Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/panfrost/midgard/midgard_schedule.c
4564 views
1
/*
2
* Copyright (C) 2018-2019 Alyssa Rosenzweig <[email protected]>
3
* Copyright (C) 2019-2020 Collabora, Ltd.
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
* and/or sell copies of the Software, and to permit persons to whom the
10
* Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice (including the next
13
* paragraph) shall be included in all copies or substantial portions of the
14
* Software.
15
*
16
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "compiler.h"
26
#include "midgard_ops.h"
27
#include "midgard_quirks.h"
28
#include "util/u_memory.h"
29
#include "util/u_math.h"
30
#include "util/half_float.h"
31
32
/* Scheduling for Midgard is complicated, to say the least. ALU instructions
33
* must be grouped into VLIW bundles according to following model:
34
*
35
* [VMUL] [SADD]
36
* [VADD] [SMUL] [VLUT]
37
*
38
* A given instruction can execute on some subset of the units (or a few can
39
* execute on all). Instructions can be either vector or scalar; only scalar
40
* instructions can execute on SADD/SMUL units. Units on a given line execute
41
* in parallel. Subsequent lines execute separately and can pass results
42
* directly via pipeline registers r24/r25, bypassing the register file.
43
*
44
* A bundle can optionally have 128-bits of embedded constants, shared across
45
* all of the instructions within a bundle.
46
*
47
* Instructions consuming conditionals (branches and conditional selects)
48
* require their condition to be written into the conditional register (r31)
49
* within the same bundle they are consumed.
50
*
51
* Fragment writeout requires its argument to be written in full within the
52
* same bundle as the branch, with no hanging dependencies.
53
*
54
* Load/store instructions are also in bundles of simply two instructions, and
55
* texture instructions have no bundling.
56
*
57
* -------------------------------------------------------------------------
58
*
59
*/
60
61
/* We create the dependency graph with per-byte granularity */
62
63
#define BYTE_COUNT 16
64
65
static void
66
add_dependency(struct util_dynarray *table, unsigned index, uint16_t mask, midgard_instruction **instructions, unsigned child)
67
{
68
for (unsigned i = 0; i < BYTE_COUNT; ++i) {
69
if (!(mask & (1 << i)))
70
continue;
71
72
struct util_dynarray *parents = &table[(BYTE_COUNT * index) + i];
73
74
util_dynarray_foreach(parents, unsigned, parent) {
75
BITSET_WORD *dependents = instructions[*parent]->dependents;
76
77
/* Already have the dependency */
78
if (BITSET_TEST(dependents, child))
79
continue;
80
81
BITSET_SET(dependents, child);
82
instructions[child]->nr_dependencies++;
83
}
84
}
85
}
86
87
static void
88
mark_access(struct util_dynarray *table, unsigned index, uint16_t mask, unsigned parent)
89
{
90
for (unsigned i = 0; i < BYTE_COUNT; ++i) {
91
if (!(mask & (1 << i)))
92
continue;
93
94
util_dynarray_append(&table[(BYTE_COUNT * index) + i], unsigned, parent);
95
}
96
}
97
98
static void
99
mir_create_dependency_graph(midgard_instruction **instructions, unsigned count, unsigned node_count)
100
{
101
size_t sz = node_count * BYTE_COUNT;
102
103
struct util_dynarray *last_read = calloc(sizeof(struct util_dynarray), sz);
104
struct util_dynarray *last_write = calloc(sizeof(struct util_dynarray), sz);
105
106
for (unsigned i = 0; i < sz; ++i) {
107
util_dynarray_init(&last_read[i], NULL);
108
util_dynarray_init(&last_write[i], NULL);
109
}
110
111
/* Initialize dependency graph */
112
for (unsigned i = 0; i < count; ++i) {
113
instructions[i]->dependents =
114
calloc(BITSET_WORDS(count), sizeof(BITSET_WORD));
115
116
instructions[i]->nr_dependencies = 0;
117
}
118
119
unsigned prev_ldst[3] = {~0, ~0, ~0};
120
121
/* Populate dependency graph */
122
for (signed i = count - 1; i >= 0; --i) {
123
if (instructions[i]->compact_branch)
124
continue;
125
126
unsigned dest = instructions[i]->dest;
127
unsigned mask = mir_bytemask(instructions[i]);
128
129
mir_foreach_src((*instructions), s) {
130
unsigned src = instructions[i]->src[s];
131
132
if (src < node_count) {
133
unsigned readmask = mir_bytemask_of_read_components(instructions[i], src);
134
add_dependency(last_write, src, readmask, instructions, i);
135
}
136
}
137
138
/* Create a list of dependencies for each type of load/store
139
* instruction to prevent reordering. */
140
if (instructions[i]->type == TAG_LOAD_STORE_4 &&
141
load_store_opcode_props[instructions[i]->op].props & LDST_ADDRESS) {
142
143
unsigned type = instructions[i]->load_store.arg_reg |
144
instructions[i]->load_store.arg_comp;
145
146
unsigned idx;
147
switch (type) {
148
case LDST_SHARED: idx = 0; break;
149
case LDST_SCRATCH: idx = 1; break;
150
default: idx = 2; break;
151
}
152
153
unsigned prev = prev_ldst[idx];
154
155
if (prev != ~0) {
156
BITSET_WORD *dependents = instructions[prev]->dependents;
157
158
/* Already have the dependency */
159
if (BITSET_TEST(dependents, i))
160
continue;
161
162
BITSET_SET(dependents, i);
163
instructions[i]->nr_dependencies++;
164
}
165
166
prev_ldst[idx] = i;
167
}
168
169
if (dest < node_count) {
170
add_dependency(last_read, dest, mask, instructions, i);
171
add_dependency(last_write, dest, mask, instructions, i);
172
mark_access(last_write, dest, mask, i);
173
}
174
175
mir_foreach_src((*instructions), s) {
176
unsigned src = instructions[i]->src[s];
177
178
if (src < node_count) {
179
unsigned readmask = mir_bytemask_of_read_components(instructions[i], src);
180
mark_access(last_read, src, readmask, i);
181
}
182
}
183
}
184
185
/* If there is a branch, all instructions depend on it, as interblock
186
* execution must be purely in-order */
187
188
if (instructions[count - 1]->compact_branch) {
189
BITSET_WORD *dependents = instructions[count - 1]->dependents;
190
191
for (signed i = count - 2; i >= 0; --i) {
192
if (BITSET_TEST(dependents, i))
193
continue;
194
195
BITSET_SET(dependents, i);
196
instructions[i]->nr_dependencies++;
197
}
198
}
199
200
/* Free the intermediate structures */
201
for (unsigned i = 0; i < sz; ++i) {
202
util_dynarray_fini(&last_read[i]);
203
util_dynarray_fini(&last_write[i]);
204
}
205
206
free(last_read);
207
free(last_write);
208
}
209
210
/* Does the mask cover more than a scalar? */
211
212
static bool
213
is_single_component_mask(unsigned mask)
