Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/intel/common/intel_decoder.c
4547 views
1
/*
2
* Copyright © 2016 Intel Corporation
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice (including the next
12
* paragraph) shall be included in all copies or substantial portions of the
13
* Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
* IN THE SOFTWARE.
22
*/
23
24
#include <stdio.h>
25
#include <stdbool.h>
26
#include <stdint.h>
27
#include <stdarg.h>
28
#include <string.h>
29
#include <expat.h>
30
#include <inttypes.h>
31
#include <zlib.h>
32
33
#include <util/macros.h>
34
#include <util/ralloc.h>
35
36
#include "intel_decoder.h"
37
38
#include "isl/isl.h"
39
#include "genxml/genX_xml.h"
40
41
#define XML_BUFFER_SIZE 4096
42
#define MAX_VALUE_ITEMS 128
43
44
struct location {
45
const char *filename;
46
int line_number;
47
};
48
49
struct parser_context {
50
XML_Parser parser;
51
int foo;
52
struct location loc;
53
54
struct intel_group *group;
55
struct intel_enum *enoom;
56
57
int n_values, n_allocated_values;
58
struct intel_value **values;
59
60
struct intel_field *last_field;
61
62
struct intel_spec *spec;
63
};
64
65
const char *
66
intel_group_get_name(struct intel_group *group)
67
{
68
return group->name;
69
}
70
71
uint32_t
72
intel_group_get_opcode(struct intel_group *group)
73
{
74
return group->opcode;
75
}
76
77
struct intel_group *
78
intel_spec_find_struct(struct intel_spec *spec, const char *name)
79
{
80
struct hash_entry *entry = _mesa_hash_table_search(spec->structs,
81
name);
82
return entry ? entry->data : NULL;
83
}
84
85
struct intel_group *
86
intel_spec_find_register(struct intel_spec *spec, uint32_t offset)
87
{
88
struct hash_entry *entry =
89
_mesa_hash_table_search(spec->registers_by_offset,
90
(void *) (uintptr_t) offset);
91
return entry ? entry->data : NULL;
92
}
93
94
struct intel_group *
95
intel_spec_find_register_by_name(struct intel_spec *spec, const char *name)
96
{
97
struct hash_entry *entry =
98
_mesa_hash_table_search(spec->registers_by_name, name);
99
return entry ? entry->data : NULL;
100
}
101
102
struct intel_enum *
103
intel_spec_find_enum(struct intel_spec *spec, const char *name)
104
{
105
struct hash_entry *entry = _mesa_hash_table_search(spec->enums,
106
name);
107
return entry ? entry->data : NULL;
108
}
109
110
uint32_t
111
intel_spec_get_gen(struct intel_spec *spec)
112
{
113
return spec->gen;
114
}
115
116
static void __attribute__((noreturn))
117
fail(struct location *loc, const char *msg, ...)
118
{
119
va_list ap;
120
121
va_start(ap, msg);
122
fprintf(stderr, "%s:%d: error: ",
123
loc->filename, loc->line_number);
124
vfprintf(stderr, msg, ap);
125
fprintf(stderr, "\n");
126
va_end(ap);
127
exit(EXIT_FAILURE);
128
}
129
130
static void
131
get_array_offset_count(const char **atts, uint32_t *offset, uint32_t *count,
132
uint32_t *size, bool *variable)
133
{
134
for (int i = 0; atts[i]; i += 2) {
135
char *p;
136
137
if (strcmp(atts[i], "count") == 0) {
138
*count = strtoul(atts[i + 1], &p, 0);
139
if (*count == 0)
140
*variable = true;
141
} else if (strcmp(atts[i], "start") == 0) {
142
*offset = strtoul(atts[i + 1], &p, 0);
143
} else if (strcmp(atts[i], "size") == 0) {
144
*size = strtoul(atts[i + 1], &p, 0);
145
}
146
}
147
return;
148
}
149
150
static struct intel_group *
151
create_group(struct parser_context *ctx,
152
const char *name,
153
const char **atts,
154
struct intel_group *parent,
155
bool fixed_length)
156
{
157
struct intel_group *group;
158
159
group = rzalloc(ctx->spec, struct intel_group);
160
if (name)
161
group->name = ralloc_strdup(group, name);
162
163
group->spec = ctx->spec;
164
group->variable = false;
165
group->fixed_length = fixed_length;
166
group->dword_length_field = NULL;
167
group->dw_length = 0;
168
group->engine_mask = I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_RENDER) |
169
I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_VIDEO) |
170
I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_COPY);
171
group->bias = 1;
172
173
for (int i = 0; atts[i]; i += 2) {
174
char *p;
175
if (strcmp(atts[i], "length") == 0) {
176
group->dw_length = strtoul(atts[i + 1], &p, 0);
177
} else if (strcmp(atts[i], "bias") == 0) {
178
group->bias = strtoul(atts[i + 1], &p, 0);
179
} else if (strcmp(atts[i], "engine") == 0) {
180
void *mem_ctx = ralloc_context(NULL);
181
char *tmp = ralloc_strdup(mem_ctx, atts[i + 1]);
182
char *save_ptr;
183
char *tok = strtok_r(tmp, "|", &save_ptr);
184
185
group->engine_mask = 0;
186
while (tok != NULL) {
187
if (strcmp(tok, "render") == 0) {
188
group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_RENDER);
189
} else if (strcmp(tok, "video") == 0) {
190
group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_VIDEO);
191
} else if (strcmp(tok, "blitter") == 0) {
192
group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_COPY);
193
} else {
194
fprintf(stderr, "unknown engine class defined for instruction \"%s\": %s\n", name, atts[i + 1]);
195
}
196
197
tok = strtok_r(NULL, "|", &save_ptr);
198
}
199
200
