Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/panfrost/shared/pan_tiling.c
4560 views
1
/*
2
* Copyright (c) 2011-2013 Luc Verhaegen <[email protected]>
3
* Copyright (c) 2018 Alyssa Rosenzweig <[email protected]>
4
* Copyright (c) 2018 Vasily Khoruzhick <[email protected]>
5
* Copyright (c) 2019 Collabora, Ltd.
6
*
7
* Permission is hereby granted, free of charge, to any person obtaining a
8
* copy of this software and associated documentation files (the "Software"),
9
* to deal in the Software without restriction, including without limitation
10
* the rights to use, copy, modify, merge, publish, distribute, sub license,
11
* and/or sell copies of the Software, and to permit persons to whom the
12
* Software is furnished to do so, subject to the following conditions:
13
*
14
* The above copyright notice and this permission notice (including the
15
* next paragraph) shall be included in all copies or substantial portions
16
* of the Software.
17
*
18
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24
* DEALINGS IN THE SOFTWARE.
25
*
26
*/
27
28
#include "pan_tiling.h"
29
#include <stdbool.h>
30
#include "util/macros.h"
31
32
/* This file implements software encode/decode of the tiling format used for
33
* textures and framebuffers primarily on Utgard GPUs. Names for this format
34
* include "Utgard-style tiling", "(Mali) swizzled textures", and
35
* "U-interleaved" (the former two names being used in the community
36
* Lima/Panfrost drivers; the latter name used internally at Arm).
37
* Conceptually, like any tiling scheme, the pixel reordering attempts to 2D
38
* spatial locality, to improve cache locality in both horizontal and vertical
39
* directions.
40
*
41
* This format is tiled: first, the image dimensions must be aligned to 16
42
* pixels in each axis. Once aligned, the image is divided into 16x16 tiles.
43
* This size harmonizes with other properties of the GPU; on Midgard,
44
* framebuffer tiles are logically 16x16 (this is the tile size used in
45
* Transaction Elimination and the minimum tile size used in Hierarchical
46
* Tiling). Conversely, for a standard 4 bytes-per-pixel format (like
47
* RGBA8888), 16 pixels * 4 bytes/pixel = 64 bytes, equal to the cache line
48
* size.
49
*
50
* Within each 16x16 block, the bits are reordered according to this pattern:
51
*
52
* | y3 | (x3 ^ y3) | y2 | (y2 ^ x2) | y1 | (y1 ^ x1) | y0 | (y0 ^ x0) |
53
*
54
* Basically, interleaving the X and Y bits, with XORs thrown in for every
55
* adjacent bit pair.
56
*
57
* This is cheap to implement both encode/decode in both hardware and software.
58
* In hardware, lines are simply rerouted to reorder and some XOR gates are
59
* thrown in. Software has to be a bit more clever.
60
*
61
* In software, the trick is to divide the pattern into two lines:
62
*
63
* | y3 | y3 | y2 | y2 | y1 | y1 | y0 | y0 |
64
* ^ | 0 | x3 | 0 | x2 | 0 | x1 | 0 | x0 |
65
*
66
* That is, duplicate the bits of the Y and space out the bits of the X. The
67
* top line is a function only of Y, so it can be calculated once per row and
68
* stored in a register. The bottom line is simply X with the bits spaced out.
69
* Spacing out the X is easy enough with a LUT, or by subtracting+ANDing the
70
* mask pattern (abusing carry bits).
71
*
72
* This format is also supported on Midgard GPUs, where it *can* be used for
73
* textures and framebuffers. That said, in practice it is usually as a
74
* fallback layout; Midgard introduces Arm FrameBuffer Compression, which is
75
* significantly more efficient than Utgard-style tiling and preferred for both
76
* textures and framebuffers, where possible. For unsupported texture types,
77
* for instance sRGB textures and framebuffers, this tiling scheme is used at a
78
* performance penalty, as AFBC is not compatible.
79
*/
80
81
/* Given the lower 4-bits of the Y coordinate, we would like to
82
* duplicate every bit over. So instead of 0b1010, we would like
83
* 0b11001100. The idea is that for the bits in the solely Y place, we
84
* get a Y place, and the bits in the XOR place *also* get a Y. */
85
86
const uint32_t bit_duplication[16] = {
87
0b00000000,
88
0b00000011,
89
0b00001100,
90
0b00001111,
91
0b00110000,
92
0b00110011,
93
0b00111100,
94
0b00111111,
95
0b11000000,
96
0b11000011,
97
0b11001100,
98
0b11001111,
99
0b11110000,
100
0b11110011,
101
0b11111100,
102
0b11111111,
103
};
104
105
/* Space the bits out of a 4-bit nibble */
106
107
const unsigned space_4[16] = {
108
0b0000000,
109
0b0000001,
110
0b0000100,
111
0b0000101,
112
0b0010000,
113
0b0010001,
114
0b0010100,
115
0b0010101,
116
0b1000000,
117
0b1000001,
118
0b1000100,
119
0b1000101,
120
0b1010000,
121
0b1010001,
122
0b1010100,
123
0b1010101
124
};
125
126
/* The scheme uses 16x16 tiles */
127
128
#define TILE_WIDTH 16
129
#define TILE_HEIGHT 16
130
#define PIXELS_PER_TILE (TILE_WIDTH * TILE_HEIGHT)
131
132
/* We need a 128-bit type for idiomatically tiling bpp128 formats. The type must
133
* only support copies and sizeof, so emulating with a packed structure works
134
* well enough, but if there's a native 128-bit type we may we well prefer
135
* that. */
136
137
#ifdef __SIZEOF_INT128__
138
typedef __uint128_t pan_uint128_t;
139
#else
140
typedef struct {
141
uint64_t lo;
142
uint64_t hi;
143
} __attribute__((packed)) pan_uint128_t;
144
#endif
145
146
typedef struct {
147
uint16_t lo;
148
uint8_t hi;
149
} __attribute__((packed)) pan_uint24_t;
150
151
/* Optimized routine to tile an aligned (w & 0xF == 0) texture. Explanation:
152
*
153
* dest_start precomputes the offset to the beginning of the first horizontal
154
* tile we're writing to, knowing that x is 16-aligned. Tiles themselves are
155
* stored linearly, so we get the X tile number by shifting and then multiply
156
* by the bytes per tile .
