Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/panfrost/midgard/midgard_ra.c
4564 views
1
/*
2
* Copyright (C) 2018-2019 Alyssa Rosenzweig <[email protected]>
3
* Copyright (C) 2019 Collabora, Ltd.
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
* and/or sell copies of the Software, and to permit persons to whom the
10
* Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice (including the next
13
* paragraph) shall be included in all copies or substantial portions of the
14
* Software.
15
*
16
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "compiler.h"
26
#include "midgard_ops.h"
27
#include "util/u_math.h"
28
#include "util/u_memory.h"
29
#include "midgard_quirks.h"
30
31
struct phys_reg {
32
/* Physical register: 0-31 */
33
unsigned reg;
34
35
/* Byte offset into the physical register: 0-15 */
36
unsigned offset;
37
38
/* log2(bytes per component) for fast mul/div */
39
unsigned shift;
40
};
41
42
/* Shift up by reg_offset and horizontally by dst_offset. */
43
44
static void
45
offset_swizzle(unsigned *swizzle, unsigned reg_offset, unsigned srcshift, unsigned dstshift, unsigned dst_offset)
46
{
47
unsigned out[MIR_VEC_COMPONENTS];
48
49
signed reg_comp = reg_offset >> srcshift;
50
signed dst_comp = dst_offset >> dstshift;
51
52
unsigned max_component = (16 >> srcshift) - 1;
53
54
assert(reg_comp << srcshift == reg_offset);
55
assert(dst_comp << dstshift == dst_offset);
56
57
for (signed c = 0; c < MIR_VEC_COMPONENTS; ++c) {
58
signed comp = MAX2(c - dst_comp, 0);
59
out[c] = MIN2(swizzle[comp] + reg_comp, max_component);
60
}
61
62
memcpy(swizzle, out, sizeof(out));
63
}
64
65
/* Helper to return the default phys_reg for a given register */
66
67
static struct phys_reg
68
default_phys_reg(int reg, unsigned shift)
69
{
70
struct phys_reg r = {
71
.reg = reg,
72
.offset = 0,
73
.shift = shift
74
};
75
76
return r;
77
}
78
79
/* Determine which physical register, swizzle, and mask a virtual
80
* register corresponds to */
81
82
static struct phys_reg
83
index_to_reg(compiler_context *ctx, struct lcra_state *l, unsigned reg, unsigned shift)
84
{
85
/* Check for special cases */
86
if (reg == ~0)
87
return default_phys_reg(REGISTER_UNUSED, shift);
88
else if (reg >= SSA_FIXED_MINIMUM)
89
return default_phys_reg(SSA_REG_FROM_FIXED(reg), shift);
90
else if (!l)
91
return default_phys_reg(REGISTER_UNUSED, shift);
92
93
struct phys_reg r = {
94
.reg = l->solutions[reg] / 16,
95
.offset = l->solutions[reg] & 0xF,
96
.shift = shift
97
};
98
99
/* Report that we actually use this register, and return it */
100
101
if (r.reg < 16)
102
ctx->info->work_reg_count = MAX2(ctx->info->work_reg_count, r.reg + 1);
103
104
return r;
105
}
106
107
static void
108
set_class(unsigned *classes, unsigned node, unsigned class)
109
{
110
if (node < SSA_FIXED_MINIMUM && class != classes[node]) {
111
assert(classes[node] == REG_CLASS_WORK);
112
classes[node] = class;
113
}
114
}
115
116
/* Special register classes impose special constraints on who can read their
117
* values, so check that */
118
119
static bool ASSERTED
120
check_read_class(unsigned *classes, unsigned tag, unsigned node)
121
{
122
/* Non-nodes are implicitly ok */
123
if (node >= SSA_FIXED_MINIMUM)
124
return true;
125
126
switch (classes[node]) {
127
case REG_CLASS_LDST:
128
return (tag == TAG_LOAD_STORE_4);
129
case REG_CLASS_TEXR:
130
return (tag == TAG_TEXTURE_4);
131
case REG_CLASS_TEXW:
132
return (tag != TAG_LOAD_STORE_4);
133
case REG_CLASS_WORK:
134
return IS_ALU(tag);
135
default:
136
unreachable("Invalid class");
137
}
138
}
139
140
static bool ASSERTED
141
check_write_class(unsigned *classes, unsigned tag, unsigned node)
142
{
143
/* Non-nodes are implicitly ok */
144
if (node >= SSA_FIXED_MINIMUM)
145
return true;
146
147
switch (classes[node]) {
148
case REG_CLASS_TEXR:
149
return true;
150
case REG_CLASS_TEXW:
151
return (tag == TAG_TEXTURE_4);
152
case REG_CLASS_LDST:
153
case REG_CLASS_WORK:
154
return IS_ALU(tag) || (tag == TAG_LOAD_STORE_4);
155
default:
156
unreachable("Invalid class");
157
}
158
}
159
160
/* Prepass before RA to ensure special class restrictions are met. The idea is
161
* to create a bit field of types of instructions that read a particular index.