ralloc_free(mem_ctx);
201
}
202
}
203
204
if (parent) {
205
group->parent = parent;
206
get_array_offset_count(atts,
207
&group->array_offset,
208
&group->array_count,
209
&group->array_item_size,
210
&group->variable);
211
}
212
213
return group;
214
}
215
216
static struct intel_enum *
217
create_enum(struct parser_context *ctx, const char *name, const char **atts)
218
{
219
struct intel_enum *e;
220
221
e = rzalloc(ctx->spec, struct intel_enum);
222
if (name)
223
e->name = ralloc_strdup(e, name);
224
225
return e;
226
}
227
228
static void
229
get_register_offset(const char **atts, uint32_t *offset)
230
{
231
for (int i = 0; atts[i]; i += 2) {
232
char *p;
233
234
if (strcmp(atts[i], "num") == 0)
235
*offset = strtoul(atts[i + 1], &p, 0);
236
}
237
return;
238
}
239
240
static void
241
get_start_end_pos(int *start, int *end)
242
{
243
/* start value has to be mod with 32 as we need the relative
244
* start position in the first DWord. For the end position, add
245
* the length of the field to the start position to get the
246
* relative postion in the 64 bit address.
247
*/
248
if (*end - *start > 32) {
249
int len = *end - *start;
250
*start = *start % 32;
251
*end = *start + len;
252
} else {
253
*start = *start % 32;
254
*end = *end % 32;
255
}
256
257
return;
258
}
259
260
static inline uint64_t
261
mask(int start, int end)
262
{
263
uint64_t v;
264
265
v = ~0ULL >> (63 - end + start);
266
267
return v << start;
268
}
269
270
static inline uint64_t
271
field_value(uint64_t value, int start, int end)
272
{
273
get_start_end_pos(&start, &end);
274
return (value & mask(start, end)) >> (start);
275
}
276
277
static struct intel_type
278
string_to_type(struct parser_context *ctx, const char *s)
279
{
280
int i, f;
281
struct intel_group *g;
282
struct intel_enum *e;
283
284
if (strcmp(s, "int") == 0)
285
return (struct intel_type) { .kind = INTEL_TYPE_INT };
286
else if (strcmp(s, "uint") == 0)
287
return (struct intel_type) { .kind = INTEL_TYPE_UINT };
288
else if (strcmp(s, "bool") == 0)
289
return (struct intel_type) { .kind = INTEL_TYPE_BOOL };
290
else if (strcmp(s, "float") == 0)
291
return (struct intel_type) { .kind = INTEL_TYPE_FLOAT };
292
else if (strcmp(s, "address") == 0)
293
return (struct intel_type) { .kind = INTEL_TYPE_ADDRESS };
294
else if (strcmp(s, "offset") == 0)
295
return (struct intel_type) { .kind = INTEL_TYPE_OFFSET };
296
else if (sscanf(s, "u%d.%d", &i, &f) == 2)
297
return (struct intel_type) { .kind = INTEL_TYPE_UFIXED, .i = i, .f = f };
298
else if (sscanf(s, "s%d.%d", &i, &f) == 2)
299
return (struct intel_type) { .kind = INTEL_TYPE_SFIXED, .i = i, .f = f };
300
else if (g = intel_spec_find_struct(ctx->spec, s), g != NULL)
301
return (struct intel_type) { .kind = INTEL_TYPE_STRUCT, .intel_struct = g };
302
else if (e = intel_spec_find_enum(ctx->spec, s), e != NULL)
303
return (struct intel_type) { .kind = INTEL_TYPE_ENUM, .intel_enum = e };
304
else if (strcmp(s, "mbo") == 0)
305
return (struct intel_type) { .kind = INTEL_TYPE_MBO };
306
else
307
fail(&ctx->loc, "invalid type: %s", s);
308
}
309
310
static struct intel_field *
311
create_field(struct parser_context *ctx, const char **atts)
312
{
313
struct intel_field *field;
314
315
field = rzalloc(ctx->group, struct intel_field);
316
field->parent = ctx->group;
317
318
for (int i = 0; atts[i]; i += 2) {
319
char *p;
320
321
if (strcmp(atts[i], "name") == 0) {
322
field->name = ralloc_strdup(field, atts[i + 1]);
323
if (strcmp(field->name, "DWord Length") == 0) {
324
field->parent->dword_length_field = field;
325
}
326
} else if (strcmp(atts[i], "start") == 0) {
327
field->start = strtoul(atts[i + 1], &p, 0);
328
} else if (strcmp(atts[i], "end") == 0) {
329
field->end = strtoul(atts[i + 1], &p, 0);
330
} else if (strcmp(atts[i], "type") == 0) {
331
field->type = string_to_type(ctx, atts[i + 1]);
332
} else if (strcmp(atts[i], "default") == 0 &&
333
field->start >= 16 && field->end <= 31) {
334
field->has_default = true;
335
field->default_value = strtoul(atts[i + 1], &p, 0);
336
}
337
}
338
339
return field;
340
}
341
342
static struct intel_field *
343
create_array_field(struct parser_context *ctx, struct intel_group *array)
344
{
345
struct intel_field *field;
346
347
field = rzalloc(ctx->group, struct intel_field);
348
field->parent = ctx->group;
349
350
field->array = array;
351
field->start = field->array->array_offset;
352
353
return field;
354
}
355
356
static struct intel_value *
357
create_value(struct parser_context *ctx, const char **atts)
358
{
359
struct intel_value *value = rzalloc(ctx->values, struct intel_value);
360
361
for (int i = 0; atts[i]; i += 2) {
362
if (strcmp(atts[i], "name") == 0)
363
value->name = ralloc_strdup(value, atts[i + 1]);
364
else if (strcmp(atts[i], "value") == 0)
365
value->value = strtoul(atts[i + 1], NULL, 0);
366
}
367
368
return value;
369
}
370
371
static struct intel_field *
372
create_and_append_field(struct parser_context *ctx,
373
const char **atts,
374
struct intel_group *array)
375
{
376
struct intel_field *field = array ?