214
{
215
int components = 0;
216
217
for (int c = 0; c < 8; ++c) {
218
if (mask & (1 << c))
219
components++;
220
}
221
222
return components == 1;
223
}
224
225
/* Helpers for scheudling */
226
227
static bool
228
mir_is_scalar(midgard_instruction *ains)
229
{
230
/* Do we try to use it as a vector op? */
231
if (!is_single_component_mask(ains->mask))
232
return false;
233
234
/* Otherwise, check mode hazards */
235
bool could_scalar = true;
236
unsigned szd = nir_alu_type_get_type_size(ains->dest_type);
237
unsigned sz0 = nir_alu_type_get_type_size(ains->src_types[0]);
238
unsigned sz1 = nir_alu_type_get_type_size(ains->src_types[1]);
239
240
/* Only 16/32-bit can run on a scalar unit */
241
could_scalar &= (szd == 16) || (szd == 32);
242
243
if (ains->src[0] != ~0)
244
could_scalar &= (sz0 == 16) || (sz0 == 32);
245
246
if (ains->src[1] != ~0)
247
could_scalar &= (sz1 == 16) || (sz1 == 32);
248
249
if (midgard_is_integer_out_op(ains->op) && ains->outmod != midgard_outmod_keeplo)
250
return false;
251
252
return could_scalar;
253
}
254
255
/* How many bytes does this ALU instruction add to the bundle? */
256
257
static unsigned
258
bytes_for_instruction(midgard_instruction *ains)
259
{
260
if (ains->unit & UNITS_ANY_VECTOR)
261
return sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
262
else if (ains->unit == ALU_ENAB_BRANCH)
263
return sizeof(midgard_branch_extended);
264
else if (ains->compact_branch)
265
return sizeof(uint16_t);
266
else
267
return sizeof(midgard_reg_info) + sizeof(midgard_scalar_alu);
268
}
269
270
/* We would like to flatten the linked list of midgard_instructions in a bundle
271
* to an array of pointers on the heap for easy indexing */
272
273
static midgard_instruction **
274
flatten_mir(midgard_block *block, unsigned *len)
275
{
276
*len = list_length(&block->base.instructions);
277
278
if (!(*len))
279
return NULL;
280
281
midgard_instruction **instructions =
282
calloc(sizeof(midgard_instruction *), *len);
283
284
unsigned i = 0;
285
286
mir_foreach_instr_in_block(block, ins)
287
instructions[i++] = ins;
288
289
return instructions;
290
}
291
292
/* The worklist is the set of instructions that can be scheduled now; that is,
293
* the set of instructions with no remaining dependencies */
294
295
static void
296
mir_initialize_worklist(BITSET_WORD *worklist, midgard_instruction **instructions, unsigned count)
297
{
298
for (unsigned i = 0; i < count; ++i) {
299
if (instructions[i]->nr_dependencies == 0)
300
BITSET_SET(worklist, i);
301
}
302
}
303
304
/* Update the worklist after an instruction terminates. Remove its edges from
305
* the graph and if that causes any node to have no dependencies, add it to the
306
* worklist */
307
308
static void
309
mir_update_worklist(
310
BITSET_WORD *worklist, unsigned count,
311
midgard_instruction **instructions, midgard_instruction *done)
312
{
313
/* Sanity check: if no instruction terminated, there is nothing to do.
314
* If the instruction that terminated had dependencies, that makes no
315
* sense and means we messed up the worklist. Finally, as the purpose
316
* of this routine is to update dependents, we abort early if there are
317
* no dependents defined. */
318
319
if (!done)
320
return;
321
322
assert(done->nr_dependencies == 0);
323
324
if (!done->dependents)
325
return;
326
327
/* We have an instruction with dependents. Iterate each dependent to
328
* remove one dependency (`done`), adding dependents to the worklist
329
* where possible. */
330
331
unsigned i;
332
BITSET_FOREACH_SET(i, done->dependents, count) {
333
assert(instructions[i]->nr_dependencies);
334
335
if (!(--instructions[i]->nr_dependencies))
336
BITSET_SET(worklist, i);
337
}
338
339
free(done->dependents);
340
}
341
342
/* While scheduling, we need to choose instructions satisfying certain
343
* criteria. As we schedule backwards, we choose the *last* instruction in the
344
* worklist to simulate in-order scheduling. Chosen instructions must satisfy a
345
* given predicate. */
346
347
struct midgard_predicate {
348
/* TAG or ~0 for dont-care */
349
unsigned tag;
350
351
/* True if we want to pop off the chosen instruction */
352
bool destructive;
353
354
/* For ALU, choose only this unit */
355
unsigned unit;
356
357
/* State for bundle constants. constants is the actual constants
358
* for the bundle. constant_count is the number of bytes (up to
359
* 16) currently in use for constants. When picking in destructive
360
* mode, the constants array will be updated, and the instruction
361
* will be adjusted to index into the constants array */
362
363
midgard_constants *constants;
364
unsigned constant_mask;
365
366
/* Exclude this destination (if not ~0) */
367
unsigned exclude;
368
369
/* Don't schedule instructions consuming conditionals (since we already
370
* scheduled one). Excludes conditional branches and csel */
371
bool no_cond;
372
373
/* Require (or reject) a minimal mask and (if nonzero) given
374
* destination. Used for writeout optimizations */
375
376
unsigned mask;
377
unsigned no_mask;
378
unsigned dest;
379
380
/* Whether to not-care/only/never schedule imov/fmov instructions This
381
* allows non-move instructions to get priority on each unit */
382
unsigned move_mode;
383
384
/* For load/store: how many pipeline registers are in use? The two
385
* scheduled instructions cannot use more than the 256-bits of pipeline
386
* space available or RA will fail (as it would run out of pipeline
387
* registers and fail to spill without breaking the schedule) */
388
389
unsigned pipeline_count;
390
};
391
392
static bool
393
mir_adjust_constant(midgard_instruction *ins, unsigned src,
394
unsigned *bundle_constant_mask,
395
unsigned *comp_mapping,
396
uint8_t *bundle_constants,
397
bool upper)
398
{
399
unsigned type_size = nir_alu_type_get_type_size(ins->src_types[src]) / 8;
400
unsigned type_shift = util_logbase2(type_size);
401
unsigned max_comp = mir_components_for_type(ins->src_types[src]);
402
unsigned comp_mask = mir_from_bytemask(mir_round_bytemask_up(
403
mir_bytemask_of_read_components_index(ins, src),
404
type_size * 8),
405
type_size * 8);
406
unsigned type_mask = (1 << type_size) - 1;
407
408
/* Upper only makes sense for 16-bit */
409
if (type_size != 16 && upper)
410
return false;
411
412
/* For 16-bit, we need to stay on either upper or lower halves to avoid
