_name(shader));
1115
fprintf(file, "%s\n", shader->binary.llvm_ir_string);
1116
}
1117
1118
if (!check_debug_option ||
1119
(si_can_dump_shader(sscreen, stage) && !(sscreen->debug_flags & DBG(NO_ASM)))) {
1120
unsigned wave_size = si_get_shader_wave_size(shader);
1121
1122
fprintf(file, "\n%s:\n", si_get_shader_name(shader));
1123
1124
if (shader->prolog)
1125
si_shader_dump_disassembly(sscreen, &shader->prolog->binary, stage, wave_size, debug,
1126
"prolog", file);
1127
if (shader->previous_stage)
1128
si_shader_dump_disassembly(sscreen, &shader->previous_stage->binary, stage,
1129
wave_size, debug, "previous stage", file);
1130
if (shader->prolog2)
1131
si_shader_dump_disassembly(sscreen, &shader->prolog2->binary, stage, wave_size,
1132
debug, "prolog2", file);
1133
1134
si_shader_dump_disassembly(sscreen, &shader->binary, stage, wave_size, debug, "main",
1135
file);
1136
1137
if (shader->epilog)
1138
si_shader_dump_disassembly(sscreen, &shader->epilog->binary, stage, wave_size, debug,
1139
"epilog", file);
1140
fprintf(file, "\n");
1141
}
1142
1143
si_shader_dump_stats(sscreen, shader, file, check_debug_option);
1144
}
1145
1146
static void si_dump_shader_key_vs(const struct si_shader_key *key,
1147
const struct si_vs_prolog_bits *prolog, const char *prefix,
1148
FILE *f)
1149
{
1150
fprintf(f, " %s.instance_divisor_is_one = %u\n", prefix, prolog->instance_divisor_is_one);
1151
fprintf(f, " %s.instance_divisor_is_fetched = %u\n", prefix,
1152
prolog->instance_divisor_is_fetched);
1153
fprintf(f, " %s.unpack_instance_id_from_vertex_id = %u\n", prefix,
1154
prolog->unpack_instance_id_from_vertex_id);
1155
fprintf(f, " %s.ls_vgpr_fix = %u\n", prefix, prolog->ls_vgpr_fix);
1156
1157
fprintf(f, " mono.vs.fetch_opencode = %x\n", key->mono.vs_fetch_opencode);
1158
fprintf(f, " mono.vs.fix_fetch = {");
1159
for (int i = 0; i < SI_MAX_ATTRIBS; i++) {
1160
union si_vs_fix_fetch fix = key->mono.vs_fix_fetch[i];
1161
if (i)
1162
fprintf(f, ", ");
1163
if (!fix.bits)
1164
fprintf(f, "0");
1165
else
1166
fprintf(f, "%u.%u.%u.%u", fix.u.reverse, fix.u.log_size, fix.u.num_channels_m1,
1167
fix.u.format);
1168
}
1169
fprintf(f, "}\n");
1170
}
1171
1172
static void si_dump_shader_key(const struct si_shader *shader, FILE *f)
1173
{
1174
const struct si_shader_key *key = &shader->key;
1175
gl_shader_stage stage = shader->selector->info.stage;
1176
1177
fprintf(f, "SHADER KEY\n");
1178
1179
switch (stage) {
1180
case MESA_SHADER_VERTEX:
1181
si_dump_shader_key_vs(key, &key->part.vs.prolog, "part.vs.prolog", f);
1182
fprintf(f, " as_es = %u\n", key->as_es);
1183
fprintf(f, " as_ls = %u\n", key->as_ls);
1184
fprintf(f, " as_ngg = %u\n", key->as_ngg);
1185
fprintf(f, " mono.u.vs_export_prim_id = %u\n", key->mono.u.vs_export_prim_id);
1186
fprintf(f, " opt.vs_as_prim_discard_cs = %u\n", key->opt.vs_as_prim_discard_cs);
1187
fprintf(f, " opt.cs_prim_type = %s\n", tgsi_primitive_names[key->opt.cs_prim_type]);
1188
fprintf(f, " opt.cs_indexed = %u\n", key->opt.cs_indexed);
1189
fprintf(f, " opt.cs_instancing = %u\n", key->opt.cs_instancing);
1190
fprintf(f, " opt.cs_provoking_vertex_first = %u\n", key->opt.cs_provoking_vertex_first);
1191
fprintf(f, " opt.cs_cull_front = %u\n", key->opt.cs_cull_front);
1192
fprintf(f, " opt.cs_cull_back = %u\n", key->opt.cs_cull_back);
1193
break;
1194
1195
case MESA_SHADER_TESS_CTRL:
1196
if (shader->selector->screen->info.chip_class >= GFX9) {
1197
si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog, "part.tcs.ls_prolog", f);
1198
}
1199
fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
1200
fprintf(f, " mono.u.ff_tcs_inputs_to_copy = 0x%" PRIx64 "\n",
1201
key->mono.u.ff_tcs_inputs_to_copy);
1202
fprintf(f, " opt.prefer_mono = %u\n", key->opt.prefer_mono);
1203
fprintf(f, " opt.same_patch_vertices = %u\n", key->opt.same_patch_vertices);
1204
break;
1205
1206
case MESA_SHADER_TESS_EVAL:
1207
fprintf(f, " as_es = %u\n", key->as_es);
1208
fprintf(f, " as_ngg = %u\n", key->as_ngg);
1209
fprintf(f, " mono.u.vs_export_prim_id = %u\n", key->mono.u.vs_export_prim_id);
1210
break;
1211
1212
case MESA_SHADER_GEOMETRY:
1213
if (shader->is_gs_copy_shader)
1214
break;
1215
1216
if (shader->selector->screen->info.chip_class >= GFX9 &&
1217
key->part.gs.es->info.stage == MESA_SHADER_VERTEX) {
1218
si_dump_shader_key_vs(key, &key->part.gs.vs_prolog, "part.gs.vs_prolog", f);
