Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/intel/compiler/brw_fs_reg_allocate.cpp
4550 views
1
/*
2
* Copyright © 2010 Intel Corporation
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice (including the next
12
* paragraph) shall be included in all copies or substantial portions of the
13
* Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
* IN THE SOFTWARE.
22
*
23
* Authors:
24
* Eric Anholt <[email protected]>
25
*
26
*/
27
28
#include "brw_eu.h"
29
#include "brw_fs.h"
30
#include "brw_cfg.h"
31
#include "util/set.h"
32
#include "util/register_allocate.h"
33
34
using namespace brw;
35
36
static void
37
assign_reg(unsigned *reg_hw_locations, fs_reg *reg)
38
{
39
if (reg->file == VGRF) {
40
reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
41
reg->offset %= REG_SIZE;
42
}
43
}
44
45
void
46
fs_visitor::assign_regs_trivial()
47
{
48
unsigned hw_reg_mapping[this->alloc.count + 1];
49
unsigned i;
50
int reg_width = dispatch_width / 8;
51
52
/* Note that compressed instructions require alignment to 2 registers. */
53
hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
54
for (i = 1; i <= this->alloc.count; i++) {
55
hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
56
this->alloc.sizes[i - 1]);
57
}
58
this->grf_used = hw_reg_mapping[this->alloc.count];
59
60
foreach_block_and_inst(block, fs_inst, inst, cfg) {
61
assign_reg(hw_reg_mapping, &inst->dst);
62
for (i = 0; i < inst->sources; i++) {
63
assign_reg(hw_reg_mapping, &inst->src[i]);
64
}
65
}
66
67
if (this->grf_used >= max_grf) {
68
fail("Ran out of regs on trivial allocator (%d/%d)\n",
69
this->grf_used, max_grf);
70
} else {
71
this->alloc.count = this->grf_used;
72
}
73
74
}
75
76
/**
77
* Size of a register from the aligned_bary_class register class.
78
*/
79
static unsigned
80
aligned_bary_size(unsigned dispatch_width)
81
{
82
return (dispatch_width == 8 ? 2 : 4);
83
}
84
85
static void
86
brw_alloc_reg_set(struct brw_compiler *compiler, int dispatch_width)
87
{
88
const struct intel_device_info *devinfo = compiler->devinfo;
89
int base_reg_count = BRW_MAX_GRF;
90
const int index = util_logbase2(dispatch_width / 8);
91
92
if (dispatch_width > 8 && devinfo->ver >= 7) {
93
/* For IVB+, we don't need the PLN hacks or the even-reg alignment in
94
* SIMD16. Therefore, we can use the exact same register sets for
95
* SIMD16 as we do for SIMD8 and we don't need to recalculate them.
96
*/
97
compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0];
98
return;
99
}
100
101
/* The registers used to make up almost all values handled in the compiler
102
* are a scalar value occupying a single register (or 2 registers in the
103
* case of SIMD16, which is handled by dividing base_reg_count by 2 and
104
* multiplying allocated register numbers by 2). Things that were
105
* aggregates of scalar values at the GLSL level were split to scalar
106
* values by split_virtual_grfs().
107
*
108
* However, texture SEND messages return a series of contiguous registers
109
* to write into. We currently always ask for 4 registers, but we may
110
* convert that to use less some day.
111
*
112
* Additionally, on gfx5 we need aligned pairs of registers for the PLN
113
* instruction, and on gfx4 we need 8 contiguous regs for workaround simd16
114
* texturing.
115
*/
116
const int class_count = MAX_VGRF_SIZE;
117
int class_sizes[MAX_VGRF_SIZE];
118
for (unsigned i = 0; i < MAX_VGRF_SIZE; i++)
119
class_sizes[i] = i + 1;
120
121
struct ra_regs *regs = ra_alloc_reg_set(compiler, BRW_MAX_GRF, false);
122
if (devinfo->ver >= 6)
123
ra_set_allocate_round_robin(regs);
124
struct ra_class **classes = ralloc_array(compiler, struct ra_class *, class_count);
125
struct ra_class *aligned_bary_class = NULL;
126
127
/* Now, make the register classes for each size of contiguous register
128
* allocation we might need to make.
129
*/
130
for (int i = 0; i < class_count; i++) {
131
classes[i] = ra_alloc_contig_reg_class(regs, class_sizes[i]);
132
133
if (devinfo->ver <= 5 && dispatch_width >= 16) {
134
/* From the G45 PRM:
135
*
136
* In order to reduce the hardware complexity, the following
137
* rules and restrictions apply to the compressed instruction:
138
* ...
139
* * Operand Alignment Rule: With the exceptions listed below, a
140
* source/destination operand in general should be aligned to
141
* even 256-bit physical register with a region size equal to
142
* two 256-bit physical register
143
*/
144
for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg += 2)
145
ra_class_add_reg(classes[i], reg);
146
} else {
147
for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg++)
148
ra_class_add_reg(classes[i], reg);
149
}
150
}
151
152
/* Add a special class for aligned barycentrics, which we'll put the
153
* first source of LINTERP on so that we can do PLN on Gen <= 6.