413
* disrupting the swizzle */
414
unsigned start = upper ? 8 : 0;
415
unsigned length = (type_size == 2) ? 8 : 16;
416
417
for (unsigned comp = 0; comp < max_comp; comp++) {
418
if (!(comp_mask & (1 << comp)))
419
continue;
420
421
uint8_t *constantp = ins->constants.u8 + (type_size * comp);
422
unsigned best_reuse_bytes = 0;
423
signed best_place = -1;
424
unsigned i, j;
425
426
for (i = start; i < (start + length); i += type_size) {
427
unsigned reuse_bytes = 0;
428
429
for (j = 0; j < type_size; j++) {
430
if (!(*bundle_constant_mask & (1 << (i + j))))
431
continue;
432
if (constantp[j] != bundle_constants[i + j])
433
break;
434
if ((i + j) > (start + length))
435
break;
436
437
reuse_bytes++;
438
}
439
440
/* Select the place where existing bytes can be
441
* reused so we leave empty slots to others
442
*/
443
if (j == type_size &&
444
(reuse_bytes > best_reuse_bytes || best_place < 0)) {
445
best_reuse_bytes = reuse_bytes;
446
best_place = i;
447
break;
448
}
449
}
450
451
/* This component couldn't fit in the remaining constant slot,
452
* no need check the remaining components, bail out now
453
*/
454
if (best_place < 0)
455
return false;
456
457
memcpy(&bundle_constants[i], constantp, type_size);
458
*bundle_constant_mask |= type_mask << best_place;
459
comp_mapping[comp] = best_place >> type_shift;
460
}
461
462
return true;
463
}
464
465
/* For an instruction that can fit, adjust it to fit and update the constants
466
* array, in destructive mode. Returns whether the fitting was successful. */
467
468
static bool
469
mir_adjust_constants(midgard_instruction *ins,
470
struct midgard_predicate *pred,
471
bool destructive)
472
{
473
/* No constant, nothing to adjust */
474
if (!ins->has_constants)
475
return true;
476
477
unsigned r_constant = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
478
unsigned bundle_constant_mask = pred->constant_mask;
479
unsigned comp_mapping[2][16] = { };
480
uint8_t bundle_constants[16];
481
482
memcpy(bundle_constants, pred->constants, 16);
483
484
/* Let's try to find a place for each active component of the constant
485
* register.
486
*/
487
for (unsigned src = 0; src < 2; ++src) {
488
if (ins->src[src] != SSA_FIXED_REGISTER(REGISTER_CONSTANT))
489
continue;
490
491
/* First, try lower half (or whole for !16) */
492
if (mir_adjust_constant(ins, src, &bundle_constant_mask,
493
comp_mapping[src], bundle_constants, false))
494
continue;
495
496
/* Next, try upper half */
497
if (mir_adjust_constant(ins, src, &bundle_constant_mask,
498
comp_mapping[src], bundle_constants, true))
499
continue;
500
501
/* Otherwise bail */
502
return false;
503
}
504
505
/* If non-destructive, we're done */
506
if (!destructive)
507
return true;
508
509
/* Otherwise update the constant_mask and constant values */
510
pred->constant_mask = bundle_constant_mask;
511
memcpy(pred->constants, bundle_constants, 16);
512
513
/* Use comp_mapping as a swizzle */
514
mir_foreach_src(ins, s) {
515
if (ins->src[s] == r_constant)
516
mir_compose_swizzle(ins->swizzle[s], comp_mapping[s], ins->swizzle[s]);
517
}
518
519
return true;
520
}
521
522
/* Conservative estimate of the pipeline registers required for load/store */
523
524
static unsigned
525
mir_pipeline_count(midgard_instruction *ins)
526
{
527
unsigned bytecount = 0;
528
529
mir_foreach_src(ins, i) {
530
/* Skip empty source */
531
if (ins->src[i] == ~0) continue;
532
533
if (i == 0) {
534
/* First source is a vector, worst-case the mask */
535
unsigned bytemask = mir_bytemask_of_read_components_index(ins, i);
536
unsigned max = util_logbase2(bytemask) + 1;
537
bytecount += max;
538
} else {
539
/* Sources 1 on are scalars */
540
bytecount += 4;
541
}
542
}
543
544
unsigned dwords = DIV_ROUND_UP(bytecount, 16);
545
assert(dwords <= 2);
546
547
return dwords;
548
}
549
550
/* Matches FADD x, x with modifiers compatible. Since x + x = x * 2, for
551
* any x including of the form f(y) for some swizzle/abs/neg function f */
552
553
static bool
554
mir_is_add_2(midgard_instruction *ins)
555
{
556
if (ins->op != midgard_alu_op_fadd)
557
return false;
558
559
if (ins->src[0] != ins->src[1])
560
return false;
561
562
if (ins->src_types[0] != ins->src_types[1])
563
return false;
564
565
for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i) {
566
if (ins->swizzle[0][i] != ins->swizzle[1][i])
567
return false;
568
}
569
570
if (ins->src_abs[0] != ins->src_abs[1])
571
return false;
572
573
if (ins->src_neg[0] != ins->src_neg[1])
574
return false;
575
576
return true;
577
}
578
579
static void
580
mir_adjust_unit(midgard_instruction *ins, unsigned unit)
581
{
582
/* FADD x, x = FMUL x, #2 */
583
if (mir_is_add_2(ins) && (unit & (UNITS_MUL | UNIT_VLUT))) {
584
ins->op = midgard_alu_op_fmul;
585
586
ins->src[1] = ~0;
587
ins->src_abs[1] = false;
588
ins->src_neg[1] = false;
589
590
ins->has_inline_constant = true;
591
ins->inline_constant = _mesa_float_to_half(2.0);
592
}
593
}
594
595
static unsigned
596
mir_has_unit(midgard_instruction *ins, unsigned unit)
597
{
598
if (alu_opcode_props[ins->op].props & unit)
599
return true;
600
601
/* FADD x, x can run on any adder or any multiplier */
602
if (mir_is_add_2(ins))
603
return true;
604
605
return false;
606
}
607
608
/* Net change in liveness if an instruction were scheduled. Loosely based on
609
* ir3's scheduler. */
610
611
static int
612
mir_live_effect(uint16_t *liveness, midgard_instruction *ins, bool destructive)
613
{
614
/* TODO: what if dest is used multiple times? */
615
int free_live = 0;
616
617
if (ins->dest < SSA_FIXED_MINIMUM) {
618
unsigned bytemask = mir_bytemask(ins);
619
bytemask = util_next_power_of_two(bytemask + 1) - 1;
620
free_live += util_bitcount(liveness[ins->dest] & bytemask);
621
622
if (destructive)
623
liveness[ins->dest] &= ~bytemask;
624
}
625
626
int new_live = 0;
627
628
mir_foreach_src(ins, s) {
629
unsigned S = ins->src[s];
630
631
bool dupe = false;
632
633
for (unsigned q = 0; q < s; ++q)
634
dupe |= (ins->src[q] == S);
635
636
if (dupe)
637
continue;
638
639
if (S < SSA_FIXED_MINIMUM) {
640
unsigned bytemask = mir_bytemask_of_read_components(ins, S);
641
bytemask = util_next_power_of_two(bytemask + 1) - 1;
642
643
/* Count only the new components */
644
new_live += util_bitcount(bytemask & ~(liveness[S]));
645
646
if (destructive)
647
liveness[S] |= bytemask;
648
}
649
}
650
651
return new_live - free_live;
