Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/intel/compiler/brw_fs_live_variables.cpp
4550 views
1
/*
2
* Copyright © 2012 Intel Corporation
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice (including the next
12
* paragraph) shall be included in all copies or substantial portions of the
13
* Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
* IN THE SOFTWARE.
22
*
23
* Authors:
24
* Eric Anholt <[email protected]>
25
*
26
*/
27
28
#include "brw_fs.h"
29
#include "brw_fs_live_variables.h"
30
31
using namespace brw;
32
33
#define MAX_INSTRUCTION (1 << 30)
34
35
/** @file brw_fs_live_variables.cpp
36
*
37
* Support for calculating liveness information about virtual GRFs.
38
*
39
* This produces a live interval for each whole virtual GRF. We could
40
* choose to expose per-component live intervals for VGRFs of size > 1,
41
* but we currently do not. It is easier for the consumers of this
42
* information to work with whole VGRFs.
43
*
44
* However, we internally track use/def information at the per-GRF level for
45
* greater accuracy. Large VGRFs may be accessed piecemeal over many
46
* (possibly non-adjacent) instructions. In this case, examining a single
47
* instruction is insufficient to decide whether a whole VGRF is ultimately
48
* used or defined. Tracking individual components allows us to easily
49
* assemble this information.
50
*
51
* See Muchnick's Advanced Compiler Design and Implementation, section
52
* 14.1 (p444).
53
*/
54
55
void
56
fs_live_variables::setup_one_read(struct block_data *bd,
57
int ip, const fs_reg &reg)
58
{
59
int var = var_from_reg(reg);
60
assert(var < num_vars);
61
62
start[var] = MIN2(start[var], ip);
63
end[var] = MAX2(end[var], ip);
64
65
/* The use[] bitset marks when the block makes use of a variable (VGRF
66
* channel) without having completely defined that variable within the
67
* block.
68
*/
69
if (!BITSET_TEST(bd->def, var))
70
BITSET_SET(bd->use, var);
71
}
72
73
void
74
fs_live_variables::setup_one_write(struct block_data *bd, fs_inst *inst,
75
int ip, const fs_reg &reg)
76
{
77
int var = var_from_reg(reg);
78
assert(var < num_vars);
79
80
start[var] = MIN2(start[var], ip);
81
end[var] = MAX2(end[var], ip);
82
83
/* The def[] bitset marks when an initialization in a block completely
84
* screens off previous updates of that variable (VGRF channel).
85
*/
86
if (inst->dst.file == VGRF) {
87
if (!inst->is_partial_write() && !BITSET_TEST(bd->use, var))
88
BITSET_SET(bd->def, var);
89
90
BITSET_SET(bd->defout, var);
91
}
92
}
93
94
/**
95
* Sets up the use[] and def[] bitsets.
96
*
97
* The basic-block-level live variable analysis needs to know which
98
* variables get used before they're completely defined, and which
99
* variables are completely defined before they're used.
100
*
101
* These are tracked at the per-component level, rather than whole VGRFs.
102
*/
103
void
104
fs_live_variables::setup_def_use()
105
{
106
int ip = 0;
107
108
foreach_block (block, cfg) {
109
assert(ip == block->start_ip);
110
if (block->num > 0)
111
assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
112
113
struct block_data *bd = &block_data[block->num];
114
115
foreach_inst_in_block(fs_inst, inst, block) {
116
/* Set use[] for this instruction */
117
for (unsigned int i = 0; i < inst->sources; i++) {
118
fs_reg reg = inst->src[i];
119
120
if (reg.file != VGRF)
121
continue;
122
123
for (unsigned j = 0; j < regs_read(inst, i); j++) {
124
setup_one_read(bd, ip, reg);
125
reg.offset += REG_SIZE;
126
}
127
}
128
129
bd->flag_use[0] |= inst->flags_read(devinfo) & ~bd->flag_def[0];
130
131
/* Set def[] for this instruction */
132
if (inst->dst.file == VGRF) {
133
fs_reg reg = inst->dst;
134
for (unsigned j = 0; j < regs_written(inst); j++) {
135
setup_one_write(bd, inst, ip, reg);
136
reg.offset += REG_SIZE;
137
}
138
}
139
140
if (!inst->predicate && inst->exec_size >= 8)
141
bd->flag_def[0] |= inst->flags_written(devinfo) & ~bd->flag_use[0];
142
143
ip++;
144
}
145
}
146
}
147
148
/**
149
* The algorithm incrementally sets bits in liveout and livein,
150
* propagating it through control flow. It will eventually terminate
151
* because it only ever adds bits, and stops when no bits are added in
152
* a pass.