1219
}
1220
fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n",
1221
key->part.gs.prolog.tri_strip_adj_fix);
1222
fprintf(f, " as_ngg = %u\n", key->as_ngg);
1223
break;
1224
1225
case MESA_SHADER_COMPUTE:
1226
break;
1227
1228
case MESA_SHADER_FRAGMENT:
1229
fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
1230
fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
1231
fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
1232
fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n",
1233
key->part.ps.prolog.force_persp_sample_interp);
1234
fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n",
1235
key->part.ps.prolog.force_linear_sample_interp);
1236
fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n",
1237
key->part.ps.prolog.force_persp_center_interp);
1238
fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n",
1239
key->part.ps.prolog.force_linear_center_interp);
1240
fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n",
1241
key->part.ps.prolog.bc_optimize_for_persp);
1242
fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n",
1243
key->part.ps.prolog.bc_optimize_for_linear);
1244
fprintf(f, " part.ps.prolog.samplemask_log_ps_iter = %u\n",
1245
key->part.ps.prolog.samplemask_log_ps_iter);
1246
fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n",
1247
key->part.ps.epilog.spi_shader_col_format);
1248
fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
1249
fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
1250
fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
1251
fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
1252
fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
1253
fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n",
1254
key->part.ps.epilog.poly_line_smoothing);
1255
fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
1256
fprintf(f, " mono.u.ps.interpolate_at_sample_force_center = %u\n",
1257
key->mono.u.ps.interpolate_at_sample_force_center);
1258
fprintf(f, " mono.u.ps.fbfetch_msaa = %u\n", key->mono.u.ps.fbfetch_msaa);
1259
fprintf(f, " mono.u.ps.fbfetch_is_1D = %u\n", key->mono.u.ps.fbfetch_is_1D);
1260
fprintf(f, " mono.u.ps.fbfetch_layered = %u\n", key->mono.u.ps.fbfetch_layered);
1261
break;
1262
1263
default:
1264
assert(0);
1265
}
1266
1267
if ((stage == MESA_SHADER_GEOMETRY || stage == MESA_SHADER_TESS_EVAL ||
1268
stage == MESA_SHADER_VERTEX) &&
1269
!key->as_es && !key->as_ls) {
1270
fprintf(f, " opt.kill_outputs = 0x%" PRIx64 "\n", key->opt.kill_outputs);
1271
fprintf(f, " opt.kill_pointsize = 0x%x\n", key->opt.kill_pointsize);
1272
fprintf(f, " opt.kill_clip_distances = 0x%x\n", key->opt.kill_clip_distances);
1273
if (stage != MESA_SHADER_GEOMETRY)
1274
fprintf(f, " opt.ngg_culling = 0x%x\n", key->opt.ngg_culling);
1275
}
1276
1277
fprintf(f, " opt.prefer_mono = %u\n", key->opt.prefer_mono);
1278
fprintf(f, " opt.inline_uniforms = %u (0x%x, 0x%x, 0x%x, 0x%x)\n",
1279
key->opt.inline_uniforms,
1280
key->opt.inlined_uniform_values[0],
1281
key->opt.inlined_uniform_values[1],
1282
key->opt.inlined_uniform_values[2],
1283
key->opt.inlined_uniform_values[3]);
1284
}
1285
1286
bool si_vs_needs_prolog(const struct si_shader_selector *sel,
1287
const struct si_vs_prolog_bits *prolog_key,
1288
const struct si_shader_key *key, bool ngg_cull_shader)
1289
{
1290
/* VGPR initialization fixup for Vega10 and Raven is always done in the
1291
* VS prolog. */
1292
return sel->vs_needs_prolog || prolog_key->ls_vgpr_fix ||
1293
prolog_key->unpack_instance_id_from_vertex_id ||
1294
/* The 2nd VS prolog loads input VGPRs from LDS */
1295
(key->opt.ngg_culling && !ngg_cull_shader) ||
1296
/* The 1st VS prolog generates input VGPRs for fast launch. */
1297
(ngg_cull_shader && key->opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL);
1298
}
1299
1300
/**
1301
* Compute the VS prolog key, which contains all the information needed to
1302
* build the VS prolog function, and set shader->info bits where needed.
1303
*
1304
* \param info Shader info of the vertex shader.
1305
* \param num_input_sgprs Number of input SGPRs for the vertex shader.
1306
* \param has_old_ Whether the preceding shader part is the NGG cull shader.
1307
* \param prolog_key Key of the VS prolog
1308
* \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS.
1309
* \param key Output shader part key.