162
* Later, we'll add moves as appropriate and rewrite to specialize by type. */
163
164
static void
165
mark_node_class (unsigned *bitfield, unsigned node)
166
{
167
if (node < SSA_FIXED_MINIMUM)
168
BITSET_SET(bitfield, node);
169
}
170
171
void
172
mir_lower_special_reads(compiler_context *ctx)
173
{
174
size_t sz = BITSET_WORDS(ctx->temp_count) * sizeof(BITSET_WORD);
175
176
/* Bitfields for the various types of registers we could have. aluw can
177
* be written by either ALU or load/store */
178
179
unsigned *alur = calloc(sz, 1);
180
unsigned *aluw = calloc(sz, 1);
181
unsigned *brar = calloc(sz, 1);
182
unsigned *ldst = calloc(sz, 1);
183
unsigned *texr = calloc(sz, 1);
184
unsigned *texw = calloc(sz, 1);
185
186
/* Pass #1 is analysis, a linear scan to fill out the bitfields */
187
188
mir_foreach_instr_global(ctx, ins) {
189
switch (ins->type) {
190
case TAG_ALU_4:
191
mark_node_class(aluw, ins->dest);
192
mark_node_class(alur, ins->src[0]);
193
mark_node_class(alur, ins->src[1]);
194
mark_node_class(alur, ins->src[2]);
195
196
if (ins->compact_branch && ins->writeout)
197
mark_node_class(brar, ins->src[0]);
198
199
break;
200
201
case TAG_LOAD_STORE_4:
202
mark_node_class(aluw, ins->dest);
203
mark_node_class(ldst, ins->src[0]);
204
mark_node_class(ldst, ins->src[1]);
205
mark_node_class(ldst, ins->src[2]);
206
mark_node_class(ldst, ins->src[3]);
207
break;
208
209
case TAG_TEXTURE_4:
210
mark_node_class(texr, ins->src[0]);
211
mark_node_class(texr, ins->src[1]);
212
mark_node_class(texr, ins->src[2]);
213
mark_node_class(texw, ins->dest);
214
break;
215
216
default:
217
break;
218
}
219
}
220
221
/* Pass #2 is lowering now that we've analyzed all the classes.
222
* Conceptually, if an index is only marked for a single type of use,
223
* there is nothing to lower. If it is marked for different uses, we
224
* split up based on the number of types of uses. To do so, we divide
225
* into N distinct classes of use (where N>1 by definition), emit N-1
226
* moves from the index to copies of the index, and finally rewrite N-1
227
* of the types of uses to use the corresponding move */
228
229
unsigned spill_idx = ctx->temp_count;
230
231
for (unsigned i = 0; i < ctx->temp_count; ++i) {
232
bool is_alur = BITSET_TEST(alur, i);
233
bool is_aluw = BITSET_TEST(aluw, i);
234
bool is_brar = BITSET_TEST(brar, i);
235
bool is_ldst = BITSET_TEST(ldst, i);
236
bool is_texr = BITSET_TEST(texr, i);
237
bool is_texw = BITSET_TEST(texw, i);
238
239
/* Analyse to check how many distinct uses there are. ALU ops
240
* (alur) can read the results of the texture pipeline (texw)
241
* but not ldst or texr. Load/store ops (ldst) cannot read
242
* anything but load/store inputs. Texture pipeline cannot read
243
* anything but texture inputs. TODO: Simplify. */
244
245
bool collision =
246
(is_alur && (is_ldst || is_texr)) ||
247
(is_ldst && (is_alur || is_texr || is_texw)) ||
248
(is_texr && (is_alur || is_ldst || is_texw)) ||
249
(is_texw && (is_aluw || is_ldst || is_texr)) ||
250
(is_brar && is_texw);
251
252
if (!collision)
253
continue;
254
255
/* Use the index as-is as the work copy. Emit copies for
256
* special uses */
257
258
unsigned classes[] = { TAG_LOAD_STORE_4, TAG_TEXTURE_4, TAG_TEXTURE_4, TAG_ALU_4};
259
bool collisions[] = { is_ldst, is_texr, is_texw && is_aluw, is_brar };
260
261
for (unsigned j = 0; j < ARRAY_SIZE(collisions); ++j) {
262
if (!collisions[j]) continue;
263
264
/* When the hazard is from reading, we move and rewrite
265
* sources (typical case). When it's from writing, we
266
* flip the move and rewrite destinations (obscure,
267
* only from control flow -- impossible in SSA) */
268
269
bool hazard_write = (j == 2);
270
271
unsigned idx = spill_idx++;
272
273
/* Insert move before each read/write, depending on the
274
* hazard we're trying to account for */
275
276
mir_foreach_instr_global_safe(ctx, pre_use) {
277
if (pre_use->type != classes[j])
278
continue;
279
280
if (hazard_write) {
281
if (pre_use->dest != i)
282
continue;
283
284
midgard_instruction m = v_mov(idx, i);
285
m.dest_type = pre_use->dest_type;
286
m.src_types[1] = m.dest_type;
287
m.mask = pre_use->mask;
288
289
midgard_instruction *use = mir_next_op(pre_use);
290
assert(use);
291