153
*/
154
void
155
fs_live_variables::compute_live_variables()
156
{
157
bool cont = true;
158
159
while (cont) {
160
cont = false;
161
162
foreach_block_reverse (block, cfg) {
163
struct block_data *bd = &block_data[block->num];
164
165
/* Update liveout */
166
foreach_list_typed(bblock_link, child_link, link, &block->children) {
167
struct block_data *child_bd = &block_data[child_link->block->num];
168
169
for (int i = 0; i < bitset_words; i++) {
170
BITSET_WORD new_liveout = (child_bd->livein[i] &
171
~bd->liveout[i]);
172
if (new_liveout) {
173
bd->liveout[i] |= new_liveout;
174
cont = true;
175
}
176
}
177
BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
178
~bd->flag_liveout[0]);
179
if (new_liveout) {
180
bd->flag_liveout[0] |= new_liveout;
181
cont = true;
182
}
183
}
184
185
/* Update livein */
186
for (int i = 0; i < bitset_words; i++) {
187
BITSET_WORD new_livein = (bd->use[i] |
188
(bd->liveout[i] &
189
~bd->def[i]));
190
if (new_livein & ~bd->livein[i]) {
191
bd->livein[i] |= new_livein;
192
cont = true;
193
}
194
}
195
BITSET_WORD new_livein = (bd->flag_use[0] |
196
(bd->flag_liveout[0] &
197
~bd->flag_def[0]));
198
if (new_livein & ~bd->flag_livein[0]) {
199
bd->flag_livein[0] |= new_livein;
200
cont = true;
201
}
202
}
203
}
204
205
/* Propagate defin and defout down the CFG to calculate the union of live
206
* variables potentially defined along any possible control flow path.
207
*/
208
do {
209
cont = false;
210
211
foreach_block (block, cfg) {
212
const struct block_data *bd = &block_data[block->num];
213
214
foreach_list_typed(bblock_link, child_link, link, &block->children) {
215
struct block_data *child_bd = &block_data[child_link->block->num];
216
217
for (int i = 0; i < bitset_words; i++) {
218
const BITSET_WORD new_def = bd->defout[i] & ~child_bd->defin[i];
219
child_bd->defin[i] |= new_def;
220
child_bd->defout[i] |= new_def;
221
cont |= new_def;
222
}
223
}
224
}
225
} while (cont);
226
}
227
228
/**
229
* Extend the start/end ranges for each variable to account for the
230
* new information calculated from control flow.