377
create_array_field(ctx, array) : create_field(ctx, atts);
378
struct intel_field *prev = NULL, *list = ctx->group->fields;
379
380
while (list && field->start > list->start) {
381
prev = list;
382
list = list->next;
383
}
384
385
field->next = list;
386
if (prev == NULL)
387
ctx->group->fields = field;
388
else
389
prev->next = field;
390
391
return field;
392
}
393
394
static void
395
start_element(void *data, const char *element_name, const char **atts)
396
{
397
struct parser_context *ctx = data;
398
const char *name = NULL;
399
const char *gen = NULL;
400
401
ctx->loc.line_number = XML_GetCurrentLineNumber(ctx->parser);
402
403
for (int i = 0; atts[i]; i += 2) {
404
if (strcmp(atts[i], "name") == 0)
405
name = atts[i + 1];
406
else if (strcmp(atts[i], "gen") == 0)
407
gen = atts[i + 1];
408
}
409
410
if (strcmp(element_name, "genxml") == 0) {
411
if (name == NULL)
412
fail(&ctx->loc, "no platform name given");
413
if (gen == NULL)
414
fail(&ctx->loc, "no gen given");
415
416
int major, minor;
417
int n = sscanf(gen, "%d.%d", &major, &minor);
418
if (n == 0)
419
fail(&ctx->loc, "invalid gen given: %s", gen);
420
if (n == 1)
421
minor = 0;
422
423
ctx->spec->gen = intel_make_gen(major, minor);
424
} else if (strcmp(element_name, "instruction") == 0) {
425
ctx->group = create_group(ctx, name, atts, NULL, false);
426
} else if (strcmp(element_name, "struct") == 0) {
427
ctx->group = create_group(ctx, name, atts, NULL, true);
428
} else if (strcmp(element_name, "register") == 0) {
429
ctx->group = create_group(ctx, name, atts, NULL, true);
430
get_register_offset(atts, &ctx->group->register_offset);
431
} else if (strcmp(element_name, "group") == 0) {
432
struct intel_group *group = create_group(ctx, "", atts, ctx->group, false);
433
ctx->last_field = create_and_append_field(ctx, NULL, group);
434
ctx->group = group;
435
} else if (strcmp(element_name, "field") == 0) {
436
ctx->last_field = create_and_append_field(ctx, atts, NULL);
437
} else if (strcmp(element_name, "enum") == 0) {
438
ctx->enoom = create_enum(ctx, name, atts);
439
} else if (strcmp(element_name, "value") == 0) {
440
if (ctx->n_values >= ctx->n_allocated_values) {
441
ctx->n_allocated_values = MAX2(2, ctx->n_allocated_values * 2);
442
ctx->values = reralloc_array_size(ctx->spec, ctx->values,
443
sizeof(struct intel_value *),
444
ctx->n_allocated_values);
445
}
446
assert(ctx->n_values < ctx->n_allocated_values);
447
ctx->values[ctx->n_values++] = create_value(ctx, atts);
448
}
449
450
}
451
452
static void
453
end_element(void *data, const char *name)
454
{
455
struct parser_context *ctx = data;
456
struct intel_spec *spec = ctx->spec;
457
458
if (strcmp(name, "instruction") == 0 ||
459
strcmp(name, "struct") == 0 ||
460
strcmp(name, "register") == 0) {
461
struct intel_group *group = ctx->group;
462
struct intel_field *list = group->fields;
463
464
ctx->group = ctx->group->parent;
465
466
while (list && list->end <= 31) {
467
if (list->start >= 16 && list->has_default) {
468
group->opcode_mask |=
469
mask(list->start % 32, list->end % 32);
470
group->opcode |= list->default_value << list->start;
471
}
472
list = list->next;
473
}
474
475
if (strcmp(name, "instruction") == 0)
476
_mesa_hash_table_insert(spec->commands, group->name, group);
477
else if (strcmp(name, "struct") == 0)
478
_mesa_hash_table_insert(spec->structs, group->name, group);
479
else if (strcmp(name, "register") == 0) {
480
_mesa_hash_table_insert(spec->registers_by_name, group->name, group);
481
_mesa_hash_table_insert(spec->registers_by_offset,
482
(void *) (uintptr_t) group->register_offset,
483
group);
484
}
485
} else if (strcmp(name, "group") == 0) {
486
ctx->group = ctx->group->parent;
487
} else if (strcmp(name, "field") == 0) {
488
struct intel_field *field = ctx->last_field;
489
ctx->last_field = NULL;
490
field->inline_enum.values = ctx->values;
491
field->inline_enum.nvalues = ctx->n_values;
492
ctx->values = ralloc_array(ctx->spec, struct intel_value*, ctx->n_allocated_values = 2);
493
ctx->n_values = 0;
494
} else if (strcmp(name, "enum") == 0) {
495
struct intel_enum *e = ctx->enoom;
496
e->values = ctx->values;