1310
*/
1311
void si_get_vs_prolog_key(const struct si_shader_info *info, unsigned num_input_sgprs,
1312
bool ngg_cull_shader, const struct si_vs_prolog_bits *prolog_key,
1313
struct si_shader *shader_out, union si_shader_part_key *key)
1314
{
1315
memset(key, 0, sizeof(*key));
1316
key->vs_prolog.states = *prolog_key;
1317
key->vs_prolog.num_input_sgprs = num_input_sgprs;
1318
key->vs_prolog.num_inputs = info->num_inputs;
1319
key->vs_prolog.as_ls = shader_out->key.as_ls;
1320
key->vs_prolog.as_es = shader_out->key.as_es;
1321
key->vs_prolog.as_ngg = shader_out->key.as_ngg;
1322
key->vs_prolog.as_prim_discard_cs = shader_out->key.opt.vs_as_prim_discard_cs;
1323
1324
if (ngg_cull_shader) {
1325
key->vs_prolog.gs_fast_launch_tri_list =
1326
!!(shader_out->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST);
1327
key->vs_prolog.gs_fast_launch_tri_strip =
1328
!!(shader_out->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP);
1329
key->vs_prolog.gs_fast_launch_index_size_packed =
1330
SI_GET_NGG_CULL_GS_FAST_LAUNCH_INDEX_SIZE_PACKED(shader_out->key.opt.ngg_culling);
1331
} else if (shader_out->key.opt.ngg_culling) {
1332
key->vs_prolog.load_vgprs_after_culling = 1;
1333
}
1334
1335
if (shader_out->selector->info.stage == MESA_SHADER_TESS_CTRL) {
1336
key->vs_prolog.as_ls = 1;
1337
key->vs_prolog.num_merged_next_stage_vgprs = 2;
1338
} else if (shader_out->selector->info.stage == MESA_SHADER_GEOMETRY) {
1339
key->vs_prolog.as_es = 1;
1340
key->vs_prolog.num_merged_next_stage_vgprs = 5;
1341
} else if (shader_out->key.as_ngg) {
1342
key->vs_prolog.num_merged_next_stage_vgprs = 5;
1343
}
1344
1345
/* Only one of these combinations can be set. as_ngg can be set with as_es. */
1346
assert(key->vs_prolog.as_ls + key->vs_prolog.as_ngg +
1347
(key->vs_prolog.as_es && !key->vs_prolog.as_ngg) + key->vs_prolog.as_prim_discard_cs <=
1348
1);
1349
1350
/* Enable loading the InstanceID VGPR. */
1351
uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
1352
1353
if ((key->vs_prolog.states.instance_divisor_is_one |
1354
key->vs_prolog.states.instance_divisor_is_fetched) &
1355
input_mask)
1356
shader_out->info.uses_instanceid = true;
1357
}
1358
1359
struct nir_shader *si_get_nir_shader(struct si_shader_selector *sel,
1360
const struct si_shader_key *key,
1361
bool *free_nir)
1362
{
1363
nir_shader *nir;
1364
*free_nir = false;
1365
1366
if (sel->nir) {
1367
nir = sel->nir;
1368
} else if (sel->nir_binary) {
1369
struct pipe_screen *screen = &sel->screen->b;
1370
const void *options = screen->get_compiler_options(screen, PIPE_SHADER_IR_NIR,
1371
pipe_shader_type_from_mesa(sel->info.stage));
1372
1373
struct blob_reader blob_reader;
1374
blob_reader_init(&blob_reader, sel->nir_binary, sel->nir_size);
1375
*free_nir = true;
1376
nir = nir_deserialize(NULL, options, &blob_reader);
1377
} else {
1378
return NULL;
1379
}
1380
1381
if (key && key->opt.inline_uniforms) {
1382
assert(*free_nir);
1383
1384
/* Most places use shader information from the default variant, not
1385
* the optimized variant. These are the things that the driver looks at
1386
* in optimized variants and the list of things that we need to do.
1387
*
1388
* The driver takes into account these things if they suddenly disappear
1389
* from the shader code:
1390
* - Register usage and code size decrease (obvious)
1391
* - Eliminated PS system values are disabled by LLVM
1392
* (FragCoord, FrontFace, barycentrics)
1393
* - VS/TES/GS outputs feeding PS are eliminated if outputs are undef.
1394
* (thanks to an LLVM pass in Mesa - TODO: move it to NIR)
1395
* The storage for eliminated outputs is also not allocated.
1396
* - VS/TCS/TES/GS/PS input loads are eliminated (VS relies on DCE in LLVM)
1397
* - TCS output stores are eliminated
1398
*
1399
* TODO: These are things the driver ignores in the final shader code
1400
* and relies on the default shader info.
1401
* - Other system values are not eliminated
1402
* - PS.NUM_INTERP = bitcount64(inputs_read), renumber inputs
1403
* to remove holes
1404
* - uses_discard - if it changed to false
1405
* - writes_memory - if it changed to false
1406
* - VS->TCS, VS->GS, TES->GS output stores for the former stage are not
1407
* eliminated
1408
* - Eliminated VS/TCS/TES outputs are still allocated. (except when feeding PS)
1409
* GS outputs are eliminated except for the temporary LDS.
1410
* Clip distances, gl_PointSize, and PS outputs are eliminated based
1411
* on current states, so we don't care about the shader code.
1412
*
1413
* TODO: Merged shaders don't inline uniforms for the first stage.
1414
* VS-GS: only GS inlines uniforms; VS-TCS: only TCS; TES-GS: only GS.
1415
* (key == NULL for the first stage here)
1416
*
1417
* TODO: Compute shaders don't support inlinable uniforms, because they
1418
* don't have shader variants.
1419
*
1420
* TODO: The driver uses a linear search to find a shader variant. This
1421
* can be really slow if we get too many variants due to uniform inlining.
1422
*/
1423
NIR_PASS_V(nir, nir_inline_uniforms,
1424
nir->info.num_inlinable_uniforms,
1425
key->opt.inlined_uniform_values,
1426
nir->info.inlinable_uniform_dw_offsets);
1427
1428
si_nir_opts(sel->screen, nir, true);
1429
si_nir_late_opts(nir);
1430
1431
/* This must be done again. */
1432
NIR_PASS_V(nir, nir_io_add_const_offset_to_base, nir_var_shader_in |
1433
nir_var_shader_out);
1434
}
1435
1436
return nir;
1437
}
1438
1439
bool si_compile_shader(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
1440
struct si_shader *shader, struct pipe_debug_callback *debug)
1441
{
1442
struct si_shader_selector *sel = shader->selector;
1443
bool free_nir;
1444
struct nir_shader *nir = si_get_nir_shader(sel, &shader->key, &free_nir);
1445
1446
/* Dump NIR before doing NIR->LLVM conversion in case the
1447
* conversion fails. */
1448
if (si_can_dump_shader(sscreen, sel->info.stage) &&
1449
!(sscreen->debug_flags & DBG(NO_NIR))) {
1450
nir_print_shader(nir, stderr);
1451
si_dump_streamout(&sel->so);
1452
}
1453
1454
memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
1455
sizeof(shader->info.vs_output_param_offset));
1456
1457
shader->info.uses_instanceid = sel->info.uses_instanceid;
1458
1459
/* TODO: ACO could compile non-monolithic shaders here (starting
1460
* with PS and NGG VS), but monolithic shaders should be compiled
1461
* by LLVM due to more complicated compilation.