231
*/
232
void
233
fs_live_variables::compute_start_end()
234
{
235
foreach_block (block, cfg) {
236
struct block_data *bd = &block_data[block->num];
237
238
for (int w = 0; w < bitset_words; w++) {
239
BITSET_WORD livedefin = bd->livein[w] & bd->defin[w];
240
BITSET_WORD livedefout = bd->liveout[w] & bd->defout[w];
241
BITSET_WORD livedefinout = livedefin | livedefout;
242
while (livedefinout) {
243
unsigned b = u_bit_scan(&livedefinout);
244
unsigned i = w * BITSET_WORDBITS + b;
245
if (livedefin & (1u << b)) {
246
start[i] = MIN2(start[i], block->start_ip);
247
end[i] = MAX2(end[i], block->start_ip);
248
}
249
if (livedefout & (1u << b)) {
250
start[i] = MIN2(start[i], block->end_ip);
251
end[i] = MAX2(end[i], block->end_ip);
252
}
253
}
254
}
255
}
256
}
257
258
fs_live_variables::fs_live_variables(const backend_shader *s)
259
: devinfo(s->devinfo), cfg(s->cfg)
260
{
261
mem_ctx = ralloc_context(NULL);
262
263
num_vgrfs = s->alloc.count;
264
num_vars = 0;
265
var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs);
266
for (int i = 0; i < num_vgrfs; i++) {
267
var_from_vgrf[i] = num_vars;
268
num_vars += s->alloc.sizes[i];
269
}
270
271
vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars);
272
for (int i = 0; i < num_vgrfs; i++) {
273
for (unsigned j = 0; j < s->alloc.sizes[i]; j++) {
274
vgrf_from_var[var_from_vgrf[i] + j] = i;
275
}
276
}
277
278
start = ralloc_array(mem_ctx, int, num_vars);
279
end = rzalloc_array(mem_ctx, int, num_vars);
280
for (int i = 0; i < num_vars; i++) {
281
start[i] = MAX_INSTRUCTION;
282
end[i] = -1;
283
}
284
285
vgrf_start = ralloc_array(mem_ctx, int, num_vgrfs);
286
vgrf_end = ralloc_array(mem_ctx, int, num_vgrfs);
287
for (int i = 0; i < num_vgrfs; i++) {
288
vgrf_start[i] = MAX_INSTRUCTION;
289
vgrf_end[i] = -1;
290
}
291
292
block_data = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
293
294
bitset_words = BITSET_WORDS(num_vars);
295
for (int i = 0; i < cfg->num_blocks; i++) {
296
block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
297
block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
298
block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
299
block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
300
block_data[i].defin = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
301
block_data[i].defout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
302
303
block_data[i].flag_def[0] = 0;
304
block_data[i].flag_use[0] = 0;
305
block_data[i].flag_livein[0] = 0;
306
block_data[i].flag_liveout[0] = 0;
307
}
308
309
setup_def_use();
310
compute_live_variables();
311
compute_start_end();
312
313
/* Merge the per-component live ranges to whole VGRF live ranges. */
314
for (int i = 0; i < num_vars; i++) {
315
const unsigned vgrf = vgrf_from_var[i];
316
vgrf_start[vgrf] = MIN2(vgrf_start[vgrf], start[i]);
317
vgrf_end[vgrf] = MAX2(vgrf_end[vgrf], end[i]);
318
}
319
}
320
321
fs_live_variables::~fs_live_variables()
322
{
323
ralloc_free(mem_ctx);
324
}
325
326
static bool
327
check_register_live_range(const fs_live_variables *live, int ip,
328
const fs_reg &reg, unsigned n)
329
{
330
const unsigned var = live->var_from_reg(reg);
331
332
if (var + n > unsigned(live->num_vars) ||
333
live->vgrf_start[reg.nr] > ip || live->vgrf_end[reg.nr] < ip)
334
return false;
335
336
for (unsigned j = 0; j < n; j++) {
337
if (live->start[var + j] > ip || live->end[var + j] < ip)
338
return false;
339
}
340
341
return true;
342
}
343
344
bool
345
fs_live_variables::validate(const backend_shader *s) const
346
{
347
int ip = 0;
348
349
foreach_block_and_inst(block, fs_inst, inst, s->cfg) {
350
for (unsigned i = 0; i < inst->sources; i++) {
351
if (inst->src[i].file == VGRF &&
352
!check_register_live_range(this, ip,
353
inst->src[i], regs_read(inst, i)))
354
return false;
355
}
356
357
if (inst->dst.file == VGRF &&
358
!check_register_live_range(this, ip, inst->dst, regs_written(inst)))
359
return false;
360
361
ip++;
362
}
363
364
return true;
365
}
366
367
bool
368
fs_live_variables::vars_interfere(int a, int b) const
369
{
370
return !(end[b] <= start[a] ||
371
end[a] <= start[b]);
372
}
373
374
bool
375
fs_live_variables::vgrfs_interfere(int a, int b) const
376
{
377
return !(vgrf_end[a] <= vgrf_start[b] ||
378
vgrf_end[b] <= vgrf_start[a]);
379
}
380
381