497
e->nvalues = ctx->n_values;
498
ctx->values = ralloc_array(ctx->spec, struct intel_value*, ctx->n_allocated_values = 2);
499
ctx->n_values = 0;
500
ctx->enoom = NULL;
501
_mesa_hash_table_insert(spec->enums, e->name, e);
502
}
503
}
504
505
static void
506
character_data(void *data, const XML_Char *s, int len)
507
{
508
}
509
510
static uint32_t zlib_inflate(const void *compressed_data,
511
uint32_t compressed_len,
512
void **out_ptr)
513
{
514
struct z_stream_s zstream;
515
void *out;
516
517
memset(&zstream, 0, sizeof(zstream));
518
519
zstream.next_in = (unsigned char *)compressed_data;
520
zstream.avail_in = compressed_len;
521
522
if (inflateInit(&zstream) != Z_OK)
523
return 0;
524
525
out = malloc(4096);
526
zstream.next_out = out;
527
zstream.avail_out = 4096;
528
529
do {
530
switch (inflate(&zstream, Z_SYNC_FLUSH)) {
531
case Z_STREAM_END:
532
goto end;
533
case Z_OK:
534
break;
535
default:
536
inflateEnd(&zstream);
537
return 0;
538
}
539
540
if (zstream.avail_out)
541
break;
542
543
out = realloc(out, 2*zstream.total_out);
544
if (out == NULL) {
545
inflateEnd(&zstream);
546
return 0;
547
}
548
549
zstream.next_out = (unsigned char *)out + zstream.total_out;
550
zstream.avail_out = zstream.total_out;
551
} while (1);
552
end:
553
inflateEnd(&zstream);
554
*out_ptr = out;
555
return zstream.total_out;
556
}
557
558
static uint32_t _hash_uint32(const void *key)
559
{
560
return (uint32_t) (uintptr_t) key;
561
}
562
563
static struct intel_spec *
564
intel_spec_init(void)
565
{
566
struct intel_spec *spec;
567
spec = rzalloc(NULL, struct intel_spec);
568
if (spec == NULL)
569
return NULL;
570
571
spec->commands =
572
_mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
573
spec->structs =
574
_mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
575
spec->registers_by_name =
576
_mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
577
spec->registers_by_offset =
578
_mesa_hash_table_create(spec, _hash_uint32, _mesa_key_pointer_equal);
579
spec->enums =
580
_mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
581
spec->access_cache =
582
_mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
583
584
return spec;
585
}
586
587
struct intel_spec *
588
intel_spec_load(const struct intel_device_info *devinfo)
589
{
590
struct parser_context ctx;
591
void *buf;
592
uint8_t *text_data = NULL;
593
uint32_t text_offset = 0, text_length = 0;
594
ASSERTED uint32_t total_length;
595
uint32_t ver_10 = devinfo->verx10;
596
597
for (int i = 0; i < ARRAY_SIZE(genxml_files_table); i++) {
598
if (genxml_files_table[i].ver_10 == ver_10) {
599
text_offset = genxml_files_table[i].offset;
600
text_length = genxml_files_table[i].length;
601
break;
602
}
603
}
604
605
if (text_length == 0) {
606
fprintf(stderr, "unable to find gen (%u) data\n", ver_10);
607
return NULL;
608
}
609
610
memset(&ctx, 0, sizeof ctx);
611
ctx.parser = XML_ParserCreate(NULL);
612
XML_SetUserData(ctx.parser, &ctx);
613
if (ctx.parser == NULL) {
614
fprintf(stderr, "failed to create parser\n");
615
return NULL;
616
}
617
618
XML_SetElementHandler(ctx.parser, start_element, end_element);
619
XML_SetCharacterDataHandler(ctx.parser, character_data);
620
621
ctx.spec = intel_spec_init();
622
if (ctx.spec == NULL) {
623
fprintf(stderr, "Failed to create intel_spec\n");
624
return NULL;
625
}
626
627
total_length = zlib_inflate(compress_genxmls,
628
sizeof(compress_genxmls),
629
(void **) &text_data);
630
assert(text_offset + text_length <= total_length);
631
632
buf = XML_GetBuffer(ctx.parser, text_length);
633
memcpy(buf, &text_data[text_offset], text_length);
634
635
if (XML_ParseBuffer(ctx.parser, text_length, true) == 0) {
636
fprintf(stderr,
637
"Error parsing XML at line %ld col %ld byte %ld/%u: %s\n",
638
XML_GetCurrentLineNumber(ctx.parser),
639
XML_GetCurrentColumnNumber(ctx.parser),
640
XML_GetCurrentByteIndex(ctx.parser), text_length,
641
XML_ErrorString(XML_GetErrorCode(ctx.parser)));
642
XML_ParserFree(ctx.parser);
643
free(text_data);
644
return NULL;
645
}
646
647
XML_ParserFree(ctx.parser);
648
free(text_data);
649
650
return ctx.spec;
651
}
652
653
struct intel_spec *
654