154
*/
155
if (devinfo->has_pln && (devinfo->ver == 6 ||
156
(dispatch_width == 8 && devinfo->ver <= 5))) {
157
int contig_len = aligned_bary_size(dispatch_width);
158
aligned_bary_class = ra_alloc_contig_reg_class(regs, contig_len);
159
160
for (int i = 0; i <= base_reg_count - contig_len; i += 2)
161
ra_class_add_reg(aligned_bary_class, i);
162
}
163
164
ra_set_finalize(regs, NULL);
165
166
compiler->fs_reg_sets[index].regs = regs;
167
for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++)
168
compiler->fs_reg_sets[index].classes[i] = NULL;
169
for (int i = 0; i < class_count; i++)
170
compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
171
compiler->fs_reg_sets[index].aligned_bary_class = aligned_bary_class;
172
}
173
174
void
175
brw_fs_alloc_reg_sets(struct brw_compiler *compiler)
176
{
177
brw_alloc_reg_set(compiler, 8);
178
brw_alloc_reg_set(compiler, 16);
179
brw_alloc_reg_set(compiler, 32);
180
}
181
182
static int
183
count_to_loop_end(const bblock_t *block)
184
{
185
if (block->end()->opcode == BRW_OPCODE_WHILE)
186
return block->end_ip;
187
188
int depth = 1;
189
/* Skip the first block, since we don't want to count the do the calling
190
* function found.
191
*/
192
for (block = block->next();
193
depth > 0;
194
block = block->next()) {
195
if (block->start()->opcode == BRW_OPCODE_DO)
196
depth++;
197
if (block->end()->opcode == BRW_OPCODE_WHILE) {
198
depth--;
199
if (depth == 0)
200
return block->end_ip;
201
}
202
}
203
unreachable("not reached");
204
}
205
206
void fs_visitor::calculate_payload_ranges(int payload_node_count,
207
int *payload_last_use_ip) const
208
{
209
int loop_depth = 0;
210
int loop_end_ip = 0;
211
212
for (int i = 0; i < payload_node_count; i++)
213
payload_last_use_ip[i] = -1;
214
215
int ip = 0;
216
foreach_block_and_inst(block, fs_inst, inst, cfg) {
217
switch (inst->opcode) {
218
case BRW_OPCODE_DO:
219
loop_depth++;
220
221
/* Since payload regs are deffed only at the start of the shader
222
* execution, any uses of the payload within a loop mean the live
223
* interval extends to the end of the outermost loop. Find the ip of
224
* the end now.
225
*/
226
if (loop_depth == 1)
227
loop_end_ip = count_to_loop_end(block);
228
break;
229
case BRW_OPCODE_WHILE:
230
loop_depth--;
231
break;
232
default:
233
break;
234
}
235
236
int use_ip;
237
if (loop_depth > 0)
238
use_ip = loop_end_ip;
239
else
240
use_ip = ip;
241
242
/* Note that UNIFORM args have been turned into FIXED_GRF by
243
* assign_curbe_setup(), and interpolation uses fixed hardware regs from
244
* the start (see interp_reg()).
245
*/
246
for (int i = 0; i < inst->sources; i++) {
247
if (inst->src[i].file == FIXED_GRF) {
248
int node_nr = inst->src[i].nr;
249
if (node_nr >= payload_node_count)
250
continue;
251
252
for (unsigned j = 0; j < regs_read(inst, i); j++) {
253
payload_last_use_ip[node_nr + j] = use_ip;
254
assert(node_nr + j < unsigned(payload_node_count));
255
}
256
}
257
}
258
259
if (inst->dst.file == FIXED_GRF) {
260
int node_nr = inst->dst.nr;
261
if (node_nr < payload_node_count) {
262
for (unsigned j = 0; j < regs_written(inst); j++) {
263
payload_last_use_ip[node_nr + j] = use_ip;
264
assert(node_nr + j < unsigned(payload_node_count));
265
}
266
}
267
}
268
269
/* Special case instructions which have extra implied registers used. */
270
switch (inst->opcode) {
271
case CS_OPCODE_CS_TERMINATE:
272
payload_last_use_ip[0] = use_ip;
273
break;
274
275
default:
276
if (inst->eot) {
277
/* We could omit this for the !inst->header_present case, except
278
* that the simulator apparently incorrectly reads from g0/g1
279
* instead of sideband. It also really freaks out driver
280
* developers to see g0 used in unusual places, so just always
281
* reserve it.
282
*/
283
payload_last_use_ip[0] = use_ip;
284
payload_last_use_ip[1] = use_ip;
285
}
286
break;
287
}
288
289
ip++;
290
}
291
}
292
293
class fs_reg_alloc {
294
public:
295
fs_reg_alloc(fs_visitor *fs):
296
fs(fs), devinfo(fs->devinfo), compiler(fs->compiler),
297
live(fs->live_analysis.require()), g(NULL),
298
have_spill_costs(false)
299
{
300
mem_ctx = ralloc_context(NULL);
301
302
/* Stash the number of instructions so we can sanity check that our
303
* counts still match liveness.
304
*/
305
live_instr_count = fs->cfg->last_block()->end_ip + 1;
306
307
spill_insts = _mesa_pointer_set_create(mem_ctx);
308
309
/* Most of this allocation was written for a reg_width of 1
310
* (dispatch_width == 8). In extending to SIMD16, the code was
311
* left in place and it was converted to have the hardware
312
* registers it's allocating be contiguous physical pairs of regs
313
* for reg_width == 2.