1462
*/
1463
if (!si_llvm_compile_shader(sscreen, compiler, shader, debug, nir, free_nir))
1464
return false;
1465
1466
/* Validate SGPR and VGPR usage for compute to detect compiler bugs. */
1467
if (sel->info.stage == MESA_SHADER_COMPUTE) {
1468
unsigned wave_size = sscreen->compute_wave_size;
1469
unsigned max_vgprs =
1470
sscreen->info.num_physical_wave64_vgprs_per_simd * (wave_size == 32 ? 2 : 1);
1471
unsigned max_sgprs = sscreen->info.num_physical_sgprs_per_simd;
1472
unsigned max_sgprs_per_wave = 128;
1473
unsigned simds_per_tg = 4; /* assuming WGP mode on gfx10 */
1474
unsigned threads_per_tg = si_get_max_workgroup_size(shader);
1475
unsigned waves_per_tg = DIV_ROUND_UP(threads_per_tg, wave_size);
1476
unsigned waves_per_simd = DIV_ROUND_UP(waves_per_tg, simds_per_tg);
1477
1478
max_vgprs = max_vgprs / waves_per_simd;
1479
max_sgprs = MIN2(max_sgprs / waves_per_simd, max_sgprs_per_wave);
1480
1481
if (shader->config.num_sgprs > max_sgprs || shader->config.num_vgprs > max_vgprs) {
1482
fprintf(stderr,
1483
"LLVM failed to compile a shader correctly: "
1484
"SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
1485
shader->config.num_sgprs, shader->config.num_vgprs, max_sgprs, max_vgprs);
1486
1487
/* Just terminate the process, because dependent
1488
* shaders can hang due to bad input data, but use
1489
* the env var to allow shader-db to work.
1490
*/
1491
if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
1492
abort();
1493
}
1494
}
1495
1496
/* Add the scratch offset to input SGPRs. */
1497
if (shader->config.scratch_bytes_per_wave && !si_is_merged_shader(shader))
1498
shader->info.num_input_sgprs += 1; /* scratch byte offset */
1499
1500
/* Calculate the number of fragment input VGPRs. */
1501
if (sel->info.stage == MESA_SHADER_FRAGMENT) {
1502
shader->info.num_input_vgprs = ac_get_fs_input_vgpr_cnt(
1503
&shader->config, &shader->info.face_vgpr_index, &shader->info.ancillary_vgpr_index);
1504
}
1505
1506
si_calculate_max_simd_waves(shader);
1507
si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
1508
return true;
1509
}
1510
1511
/**
1512
* Create, compile and return a shader part (prolog or epilog).
1513
*
1514
* \param sscreen screen
1515
* \param list list of shader parts of the same category
1516
* \param type shader type
1517
* \param key shader part key
1518
* \param prolog whether the part being requested is a prolog
1519
* \param tm LLVM target machine
1520
* \param debug debug callback
1521
* \param build the callback responsible for building the main function
1522
* \return non-NULL on success
1523
*/
1524
static struct si_shader_part *
1525
si_get_shader_part(struct si_screen *sscreen, struct si_shader_part **list,
1526
gl_shader_stage stage, bool prolog, union si_shader_part_key *key,
1527
struct ac_llvm_compiler *compiler, struct pipe_debug_callback *debug,
1528
void (*build)(struct si_shader_context *, union si_shader_part_key *),
1529
const char *name)
1530
{
1531
struct si_shader_part *result;
1532
1533
simple_mtx_lock(&sscreen->shader_parts_mutex);
1534
1535
/* Find existing. */
1536
for (result = *list; result; result = result->next) {
1537
if (memcmp(&result->key, key, sizeof(*key)) == 0) {
1538
simple_mtx_unlock(&sscreen->shader_parts_mutex);
1539
return result;
1540
}
1541
}
1542
1543
/* Compile a new one. */
1544
result = CALLOC_STRUCT(si_shader_part);
1545
result->key = *key;
1546
1547
struct si_shader_selector sel = {};
1548
sel.screen = sscreen;
1549
1550
struct si_shader shader = {};
1551
shader.selector = &sel;
1552
1553
switch (stage) {
1554
case MESA_SHADER_VERTEX:
1555
shader.key.as_ls = key->vs_prolog.as_ls;
1556
shader.key.as_es = key->vs_prolog.as_es;
1557
shader.key.as_ngg = key->vs_prolog.as_ngg;
1558
shader.key.opt.ngg_culling =
1559
(key->vs_prolog.gs_fast_launch_tri_list ? SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST : 0) |
1560
(key->vs_prolog.gs_fast_launch_tri_strip ? SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP : 0) |
1561
SI_NGG_CULL_GS_FAST_LAUNCH_INDEX_SIZE_PACKED(key->vs_prolog.gs_fast_launch_index_size_packed);
1562
shader.key.opt.vs_as_prim_discard_cs = key->vs_prolog.as_prim_discard_cs;
1563
break;
1564
case MESA_SHADER_TESS_CTRL:
1565
assert(!prolog);
1566
shader.key.part.tcs.epilog = key->tcs_epilog.states;
1567
break;
1568
case MESA_SHADER_GEOMETRY:
1569
assert(prolog);
1570
shader.key.as_ngg = key->gs_prolog.as_ngg;
1571
break;
1572
case MESA_SHADER_FRAGMENT:
1573
if (prolog)
1574
shader.key.part.ps.prolog = key->ps_prolog.states;
1575
else
1576
shader.key.part.ps.epilog = key->ps_epilog.states;
1577
break;
1578
default:
1579
unreachable("bad shader part");
1580
}
1581
1582
struct si_shader_context ctx;
1583
si_llvm_context_init(&ctx, sscreen, compiler,
1584
si_get_wave_size(sscreen, stage,
1585
shader.key.as_ngg, shader.key.as_es,
1586
shader.key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL,
1587
shader.key.opt.vs_as_prim_discard_cs));
1588
ctx.shader = &shader;
1589
ctx.stage = stage;
1590
1591
build(&ctx, key);
1592
1593
/* Compile. */
1594
si_llvm_optimize_module(&ctx);
1595
1596
if (!si_compile_llvm(sscreen, &result->binary, &result->config, compiler, &ctx.ac, debug,
1597
ctx.stage, name, false)) {
1598
FREE(result);
1599
result = NULL;
1600
goto out;
1601
}
1602
1603
result->next = *list;
1604
*list = result;
1605
1606
out:
1607
si_llvm_dispose(&ctx);
1608
simple_mtx_unlock(&sscreen->shader_parts_mutex);
1609
return result;
1610
}
1611
1612
static bool si_get_vs_prolog(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
1613
struct si_shader *shader, struct pipe_debug_callback *debug,
1614
struct si_shader *main_part, const struct si_vs_prolog_bits *key)
1615
{
1616
struct si_shader_selector *vs = main_part->selector;
1617
1618
if (!si_vs_needs_prolog(vs, key, &shader->key, false))
1619
return true;
1620
1621
/* Get the prolog. */
1622
union si_shader_part_key prolog_key;
1623
si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs, false, key, shader,
1624
&prolog_key);
1625
1626
shader->prolog =
1627
si_get_shader_part(sscreen, &sscreen->vs_prologs, MESA_SHADER_VERTEX, true, &prolog_key,
1628
compiler, debug, si_llvm_build_vs_prolog, "Vertex Shader Prolog");
1629
return shader->prolog != NULL;
1630
}
1631
1632
/**
1633
* Select and compile (or reuse) vertex shader parts (prolog & epilog).