intel_spec_load_filename(const char *filename)
655
{
656
struct parser_context ctx;
657
FILE *input;
658
void *buf;
659
size_t len;
660
661
input = fopen(filename, "r");
662
if (input == NULL) {
663
fprintf(stderr, "failed to open xml description\n");
664
return NULL;
665
}
666
667
memset(&ctx, 0, sizeof ctx);
668
ctx.parser = XML_ParserCreate(NULL);
669
XML_SetUserData(ctx.parser, &ctx);
670
if (ctx.parser == NULL) {
671
fprintf(stderr, "failed to create parser\n");
672
fclose(input);
673
return NULL;
674
}
675
676
XML_SetElementHandler(ctx.parser, start_element, end_element);
677
XML_SetCharacterDataHandler(ctx.parser, character_data);
678
ctx.loc.filename = filename;
679
680
ctx.spec = intel_spec_init();
681
if (ctx.spec == NULL) {
682
fprintf(stderr, "Failed to create intel_spec\n");
683
goto end;
684
}
685
686
do {
687
buf = XML_GetBuffer(ctx.parser, XML_BUFFER_SIZE);
688
len = fread(buf, 1, XML_BUFFER_SIZE, input);
689
if (ferror(input)) {
690
fprintf(stderr, "fread: %m\n");
691
intel_spec_destroy(ctx.spec);
692
ctx.spec = NULL;
693
goto end;
694
} else if (len == 0 && feof(input))
695
goto end;
696
697
if (XML_ParseBuffer(ctx.parser, len, len == 0) == 0) {
698
fprintf(stderr,
699
"Error parsing XML at line %ld col %ld: %s\n",
700
XML_GetCurrentLineNumber(ctx.parser),
701
XML_GetCurrentColumnNumber(ctx.parser),
702
XML_ErrorString(XML_GetErrorCode(ctx.parser)));
703
intel_spec_destroy(ctx.spec);
704
ctx.spec = NULL;
705
goto end;
706
}
707
} while (len > 0);
708
709
end:
710
XML_ParserFree(ctx.parser);
711
712
fclose(input);
713
714
/* free ctx.spec if genxml is empty */
715
if (ctx.spec &&
716
_mesa_hash_table_num_entries(ctx.spec->commands) == 0 &&
717
_mesa_hash_table_num_entries(ctx.spec->structs) == 0) {
718
fprintf(stderr,
719
"Error parsing XML: empty spec.\n");
720
intel_spec_destroy(ctx.spec);
721
return NULL;
722
}
723
724
return ctx.spec;
725
}
726
727
struct intel_spec *
728
intel_spec_load_from_path(const struct intel_device_info *devinfo,
729
const char *path)
730
{
731
size_t filename_len = strlen(path) + 20;
732
char *filename = malloc(filename_len);
733
734
ASSERTED size_t len = snprintf(filename, filename_len, "%s/gen%i.xml",
735
path, devinfo->ver);
736
assert(len < filename_len);
737
738
struct intel_spec *spec = intel_spec_load_filename(filename);
739
free(filename);
740
741
return spec;
742
}
743
744
void intel_spec_destroy(struct intel_spec *spec)
745
{
746
ralloc_free(spec);
747
}
748
749
struct intel_group *
750
intel_spec_find_instruction(struct intel_spec *spec,
751
enum drm_i915_gem_engine_class engine,
752
const uint32_t *p)
753
{
754
hash_table_foreach(spec->commands, entry) {
755
struct intel_group *command = entry->data;
756
uint32_t opcode = *p & command->opcode_mask;
757
if ((command->engine_mask & I915_ENGINE_CLASS_TO_MASK(engine)) &&
758
opcode == command->opcode)
759
return command;
760
}
761
762
return NULL;
763
}
764
765
struct intel_field *
766
intel_group_find_field(struct intel_group *group, const char *name)
767
{
768
char path[256];
769
snprintf(path, sizeof(path), "%s/%s", group->name, name);
770
771
struct intel_spec *spec = group->spec;
772
struct hash_entry *entry = _mesa_hash_table_search(spec->access_cache,
773
path);
774
if (entry)
775
return entry->data;
776
777
struct intel_field *field = group->fields;
778
while (field) {
779
if (strcmp(field->name, name) == 0) {
780
_mesa_hash_table_insert(spec->access_cache,
781
ralloc_strdup(spec, path),
782
field);
783
return field;
784
}
785
field = field->next;
786
}
787
788
return NULL;
789
}
790
791
int
792
intel_group_get_length(struct intel_group *group, const uint32_t *p)
793
{
794
if (group) {
795
if (group->fixed_length)
796
return group->dw_length;
797
else {
798
struct intel_field *field = group->dword_length_field;
799
if (field) {
800
return field_value(p[0], field->start, field->end) + group->bias;
801
}
802
}
803
}
804
805
uint32_t h = p[0];
806
uint32_t type = field_value(h, 29, 31);
807
808
switch (type) {
809
case 0: /* MI */ {
810
uint32_t opcode = field_value(h, 23, 28);
811
if (opcode < 16)
812
return 1;
813
else
814
return field_value(h, 0, 7) + 2;