652
}
653
654
static midgard_instruction *
655
mir_choose_instruction(
656
midgard_instruction **instructions,
657
uint16_t *liveness,
658
BITSET_WORD *worklist, unsigned count,
659
struct midgard_predicate *predicate)
660
{
661
/* Parse the predicate */
662
unsigned tag = predicate->tag;
663
unsigned unit = predicate->unit;
664
bool scalar = (unit != ~0) && (unit & UNITS_SCALAR);
665
bool no_cond = predicate->no_cond;
666
667
unsigned mask = predicate->mask;
668
unsigned dest = predicate->dest;
669
bool needs_dest = mask & 0xF;
670
671
/* Iterate to find the best instruction satisfying the predicate */
672
unsigned i;
673
674
signed best_index = -1;
675
signed best_effect = INT_MAX;
676
bool best_conditional = false;
677
678
/* Enforce a simple metric limiting distance to keep down register
679
* pressure. TOOD: replace with liveness tracking for much better
680
* results */
681
682
unsigned max_active = 0;
683
unsigned max_distance = 36;
684
685
#ifndef NDEBUG
686
/* Force in-order scheduling */
687
if (midgard_debug & MIDGARD_DBG_INORDER)
688
max_distance = 1;
689
#endif
690
691
BITSET_FOREACH_SET(i, worklist, count) {
692
max_active = MAX2(max_active, i);
693
}
694
695
BITSET_FOREACH_SET(i, worklist, count) {
696
if ((max_active - i) >= max_distance)
697
continue;
698
699
if (tag != ~0 && instructions[i]->type != tag)
700
continue;
701
702
bool alu = (instructions[i]->type == TAG_ALU_4);
703
bool ldst = (instructions[i]->type == TAG_LOAD_STORE_4);
704
705
bool branch = alu && (unit == ALU_ENAB_BR_COMPACT);
706
bool is_move = alu &&
707
(instructions[i]->op == midgard_alu_op_imov ||
708
instructions[i]->op == midgard_alu_op_fmov);
709
710
if (predicate->exclude != ~0 && instructions[i]->dest == predicate->exclude)
711
continue;
712
713
if (alu && !branch && unit != ~0 && !(mir_has_unit(instructions[i], unit)))
714
continue;
715
716
/* 0: don't care, 1: no moves, 2: only moves */
717
if (predicate->move_mode && ((predicate->move_mode - 1) != is_move))
718
continue;
719
720
if (branch && !instructions[i]->compact_branch)
721
continue;
722
723
if (alu && scalar && !mir_is_scalar(instructions[i]))
724
continue;
725
726
if (alu && predicate->constants && !mir_adjust_constants(instructions[i], predicate, false))
727
continue;
728
729
if (needs_dest && instructions[i]->dest != dest)
730
continue;
731
732
if (mask && ((~instructions[i]->mask) & mask))
733
continue;
734
735
if (instructions[i]->mask & predicate->no_mask)
736
continue;
737
738
if (ldst && mir_pipeline_count(instructions[i]) + predicate->pipeline_count > 2)
739
continue;
740
741
bool conditional = alu && !branch && OP_IS_CSEL(instructions[i]->op);
742
conditional |= (branch && instructions[i]->branch.conditional);
743
744
if (conditional && no_cond)
745
continue;
746
747
int effect = mir_live_effect(liveness, instructions[i], false);
748
749
if (effect > best_effect)
750
continue;
751
752
if (effect == best_effect && (signed) i < best_index)
753
continue;
754
755
best_effect = effect;
756
best_index = i;
757
best_conditional = conditional;
758
}
759
760
/* Did we find anything? */
761
762
if (best_index < 0)
763
return NULL;
764
765
/* If we found something, remove it from the worklist */
766
assert(best_index < count);
767
midgard_instruction *I = instructions[best_index];
768
769
if (predicate->destructive) {
770
BITSET_CLEAR(worklist, best_index);
771
772
if (I->type == TAG_ALU_4)
773
mir_adjust_constants(instructions[best_index], predicate, true);
774
775
if (I->type == TAG_LOAD_STORE_4)
776
predicate->pipeline_count += mir_pipeline_count(instructions[best_index]);
777
778
if (I->type == TAG_ALU_4)
779
mir_adjust_unit(instructions[best_index], unit);
780
781
/* Once we schedule a conditional, we can't again */
782
predicate->no_cond |= best_conditional;
783
mir_live_effect(liveness, instructions[best_index], true);
784
}
785
786
return I;
787
}
788
789
/* Still, we don't choose instructions in a vacuum. We need a way to choose the
790
* best bundle type (ALU, load/store, texture). Nondestructive. */
791
792
static unsigned
793
mir_choose_bundle(
794
midgard_instruction **instructions,
795
uint16_t *liveness,
796
BITSET_WORD *worklist, unsigned count,
797
unsigned num_ldst)
798
{
799
/* At the moment, our algorithm is very simple - use the bundle of the
800
* best instruction, regardless of what else could be scheduled
801
* alongside it. This is not optimal but it works okay for in-order */
802
803
struct midgard_predicate predicate = {
804
.tag = ~0,
805
.unit = ~0,
806
.destructive = false,
807
.exclude = ~0
808
};
809
810
midgard_instruction *chosen = mir_choose_instruction(instructions, liveness, worklist, count, &predicate);
811
812
if (chosen && chosen->type == TAG_LOAD_STORE_4 && !(num_ldst % 2)) {
813
/* Try to schedule load/store ops in pairs */
814
815
predicate.exclude = chosen->dest;
816
predicate.tag = TAG_LOAD_STORE_4;
817
818
chosen = mir_choose_instruction(instructions, liveness, worklist, count, &predicate);
819
if (chosen)
820
return TAG_LOAD_STORE_4;
821
822
predicate.tag = ~0;
823
824
chosen = mir_choose_instruction(instructions, liveness, worklist, count, &predicate);
825
assert(chosen == NULL || chosen->type != TAG_LOAD_STORE_4);
826
827
if (chosen)
828
return chosen->type;
829
else
830
return TAG_LOAD_STORE_4;
831
}
832
833
if (chosen)
834
return chosen->type;
835
else
836
return ~0;
837
}
838
839
/* We want to choose an ALU instruction filling a given unit */
840
static void
841
mir_choose_alu(midgard_instruction **slot,
842
midgard_instruction **instructions,
843
uint16_t *liveness,
844
BITSET_WORD *worklist, unsigned len,
845
struct midgard_predicate *predicate,
846
unsigned unit)
847
{
848
/* Did we already schedule to this slot? */
849
if ((*slot) != NULL)
850
return;
851
852
/* Try to schedule something, if not */
853
predicate->unit = unit;
854
*slot = mir_choose_instruction(instructions, liveness, worklist, len, predicate);
855
856
/* Store unit upon scheduling */
857
if (*slot && !((*slot)->compact_branch))
858
(*slot)->unit = unit;
859
}
860
861
/* When we are scheduling a branch/csel, we need the consumed condition in the
862
* same block as a pipeline register. There are two options to enable this:
863
*
864
* - Move the conditional into the bundle. Preferred, but only works if the
865
* conditional is used only once and is from this block.