1634
*/
1635
static bool si_shader_select_vs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
1636
struct si_shader *shader, struct pipe_debug_callback *debug)
1637
{
1638
return si_get_vs_prolog(sscreen, compiler, shader, debug, shader, &shader->key.part.vs.prolog);
1639
}
1640
1641
/**
1642
* Select and compile (or reuse) TCS parts (epilog).
1643
*/
1644
static bool si_shader_select_tcs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
1645
struct si_shader *shader, struct pipe_debug_callback *debug)
1646
{
1647
if (sscreen->info.chip_class >= GFX9) {
1648
struct si_shader *ls_main_part = shader->key.part.tcs.ls->main_shader_part_ls;
1649
1650
if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
1651
&shader->key.part.tcs.ls_prolog))
1652
return false;
1653
1654
shader->previous_stage = ls_main_part;
1655
}
1656
1657
/* Get the epilog. */
1658
union si_shader_part_key epilog_key;
1659
memset(&epilog_key, 0, sizeof(epilog_key));
1660
epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
1661
1662
shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs, MESA_SHADER_TESS_CTRL, false,
1663
&epilog_key, compiler, debug, si_llvm_build_tcs_epilog,
1664
"Tessellation Control Shader Epilog");
1665
return shader->epilog != NULL;
1666
}
1667
1668
/**
1669
* Select and compile (or reuse) GS parts (prolog).
1670
*/
1671
static bool si_shader_select_gs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
1672
struct si_shader *shader, struct pipe_debug_callback *debug)
1673
{
1674
if (sscreen->info.chip_class >= GFX9) {
1675
struct si_shader *es_main_part;
1676
1677
if (shader->key.as_ngg)
1678
es_main_part = shader->key.part.gs.es->main_shader_part_ngg_es;
1679
else
1680
es_main_part = shader->key.part.gs.es->main_shader_part_es;
1681
1682
if (shader->key.part.gs.es->info.stage == MESA_SHADER_VERTEX &&
1683
!si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
1684
&shader->key.part.gs.vs_prolog))
1685
return false;
1686
1687
shader->previous_stage = es_main_part;
1688
}
1689
1690
if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
1691
return true;
1692
1693
union si_shader_part_key prolog_key;
1694
memset(&prolog_key, 0, sizeof(prolog_key));
1695
prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
1696
prolog_key.gs_prolog.as_ngg = shader->key.as_ngg;
1697
1698
shader->prolog2 =
1699
si_get_shader_part(sscreen, &sscreen->gs_prologs, MESA_SHADER_GEOMETRY, true, &prolog_key,
1700
compiler, debug, si_llvm_build_gs_prolog, "Geometry Shader Prolog");
1701
return shader->prolog2 != NULL;
1702
}
1703
1704
/**
1705
* Compute the PS prolog key, which contains all the information needed to
1706
* build the PS prolog function, and set related bits in shader->config.