815
break;
816
}
817
818
case 2: /* BLT */ {
819
return field_value(h, 0, 7) + 2;
820
}
821
822
case 3: /* Render */ {
823
uint32_t subtype = field_value(h, 27, 28);
824
uint32_t opcode = field_value(h, 24, 26);
825
uint16_t whole_opcode = field_value(h, 16, 31);
826
switch (subtype) {
827
case 0:
828
if (whole_opcode == 0x6104 /* PIPELINE_SELECT_965 */)
829
return 1;
830
else if (opcode < 2)
831
return field_value(h, 0, 7) + 2;
832
else
833
return -1;
834
case 1:
835
if (opcode < 2)
836
return 1;
837
else
838
return -1;
839
case 2: {
840
if (opcode == 0)
841
return field_value(h, 0, 7) + 2;
842
else if (opcode < 3)
843
return field_value(h, 0, 15) + 2;
844
else
845
return -1;
846
}
847
case 3:
848
if (whole_opcode == 0x780b)
849
return 1;
850
else if (opcode < 4)
851
return field_value(h, 0, 7) + 2;
852
else
853
return -1;
854
}
855
}
856
}
857
858
return -1;
859
}
860
861
static const char *
862
intel_get_enum_name(struct intel_enum *e, uint64_t value)
863
{
864
for (int i = 0; i < e->nvalues; i++) {
865
if (e->values[i]->value == value) {
866
return e->values[i]->name;
867
}
868
}
869
return NULL;
870
}
871
872
static bool
873
iter_more_fields(const struct intel_field_iterator *iter)
874
{
875
return iter->field != NULL && iter->field->next != NULL;
876
}
877
878
static uint32_t
879
iter_array_offset_bits(const struct intel_field_iterator *iter)
880
{
881
if (iter->level == 0)
882
return 0;
883
884
uint32_t offset = 0;
885
const struct intel_group *group = iter->groups[1];
886
for (int level = 1; level <= iter->level; level++, group = iter->groups[level]) {
887
uint32_t array_idx = iter->array_iter[level];
888
offset += group->array_offset + array_idx * group->array_item_size;
889
}
890
891
return offset;
892
}
893
894
/* Checks whether we have more items in the array to iterate, or more arrays to
895
* iterate through.
896
*/
897
/* descend into a non-array field */
898
static void
899
iter_push_array(struct intel_field_iterator *iter)
900
{
901
assert(iter->level >= 0);
902
903
iter->group = iter->field->array;
904
iter->level++;
905
assert(iter->level < DECODE_MAX_ARRAY_DEPTH);
906
iter->groups[iter->level] = iter->group;
907
iter->array_iter[iter->level] = 0;
908
909
assert(iter->group->fields != NULL); /* an empty <group> makes no sense */
910
iter->field = iter->group->fields;
911
iter->fields[iter->level] = iter->field;
912
}
913
914
static void
915
iter_pop_array(struct intel_field_iterator *iter)
916
{
917
assert(iter->level > 0);
918
919
iter->level--;
920
iter->field = iter->fields[iter->level];
921
iter->group = iter->groups[iter->level];
922
}
923
924
static void
925
iter_start_field(struct intel_field_iterator *iter, struct intel_field *field)
926
{
927
iter->field = field;
928
iter->fields[iter->level] = field;
929
930
while (iter->field->array)
931
iter_push_array(iter);
932
933
int array_member_offset = iter_array_offset_bits(iter);
934
935
iter->start_bit = array_member_offset + iter->field->start;
936
iter->end_bit = array_member_offset + iter->field->end;
937
iter->struct_desc = NULL;
938
}
939
940
static void
941
iter_advance_array(struct intel_field_iterator *iter)
942
{
943
assert(iter->level > 0);
944
int lvl = iter->level;
945
946
if (iter->group->variable)
947
iter->array_iter[lvl]++;
948
else {
949
if ((iter->array_iter[lvl] + 1) < iter->group->array_count) {
950
iter->array_iter[lvl]++;
951
}
952
}
953
954
iter_start_field(iter, iter->group->fields);
955
}
956
957
static bool
958
iter_more_array_elems(const struct intel_field_iterator *iter)
959
{
960
int lvl = iter->level;
961
assert(lvl >= 0);
962
963
if (iter->group->variable) {
964
int length = intel_group_get_length(iter->group, iter->p);
965
assert(length >= 0 && "error the length is unknown!");
966
return iter_array_offset_bits(iter) + iter->group->array_item_size <
967
(length * 32);
968
} else {
969
return (iter->array_iter[lvl] + 1) < iter->group->array_count;
970
}
971
}
972
973
static bool
974
iter_advance_field(struct intel_field_iterator *iter)
975
{
976
/* Keep looping while we either have more fields to look at, or we are
977
* inside a <group> and can go up a level.