mir_insert_instruction_before(ctx, use, m);
292
mir_rewrite_index_dst_single(pre_use, i, idx);
293
} else {
294
if (!mir_has_arg(pre_use, i))
295
continue;
296
297
idx = spill_idx++;
298
299
midgard_instruction m = v_mov(i, idx);
300
m.mask = mir_from_bytemask(mir_round_bytemask_up(
301
mir_bytemask_of_read_components(pre_use, i), 32), 32);
302
mir_insert_instruction_before(ctx, pre_use, m);
303
mir_rewrite_index_src_single(pre_use, i, idx);
304
}
305
}
306
}
307
}
308
309
free(alur);
310
free(aluw);
311
free(brar);
312
free(ldst);
313
free(texr);
314
free(texw);
315
}
316
317
static void
318
mir_compute_interference(
319
compiler_context *ctx,
320
struct lcra_state *l)
321
{
322
/* First, we need liveness information to be computed per block */
323
mir_compute_liveness(ctx);
324
325
/* We need to force r1.w live throughout a blend shader */
326
327
if (ctx->inputs->is_blend) {
328
unsigned r1w = ~0;
329
330
mir_foreach_block(ctx, _block) {
331
midgard_block *block = (midgard_block *) _block;
332
mir_foreach_instr_in_block_rev(block, ins) {
333
if (ins->writeout)
334
r1w = ins->dest;
335
}
336
337
if (r1w != ~0)
338
break;
339
}
340
341
mir_foreach_instr_global(ctx, ins) {
342
if (ins->dest < ctx->temp_count)
343
lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), r1w, 0xF);
344
}
345
}
346
347
/* Now that every block has live_in/live_out computed, we can determine
348
* interference by walking each block linearly. Take live_out at the
349
* end of each block and walk the block backwards. */
350
351
mir_foreach_block(ctx, _blk) {
352
midgard_block *blk = (midgard_block *) _blk;
353
uint16_t *live = mem_dup(_blk->live_out, ctx->temp_count * sizeof(uint16_t));
354
355
mir_foreach_instr_in_block_rev(blk, ins) {
356
/* Mark all registers live after the instruction as
357
* interfering with the destination */
358
359
unsigned dest = ins->dest;
360
361
if (dest < ctx->temp_count) {
362
for (unsigned i = 0; i < ctx->temp_count; ++i) {
363
if (live[i]) {
364
unsigned mask = mir_bytemask(ins);
365
lcra_add_node_interference(l, dest, mask, i, live[i]);
366
}
367
}
368
}
369
370
/* Add blend shader interference: blend shaders might
371
* clobber r0-r3. */
372
if (ins->compact_branch && ins->writeout) {
373
for (unsigned i = 0; i < ctx->temp_count; ++i) {
374
if (!live[i])
375
continue;
376
377
for (unsigned j = 0; j < 4; j++) {
378
lcra_add_node_interference(l, ctx->temp_count + j,
379
0xFFFF,
380
i, live[i]);
381
}
382
}
383
}
384
385
/* Update live_in */
386
mir_liveness_ins_update(live, ins, ctx->temp_count);
387
}
388
389
free(live);
390
}
391
}
392
393
static bool
394
mir_is_64(midgard_instruction *ins)
395
{
396
if (nir_alu_type_get_type_size(ins->dest_type) == 64)
397
return true;
398
399
mir_foreach_src(ins, v) {
400
if (nir_alu_type_get_type_size(ins->src_types[v]) == 64)
401
return true;
402
}
403
404
return false;
405
}
406
407
/* This routine performs the actual register allocation. It should be succeeded
408
* by install_registers */
409
410
static struct lcra_state *
411
allocate_registers(compiler_context *ctx, bool *spilled)
412
{
413
/* The number of vec4 work registers available depends on the number of
414
* register-mapped uniforms and the shader stage. By ABI we limit blend
415
* shaders to 8 registers, should be lower XXX */
416
int rmu = ctx->info->push.count / 4;
417
int work_count = ctx->inputs->is_blend ? 8 : 16 - MAX2(rmu - 8, 0);
418
419
/* No register allocation to do with no SSA */
420
421
if (!ctx->temp_count)
422
return NULL;
423
424
/* Initialize LCRA. Allocate extra node at the end for r1-r3 for
425
* interference */
426
427
struct lcra_state *l = lcra_alloc_equations(ctx->temp_count + 4, 5);
428
unsigned node_r1 = ctx->temp_count + 1;
429
430
/* Starts of classes, in bytes */
431
l->class_start[REG_CLASS_WORK] = 16 * 0;
432
l->class_start[REG_CLASS_LDST] = 16 * 26;
433
l->class_start[REG_CLASS_TEXR] = 16 * 28;
434
l->class_start[REG_CLASS_TEXW] = 16 * 28;
435
436
l->class_size[REG_CLASS_WORK] = 16 * work_count;
437
l->class_size[REG_CLASS_LDST] = 16 * 2;
438
l->class_size[REG_CLASS_TEXR] = 16 * 2;
439
l->class_size[REG_CLASS_TEXW] = 16 * 2;
440
441
lcra_set_disjoint_class(l, REG_CLASS_TEXR, REG_CLASS_TEXW);
442
443
/* To save space on T*20, we don't have real texture registers.