866
* - Copy the conditional.
867
*
868
* We search for the conditional. If it's in this block, single-use, and
869
* without embedded constants, we schedule it immediately. Otherwise, we
870
* schedule a move for it.
871
*
872
* mir_comparison_mobile is a helper to find the moveable condition.
873
*/
874
875
static unsigned
876
mir_comparison_mobile(
877
compiler_context *ctx,
878
midgard_instruction **instructions,
879
struct midgard_predicate *predicate,
880
unsigned count,
881
unsigned cond)
882
{
883
if (!mir_single_use(ctx, cond))
884
return ~0;
885
886
unsigned ret = ~0;
887
888
for (unsigned i = 0; i < count; ++i) {
889
if (instructions[i]->dest != cond)
890
continue;
891
892
/* Must fit in an ALU bundle */
893
if (instructions[i]->type != TAG_ALU_4)
894
return ~0;
895
896
/* If it would itself require a condition, that's recursive */
897
if (OP_IS_CSEL(instructions[i]->op))
898
return ~0;
899
900
/* We'll need to rewrite to .w but that doesn't work for vector
901
* ops that don't replicate (ball/bany), so bail there */
902
903
if (GET_CHANNEL_COUNT(alu_opcode_props[instructions[i]->op].props))
904
return ~0;
905
906
/* Ensure it will fit with constants */
907
908
if (!mir_adjust_constants(instructions[i], predicate, false))
909
return ~0;
910
911
/* Ensure it is written only once */
912
913
if (ret != ~0)
914
return ~0;
915
else
916
ret = i;
917
}
918
919
/* Inject constants now that we are sure we want to */
920
if (ret != ~0)
921
mir_adjust_constants(instructions[ret], predicate, true);
922
923
return ret;
924
}
925
926
/* Using the information about the moveable conditional itself, we either pop
927
* that condition off the worklist for use now, or create a move to
928
* artificially schedule instead as a fallback */
929
930
static midgard_instruction *
931
mir_schedule_comparison(
932
compiler_context *ctx,
933
midgard_instruction **instructions,
934
struct midgard_predicate *predicate,
935
BITSET_WORD *worklist, unsigned count,
936
unsigned cond, bool vector, unsigned *swizzle,
937
midgard_instruction *user)
938
{
939
/* TODO: swizzle when scheduling */
940
unsigned comp_i =
941
(!vector && (swizzle[0] == 0)) ?
942
mir_comparison_mobile(ctx, instructions, predicate, count, cond) : ~0;
943
944
/* If we can, schedule the condition immediately */
945
if ((comp_i != ~0) && BITSET_TEST(worklist, comp_i)) {
946
assert(comp_i < count);
947
BITSET_CLEAR(worklist, comp_i);
948
return instructions[comp_i];
949
}
950
951
/* Otherwise, we insert a move */
952
953
midgard_instruction mov = v_mov(cond, cond);
954
mov.mask = vector ? 0xF : 0x1;
955
memcpy(mov.swizzle[1], swizzle, sizeof(mov.swizzle[1]));
956
957
return mir_insert_instruction_before(ctx, user, mov);
958
}
959
960
/* Most generally, we need instructions writing to r31 in the appropriate
961
* components */
962
963
static midgard_instruction *
964
mir_schedule_condition(compiler_context *ctx,
965
struct midgard_predicate *predicate,
966
BITSET_WORD *worklist, unsigned count,
967
midgard_instruction **instructions,
968
midgard_instruction *last)
969
{
970
/* For a branch, the condition is the only argument; for csel, third */
971
bool branch = last->compact_branch;
972
unsigned condition_index = branch ? 0 : 2;
973
974
/* csel_v is vector; otherwise, conditions are scalar */
975
bool vector = !branch && OP_IS_CSEL_V(last->op);
976
977
/* Grab the conditional instruction */
978
979
midgard_instruction *cond = mir_schedule_comparison(
980
ctx, instructions, predicate, worklist, count, last->src[condition_index],
981
vector, last->swizzle[2], last);
982
983
/* We have exclusive reign over this (possibly move) conditional
984
* instruction. We can rewrite into a pipeline conditional register */
985
986
predicate->exclude = cond->dest;
987
cond->dest = SSA_FIXED_REGISTER(31);
988
989
if (!vector) {
990
cond->mask = (1 << COMPONENT_W);
991
992
mir_foreach_src(cond, s) {
993
if (cond->src[s] == ~0)
994
continue;
995
996
for (unsigned q = 0; q < 4; ++q)
997
cond->swizzle[s][q + COMPONENT_W] = cond->swizzle[s][q];
998
}
999
}
1000
1001
/* Schedule the unit: csel is always in the latter pipeline, so a csel
1002
* condition must be in the former pipeline stage (vmul/sadd),
1003
* depending on scalar/vector of the instruction itself. A branch must
1004
* be written from the latter pipeline stage and a branch condition is
1005
* always scalar, so it is always in smul (exception: ball/bany, which
1006
* will be vadd) */
1007
1008
if (branch)
1009
cond->unit = UNIT_SMUL;
1010
else
1011
cond->unit = vector ? UNIT_VMUL : UNIT_SADD;
1012
1013
return cond;
1014
}
1015
1016
/* Schedules a single bundle of the given type */
1017
1018
static midgard_bundle
1019
mir_schedule_texture(
1020
midgard_instruction **instructions,
1021
uint16_t *liveness,
1022
BITSET_WORD *worklist, unsigned len,
1023
bool is_vertex)
1024
{
1025
struct midgard_predicate predicate = {
1026
.tag = TAG_TEXTURE_4,
1027
.destructive = true,
1028
.exclude = ~0
1029
};
1030
1031
midgard_instruction *ins =
1032
mir_choose_instruction(instructions, liveness, worklist, len, &predicate);
1033
1034
mir_update_worklist(worklist, len, instructions, ins);
1035
1036
struct midgard_bundle out = {
1037
.tag = ins->op == midgard_tex_op_barrier ?