314
*/
315
int reg_width = fs->dispatch_width / 8;
316
rsi = util_logbase2(reg_width);
317
payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width);
318
319
/* Get payload IP information */
320
payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count);
321
322
node_count = 0;
323
first_payload_node = 0;
324
first_mrf_hack_node = 0;
325
scratch_header_node = 0;
326
grf127_send_hack_node = 0;
327
first_vgrf_node = 0;
328
last_vgrf_node = 0;
329
first_spill_node = 0;
330
331
spill_vgrf_ip = NULL;
332
spill_vgrf_ip_alloc = 0;
333
spill_node_count = 0;
334
}
335
336
~fs_reg_alloc()
337
{
338
ralloc_free(mem_ctx);
339
}
340
341
bool assign_regs(bool allow_spilling, bool spill_all);
342
343
private:
344
void setup_live_interference(unsigned node,
345
int node_start_ip, int node_end_ip);
346
void setup_inst_interference(const fs_inst *inst);
347
348
void build_interference_graph(bool allow_spilling);
349
void discard_interference_graph();
350
351
void emit_unspill(const fs_builder &bld, fs_reg dst,
352
uint32_t spill_offset, unsigned count);
353
void emit_spill(const fs_builder &bld, fs_reg src,
354
uint32_t spill_offset, unsigned count);
355
356
void set_spill_costs();
357
int choose_spill_reg();
358
fs_reg alloc_scratch_header();
359
fs_reg alloc_spill_reg(unsigned size, int ip);
360
void spill_reg(unsigned spill_reg);
361
362
void *mem_ctx;
363
fs_visitor *fs;
364
const intel_device_info *devinfo;
365
const brw_compiler *compiler;
366
const fs_live_variables &live;
367
int live_instr_count;
368
369
set *spill_insts;
370
371
/* Which compiler->fs_reg_sets[] to use */
372
int rsi;
373
374
ra_graph *g;
375
bool have_spill_costs;
376
377
int payload_node_count;
378
int *payload_last_use_ip;
379
380
int node_count;
381
int first_payload_node;
382
int first_mrf_hack_node;
383
int scratch_header_node;
384
int grf127_send_hack_node;
385
int first_vgrf_node;
386
int last_vgrf_node;
387
int first_spill_node;
388
389
int *spill_vgrf_ip;
390
int spill_vgrf_ip_alloc;
391
int spill_node_count;
392
393
fs_reg scratch_header;
394
};
395
396
/**
397
* Sets the mrf_used array to indicate which MRFs are used by the shader IR
398
*
399
* This is used in assign_regs() to decide which of the GRFs that we use as
400
* MRFs on gfx7 get normally register allocated, and in register spilling to
401
* see if we can actually use MRFs to do spills without overwriting normal MRF
402
* contents.
403
*/
404
static void
405
get_used_mrfs(const fs_visitor *v, bool *mrf_used)
406
{
407
int reg_width = v->dispatch_width / 8;
408
409
memset(mrf_used, 0, BRW_MAX_MRF(v->devinfo->ver) * sizeof(bool));
410
411
foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
412
if (inst->dst.file == MRF) {
413
int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
414
mrf_used[reg] = true;
415
if (reg_width == 2) {
416
if (inst->dst.nr & BRW_MRF_COMPR4) {
417
mrf_used[reg + 4] = true;
418
} else {
419
mrf_used[reg + 1] = true;
420
}
421
}
422
}
423
424
if (inst->mlen > 0) {
425
for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
426
mrf_used[inst->base_mrf + i] = true;
427
}
428
}
429
}
430
}
431
432
namespace {
433
/**
434
* Maximum spill block size we expect to encounter in 32B units.
435
*
436
* This is somewhat arbitrary and doesn't necessarily limit the maximum
437
* variable size that can be spilled -- A higher value will allow a
438
* variable of a given size to be spilled more efficiently with a smaller
439
* number of scratch messages, but will increase the likelihood of a
440
* collision between the MRFs reserved for spilling and other MRFs used by
441
* the program (and possibly increase GRF register pressure on platforms
442
* without hardware MRFs), what could cause register allocation to fail.
443
*
444
* For the moment reserve just enough space so a register of 32 bit
445
* component type and natural region width can be spilled without splitting
446
* into multiple (force_writemask_all) scratch messages.
447
*/
448
unsigned
449
spill_max_size(const backend_shader *s)
450
{
451
/* FINISHME - On Gfx7+ it should be possible to avoid this limit
452
* altogether by spilling directly from the temporary GRF
453
* allocated to hold the result of the instruction (and the
454
* scratch write header).
455
*/
456
/* FINISHME - The shader's dispatch width probably belongs in
457
* backend_shader (or some nonexistent fs_shader class?)
458
* rather than in the visitor class.
459
*/
460
return static_cast<const fs_visitor *>(s)->dispatch_width / 8;
461
}
462
463
/**
464
* First MRF register available for spilling.
465
*/
466
unsigned
467
spill_base_mrf(const backend_shader *s)
468
{
469
/* We don't use the MRF hack on Gfx9+ */
470
assert(s->devinfo->ver < 9);
471
return BRW_MAX_MRF(s->devinfo->ver) - spill_max_size(s) - 1;
472
}
473
}
474
475
void
476
fs_reg_alloc::setup_live_interference(unsigned node,
477
int node_start_ip, int node_end_ip)
478
{
479
/* Mark any virtual grf that is live between the start of the program and
480
* the last use of a payload node interfering with that payload node.
481
*/
482
for (int i = 0; i < payload_node_count; i++) {
483
if (payload_last_use_ip[i] == -1)
484
continue;
485
486
/* Note that we use a <= comparison, unlike vgrfs_interfere(),
487
* in order to not have to worry about the uniform issue described in
488
* calculate_live_intervals().
489
*/
490
if (node_start_ip <= payload_last_use_ip[i])
491
ra_add_node_interference(g, node, first_payload_node + i);
492
}
493
494
/* If we have the MRF hack enabled, mark this node as interfering with all
495
* MRF registers.
496
*/
497
if (first_mrf_hack_node >= 0) {
498
for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->ver); i++)
499
ra_add_node_interference(g, node, first_mrf_hack_node + i);
500
}
501
502
/* Everything interferes with the scratch header */
503
if (scratch_header_node >= 0)
504
ra_add_node_interference(g, node, scratch_header_node);
505
506
/* Add interference with every vgrf whose live range intersects this
507
* node's. We only need to look at nodes below this one as the reflexivity
508
* of interference will take care of the rest.