978
*/
979
while (iter_more_fields(iter) || iter->level > 0) {
980
if (iter_more_fields(iter)) {
981
iter_start_field(iter, iter->field->next);
982
return true;
983
}
984
985
assert(iter->level >= 0);
986
987
if (iter_more_array_elems(iter)) {
988
iter_advance_array(iter);
989
return true;
990
}
991
992
/* At this point, we reached the end of the <group> and were on the last
993
* iteration. So it's time to go back to the parent and then advance the
994
* field.
995
*/
996
iter_pop_array(iter);
997
}
998
999
return false;
1000
}
1001
1002
static bool
1003
iter_decode_field_raw(struct intel_field_iterator *iter, uint64_t *qw)
1004
{
1005
*qw = 0;
1006
1007
int field_start = iter->p_bit + iter->start_bit;
1008
int field_end = iter->p_bit + iter->end_bit;
1009
1010
const uint32_t *p = iter->p + (iter->start_bit / 32);
1011
if (iter->p_end && p >= iter->p_end)
1012
return false;
1013
1014
if ((field_end - field_start) > 32) {
1015
if (!iter->p_end || (p + 1) < iter->p_end)
1016
*qw = ((uint64_t) p[1]) << 32;
1017
*qw |= p[0];
1018
} else
1019
*qw = p[0];
1020
1021
*qw = field_value(*qw, field_start, field_end);
1022
1023
/* Address & offset types have to be aligned to dwords, their start bit is
1024
* a reminder of the alignment requirement.
1025
*/
1026
if (iter->field->type.kind == INTEL_TYPE_ADDRESS ||
1027
iter->field->type.kind == INTEL_TYPE_OFFSET)
1028
*qw <<= field_start % 32;
1029
1030
return true;
1031
}
1032
1033
static bool
1034
iter_decode_field(struct intel_field_iterator *iter)
1035
{
1036
union {
1037
uint64_t qw;
1038
float f;
1039
} v;
1040
1041
if (iter->field->name)
1042
snprintf(iter->name, sizeof(iter->name), "%s", iter->field->name);
1043
else
1044
memset(iter->name, 0, sizeof(iter->name));
1045
1046
memset(&v, 0, sizeof(v));
1047
1048
if (!iter_decode_field_raw(iter, &iter->raw_value))
1049
return false;
1050
1051
const char *enum_name = NULL;
1052
1053
v.qw = iter->raw_value;
1054
switch (iter->field->type.kind) {
1055
case INTEL_TYPE_UNKNOWN:
1056
case INTEL_TYPE_INT: {
1057
snprintf(iter->value, sizeof(iter->value), "%"PRId64, v.qw);
1058
enum_name = intel_get_enum_name(&iter->field->inline_enum, v.qw);
1059
break;
1060
}
1061
case INTEL_TYPE_UINT: {
1062
snprintf(iter->value, sizeof(iter->value), "%"PRIu64, v.qw);
1063
enum_name = intel_get_enum_name(&iter->field->inline_enum, v.qw);
1064
break;
1065
}
1066
case INTEL_TYPE_BOOL: {
1067
const char *true_string =
1068
iter->print_colors ? "\e[0;35mtrue\e[0m" : "true";
1069
snprintf(iter->value, sizeof(iter->value), "%s",
1070
v.qw ? true_string : "false");
1071
break;
1072
}
1073
case INTEL_TYPE_FLOAT:
1074
snprintf(iter->value, sizeof(iter->value), "%f", v.f);
1075
break;
1076
case INTEL_TYPE_ADDRESS:
1077
case INTEL_TYPE_OFFSET:
1078
snprintf(iter->value, sizeof(iter->value), "0x%08"PRIx64, v.qw);
1079
break;
1080
case INTEL_TYPE_STRUCT:
1081
snprintf(iter->value, sizeof(iter->value), "<struct %s>",
1082
iter->field->type.intel_struct->name);
1083
iter->struct_desc =
1084
intel_spec_find_struct(iter->group->spec,
1085
iter->field->type.intel_struct->name);
1086
break;
1087
case INTEL_TYPE_UFIXED:
1088
snprintf(iter->value, sizeof(iter->value), "%f",
1089
(float) v.qw / (1 << iter->field->type.f));
1090
break;
1091
case INTEL_TYPE_SFIXED: {
1092
/* Sign extend before converting */
1093
int bits = iter->field->type.i + iter->field->type.f + 1;
1094
int64_t v_sign_extend = ((int64_t)(v.qw << (64 - bits))) >> (64 - bits);
1095
snprintf(iter->value, sizeof(iter->value), "%f",
1096
(float) v_sign_extend / (1 << iter->field->type.f));
1097
break;
1098
}
1099
case INTEL_TYPE_MBO:
1100
break;
1101
case INTEL_TYPE_ENUM: {
1102
snprintf(iter->value, sizeof(iter->value), "%"PRId64, v.qw);
1103
enum_name = intel_get_enum_name(iter->field->type.intel_enum, v.qw);