1038
TAG_TEXTURE_4_BARRIER :
1039
(ins->op == midgard_tex_op_fetch) || is_vertex ?
1040
TAG_TEXTURE_4_VTX : TAG_TEXTURE_4,
1041
.instruction_count = 1,
1042
.instructions = { ins }
1043
};
1044
1045
return out;
1046
}
1047
1048
static midgard_bundle
1049
mir_schedule_ldst(
1050
midgard_instruction **instructions,
1051
uint16_t *liveness,
1052
BITSET_WORD *worklist, unsigned len,
1053
unsigned *num_ldst)
1054
{
1055
struct midgard_predicate predicate = {
1056
.tag = TAG_LOAD_STORE_4,
1057
.destructive = true,
1058
.exclude = ~0
1059
};
1060
1061
/* Try to pick two load/store ops. Second not gauranteed to exist */
1062
1063
midgard_instruction *ins =
1064
mir_choose_instruction(instructions, liveness, worklist, len, &predicate);
1065
1066
midgard_instruction *pair =
1067
mir_choose_instruction(instructions, liveness, worklist, len, &predicate);
1068
1069
assert(ins != NULL);
1070
1071
struct midgard_bundle out = {
1072
.tag = TAG_LOAD_STORE_4,
1073
.instruction_count = pair ? 2 : 1,
1074
.instructions = { ins, pair }
1075
};
1076
1077
*num_ldst -= out.instruction_count;
1078
1079
/* We have to update the worklist atomically, since the two
1080
* instructions run concurrently (TODO: verify it's not pipelined) */
1081
1082
mir_update_worklist(worklist, len, instructions, ins);
1083
mir_update_worklist(worklist, len, instructions, pair);
1084
1085
return out;
1086
}
1087
1088
static void
1089
mir_schedule_zs_write(
1090
compiler_context *ctx,
1091
struct midgard_predicate *predicate,
1092
midgard_instruction **instructions,
1093
uint16_t *liveness,
1094
BITSET_WORD *worklist, unsigned len,
1095
midgard_instruction *branch,
1096
midgard_instruction **smul,
1097
midgard_instruction **vadd,
1098
midgard_instruction **vlut,
1099
bool stencil)
1100
{
1101
bool success = false;
1102
unsigned idx = stencil ? 3 : 2;
1103
unsigned src = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(1) : branch->src[idx];
1104
1105
predicate->dest = src;
1106
predicate->mask = 0x1;
1107
1108
midgard_instruction **units[] = { smul, vadd, vlut };
1109
unsigned unit_names[] = { UNIT_SMUL, UNIT_VADD, UNIT_VLUT };
1110
1111
for (unsigned i = 0; i < 3; ++i) {
1112
if (*(units[i]))
1113
continue;
1114
1115
predicate->unit = unit_names[i];
1116
midgard_instruction *ins =
1117
mir_choose_instruction(instructions, liveness, worklist, len, predicate);
1118
1119
if (ins) {
1120
ins->unit = unit_names[i];
1121
*(units[i]) = ins;
1122
success |= true;
1123
break;
1124
}
1125
}
1126
1127
predicate->dest = predicate->mask = 0;
1128
1129
if (success)
1130
return;
1131
1132
midgard_instruction *mov = ralloc(ctx, midgard_instruction);
1133
*mov = v_mov(src, make_compiler_temp(ctx));
1134
mov->mask = 0x1;
1135
1136
branch->src[idx] = mov->dest;
1137
1138
if (stencil) {
1139
unsigned swizzle = (branch->src[0] == ~0) ? COMPONENT_Y : COMPONENT_X;
1140
1141
for (unsigned c = 0; c < 16; ++c)
1142
mov->swizzle[1][c] = swizzle;
1143
}
1144
1145
for (unsigned i = 0; i < 3; ++i) {
1146
if (!(*(units[i]))) {
1147
*(units[i]) = mov;
1148
mov->unit = unit_names[i];
1149
return;
1150
}
1151
}
1152
1153
unreachable("Could not schedule Z/S move to any unit");
1154
}
1155
1156
static midgard_bundle
1157
mir_schedule_alu(
1158
compiler_context *ctx,
1159
midgard_instruction **instructions,
1160
uint16_t *liveness,
1161
BITSET_WORD *worklist, unsigned len)
1162
{
1163
struct midgard_bundle bundle = {};
1164
1165
unsigned bytes_emitted = sizeof(bundle.control);
1166
1167
struct midgard_predicate predicate = {
1168
.tag = TAG_ALU_4,
1169
.destructive = true,
1170
.exclude = ~0,
1171
.constants = &bundle.constants
1172
};
1173
1174
midgard_instruction *vmul = NULL;
1175
midgard_instruction *vadd = NULL;
1176
midgard_instruction *vlut = NULL;
1177
midgard_instruction *smul = NULL;
1178
midgard_instruction *sadd = NULL;
1179
midgard_instruction *branch = NULL;
1180
1181
mir_choose_alu(&branch, instructions, liveness, worklist, len, &predicate, ALU_ENAB_BR_COMPACT);
1182
mir_update_worklist(worklist, len, instructions, branch);
1183
unsigned writeout = branch ? branch->writeout : 0;
1184
1185
if (branch && branch->branch.conditional) {
1186
midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, branch);
1187
1188
if (cond->unit == UNIT_VADD)
1189
vadd = cond;
1190
else if (cond->unit == UNIT_SMUL)
1191
smul = cond;
1192
else
1193
unreachable("Bad condition");
1194
}
1195
1196
/* If we have a render target reference, schedule a move for it. Since
1197
* this will be in sadd, we boost this to prevent scheduling csel into
1198
* smul */
1199
1200
if (writeout && (branch->constants.u32[0] || ctx->inputs->is_blend)) {
1201
sadd = ralloc(ctx, midgard_instruction);
1202
*sadd = v_mov(~0, make_compiler_temp(ctx));
1203
sadd->unit = UNIT_SADD;
1204
sadd->mask = 0x1;
1205
sadd->has_inline_constant = true;
1206
sadd->inline_constant = branch->constants.u32[0];
1207
branch->src[1] = sadd->dest;
1208
branch->src_types[1] = sadd->dest_type;
1209
}
1210
1211
if (writeout) {
1212
/* Propagate up */
1213
bundle.last_writeout = branch->last_writeout;
1214
1215
/* Mask off any conditionals.