509
*/
510
for (unsigned n2 = first_vgrf_node;
511
n2 <= (unsigned)last_vgrf_node && n2 < node; n2++) {
512
unsigned vgrf = n2 - first_vgrf_node;
513
if (!(node_end_ip <= live.vgrf_start[vgrf] ||
514
live.vgrf_end[vgrf] <= node_start_ip))
515
ra_add_node_interference(g, node, n2);
516
}
517
}
518
519
void
520
fs_reg_alloc::setup_inst_interference(const fs_inst *inst)
521
{
522
/* Certain instructions can't safely use the same register for their
523
* sources and destination. Add interference.
524
*/
525
if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
526
for (unsigned i = 0; i < inst->sources; i++) {
527
if (inst->src[i].file == VGRF) {
528
ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
529
first_vgrf_node + inst->src[i].nr);
530
}
531
}
532
}
533
534
/* In 16-wide instructions we have an issue where a compressed
535
* instruction is actually two instructions executed simultaneously.
536
* It's actually ok to have the source and destination registers be
537
* the same. In this case, each instruction over-writes its own
538
* source and there's no problem. The real problem here is if the
539
* source and destination registers are off by one. Then you can end
540
* up in a scenario where the first instruction over-writes the
541
* source of the second instruction. Since the compiler doesn't know
542
* about this level of granularity, we simply make the source and
543
* destination interfere.
544
*/
545
if (inst->exec_size >= 16 && inst->dst.file == VGRF) {
546
for (int i = 0; i < inst->sources; ++i) {
547
if (inst->src[i].file == VGRF) {
548
ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
549
first_vgrf_node + inst->src[i].nr);
550
}
551
}
552
}
553
554
if (grf127_send_hack_node >= 0) {
555
/* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference",
556
* subsection "EUISA Instructions", Send Message (page 990):
557
*
558
* "r127 must not be used for return address when there is a src and
559
* dest overlap in send instruction."
560
*
561
* We are avoiding using grf127 as part of the destination of send
562
* messages adding a node interference to the grf127_send_hack_node.
563
* This node has a fixed asignment to grf127.
564
*
565
* We don't apply it to SIMD16 instructions because previous code avoids
566
* any register overlap between sources and destination.
567
*/
568
if (inst->exec_size < 16 && inst->is_send_from_grf() &&
569
inst->dst.file == VGRF)
570
ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
571
grf127_send_hack_node);
572
573
/* Spilling instruction are genereated as SEND messages from MRF but as
574
* Gfx7+ supports sending from GRF the driver will maps assingn these
575
* MRF registers to a GRF. Implementations reuses the dest of the send
576
* message as source. So as we will have an overlap for sure, we create
577
* an interference between destination and grf127.
578
*/
579
if ((inst->opcode == SHADER_OPCODE_GFX7_SCRATCH_READ ||
580
inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_READ) &&
581
inst->dst.file == VGRF)
582
ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
583
grf127_send_hack_node);
584
}
585
586
/* From the Skylake PRM Vol. 2a docs for sends:
587
*
588
* "It is required that the second block of GRFs does not overlap with
589
* the first block."
590
*
591
* Normally, this is taken care of by fixup_sends_duplicate_payload() but
592
* in the case where one of the registers is an undefined value, the
593
* register allocator may decide that they don't interfere even though
594
* they're used as sources in the same instruction. We also need to add
595
* interference here.
596
*/
597
if (devinfo->ver >= 9) {
598
if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
599
inst->src[2].file == VGRF && inst->src[3].file == VGRF &&
600
inst->src[2].nr != inst->src[3].nr)
601
ra_add_node_interference(g, first_vgrf_node + inst->src[2].nr,
602
first_vgrf_node + inst->src[3].nr);
603
}
604
605
/* When we do send-from-GRF for FB writes, we need to ensure that the last
606
* write instruction sends from a high register. This is because the
607
* vertex fetcher wants to start filling the low payload registers while
608
* the pixel data port is still working on writing out the memory. If we
609
* don't do this, we get rendering artifacts.
610
*
611
* We could just do "something high". Instead, we just pick the highest
612
* register that works.
613
*/
614
if (inst->eot) {
615
const int vgrf = inst->opcode == SHADER_OPCODE_SEND ?
616
inst->src[2].nr : inst->src[0].nr;
617
int size = fs->alloc.sizes[vgrf];
618
int reg = BRW_MAX_GRF - size;
619
620
if (first_mrf_hack_node >= 0) {
621
/* If something happened to spill, we want to push the EOT send
622
* register early enough in the register file that we don't
623
* conflict with any used MRF hack registers.
624
*/
625
reg -= BRW_MAX_MRF(devinfo->ver) - spill_base_mrf(fs);
626
} else if (grf127_send_hack_node >= 0) {
627
/* Avoid r127 which might be unusable if the node was previously
628
* written by a SIMD8 SEND message with source/destination overlap.
629
*/
630
reg--;
631
}
632
633
ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
634
}
635
}
636
637
void
638
fs_reg_alloc::build_interference_graph(bool allow_spilling)
639
{
640
/* Compute the RA node layout */
641
node_count = 0;
642
first_payload_node = node_count;
643
node_count += payload_node_count;
644
if (devinfo->ver >= 7 && devinfo->ver < 9 && allow_spilling) {
645
first_mrf_hack_node = node_count;
646
node_count += BRW_MAX_GRF - GFX7_MRF_HACK_START;
647
} else {
648
first_mrf_hack_node = -1;
649
}
650
if (devinfo->ver >= 8) {
651
grf127_send_hack_node = node_count;
652
node_count ++;
653
} else {
654
grf127_send_hack_node = -1;
655
}
656
first_vgrf_node = node_count;
657
node_count += fs->alloc.count;
658
last_vgrf_node = node_count - 1;
659
if (devinfo->ver >= 9 && allow_spilling) {
660
scratch_header_node = node_count++;
661
} else {
662
scratch_header_node = -1;
663
}
664
first_spill_node = node_count;
665
666
fs->calculate_payload_ranges(payload_node_count,
667
payload_last_use_ip);
668
669
assert(g == NULL);
670
g = ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count);
671
ralloc_steal(mem_ctx, g);
672
673
/* Set up the payload nodes */
674
for (int i = 0; i < payload_node_count; i++)
675
ra_set_node_reg(g, first_payload_node + i, i);
676
677
if (first_mrf_hack_node >= 0) {
678
/* Mark each MRF reg node as being allocated to its physical
679
* register.