444
* Instead, tex inputs reuse the load/store pipeline registers, and
445
* tex outputs use work r0/r1. Note we still use TEXR/TEXW classes,
446
* noting that this handles interferences and sizes correctly. */
447
448
if (ctx->quirks & MIDGARD_INTERPIPE_REG_ALIASING) {
449
l->class_start[REG_CLASS_TEXR] = l->class_start[REG_CLASS_LDST];
450
l->class_start[REG_CLASS_TEXW] = l->class_start[REG_CLASS_WORK];
451
}
452
453
unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
454
unsigned *min_alignment = calloc(sizeof(unsigned), ctx->temp_count);
455
unsigned *min_bound = calloc(sizeof(unsigned), ctx->temp_count);
456
457
mir_foreach_instr_global(ctx, ins) {
458
/* Swizzles of 32-bit sources on 64-bit instructions need to be
459
* aligned to either bottom (xy) or top (zw). More general
460
* swizzle lowering should happen prior to scheduling (TODO),
461
* but once we get RA we shouldn't disrupt this further. Align
462
* sources of 64-bit instructions. */
463
464
if (ins->type == TAG_ALU_4 && mir_is_64(ins)) {
465
mir_foreach_src(ins, v) {
466
unsigned s = ins->src[v];
467
468
if (s < ctx->temp_count)
469
min_alignment[s] = 3;
470
}
471
}
472
473
if (ins->type == TAG_LOAD_STORE_4 && OP_HAS_ADDRESS(ins->op)) {
474
mir_foreach_src(ins, v) {
475
unsigned s = ins->src[v];
476
unsigned size = nir_alu_type_get_type_size(ins->src_types[v]);
477
478
if (s < ctx->temp_count)
479
min_alignment[s] = (size == 64) ? 3 : 2;
480
}
481
}
482
483
if (ins->dest >= SSA_FIXED_MINIMUM) continue;
484
485
unsigned size = nir_alu_type_get_type_size(ins->dest_type);
486
487
if (ins->is_pack)
488
size = 32;
489
490
/* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */
491
int comps1 = util_logbase2(ins->mask);
492
493
int bytes = (comps1 + 1) * (size / 8);
494
495
/* Use the largest class if there's ambiguity, this
496
* handles partial writes */
497
498
int dest = ins->dest;
499
found_class[dest] = MAX2(found_class[dest], bytes);
500
501
min_alignment[dest] =
502
(size == 16) ? 1 : /* (1 << 1) = 2-byte */
503
(size == 32) ? 2 : /* (1 << 2) = 4-byte */
504
(size == 64) ? 3 : /* (1 << 3) = 8-byte */
505
3; /* 8-bit todo */
506
507
/* We can't cross xy/zw boundaries. TODO: vec8 can */
508
if (size == 16)
509
min_bound[dest] = 8;
510
511
mir_foreach_src(ins, s) {
512
unsigned src_size = nir_alu_type_get_type_size(ins->src_types[s]);
513
if (src_size == 16 && ins->src[s] < SSA_FIXED_MINIMUM)
514
min_bound[ins->src[s]] = MAX2(min_bound[ins->src[s]], 8);
515
}
516
517
/* We don't have a swizzle for the conditional and we don't
518
* want to muck with the conditional itself, so just force
519
* alignment for now */
520
521
if (ins->type == TAG_ALU_4 && OP_IS_CSEL_V(ins->op)) {
522
min_alignment[dest] = 4; /* 1 << 4= 16-byte = vec4 */
523
524
/* LCRA assumes bound >= alignment */
525
min_bound[dest] = 16;
526
}
527
528
/* Since ld/st swizzles and masks are 32-bit only, we need them
529
* aligned to enable final packing */
530
if (ins->type == TAG_LOAD_STORE_4)
531
min_alignment[dest] = MAX2(min_alignment[dest], 2);
532
}
533
534
for (unsigned i = 0; i < ctx->temp_count; ++i) {
535
lcra_set_alignment(l, i, min_alignment[i] ? min_alignment[i] : 2,
536
min_bound[i] ? min_bound[i] : 16);
537
lcra_restrict_range(l, i, found_class[i]);
538
}
539
540
free(found_class);
541
free(min_alignment);
542
free(min_bound);
543
544
/* Next, we'll determine semantic class. We default to zero (work).