1707
*/
1708
void si_get_ps_prolog_key(struct si_shader *shader, union si_shader_part_key *key,
1709
bool separate_prolog)
1710
{
1711
struct si_shader_info *info = &shader->selector->info;
1712
1713
memset(key, 0, sizeof(*key));
1714
key->ps_prolog.states = shader->key.part.ps.prolog;
1715
key->ps_prolog.colors_read = info->colors_read;
1716
key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
1717
key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
1718
key->ps_prolog.wqm =
1719
info->base.fs.needs_quad_helper_invocations &&
1720
(key->ps_prolog.colors_read || key->ps_prolog.states.force_persp_sample_interp ||
1721
key->ps_prolog.states.force_linear_sample_interp ||
1722
key->ps_prolog.states.force_persp_center_interp ||
1723
key->ps_prolog.states.force_linear_center_interp ||
1724
key->ps_prolog.states.bc_optimize_for_persp || key->ps_prolog.states.bc_optimize_for_linear);
1725
key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
1726
1727
if (info->colors_read) {
1728
ubyte *color = shader->selector->color_attr_index;
1729
1730
if (shader->key.part.ps.prolog.color_two_side) {
1731
/* BCOLORs are stored after the last input. */
1732
key->ps_prolog.num_interp_inputs = info->num_inputs;
1733
key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
1734
if (separate_prolog)
1735
shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
1736
}
1737
1738
for (unsigned i = 0; i < 2; i++) {
1739
unsigned interp = info->color_interpolate[i];
1740
unsigned location = info->color_interpolate_loc[i];
1741
1742
if (!(info->colors_read & (0xf << i * 4)))
1743
continue;
1744
1745
key->ps_prolog.color_attr_index[i] = color[i];
1746
1747
if (shader->key.part.ps.prolog.flatshade_colors && interp == INTERP_MODE_COLOR)
1748
interp = INTERP_MODE_FLAT;
1749
1750
switch (interp) {
1751
case INTERP_MODE_FLAT:
1752
key->ps_prolog.color_interp_vgpr_index[i] = -1;
1753
break;
1754
case INTERP_MODE_SMOOTH:
1755
case INTERP_MODE_COLOR:
1756
/* Force the interpolation location for colors here. */
1757
if (shader->key.part.ps.prolog.force_persp_sample_interp)
1758
location = TGSI_INTERPOLATE_LOC_SAMPLE;
1759
if (shader->key.part.ps.prolog.force_persp_center_interp)
1760
location = TGSI_INTERPOLATE_LOC_CENTER;
1761
1762
switch (location) {
1763
case TGSI_INTERPOLATE_LOC_SAMPLE:
1764
key->ps_prolog.color_interp_vgpr_index[i] = 0;
1765
if (separate_prolog) {
1766
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
1767
}
1768
break;
1769
case TGSI_INTERPOLATE_LOC_CENTER:
1770
key->ps_prolog.color_interp_vgpr_index[i] = 2;
1771
if (separate_prolog) {
1772
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
1773
}
1774
break;
1775
case TGSI_INTERPOLATE_LOC_CENTROID:
1776
key->ps_prolog.color_interp_vgpr_index[i] = 4;
1777
if (separate_prolog) {
1778
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTROID_ENA(1);
1779
}
1780
break;
1781
default:
1782
assert(0);
1783
}
1784
break;
1785
case INTERP_MODE_NOPERSPECTIVE:
1786
/* Force the interpolation location for colors here. */
1787
if (shader->key.part.ps.prolog.force_linear_sample_interp)
1788
location = TGSI_INTERPOLATE_LOC_SAMPLE;
1789
if (shader->key.part.ps.prolog.force_linear_center_interp)
1790
location = TGSI_INTERPOLATE_LOC_CENTER;
1791
1792
/* The VGPR assignment for non-monolithic shaders
1793
* works because InitialPSInputAddr is set on the
1794
* main shader and PERSP_PULL_MODEL is never used.
1795
*/
1796
switch (location) {
1797
case TGSI_INTERPOLATE_LOC_SAMPLE:
1798
key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 6 : 9;
1799
if (separate_prolog) {
1800
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
1801
}
1802
break;
1803
case TGSI_INTERPOLATE_LOC_CENTER:
1804
key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 8 : 11;
1805
if (separate_prolog) {
1806
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
1807
}
1808
break;
1809
case TGSI_INTERPOLATE_LOC_CENTROID:
1810
key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 10 : 13;
1811
if (separate_prolog) {
1812
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTROID_ENA(1);
1813
}
1814
break;
1815
default:
1816
assert(0);
1817
}
1818
break;
1819
default:
1820
assert(0);
1821
}
1822
}
1823
}
1824
}
1825
1826
/**
1827
* Check whether a PS prolog is required based on the key.
1828
*/
1829
bool si_need_ps_prolog(const union si_shader_part_key *key)
1830
{
1831
return key->ps_prolog.colors_read || key->ps_prolog.states.force_persp_sample_interp ||
1832
key->ps_prolog.states.force_linear_sample_interp ||
1833
key->ps_prolog.states.force_persp_center_interp ||
1834
key->ps_prolog.states.force_linear_center_interp ||
1835
key->ps_prolog.states.bc_optimize_for_persp ||
1836
key->ps_prolog.states.bc_optimize_for_linear || key->ps_prolog.states.poly_stipple ||
1837
key->ps_prolog.states.samplemask_log_ps_iter;
1838
}
1839
1840
/**
1841
* Compute the PS epilog key, which contains all the information needed to
1842
* build the PS epilog function.
1843
*/
1844
void si_get_ps_epilog_key(struct si_shader *shader, union si_shader_part_key *key)
1845
{
1846
struct si_shader_info *info = &shader->selector->info;
1847
memset(key, 0, sizeof(*key));
1848
key->ps_epilog.colors_written = info->colors_written;
1849
key->ps_epilog.color_types = info->output_color_types;
1850
key->ps_epilog.writes_z = info->writes_z;
1851
key->ps_epilog.writes_stencil = info->writes_stencil;
1852
key->ps_epilog.writes_samplemask = info->writes_samplemask;
1853
key->ps_epilog.states = shader->key.part.ps.epilog;
1854
}
1855
1856
/**
1857
* Select and compile (or reuse) pixel shader parts (prolog & epilog).