680
*
681
* The alternative would be to have per-physical-register classes,
682
* which would just be silly.
683
*/
684
for (int i = 0; i < BRW_MAX_MRF(devinfo->ver); i++) {
685
ra_set_node_reg(g, first_mrf_hack_node + i,
686
GFX7_MRF_HACK_START + i);
687
}
688
}
689
690
if (grf127_send_hack_node >= 0)
691
ra_set_node_reg(g, grf127_send_hack_node, 127);
692
693
/* Specify the classes of each virtual register. */
694
for (unsigned i = 0; i < fs->alloc.count; i++) {
695
unsigned size = fs->alloc.sizes[i];
696
697
assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) &&
698
"Register allocation relies on split_virtual_grfs()");
699
700
ra_set_node_class(g, first_vgrf_node + i,
701
compiler->fs_reg_sets[rsi].classes[size - 1]);
702
}
703
704
/* Special case: on pre-Gfx7 hardware that supports PLN, the second operand
705
* of a PLN instruction needs to be an even-numbered register, so we have a
706
* special register class aligned_bary_class to handle this case.
707
*/
708
if (compiler->fs_reg_sets[rsi].aligned_bary_class) {
709
foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
710
if (inst->opcode == FS_OPCODE_LINTERP && inst->src[0].file == VGRF &&
711
fs->alloc.sizes[inst->src[0].nr] ==
712
aligned_bary_size(fs->dispatch_width)) {
713
ra_set_node_class(g, first_vgrf_node + inst->src[0].nr,
714
compiler->fs_reg_sets[rsi].aligned_bary_class);
715
}
716
}
717
}
718
719
/* Add interference based on the live range of the register */
720
for (unsigned i = 0; i < fs->alloc.count; i++) {
721
setup_live_interference(first_vgrf_node + i,
722
live.vgrf_start[i],
723
live.vgrf_end[i]);
724
}
725
726
/* Add interference based on the instructions in which a register is used.
727
*/
728
foreach_block_and_inst(block, fs_inst, inst, fs->cfg)
729
setup_inst_interference(inst);
730
}
731
732
void
733
fs_reg_alloc::discard_interference_graph()
734
{
735
ralloc_free(g);
736
g = NULL;
737
have_spill_costs = false;
738
}
739
740
void
741
fs_reg_alloc::emit_unspill(const fs_builder &bld, fs_reg dst,
742
uint32_t spill_offset, unsigned count)
743
{
744
const intel_device_info *devinfo = bld.shader->devinfo;
745
const unsigned reg_size = dst.component_size(bld.dispatch_width()) /
746
REG_SIZE;
747
assert(count % reg_size == 0);
748
749
for (unsigned i = 0; i < count / reg_size; i++) {
750
fs_inst *unspill_inst;
751
if (devinfo->ver >= 9) {
752
fs_reg header = this->scratch_header;
753
fs_builder ubld = bld.exec_all().group(1, 0);
754
assert(spill_offset % 16 == 0);
755
unspill_inst = ubld.MOV(component(header, 2),
756
brw_imm_ud(spill_offset / 16));
757
_mesa_set_add(spill_insts, unspill_inst);
758
759
unsigned bti;
760
fs_reg ex_desc;
761
if (devinfo->verx10 >= 125) {
762
bti = GFX9_BTI_BINDLESS;
763
ex_desc = component(this->scratch_header, 0);
764
} else {
765
bti = GFX8_BTI_STATELESS_NON_COHERENT;
766
ex_desc = brw_imm_ud(0);
767
}
768
769
fs_reg srcs[] = { brw_imm_ud(0), ex_desc, header };
770
unspill_inst = bld.emit(SHADER_OPCODE_SEND, dst,
771
srcs, ARRAY_SIZE(srcs));
772
unspill_inst->mlen = 1;
773
unspill_inst->header_size = 1;
774
unspill_inst->size_written = reg_size * REG_SIZE;
775
unspill_inst->send_has_side_effects = false;
776
unspill_inst->send_is_volatile = true;
777
unspill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
778
unspill_inst->desc =
779
brw_dp_desc(devinfo, bti,
780
BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ,
781
BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8));
782
} else if (devinfo->ver >= 7 && spill_offset < (1 << 12) * REG_SIZE) {
783
/* The Gfx7 descriptor-based offset is 12 bits of HWORD units.
784
* Because the Gfx7-style scratch block read is hardwired to BTI 255,
785
* on Gfx9+ it would cause the DC to do an IA-coherent read, what
786
* largely outweighs the slight advantage from not having to provide
787
* the address as part of the message header, so we're better off
788
* using plain old oword block reads.