1216
* This prevents csel and csel_v being scheduled into smul
1217
* since we might not have room for a conditional in vmul/sadd.
1218
* This is important because both writeout and csel have same-bundle
1219
* requirements on their dependencies. */
1220
predicate.no_cond = true;
1221
}
1222
1223
/* When MRT is in use, writeout loops require r1.w to be filled with a
1224
* return address for the blend shader to jump to. We always emit the
1225
* move for blend shaders themselves for ABI reasons. */
1226
1227
if (writeout && (ctx->inputs->is_blend || ctx->writeout_branch[1])) {
1228
vadd = ralloc(ctx, midgard_instruction);
1229
*vadd = v_mov(~0, make_compiler_temp(ctx));
1230
1231
if (!ctx->inputs->is_blend) {
1232
vadd->op = midgard_alu_op_iadd;
1233
vadd->src[0] = SSA_FIXED_REGISTER(31);
1234
vadd->src_types[0] = nir_type_uint32;
1235
1236
for (unsigned c = 0; c < 16; ++c)
1237
vadd->swizzle[0][c] = COMPONENT_X;
1238
1239
vadd->has_inline_constant = true;
1240
vadd->inline_constant = 0;
1241
} else {
1242
vadd->src[1] = SSA_FIXED_REGISTER(1);
1243
vadd->src_types[0] = nir_type_uint32;
1244
1245
for (unsigned c = 0; c < 16; ++c)
1246
vadd->swizzle[1][c] = COMPONENT_W;
1247
}
1248
1249
vadd->unit = UNIT_VADD;
1250
vadd->mask = 0x1;
1251
branch->dest = vadd->dest;
1252
branch->dest_type = vadd->dest_type;
1253
}
1254
1255
if (writeout & PAN_WRITEOUT_Z)
1256
mir_schedule_zs_write(ctx, &predicate, instructions, liveness, worklist, len, branch, &smul, &vadd, &vlut, false);
1257
1258
if (writeout & PAN_WRITEOUT_S)
1259
mir_schedule_zs_write(ctx, &predicate, instructions, liveness, worklist, len, branch, &smul, &vadd, &vlut, true);
1260
1261
mir_choose_alu(&smul, instructions, liveness, worklist, len, &predicate, UNIT_SMUL);
1262
1263
for (unsigned mode = 1; mode < 3; ++mode) {
1264
predicate.move_mode = mode;
1265
predicate.no_mask = writeout ? (1 << 3) : 0;
1266
mir_choose_alu(&vlut, instructions, liveness, worklist, len, &predicate, UNIT_VLUT);
1267
predicate.no_mask = 0;
1268
mir_choose_alu(&vadd, instructions, liveness, worklist, len, &predicate, UNIT_VADD);
1269
}
1270
1271
/* Reset */
1272
predicate.move_mode = 0;
1273
1274
mir_update_worklist(worklist, len, instructions, vlut);
1275
mir_update_worklist(worklist, len, instructions, vadd);
1276
mir_update_worklist(worklist, len, instructions, smul);
1277
1278
bool vadd_csel = vadd && OP_IS_CSEL(vadd->op);
1279
bool smul_csel = smul && OP_IS_CSEL(smul->op);
1280
1281
if (vadd_csel || smul_csel) {
1282
midgard_instruction *ins = vadd_csel ? vadd : smul;
1283
midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, ins);
1284
1285
if (cond->unit == UNIT_VMUL)
1286
vmul = cond;
1287
else if (cond->unit == UNIT_SADD)
1288
sadd = cond;
1289
else
1290
unreachable("Bad condition");
1291
}
1292
1293
/* Stage 2, let's schedule sadd before vmul for writeout */
1294
mir_choose_alu(&sadd, instructions, liveness, worklist, len, &predicate, UNIT_SADD);
1295
1296
/* Check if writeout reads its own register */
1297
1298
if (writeout) {
1299
midgard_instruction *stages[] = { sadd, vadd, smul, vlut };
1300
unsigned src = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : branch->src[0];
1301
unsigned writeout_mask = 0x0;
1302
bool bad_writeout = false;
1303
1304
for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
1305
if (!stages[i])
1306
continue;
1307
1308
if (stages[i]->dest != src)
1309
continue;
1310
1311
writeout_mask |= stages[i]->mask;
1312
bad_writeout |= mir_has_arg(stages[i], branch->src[0]);
1313
}
1314
1315
/* It's possible we'll be able to schedule something into vmul
1316
* to fill r0. Let's peak into the future, trying to schedule
1317
* vmul specially that way. */
1318
1319
unsigned full_mask = 0xF;
1320
1321
if (!bad_writeout && writeout_mask != full_mask) {
1322
predicate.unit = UNIT_VMUL;
1323
predicate.dest = src;
1324
predicate.mask = writeout_mask ^ full_mask;
1325
1326
struct midgard_instruction *peaked =
1327
mir_choose_instruction(instructions, liveness, worklist, len, &predicate);
1328
1329
if (peaked) {
1330
vmul = peaked;
1331
vmul->unit = UNIT_VMUL;
1332
writeout_mask |= predicate.mask;
1333
assert(writeout_mask == full_mask);
1334
}
1335
1336
/* Cleanup */
1337
predicate.dest = predicate.mask = 0;
1338
}
1339
1340
/* Finally, add a move if necessary */
1341
if (bad_writeout || writeout_mask != full_mask) {
1342
unsigned temp = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : make_compiler_temp(ctx);
1343
1344
vmul = ralloc(ctx, midgard_instruction);
1345
*vmul = v_mov(src, temp);
1346
vmul->unit = UNIT_VMUL;
1347
vmul->mask = full_mask ^ writeout_mask;
1348
1349
/* Rewrite to use our temp */
1350
1351
for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
1352
if (stages[i]) {
1353
mir_rewrite_index_dst_single(stages[i], src, temp);
1354
mir_rewrite_index_src_single(stages[i], src, temp);
1355
}
1356
}
1357
1358
mir_rewrite_index_src_single(branch, src, temp);
1359
}
1360
}
1361
1362
mir_choose_alu(&vmul, instructions, liveness, worklist, len, &predicate, UNIT_VMUL);
1363
1364
mir_update_worklist(worklist, len, instructions, vmul);
1365
mir_update_worklist(worklist, len, instructions, sadd);
1366
1367
bundle.has_embedded_constants = predicate.constant_mask != 0;
1368
1369
unsigned padding = 0;
1370
1371
/* Now that we have finished scheduling, build up the bundle */
1372
midgard_instruction *stages[] = { vmul, sadd, vadd, smul, vlut, branch };
1373
1374
for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
1375
if (stages[i]) {
1376
bundle.control |= stages[i]->unit;
1377
bytes_emitted += bytes_for_instruction(stages[i]);
1378
bundle.instructions[bundle.instruction_count++] = stages[i];
1379
1380
/* If we branch, we can't spill to TLS since the store
1381
* instruction will never get executed. We could try to
1382
* break the bundle but this is probably easier for
1383
* now. */
1384
1385
if (branch)
1386
stages[i]->no_spill |= (1 << REG_CLASS_WORK);
1387
}
1388
}
1389
1390
/* Pad ALU op to nearest word */
1391
1392
if (bytes_emitted & 15) {
1393
padding = 16 - (bytes_emitted & 15);
1394
bytes_emitted += padding;
1395
}
1396
1397
/* Constants must always be quadwords */
1398
if (bundle.has_embedded_constants)
1399
bytes_emitted += 16;
1400
1401
/* Size ALU instruction for tag */
1402
bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
1403
1404
bool tilebuf_wait = branch && branch->compact_branch &&
1405
branch->branch.target_type == TARGET_TILEBUF_WAIT;
1406
1407
/* MRT capable GPUs use a special writeout procedure */
1408
if ((writeout || tilebuf_wait) && !(ctx->quirks & MIDGARD_NO_UPPER_ALU))
1409
bundle.tag += 4;
1410
1411
bundle.padding = padding;
1412
bundle.control |= bundle.tag;
1413
1414
return bundle;
1415
}
1416
1417
/* Schedule a single block by iterating its instruction to create bundles.