1858
*/
1859
static bool si_shader_select_ps_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
1860
struct si_shader *shader, struct pipe_debug_callback *debug)
1861
{
1862
union si_shader_part_key prolog_key;
1863
union si_shader_part_key epilog_key;
1864
1865
/* Get the prolog. */
1866
si_get_ps_prolog_key(shader, &prolog_key, true);
1867
1868
/* The prolog is a no-op if these aren't set. */
1869
if (si_need_ps_prolog(&prolog_key)) {
1870
shader->prolog =
1871
si_get_shader_part(sscreen, &sscreen->ps_prologs, MESA_SHADER_FRAGMENT, true, &prolog_key,
1872
compiler, debug, si_llvm_build_ps_prolog, "Fragment Shader Prolog");
1873
if (!shader->prolog)
1874
return false;
1875
}
1876
1877
/* Get the epilog. */
1878
si_get_ps_epilog_key(shader, &epilog_key);
1879
1880
shader->epilog =
1881
si_get_shader_part(sscreen, &sscreen->ps_epilogs, MESA_SHADER_FRAGMENT, false, &epilog_key,
1882
compiler, debug, si_llvm_build_ps_epilog, "Fragment Shader Epilog");
1883
if (!shader->epilog)
1884
return false;
1885
1886
/* Enable POS_FIXED_PT if polygon stippling is enabled. */
1887
if (shader->key.part.ps.prolog.poly_stipple) {
1888
shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
1889
assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
1890
}
1891
1892
/* Set up the enable bits for per-sample shading if needed. */
1893
if (shader->key.part.ps.prolog.force_persp_sample_interp &&
1894
(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
1895
G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
1896
shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
1897
shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
1898
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
1899
}
1900
if (shader->key.part.ps.prolog.force_linear_sample_interp &&
1901
(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
1902
G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
1903
shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
1904
shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
1905
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
1906
}
1907
if (shader->key.part.ps.prolog.force_persp_center_interp &&
1908
(G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
1909
G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
1910
shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
1911
shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
1912
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
1913
}
1914
if (shader->key.part.ps.prolog.force_linear_center_interp &&
1915
(G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
1916
G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
1917
shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
1918
shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
1919
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
1920
}
1921
1922
/* POW_W_FLOAT requires that one of the perspective weights is enabled. */
1923
if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
1924
!(shader->config.spi_ps_input_ena & 0xf)) {
1925
shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
1926
assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
1927
}
1928
1929
/* At least one pair of interpolation weights must be enabled. */
1930
if (!(shader->config.spi_ps_input_ena & 0x7f)) {
1931
shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
1932
assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
1933
}
1934
1935
/* Samplemask fixup requires the sample ID. */
1936
if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
1937
shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
1938
assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
1939
}
1940
1941
/* The sample mask input is always enabled, because the API shader always
1942
* passes it through to the epilog. Disable it here if it's unused.
1943
*/
1944
if (!shader->key.part.ps.epilog.poly_line_smoothing && !shader->selector->info.reads_samplemask)
1945
shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
1946
1947
return true;
1948
}
1949
1950
void si_multiwave_lds_size_workaround(struct si_screen *sscreen, unsigned *lds_size)
1951
{
1952
/* If tessellation is all offchip and on-chip GS isn't used, this
1953
* workaround is not needed.
1954
*/
1955
return;
1956
1957
/* SPI barrier management bug:
1958
* Make sure we have at least 4k of LDS in use to avoid the bug.
1959
* It applies to workgroup sizes of more than one wavefront.
1960
*/
1961
if (sscreen->info.family == CHIP_BONAIRE || sscreen->info.family == CHIP_KABINI)
1962
*lds_size = MAX2(*lds_size, 8);
1963
}
1964
1965
void si_fix_resource_usage(struct si_screen *sscreen, struct si_shader *shader)
1966
{
1967
unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
1968
1969
shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
1970
1971
if (shader->selector->info.stage == MESA_SHADER_COMPUTE &&
1972
si_get_max_workgroup_size(shader) > sscreen->compute_wave_size) {
1973
si_multiwave_lds_size_workaround(sscreen, &shader->config.lds_size);
1974
}
1975
}
1976
1977
bool si_create_shader_variant(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
1978
struct si_shader *shader, struct pipe_debug_callback *debug)
1979
{
1980
struct si_shader_selector *sel = shader->selector;
1981
struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
1982
1983
/* LS, ES, VS are compiled on demand if the main part hasn't been
1984
* compiled for that stage.
1985
*
1986
* GS are compiled on demand if the main part hasn't been compiled
1987
* for the chosen NGG-ness.
1988
*
1989
* Vertex shaders are compiled on demand when a vertex fetch
1990
* workaround must be applied.
1991
*/
1992
if (shader->is_monolithic) {
1993
/* Monolithic shader (compiled as a whole, has many variants,
1994
* may take a long time to compile).
1995
*/
1996
if (!si_compile_shader(sscreen, compiler, shader, debug))
1997
return false;
1998
} else {
1999
/* The shader consists of several parts:
2000
*
2001
* - the middle part is the user shader, it has 1 variant only
2002
* and it was compiled during the creation of the shader
2003
* selector
2004
* - the prolog part is inserted at the beginning
2005
* - the epilog part is inserted at the end
2006
*
2007
* The prolog and epilog have many (but simple) variants.
2008
*
2009
* Starting with gfx9, geometry and tessellation control
2010
* shaders also contain the prolog and user shader parts of
2011
* the previous shader stage.
2012
*/
2013
2014
if (!mainp)
2015
return false;
2016
2017
/* Copy the compiled shader data over. */
2018
shader->is_binary_shared = true;
2019
shader->binary = mainp->binary;
2020
shader->config = mainp->config;
2021
shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
2022
shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
2023
shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
2024
shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
2025
memcpy(shader->info.vs_output_param_offset, mainp->info.vs_output_param_offset,
2026
sizeof(mainp->info.vs_output_param_offset));
2027
shader->info.uses_instanceid = mainp->info.uses_instanceid;
2028
shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
2029
shader->info.nr_param_exports = mainp->info.nr_param_exports;
2030
2031
/* Select prologs and/or epilogs. */
2032
switch (sel->info.stage) {
2033
case MESA_SHADER_VERTEX:
2034
if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
2035
return false;
2036
break;
2037
case MESA_SHADER_TESS_CTRL:
2038
if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
2039
return false;
2040
break;
2041
case MESA_SHADER_TESS_EVAL:
2042
break;
2043
case MESA_SHADER_GEOMETRY:
2044
if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
2045
return false;
2046
break;
2047
case MESA_SHADER_FRAGMENT:
2048
if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
2049
return false;
2050
2051
/* Make sure we have at least as many VGPRs as there
2052
* are allocated inputs.