789
*/
790
unspill_inst = bld.emit(SHADER_OPCODE_GFX7_SCRATCH_READ, dst);
791
unspill_inst->offset = spill_offset;
792
} else {
793
unspill_inst = bld.emit(SHADER_OPCODE_GFX4_SCRATCH_READ, dst);
794
unspill_inst->offset = spill_offset;
795
unspill_inst->base_mrf = spill_base_mrf(bld.shader);
796
unspill_inst->mlen = 1; /* header contains offset */
797
}
798
_mesa_set_add(spill_insts, unspill_inst);
799
800
dst.offset += reg_size * REG_SIZE;
801
spill_offset += reg_size * REG_SIZE;
802
}
803
}
804
805
void
806
fs_reg_alloc::emit_spill(const fs_builder &bld, fs_reg src,
807
uint32_t spill_offset, unsigned count)
808
{
809
const intel_device_info *devinfo = bld.shader->devinfo;
810
const unsigned reg_size = src.component_size(bld.dispatch_width()) /
811
REG_SIZE;
812
assert(count % reg_size == 0);
813
814
for (unsigned i = 0; i < count / reg_size; i++) {
815
fs_inst *spill_inst;
816
if (devinfo->ver >= 9) {
817
fs_reg header = this->scratch_header;
818
fs_builder ubld = bld.exec_all().group(1, 0);
819
assert(spill_offset % 16 == 0);
820
spill_inst = ubld.MOV(component(header, 2),
821
brw_imm_ud(spill_offset / 16));
822
_mesa_set_add(spill_insts, spill_inst);
823
824
unsigned bti;
825
fs_reg ex_desc;
826
if (devinfo->verx10 >= 125) {
827
bti = GFX9_BTI_BINDLESS;
828
ex_desc = component(this->scratch_header, 0);
829
} else {
830
bti = GFX8_BTI_STATELESS_NON_COHERENT;
831
ex_desc = brw_imm_ud(0);
832
}
833
834
fs_reg srcs[] = { brw_imm_ud(0), ex_desc, header, src };
835
spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(),
836
srcs, ARRAY_SIZE(srcs));
837
spill_inst->mlen = 1;
838
spill_inst->ex_mlen = reg_size;
839
spill_inst->size_written = 0;
840
spill_inst->header_size = 1;
841
spill_inst->send_has_side_effects = true;
842
spill_inst->send_is_volatile = false;
843
spill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
844
spill_inst->desc =
845
brw_dp_desc(devinfo, bti,
846
GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE,
847
BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8));
848
} else {
849
spill_inst = bld.emit(SHADER_OPCODE_GFX4_SCRATCH_WRITE,
850
bld.null_reg_f(), src);
851
spill_inst->offset = spill_offset;
852
spill_inst->mlen = 1 + reg_size; /* header, value */
853
spill_inst->base_mrf = spill_base_mrf(bld.shader);
854
}
855
_mesa_set_add(spill_insts, spill_inst);
856
857
src.offset += reg_size * REG_SIZE;
858
spill_offset += reg_size * REG_SIZE;
859
}
860
}
861
862
void
863
fs_reg_alloc::set_spill_costs()
864
{
865
float block_scale = 1.0;
866
float spill_costs[fs->alloc.count];
867
bool no_spill[fs->alloc.count];
868
869
for (unsigned i = 0; i < fs->alloc.count; i++) {
870
spill_costs[i] = 0.0;
871
no_spill[i] = false;
872
}
873
874
/* Calculate costs for spilling nodes. Call it a cost of 1 per
875
* spill/unspill we'll have to do, and guess that the insides of
876
* loops run 10 times.
877
*/
878
foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
879
for (unsigned int i = 0; i < inst->sources; i++) {
880
if (inst->src[i].file == VGRF)
881
spill_costs[inst->src[i].nr] += regs_read(inst, i) * block_scale;
882
}
883
884
if (inst->dst.file == VGRF)
885
spill_costs[inst->dst.nr] += regs_written(inst) * block_scale;
886
887
/* Don't spill anything we generated while spilling */
888
if (_mesa_set_search(spill_insts, inst)) {
889
for (unsigned int i = 0; i < inst->sources; i++) {
890
if (inst->src[i].file == VGRF)
891
no_spill[inst->src[i].nr] = true;
892
}
893
if (inst->dst.file == VGRF)
894
no_spill[inst->dst.nr] = true;
895
}
896
897
switch (inst->opcode) {
898
899
case BRW_OPCODE_DO:
900
block_scale *= 10;
901
break;
902
903
case BRW_OPCODE_WHILE:
904
block_scale /= 10;
905
break;
906
907
case BRW_OPCODE_IF:
908
case BRW_OPCODE_IFF:
909
block_scale *= 0.5;
910
break;
911
912
case BRW_OPCODE_ENDIF:
913
block_scale /= 0.5;
914
break;
915
916
default:
917
break;
918
}
919
}
920
921
for (unsigned i = 0; i < fs->alloc.count; i++) {
922
/* Do the no_spill check first. Registers that are used as spill
923
* temporaries may have been allocated after we calculated liveness so
924
* we shouldn't look their liveness up. Fortunately, they're always
925
* used in SCRATCH_READ/WRITE instructions so they'll always be flagged
926
* no_spill.
927
*/
928
if (no_spill[i])
929
continue;
930
931
int live_length = live.vgrf_end[i] - live.vgrf_start[i];
932
if (live_length <= 0)
933
continue;
934
935
/* Divide the cost (in number of spills/fills) by the log of the length
936
* of the live range of the register. This will encourage spill logic
937
* to spill long-living things before spilling short-lived things where
938
* spilling is less likely to actually do us any good. We use the log
939
* of the length because it will fall off very quickly and not cause us
940
* to spill medium length registers with more uses.