545
* But, if we're used with a special operation, that will force us to a
546
* particular class. Each node must be assigned to exactly one class; a
547
* prepass before RA should have lowered what-would-have-been
548
* multiclass nodes into a series of moves to break it up into multiple
549
* nodes (TODO) */
550
551
mir_foreach_instr_global(ctx, ins) {
552
/* Check if this operation imposes any classes */
553
554
if (ins->type == TAG_LOAD_STORE_4) {
555
set_class(l->class, ins->src[0], REG_CLASS_LDST);
556
set_class(l->class, ins->src[1], REG_CLASS_LDST);
557
set_class(l->class, ins->src[2], REG_CLASS_LDST);
558
set_class(l->class, ins->src[3], REG_CLASS_LDST);
559
560
if (OP_IS_VEC4_ONLY(ins->op)) {
561
lcra_restrict_range(l, ins->dest, 16);
562
lcra_restrict_range(l, ins->src[0], 16);
563
lcra_restrict_range(l, ins->src[1], 16);
564
lcra_restrict_range(l, ins->src[2], 16);
565
lcra_restrict_range(l, ins->src[3], 16);
566
}
567
} else if (ins->type == TAG_TEXTURE_4) {
568
set_class(l->class, ins->dest, REG_CLASS_TEXW);
569
set_class(l->class, ins->src[0], REG_CLASS_TEXR);
570
set_class(l->class, ins->src[1], REG_CLASS_TEXR);
571
set_class(l->class, ins->src[2], REG_CLASS_TEXR);
572
set_class(l->class, ins->src[3], REG_CLASS_TEXR);
573
}
574
}
575
576
/* Check that the semantics of the class are respected */
577
mir_foreach_instr_global(ctx, ins) {
578
assert(check_write_class(l->class, ins->type, ins->dest));
579
assert(check_read_class(l->class, ins->type, ins->src[0]));
580
assert(check_read_class(l->class, ins->type, ins->src[1]));
581
assert(check_read_class(l->class, ins->type, ins->src[2]));
582
assert(check_read_class(l->class, ins->type, ins->src[3]));
583
}
584
585
/* Mark writeout to r0, depth to r1.x, stencil to r1.y,
586
* render target to r1.z, unknown to r1.w */
587
mir_foreach_instr_global(ctx, ins) {
588
if (!(ins->compact_branch && ins->writeout)) continue;
589
590
if (ins->src[0] < ctx->temp_count)
591
l->solutions[ins->src[0]] = 0;
592
593
if (ins->src[2] < ctx->temp_count)
594
l->solutions[ins->src[2]] = (16 * 1) + COMPONENT_X * 4;
595
596
if (ins->src[3] < ctx->temp_count)
597
l->solutions[ins->src[3]] = (16 * 1) + COMPONENT_Y * 4;
598
599
if (ins->src[1] < ctx->temp_count)
600
l->solutions[ins->src[1]] = (16 * 1) + COMPONENT_Z * 4;
601
602
if (ins->dest < ctx->temp_count)
603
l->solutions[ins->dest] = (16 * 1) + COMPONENT_W * 4;
604
}
605
606
/* Destinations of instructions in a writeout block cannot be assigned
607
* to r1 unless they are actually used as r1 from the writeout itself,
608
* since the writes to r1 are special. A code sequence like:
609
*
610
* sadd.fmov r1.x, [...]
611
* vadd.fadd r0, r1, r2
612
* [writeout branch]
613
*
614
* will misbehave since the r1.x write will be interpreted as a
615
* gl_FragDepth write so it won't show up correctly when r1 is read in
616
* the following segment. We model this as interference.
617
*/
618
619
for (unsigned i = 0; i < 4; ++i)
620
l->solutions[ctx->temp_count + i] = (16 * i);
621
622
mir_foreach_block(ctx, _blk) {
623
midgard_block *blk = (midgard_block *) _blk;
624
625
mir_foreach_bundle_in_block(blk, v) {
626
/* We need at least a writeout and nonwriteout instruction */
627
if (v->instruction_count < 2)
628
continue;
629
630
/* Branches always come at the end */
631
midgard_instruction *br = v->instructions[v->instruction_count - 1];
632
633
if (!br->writeout)
634
continue;
635
636
for (signed i = v->instruction_count - 2; i >= 0; --i) {
637
midgard_instruction *ins = v->instructions[i];
638
639
if (ins->dest >= ctx->temp_count)
640
continue;
641
642
bool used_as_r1 = (br->dest == ins->dest);
643
644
mir_foreach_src(br, s)
645
used_as_r1 |= (s > 0) && (br->src[s] == ins->dest);
646
647
if (!used_as_r1)
648
lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), node_r1, 0xFFFF);
649
}
650
}
651
}
652
653
/* Precolour blend input to r0. Note writeout is necessarily at the end
654
* and blend shaders are single-RT only so there is only a single
655
* writeout block, so this cannot conflict with the writeout r0 (there
656
* is no need to have an intermediate move) */
657
658
if (ctx->blend_input != ~0) {
659
assert(ctx->blend_input < ctx->temp_count);
660
l->solutions[ctx->blend_input] = 0;
661
}
662
663
/* Same for the dual-source blend input/output, except here we use r2,
664
* which is also set in the fragment shader. */
665
666
if (ctx->blend_src1 != ~0) {
667
assert(ctx->blend_src1 < ctx->temp_count);
668
l->solutions[ctx->blend_src1] = (16 * 2);
669
ctx->info->work_reg_count = MAX2(ctx->info->work_reg_count, 3);