1104
break;
1105
}
1106
}
1107
1108
if (strlen(iter->group->name) == 0) {
1109
int length = strlen(iter->name);
1110
assert(iter->level >= 0);
1111
1112
int level = 1;
1113
char *buf = iter->name + length;
1114
while (level <= iter->level) {
1115
int printed = snprintf(buf, sizeof(iter->name) - length,
1116
"[%i]", iter->array_iter[level]);
1117
level++;
1118
length += printed;
1119
buf += printed;
1120
}
1121
}
1122
1123
if (enum_name) {
1124
int length = strlen(iter->value);
1125
snprintf(iter->value + length, sizeof(iter->value) - length,
1126
" (%s)", enum_name);
1127
} else if (strcmp(iter->name, "Surface Format") == 0 ||
1128
strcmp(iter->name, "Source Element Format") == 0) {
1129
if (isl_format_is_valid((enum isl_format)v.qw)) {
1130
const char *fmt_name = isl_format_get_name((enum isl_format)v.qw);
1131
int length = strlen(iter->value);
1132
snprintf(iter->value + length, sizeof(iter->value) - length,
1133
" (%s)", fmt_name);
1134
}
1135
}
1136
1137
return true;
1138
}
1139
1140
void
1141
intel_field_iterator_init(struct intel_field_iterator *iter,
1142
struct intel_group *group,
1143
const uint32_t *p, int p_bit,
1144
bool print_colors)
1145
{
1146
memset(iter, 0, sizeof(*iter));
1147
1148
iter->groups[iter->level] = group;
1149
iter->group = group;
1150
iter->p = p;
1151
iter->p_bit = p_bit;
1152
1153
int length = intel_group_get_length(iter->group, iter->p);
1154
assert(length >= 0 && "error the length is unknown!");
1155
iter->p_end = length >= 0 ? &p[length] : NULL;
1156
iter->print_colors = print_colors;
1157
}
1158
1159
bool
1160
intel_field_iterator_next(struct intel_field_iterator *iter)
1161
{
1162
/* Initial condition */
1163
if (!iter->field) {
1164
if (iter->group->fields)
1165
iter_start_field(iter, iter->group->fields);
1166
1167
bool result = iter_decode_field(iter);
1168
if (!result && iter->p_end) {
1169
/* We're dealing with a non empty struct of length=0 (BLEND_STATE on
1170
* Gen 7.5)
1171
*/
1172
assert(iter->group->dw_length == 0);
1173
}
1174
1175
return result;
1176
}
1177
1178
if (!iter_advance_field(iter))
1179
return false;
1180
1181
if (!iter_decode_field(iter))
1182
return false;
1183
1184
return true;
1185
}
1186
1187
static void
1188
print_dword_header(FILE *outfile,
1189
struct intel_field_iterator *iter,
1190
uint64_t offset, uint32_t dword)
1191
{
1192
fprintf(outfile, "0x%08"PRIx64": 0x%08x : Dword %d\n",
1193
offset + 4 * dword, iter->p[dword], dword);
1194
}
1195
1196
bool
1197
intel_field_is_header(struct intel_field *field)
1198
{
1199
uint32_t bits;
1200
1201
/* Instructions are identified by the first DWord. */
1202
if (field->start >= 32 ||
1203
field->end >= 32)
1204
return false;
1205
1206
bits = (1ULL << (field->end - field->start + 1)) - 1;
1207
bits <<= field->start;
1208
1209
return (field->parent->opcode_mask & bits) != 0;
1210
}
1211
1212
void
1213
intel_print_group(FILE *outfile, struct intel_group *group, uint64_t offset,
1214
const uint32_t *p, int p_bit, bool color)
1215
{
1216
struct intel_field_iterator iter;
1217
int last_dword = -1;
1218
1219
intel_field_iterator_init(&iter, group, p, p_bit, color);
1220
while (intel_field_iterator_next(&iter)) {
1221
int iter_dword = iter.end_bit / 32;
1222
if (last_dword != iter_dword) {
1223
for (int i = last_dword + 1; i <= iter_dword; i++)
1224
print_dword_header(outfile, &iter, offset, i);
1225
last_dword = iter_dword;
1226
}
1227
if (!intel_field_is_header(iter.field)) {
1228
fprintf(outfile, " %s: %s\n", iter.name, iter.value);
1229
if (iter.struct_desc) {
1230
int struct_dword = iter.start_bit / 32;
1231
uint64_t struct_offset = offset + 4 * struct_dword;
1232
intel_print_group(outfile, iter.struct_desc, struct_offset,
1233
&p[struct_dword], iter.start_bit % 32, color);
1234
}
1235
}
1236
}
1237
}
1238
1239