941
*/
942
float adjusted_cost = spill_costs[i] / logf(live_length);
943
ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost);
944
}
945
946
have_spill_costs = true;
947
}
948
949
int
950
fs_reg_alloc::choose_spill_reg()
951
{
952
if (!have_spill_costs)
953
set_spill_costs();
954
955
int node = ra_get_best_spill_node(g);
956
if (node < 0)
957
return -1;
958
959
assert(node >= first_vgrf_node);
960
return node - first_vgrf_node;
961
}
962
963
fs_reg
964
fs_reg_alloc::alloc_scratch_header()
965
{
966
int vgrf = fs->alloc.allocate(1);
967
assert(first_vgrf_node + vgrf == scratch_header_node);
968
ra_set_node_class(g, scratch_header_node,
969
compiler->fs_reg_sets[rsi].classes[0]);
970
971
setup_live_interference(scratch_header_node, 0, INT_MAX);
972
973
return fs_reg(VGRF, vgrf, BRW_REGISTER_TYPE_UD);
974
}
975
976
fs_reg
977
fs_reg_alloc::alloc_spill_reg(unsigned size, int ip)
978
{
979
int vgrf = fs->alloc.allocate(size);
980
int n = ra_add_node(g, compiler->fs_reg_sets[rsi].classes[size - 1]);
981
assert(n == first_vgrf_node + vgrf);
982
assert(n == first_spill_node + spill_node_count);
983
984
setup_live_interference(n, ip - 1, ip + 1);
985
986
/* Add interference between this spill node and any other spill nodes for
987
* the same instruction.
988
*/
989
for (int s = 0; s < spill_node_count; s++) {
990
if (spill_vgrf_ip[s] == ip)
991
ra_add_node_interference(g, n, first_spill_node + s);
992
}
993
994
/* Add this spill node to the list for next time */
995
if (spill_node_count >= spill_vgrf_ip_alloc) {
996
if (spill_vgrf_ip_alloc == 0)
997
spill_vgrf_ip_alloc = 16;
998
else
999
spill_vgrf_ip_alloc *= 2;
1000
spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int,
1001
spill_vgrf_ip_alloc);
1002
}
1003
spill_vgrf_ip[spill_node_count++] = ip;
1004
1005
return fs_reg(VGRF, vgrf);
1006
}
1007
1008
void
1009
fs_reg_alloc::spill_reg(unsigned spill_reg)
1010
{
1011
int size = fs->alloc.sizes[spill_reg];
1012
unsigned int spill_offset = fs->last_scratch;
1013
assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
1014
1015
/* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done
1016
* using up to 11 MRFs starting from either m1 or m2, and fb writes can use
1017
* up to m13 (gfx6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
1018
* m15 (gfx4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
1019
* depth), starting from m1. In summary: We may not be able to spill in
1020
* SIMD16 mode, because we'd stomp the FB writes.
1021
*/
1022
if (!fs->spilled_any_registers) {
1023
if (devinfo->ver >= 9) {
1024
this->scratch_header = alloc_scratch_header();
1025
fs_builder ubld = fs->bld.exec_all().group(8, 0).at(
1026
fs->cfg->first_block(), fs->cfg->first_block()->start());
1027
1028
fs_inst *inst;
1029
if (devinfo->verx10 >= 125) {
1030
inst = ubld.MOV(this->scratch_header, brw_imm_ud(0));
1031
_mesa_set_add(spill_insts, inst);
1032
inst = ubld.group(1, 0).AND(component(this->scratch_header, 0),
1033
retype(brw_vec1_grf(0, 5),
1034
BRW_REGISTER_TYPE_UD),
1035
brw_imm_ud(INTEL_MASK(31, 10)));
1036
_mesa_set_add(spill_insts, inst);
1037
} else {
1038
inst = ubld.emit(SHADER_OPCODE_SCRATCH_HEADER,
1039
this->scratch_header);
1040
_mesa_set_add(spill_insts, inst);
1041
}
1042
} else {
1043
bool mrf_used[BRW_MAX_MRF(devinfo->ver)];
1044
get_used_mrfs(fs, mrf_used);
1045
1046
for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->ver); i++) {
1047
if (mrf_used[i]) {
1048
fs->fail("Register spilling not supported with m%d used", i);
1049
return;
1050
}
1051
}
1052
}
1053
1054
fs->spilled_any_registers = true;
1055
}
1056
1057
fs->last_scratch += size * REG_SIZE;
1058
1059
/* We're about to replace all uses of this register. It no longer
1060
* conflicts with anything so we can get rid of its interference.
1061
*/
1062
ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0);
1063
ra_reset_node_interference(g, first_vgrf_node + spill_reg);
1064
1065
/* Generate spill/unspill instructions for the objects being
1066
* spilled. Right now, we spill or unspill the whole thing to a
1067
* virtual grf of the same size. For most instructions, though, we
1068
* could just spill/unspill the GRF being accessed.
1069
*/
1070
int ip = 0;
1071
foreach_block_and_inst (block, fs_inst, inst, fs->cfg) {
1072
const fs_builder ibld = fs_builder(fs, block, inst);
1073
exec_node *before = inst->prev;
1074
exec_node *after = inst->next;
1075
1076
for (unsigned int i = 0; i < inst->sources; i++) {
1077
if (inst->src[i].file == VGRF &&
1078
inst->src[i].nr == spill_reg) {
1079
int count = regs_read(inst, i);
1080
int subset_spill_offset = spill_offset +
1081
ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE);
1082
fs_reg unspill_dst = alloc_spill_reg(count, ip);
1083
1084
inst->src[i].nr = unspill_dst.nr;
1085
inst->src[i].offset %= REG_SIZE;
1086
1087
/* We read the largest power-of-two divisor of the register count
1088
* (because only POT scratch read blocks are allowed by the
1089
* hardware) up to the maximum supported block size.
1090
*/
1091
const unsigned width =
1092
MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1));
1093
1094
/* Set exec_all() on unspill messages under the (rather
1095
* pessimistic) assumption that there is no one-to-one
1096
* correspondence between channels of the spilled variable in
1097
* scratch space and the scratch read message, which operates on
1098
* 32 bit channels. It shouldn't hurt in any case because the
1099
* unspill destination is a block-local temporary.