670
}
671
672
mir_compute_interference(ctx, l);
673
674
*spilled = !lcra_solve(l);
675
return l;
676
}
677
678
679
/* Once registers have been decided via register allocation
680
* (allocate_registers), we need to rewrite the MIR to use registers instead of
681
* indices */
682
683
static void
684
install_registers_instr(
685
compiler_context *ctx,
686
struct lcra_state *l,
687
midgard_instruction *ins)
688
{
689
unsigned src_shift[MIR_SRC_COUNT];
690
691
for (unsigned i = 0; i < MIR_SRC_COUNT; ++i) {
692
src_shift[i] =
693
util_logbase2(nir_alu_type_get_type_size(ins->src_types[i]) / 8);
694
}
695
696
unsigned dest_shift =
697
util_logbase2(nir_alu_type_get_type_size(ins->dest_type) / 8);
698
699
switch (ins->type) {
700
case TAG_ALU_4:
701
case TAG_ALU_8:
702
case TAG_ALU_12:
703
case TAG_ALU_16: {
704
if (ins->compact_branch)
705
return;
706
707
struct phys_reg src1 = index_to_reg(ctx, l, ins->src[0], src_shift[0]);
708
struct phys_reg src2 = index_to_reg(ctx, l, ins->src[1], src_shift[1]);
709
struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_shift);
710
711
mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
712
713
unsigned dest_offset =
714
GET_CHANNEL_COUNT(alu_opcode_props[ins->op].props) ? 0 :
715
dest.offset;
716
717
offset_swizzle(ins->swizzle[0], src1.offset, src1.shift, dest.shift, dest_offset);
718
if (!ins->has_inline_constant)
719
offset_swizzle(ins->swizzle[1], src2.offset, src2.shift, dest.shift, dest_offset);
720
if (ins->src[0] != ~0)
721
ins->src[0] = SSA_FIXED_REGISTER(src1.reg);
722
if (ins->src[1] != ~0)
723
ins->src[1] = SSA_FIXED_REGISTER(src2.reg);
724
if (ins->dest != ~0)
725
ins->dest = SSA_FIXED_REGISTER(dest.reg);
726
break;
727
}
728
729
case TAG_LOAD_STORE_4: {
730
/* Which physical register we read off depends on
731
* whether we are loading or storing -- think about the
732
* logical dataflow */
733
734
bool encodes_src = OP_IS_STORE(ins->op);
735
736
if (encodes_src) {
737
struct phys_reg src = index_to_reg(ctx, l, ins->src[0], src_shift[0]);
738
assert(src.reg == 26 || src.reg == 27);
739
740
ins->src[0] = SSA_FIXED_REGISTER(src.reg);
741
offset_swizzle(ins->swizzle[0], src.offset, src.shift, 0, 0);
742
} else {
743
struct phys_reg dst = index_to_reg(ctx, l, ins->dest, dest_shift);
744
745
ins->dest = SSA_FIXED_REGISTER(dst.reg);
746
offset_swizzle(ins->swizzle[0], 0, 2, 2, dst.offset);
747
mir_set_bytemask(ins, mir_bytemask(ins) << dst.offset);
748
}
749
750
/* We also follow up by actual arguments */
751
752
for (int i = 1; i <= 3; i++) {
753
unsigned src_index = ins->src[i];
754
if (src_index != ~0) {
755
struct phys_reg src = index_to_reg(ctx, l, src_index, src_shift[i]);
756
unsigned component = src.offset >> src.shift;
757
assert(component << src.shift == src.offset);
758
ins->src[i] = SSA_FIXED_REGISTER(src.reg);
759
ins->swizzle[i][0] += component;
760
}
761
}
762
763
break;
764
}
765
766
case TAG_TEXTURE_4: {
767
if (ins->op == midgard_tex_op_barrier)
768
break;
769
770
/* Grab RA results */
771
struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_shift);
772
struct phys_reg coord = index_to_reg(ctx, l, ins->src[1], src_shift[1]);
773
struct phys_reg lod = index_to_reg(ctx, l, ins->src[2], src_shift[2]);
774
struct phys_reg offset = index_to_reg(ctx, l, ins->src[3], src_shift[3]);
775
776
/* First, install the texture coordinate */
777
if (ins->src[1] != ~0)
778
ins->src[1] = SSA_FIXED_REGISTER(coord.reg);
779
offset_swizzle(ins->swizzle[1], coord.offset, coord.shift, dest.shift, 0);
780
781
/* Next, install the destination */
782
if (ins->dest != ~0)
783
ins->dest = SSA_FIXED_REGISTER(dest.reg);
784
offset_swizzle(ins->swizzle[0], 0, 2, dest.shift,
785
dest_shift == 1 ? dest.offset % 8 :
786
dest.offset);
787
mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
788
789
/* If there is a register LOD/bias, use it */
790
if (ins->src[2] != ~0) {
791
assert(!(lod.offset & 3));
792
ins->src[2] = SSA_FIXED_REGISTER(lod.reg);
793
ins->swizzle[2][0] = lod.offset / 4;
794
}
795
796
/* If there is an offset register, install it */
797
if (ins->src[3] != ~0) {
798
ins->src[3] = SSA_FIXED_REGISTER(offset.reg);
799
ins->swizzle[3][0] = offset.offset / 4;
800
}
801
802
break;
803
}
804
805
default:
806
break;
807
}
808
}
809
810
static void
811
install_registers(compiler_context *ctx, struct lcra_state *l)
812
{
813
mir_foreach_instr_global(ctx, ins)
814
install_registers_instr(ctx, l, ins);
815
}
816
817
818
/* If register allocation fails, find the best spill node */
819
820
static signed
821
mir_choose_spill_node(
822
compiler_context *ctx,