1418
* While we go, tally about the bundle sizes to compute the block size. */
1419
1420
1421
static void
1422
schedule_block(compiler_context *ctx, midgard_block *block)
1423
{
1424
/* Copy list to dynamic array */
1425
unsigned len = 0;
1426
midgard_instruction **instructions = flatten_mir(block, &len);
1427
1428
if (!len)
1429
return;
1430
1431
/* Calculate dependencies and initial worklist */
1432
unsigned node_count = ctx->temp_count + 1;
1433
mir_create_dependency_graph(instructions, len, node_count);
1434
1435
/* Allocate the worklist */
1436
size_t sz = BITSET_WORDS(len) * sizeof(BITSET_WORD);
1437
BITSET_WORD *worklist = calloc(sz, 1);
1438
uint16_t *liveness = calloc(node_count, 2);
1439
mir_initialize_worklist(worklist, instructions, len);
1440
1441
/* Count the number of load/store instructions so we know when it's
1442
* worth trying to schedule them in pairs. */
1443
unsigned num_ldst = 0;
1444
for (unsigned i = 0; i < len; ++i) {
1445
if (instructions[i]->type == TAG_LOAD_STORE_4)
1446
++num_ldst;
1447
}
1448
1449
struct util_dynarray bundles;
1450
util_dynarray_init(&bundles, NULL);
1451
1452
block->quadword_count = 0;
1453
1454
for (;;) {
1455
unsigned tag = mir_choose_bundle(instructions, liveness, worklist, len, num_ldst);
1456
midgard_bundle bundle;
1457
1458
if (tag == TAG_TEXTURE_4)
1459
bundle = mir_schedule_texture(instructions, liveness, worklist, len, ctx->stage != MESA_SHADER_FRAGMENT);
1460
else if (tag == TAG_LOAD_STORE_4)
1461
bundle = mir_schedule_ldst(instructions, liveness, worklist, len, &num_ldst);
1462
else if (tag == TAG_ALU_4)
1463
bundle = mir_schedule_alu(ctx, instructions, liveness, worklist, len);
1464
else
1465
break;
1466
1467
for (unsigned i = 0; i < bundle.instruction_count; ++i)
1468
bundle.instructions[i]->bundle_id =
1469
ctx->quadword_count + block->quadword_count;
1470
1471
util_dynarray_append(&bundles, midgard_bundle, bundle);
1472
block->quadword_count += midgard_tag_props[bundle.tag].size;
1473
}
1474
1475
assert(num_ldst == 0);
1476
1477
/* We emitted bundles backwards; copy into the block in reverse-order */
1478
1479
util_dynarray_init(&block->bundles, block);
1480
util_dynarray_foreach_reverse(&bundles, midgard_bundle, bundle) {
1481
util_dynarray_append(&block->bundles, midgard_bundle, *bundle);
1482
}
1483
util_dynarray_fini(&bundles);
1484
1485
block->scheduled = true;
1486
ctx->quadword_count += block->quadword_count;
1487
1488
/* Reorder instructions to match bundled. First remove existing
1489
* instructions and then recreate the list */
1490
1491
mir_foreach_instr_in_block_safe(block, ins) {
1492
list_del(&ins->link);
1493
}
1494
1495
mir_foreach_instr_in_block_scheduled_rev(block, ins) {
1496
list_add(&ins->link, &block->base.instructions);
1497
}
1498
1499
free(instructions); /* Allocated by flatten_mir() */
1500
free(worklist);
1501
free(liveness);
1502
}
1503
1504
/* Insert moves to ensure we can register allocate load/store registers */
1505
static void
1506
mir_lower_ldst(compiler_context *ctx)
1507
{
1508
mir_foreach_instr_global_safe(ctx, I) {
1509
if (I->type != TAG_LOAD_STORE_4) continue;
1510
1511
mir_foreach_src(I, s) {
1512
if (s == 0) continue;
1513
if (I->src[s] == ~0) continue;
1514
if (I->swizzle[s][0] == 0) continue;
1515
1516
unsigned temp = make_compiler_temp(ctx);
1517
midgard_instruction mov = v_mov(I->src[s], temp);
1518
mov.mask = 0x1;
1519
mov.dest_type = I->src_types[s];
1520
for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c)
1521
mov.swizzle[1][c] = I->swizzle[s][0];
1522
1523
mir_insert_instruction_before(ctx, I, mov);
1524
I->src[s] = mov.dest;
1525
I->swizzle[s][0] = 0;
1526
}
1527
}
1528
}
1529
1530
void
1531
midgard_schedule_program(compiler_context *ctx)
1532
{
1533
mir_lower_ldst(ctx);
1534
midgard_promote_uniforms(ctx);
1535
1536
/* Must be lowered right before scheduling */
1537
mir_squeeze_index(ctx);
1538
mir_lower_special_reads(ctx);
1539
mir_squeeze_index(ctx);
1540
1541
/* Lowering can introduce some dead moves */
1542
1543
mir_foreach_block(ctx, _block) {
1544
midgard_block *block = (midgard_block *) _block;
1545
midgard_opt_dead_move_eliminate(ctx, block);
1546
schedule_block(ctx, block);
1547
}
1548
1549
}
1550
1551