1100
*/
1101
emit_unspill(ibld.exec_all().group(width, 0), unspill_dst,
1102
subset_spill_offset, count);
1103
}
1104
}
1105
1106
if (inst->dst.file == VGRF &&
1107
inst->dst.nr == spill_reg &&
1108
inst->opcode != SHADER_OPCODE_UNDEF) {
1109
int subset_spill_offset = spill_offset +
1110
ROUND_DOWN_TO(inst->dst.offset, REG_SIZE);
1111
fs_reg spill_src = alloc_spill_reg(regs_written(inst), ip);
1112
1113
inst->dst.nr = spill_src.nr;
1114
inst->dst.offset %= REG_SIZE;
1115
1116
/* If we're immediately spilling the register, we should not use
1117
* destination dependency hints. Doing so will cause the GPU do
1118
* try to read and write the register at the same time and may
1119
* hang the GPU.
1120
*/
1121
inst->no_dd_clear = false;
1122
inst->no_dd_check = false;
1123
1124
/* Calculate the execution width of the scratch messages (which work
1125
* in terms of 32 bit components so we have a fixed number of eight
1126
* channels per spilled register). We attempt to write one
1127
* exec_size-wide component of the variable at a time without
1128
* exceeding the maximum number of (fake) MRF registers reserved for
1129
* spills.
1130
*/
1131
const unsigned width = 8 * MIN2(
1132
DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE),
1133
spill_max_size(fs));
1134
1135
/* Spills should only write data initialized by the instruction for
1136
* whichever channels are enabled in the excution mask. If that's
1137
* not possible we'll have to emit a matching unspill before the
1138
* instruction and set force_writemask_all on the spill.
1139
*/
1140
const bool per_channel =
1141
inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 &&
1142
inst->exec_size == width;
1143
1144
/* Builder used to emit the scratch messages. */
1145
const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0);
1146
1147
/* If our write is going to affect just part of the
1148
* regs_written(inst), then we need to unspill the destination since
1149
* we write back out all of the regs_written(). If the original
1150
* instruction had force_writemask_all set and is not a partial
1151
* write, there should be no need for the unspill since the
1152
* instruction will be overwriting the whole destination in any case.
1153
*/
1154
if (inst->is_partial_write() ||
1155
(!inst->force_writemask_all && !per_channel))
1156
emit_unspill(ubld, spill_src, subset_spill_offset,
1157
regs_written(inst));
1158
1159
emit_spill(ubld.at(block, inst->next), spill_src,
1160
subset_spill_offset, regs_written(inst));
1161
}
1162
1163
for (fs_inst *inst = (fs_inst *)before->next;
1164
inst != after; inst = (fs_inst *)inst->next)
1165
setup_inst_interference(inst);
1166
1167
/* We don't advance the ip for scratch read/write instructions
1168
* because we consider them to have the same ip as instruction we're
1169
* spilling around for the purposes of interference. Also, we're
1170
* inserting spill instructions without re-running liveness analysis
1171
* and we don't want to mess up our IPs.
1172
*/
1173
if (!_mesa_set_search(spill_insts, inst))
1174
ip++;
1175
}
1176
1177
assert(ip == live_instr_count);
1178
}
1179
1180
bool
1181
fs_reg_alloc::assign_regs(bool allow_spilling, bool spill_all)
1182
{
1183
build_interference_graph(fs->spilled_any_registers || spill_all);
1184
1185
bool spilled = false;
1186
while (1) {
1187
/* Debug of register spilling: Go spill everything. */
1188
if (unlikely(spill_all)) {
1189
int reg = choose_spill_reg();
1190
if (reg != -1) {
1191
spill_reg(reg);
1192
continue;
1193
}
1194
}
1195
1196
if (ra_allocate(g))
1197
break;
1198
1199
if (!allow_spilling)
1200
return false;
1201
1202
/* Failed to allocate registers. Spill a reg, and the caller will
1203
* loop back into here to try again.
1204
*/
1205
int reg = choose_spill_reg();
1206
if (reg == -1)
1207
return false;
1208
1209
/* If we're going to spill but we've never spilled before, we need to
1210
* re-build the interference graph with MRFs enabled to allow spilling.
1211
*/
1212
if (!fs->spilled_any_registers) {
1213
discard_interference_graph();
1214
build_interference_graph(true);
1215
}
1216
1217
spilled = true;
1218
1219
spill_reg(reg);
1220
}
1221
1222
if (spilled)
1223
fs->invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
1224
1225
/* Get the chosen virtual registers for each node, and map virtual
1226
* regs in the register classes back down to real hardware reg
1227
* numbers.
1228
*/
1229
unsigned hw_reg_mapping[fs->alloc.count];
1230
fs->grf_used = fs->first_non_payload_grf;
1231
for (unsigned i = 0; i < fs->alloc.count; i++) {
1232
int reg = ra_get_node_reg(g, first_vgrf_node + i);
1233
1234
hw_reg_mapping[i] = reg;
1235
fs->grf_used = MAX2(fs->grf_used,
1236
hw_reg_mapping[i] + fs->alloc.sizes[i]);
1237
}
1238
1239
foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
1240
assign_reg(hw_reg_mapping, &inst->dst);
1241
for (int i = 0; i < inst->sources; i++) {
1242
assign_reg(hw_reg_mapping, &inst->src[i]);
1243
}
1244
}
1245
1246
fs->alloc.count = fs->grf_used;
1247
1248
return true;
1249
}
1250
1251
bool
1252
fs_visitor::assign_regs(bool allow_spilling, bool spill_all)
1253
{
1254
fs_reg_alloc alloc(this);
1255
bool success = alloc.assign_regs(allow_spilling, spill_all);
1256
if (!success && allow_spilling) {
1257
fail("no register to spill:\n");
1258
dump_instructions(NULL);
1259
}
1260
return success;
1261
}
1262
1263