823
struct lcra_state *l)
824
{
825
/* We can't spill a previously spilled value or an unspill */
826
827
mir_foreach_instr_global(ctx, ins) {
828
if (ins->no_spill & (1 << l->spill_class)) {
829
lcra_set_node_spill_cost(l, ins->dest, -1);
830
831
if (l->spill_class != REG_CLASS_WORK) {
832
mir_foreach_src(ins, s)
833
lcra_set_node_spill_cost(l, ins->src[s], -1);
834
}
835
}
836
}
837
838
return lcra_get_best_spill_node(l);
839
}
840
841
/* Once we've chosen a spill node, spill it */
842
843
static void
844
mir_spill_register(
845
compiler_context *ctx,
846
unsigned spill_node,
847
unsigned spill_class,
848
unsigned *spill_count)
849
{
850
if (spill_class == REG_CLASS_WORK && ctx->inputs->is_blend)
851
unreachable("Blend shader spilling is currently unimplemented");
852
853
unsigned spill_index = ctx->temp_count;
854
855
/* We have a spill node, so check the class. Work registers
856
* legitimately spill to TLS, but special registers just spill to work
857
* registers */
858
859
bool is_special = spill_class != REG_CLASS_WORK;
860
bool is_special_w = spill_class == REG_CLASS_TEXW;
861
862
/* Allocate TLS slot (maybe) */
863
unsigned spill_slot = !is_special ? (*spill_count)++ : 0;
864
865
/* For special reads, figure out how many bytes we need */
866
unsigned read_bytemask = 0;
867
868
/* If multiple instructions write to this destination, we'll have to
869
* fill from TLS before writing */
870
unsigned write_count = 0;
871
872
mir_foreach_instr_global_safe(ctx, ins) {
873
read_bytemask |= mir_bytemask_of_read_components(ins, spill_node);
874
if (ins->dest == spill_node)
875
++write_count;
876
}
877
878
/* For TLS, replace all stores to the spilled node. For
879
* special reads, just keep as-is; the class will be demoted
880
* implicitly. For special writes, spill to a work register */
881
882
if (!is_special || is_special_w) {
883
if (is_special_w)
884
spill_slot = spill_index++;
885
886
mir_foreach_block(ctx, _block) {
887
midgard_block *block = (midgard_block *) _block;
888
mir_foreach_instr_in_block_safe(block, ins) {
889
if (ins->dest != spill_node) continue;
890
891
/* Note: it's important to match the mask of the spill
892
* with the mask of the instruction whose destination
893
* we're spilling, or otherwise we'll read invalid
894
* components and can fail RA in a subsequent iteration
895
*/
896
897
if (is_special_w) {
898
midgard_instruction st = v_mov(spill_node, spill_slot);
899
st.no_spill |= (1 << spill_class);
900
st.mask = ins->mask;
901
st.dest_type = st.src_types[1] = ins->dest_type;
902
903
/* Hint: don't rewrite this node */
904
st.hint = true;
905
906
mir_insert_instruction_after_scheduled(ctx, block, ins, st);
907
} else {
908
unsigned dest = spill_index++;
909
910
if (write_count > 1 && mir_bytemask(ins) != 0xF) {
911
midgard_instruction read =
912
v_load_store_scratch(dest, spill_slot, false, 0xF);
913
mir_insert_instruction_before_scheduled(ctx, block, ins, read);
914
}
915
916
ins->dest = dest;
917
ins->no_spill |= (1 << spill_class);
918
919
bool move = false;
920
921
/* In the same bundle, reads of the destination
922
* of the spilt instruction need to be direct */
923
midgard_instruction *it = ins;
924
while ((it = list_first_entry(&it->link, midgard_instruction, link))
925
&& (it->bundle_id == ins->bundle_id)) {
926
927
if (!mir_has_arg(it, spill_node)) continue;
928
929
mir_rewrite_index_src_single(it, spill_node, dest);
930
931
/* The spilt instruction will write to
932
* a work register for `it` to read but
933
* the spill needs an LD/ST register */
934
move = true;
935
}
936
937
if (move)
938
dest = spill_index++;
939
940
midgard_instruction st =
941
v_load_store_scratch(dest, spill_slot, true, ins->mask);
942
mir_insert_instruction_after_scheduled(ctx, block, ins, st);
943
944
if (move) {
945
midgard_instruction mv = v_mov(ins->dest, dest);
946
mv.no_spill |= (1 << spill_class);
947
948
mir_insert_instruction_after_scheduled(ctx, block, ins, mv);
949
}
950
}
951
952
if (!is_special)
953
ctx->spills++;
954
}
955
}
956
}
957
958
/* Insert a load from TLS before the first consecutive
959
* use of the node, rewriting to use spilled indices to
960
* break up the live range. Or, for special, insert a
961
* move. Ironically the latter *increases* register
962
* pressure, but the two uses of the spilling mechanism
963
* are somewhat orthogonal. (special spilling is to use
964
* work registers to back special registers; TLS
965
* spilling is to use memory to back work registers) */
966
967
mir_foreach_block(ctx, _block) {
968
midgard_block *block = (midgard_block *) _block;