2053
*/
2054
shader->config.num_vgprs = MAX2(shader->config.num_vgprs, shader->info.num_input_vgprs);
2055
break;
2056
default:;
2057
}
2058
2059
/* Update SGPR and VGPR counts. */
2060
if (shader->prolog) {
2061
shader->config.num_sgprs =
2062
MAX2(shader->config.num_sgprs, shader->prolog->config.num_sgprs);
2063
shader->config.num_vgprs =
2064
MAX2(shader->config.num_vgprs, shader->prolog->config.num_vgprs);
2065
}
2066
if (shader->previous_stage) {
2067
shader->config.num_sgprs =
2068
MAX2(shader->config.num_sgprs, shader->previous_stage->config.num_sgprs);
2069
shader->config.num_vgprs =
2070
MAX2(shader->config.num_vgprs, shader->previous_stage->config.num_vgprs);
2071
shader->config.spilled_sgprs =
2072
MAX2(shader->config.spilled_sgprs, shader->previous_stage->config.spilled_sgprs);
2073
shader->config.spilled_vgprs =
2074
MAX2(shader->config.spilled_vgprs, shader->previous_stage->config.spilled_vgprs);
2075
shader->info.private_mem_vgprs =
2076
MAX2(shader->info.private_mem_vgprs, shader->previous_stage->info.private_mem_vgprs);
2077
shader->config.scratch_bytes_per_wave =
2078
MAX2(shader->config.scratch_bytes_per_wave,
2079
shader->previous_stage->config.scratch_bytes_per_wave);
2080
shader->info.uses_instanceid |= shader->previous_stage->info.uses_instanceid;
2081
}
2082
if (shader->prolog2) {
2083
shader->config.num_sgprs =
2084
MAX2(shader->config.num_sgprs, shader->prolog2->config.num_sgprs);
2085
shader->config.num_vgprs =
2086
MAX2(shader->config.num_vgprs, shader->prolog2->config.num_vgprs);
2087
}
2088
if (shader->epilog) {
2089
shader->config.num_sgprs =
2090
MAX2(shader->config.num_sgprs, shader->epilog->config.num_sgprs);
2091
shader->config.num_vgprs =
2092
MAX2(shader->config.num_vgprs, shader->epilog->config.num_vgprs);
2093
}
2094
si_calculate_max_simd_waves(shader);
2095
}
2096
2097
if (shader->key.as_ngg) {
2098
assert(!shader->key.as_es && !shader->key.as_ls);
2099
if (!gfx10_ngg_calculate_subgroup_info(shader)) {
2100
fprintf(stderr, "Failed to compute subgroup info\n");
2101
return false;
2102
}
2103
} else if (sscreen->info.chip_class >= GFX9 && sel->info.stage == MESA_SHADER_GEOMETRY) {
2104
gfx9_get_gs_info(shader->previous_stage_sel, sel, &shader->gs_info);
2105
}
2106
2107
shader->uses_vs_state_provoking_vertex =
2108
sscreen->use_ngg &&
2109
/* Used to convert triangle strips from GS to triangles. */
2110
((sel->info.stage == MESA_SHADER_GEOMETRY &&
2111
util_rast_prim_is_triangles(sel->info.base.gs.output_primitive)) ||
2112
(sel->info.stage == MESA_SHADER_VERTEX &&
2113
/* Used to export PrimitiveID from the correct vertex. */
2114
(shader->key.mono.u.vs_export_prim_id ||
2115
/* Used to generate triangle strip vertex IDs for all threads. */
2116
shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP)));
2117
2118
shader->uses_vs_state_outprim = sscreen->use_ngg &&
2119
/* Only used by streamout in vertex shaders. */
2120
sel->info.stage == MESA_SHADER_VERTEX &&
2121
sel->so.num_outputs;
2122
2123
if (sel->info.stage == MESA_SHADER_VERTEX) {
2124
shader->uses_base_instance = sel->info.uses_base_instance ||
2125
shader->key.part.vs.prolog.instance_divisor_is_one ||
2126
shader->key.part.vs.prolog.instance_divisor_is_fetched;
2127
} else if (sel->info.stage == MESA_SHADER_TESS_CTRL) {
2128
shader->uses_base_instance = shader->previous_stage_sel &&
2129
(shader->previous_stage_sel->info.uses_base_instance ||
2130
shader->key.part.tcs.ls_prolog.instance_divisor_is_one ||
2131
shader->key.part.tcs.ls_prolog.instance_divisor_is_fetched);
2132
} else if (sel->info.stage == MESA_SHADER_GEOMETRY) {
2133
shader->uses_base_instance = shader->previous_stage_sel &&
2134
(shader->previous_stage_sel->info.uses_base_instance ||
2135
shader->key.part.gs.vs_prolog.instance_divisor_is_one ||
2136
shader->key.part.gs.vs_prolog.instance_divisor_is_fetched);
2137
}
2138
2139
si_fix_resource_usage(sscreen, shader);
2140
si_shader_dump(sscreen, shader, debug, stderr, true);
2141
2142
/* Upload. */
2143
if (!si_shader_binary_upload(sscreen, shader, 0)) {
2144
fprintf(stderr, "LLVM failed to upload shader\n");
2145
return false;
2146
}
2147
2148
return true;
2149
}
2150
2151
void si_shader_binary_clean(struct si_shader_binary *binary)
2152
{
2153
free((void *)binary->elf_buffer);
2154
binary->elf_buffer = NULL;
2155
2156
free(binary->llvm_ir_string);
2157
binary->llvm_ir_string = NULL;
2158
2159
free(binary->uploaded_code);
2160
binary->uploaded_code = NULL;
2161
binary->uploaded_code_size = 0;
2162
}
2163
2164
void si_shader_destroy(struct si_shader *shader)
2165
{
2166
if (shader->scratch_bo)
2167
si_resource_reference(&shader->scratch_bo, NULL);
2168
2169
si_resource_reference(&shader->bo, NULL);
2170
2171
if (!shader->is_binary_shared)
2172
si_shader_binary_clean(&shader->binary);
2173
2174
free(shader->shader_log);
2175
}
2176
2177