969
mir_foreach_instr_in_block(block, ins) {
970
/* We can't rewrite the moves used to spill in the
971
* first place. These moves are hinted. */
972
if (ins->hint) continue;
973
974
/* If we don't use the spilled value, nothing to do */
975
if (!mir_has_arg(ins, spill_node)) continue;
976
977
unsigned index = 0;
978
979
if (!is_special_w) {
980
index = ++spill_index;
981
982
midgard_instruction *before = ins;
983
midgard_instruction st;
984
985
if (is_special) {
986
/* Move */
987
st = v_mov(spill_node, index);
988
st.no_spill |= (1 << spill_class);
989
} else {
990
/* TLS load */
991
st = v_load_store_scratch(index, spill_slot, false, 0xF);
992
}
993
994
/* Mask the load based on the component count
995
* actually needed to prevent RA loops */
996
997
st.mask = mir_from_bytemask(mir_round_bytemask_up(
998
read_bytemask, 32), 32);
999
1000
mir_insert_instruction_before_scheduled(ctx, block, before, st);
1001
} else {
1002
/* Special writes already have their move spilled in */
1003
index = spill_slot;
1004
}
1005
1006
1007
/* Rewrite to use */
1008
mir_rewrite_index_src_single(ins, spill_node, index);
1009
1010
if (!is_special)
1011
ctx->fills++;
1012
}
1013
}
1014
1015
/* Reset hints */
1016
1017
mir_foreach_instr_global(ctx, ins) {
1018
ins->hint = false;
1019
}
1020
}
1021
1022
static void
1023
mir_demote_uniforms(compiler_context *ctx, unsigned new_cutoff)
1024
{
1025
unsigned uniforms = ctx->info->push.count / 4;
1026
unsigned old_work_count = 16 - MAX2(uniforms - 8, 0);
1027
unsigned work_count = 16 - MAX2((new_cutoff - 8), 0);
1028
1029
unsigned min_demote = SSA_FIXED_REGISTER(old_work_count);
1030
unsigned max_demote = SSA_FIXED_REGISTER(work_count);
1031
1032
mir_foreach_block(ctx, _block) {
1033
midgard_block *block = (midgard_block *) _block;
1034
mir_foreach_instr_in_block(block, ins) {
1035
mir_foreach_src(ins, i) {
1036
if (ins->src[i] < min_demote || ins->src[i] >= max_demote)
1037
continue;
1038
1039
midgard_instruction *before = ins;
1040
1041
unsigned temp = make_compiler_temp(ctx);
1042
unsigned idx = (23 - SSA_REG_FROM_FIXED(ins->src[i])) * 4;
1043
assert(idx < ctx->info->push.count);
1044
1045
ctx->ubo_mask |= BITSET_BIT(ctx->info->push.words[idx].ubo);
1046
1047
midgard_instruction ld = {
1048
.type = TAG_LOAD_STORE_4,
1049
.mask = 0xF,
1050
.dest = temp,
1051
.dest_type = ins->src_types[i],
1052
.src = { ~0, ~0, ~0, ~0 },
1053
.swizzle = SWIZZLE_IDENTITY_4,
1054
.op = midgard_op_ld_ubo_128,
1055
.load_store = {
1056
.index_reg = REGISTER_LDST_ZERO,
1057
},
1058
.constants.u32[0] = ctx->info->push.words[idx].offset
1059
};
1060
1061
midgard_pack_ubo_index_imm(&ld.load_store,
1062
ctx->info->push.words[idx].ubo);
1063
1064
mir_insert_instruction_before_scheduled(ctx, block, before, ld);
1065
1066
mir_rewrite_index_src_single(ins, ins->src[i], temp);
1067
}
1068
}
1069
}
1070
1071
ctx->info->push.count = MIN2(ctx->info->push.count, new_cutoff * 4);
1072
}
1073
1074
/* Run register allocation in a loop, spilling until we succeed */
1075
1076
void
1077
mir_ra(compiler_context *ctx)
1078
{
1079
struct lcra_state *l = NULL;
1080
bool spilled = false;
1081
int iter_count = 1000; /* max iterations */
1082
1083
/* Number of 128-bit slots in memory we've spilled into */
1084
unsigned spill_count = DIV_ROUND_UP(ctx->info->tls_size, 16);
1085
1086
1087
mir_create_pipeline_registers(ctx);
1088
1089
do {
1090
if (spilled) {
1091
signed spill_node = mir_choose_spill_node(ctx, l);
1092
unsigned uniforms = ctx->info->push.count / 4;
1093
1094
/* It's a lot cheaper to demote uniforms to get more
1095
* work registers than to spill to TLS. */
1096
if (l->spill_class == REG_CLASS_WORK && uniforms > 8) {
1097
mir_demote_uniforms(ctx, MAX2(uniforms - 4, 8));
1098
} else if (spill_node == -1) {
1099
fprintf(stderr, "ERROR: Failed to choose spill node\n");
1100
lcra_free(l);
1101
return;
1102
} else {
1103
mir_spill_register(ctx, spill_node, l->spill_class, &spill_count);
1104
}
1105
}
1106
1107
mir_squeeze_index(ctx);
1108
mir_invalidate_liveness(ctx);
1109
1110
if (l) {
1111
lcra_free(l);
1112
l = NULL;
1113
}
1114
1115
l = allocate_registers(ctx, &spilled);
1116
} while(spilled && ((iter_count--) > 0));
1117
1118
if (iter_count <= 0) {
1119
fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n");
1120
assert(0);
1121
}
1122
1123
/* Report spilling information. spill_count is in 128-bit slots (vec4 x
1124
* fp32), but tls_size is in bytes, so multiply by 16 */
1125
1126
ctx->info->tls_size = spill_count * 16;
1127
1128
install_registers(ctx, l);
1129
1130
lcra_free(l);
1131
}
1132
1133