157
*
158
* We iterate across the pixels we're trying to store in source-order. For each
159
* row in the destination image, we figure out which row of 16x16 block we're
160
* in, by slicing off the lower 4-bits (block_y).
161
*
162
* dest then precomputes the location of the top-left corner of the block the
163
* row starts in. In pixel coordinates (where the origin is the top-left),
164
* (block_y, 0) is the top-left corner of the leftmost tile in this row. While
165
* pixels are reordered within a block, the blocks themselves are stored
166
* linearly, so multiplying block_y by the pixel stride of the destination
167
* image equals the byte offset of that top-left corner of the block this row
168
* is in.
169
*
170
* On the other hand, the source is linear so we compute the locations of the
171
* start and end of the row in the source by a simple linear addressing.
172
*
173
* For indexing within the tile, we need to XOR with the [y3 y3 y2 y2 y1 y1 y0
174
* y0] value. Since this is constant across a row, we look it up per-row and
175
* store in expanded_y.
176
*
177
* Finally, we iterate each row in source order. In the outer loop, we iterate
178
* each 16 pixel tile. Within each tile, we iterate the 16 pixels (this should
179
* be unrolled), calculating the index within the tile and writing.
180
*/
181
182
#define TILED_ACCESS_TYPE(pixel_t, shift) \
183
static ALWAYS_INLINE void \
184
panfrost_access_tiled_image_##pixel_t \
185
(void *dst, void *src, \
186
uint16_t sx, uint16_t sy, \
187
uint16_t w, uint16_t h, \
188
uint32_t dst_stride, \
189
uint32_t src_stride, \
190
bool is_store) \
191
{ \
192
uint8_t *dest_start = dst + ((sx >> 4) * PIXELS_PER_TILE * sizeof(pixel_t)); \
193
for (int y = sy, src_y = 0; src_y < h; ++y, ++src_y) { \
194
uint16_t block_y = y & ~0x0f; \
195
uint8_t *dest = (uint8_t *) (dest_start + (block_y * dst_stride)); \
196
pixel_t *source = src + (src_y * src_stride); \
197
pixel_t *source_end = source + w; \
198
unsigned expanded_y = bit_duplication[y & 0xF] << shift; \
199
for (; source < source_end; dest += (PIXELS_PER_TILE << shift)) { \
200
for (uint8_t i = 0; i < 16; ++i) { \
201
unsigned index = expanded_y ^ (space_4[i] << shift); \
202
if (is_store) \
203
*((pixel_t *) (dest + index)) = *(source++); \
204
else \
205
*(source++) = *((pixel_t *) (dest + index)); \
206
} \
207
} \
208
} \
209
} \
210
211
TILED_ACCESS_TYPE(uint8_t, 0);
212
TILED_ACCESS_TYPE(uint16_t, 1);
213
TILED_ACCESS_TYPE(uint32_t, 2);
214
TILED_ACCESS_TYPE(uint64_t, 3);
215
TILED_ACCESS_TYPE(pan_uint128_t, 4);
216
217
#define TILED_UNALIGNED_TYPE(pixel_t, is_store, tile_shift) { \
218
const unsigned mask = (1 << tile_shift) - 1; \
219
for (int y = sy, src_y = 0; src_y < h; ++y, ++src_y) { \
220
unsigned block_y = y & ~mask; \
221
unsigned block_start_s = block_y * dst_stride; \
222
unsigned source_start = src_y * src_stride; \
223
unsigned expanded_y = bit_duplication[y & mask]; \
224
\
225
for (int x = sx, src_x = 0; src_x < w; ++x, ++src_x) { \
226
unsigned block_x_s = (x >> tile_shift) * (1 << (tile_shift * 2)); \
227
unsigned index = expanded_y ^ space_4[x & mask]; \
228
uint8_t *source = src + source_start + sizeof(pixel_t) * src_x; \
229
uint8_t *dest = dst + block_start_s + sizeof(pixel_t) * (block_x_s + index); \
230
\
231
pixel_t *outp = (pixel_t *) (is_store ? dest : source); \
232
pixel_t *inp = (pixel_t *) (is_store ? source : dest); \
233
*outp = *inp; \
234
} \
235
} \
236
}
237
238
#define TILED_UNALIGNED_TYPES(store, shift) { \
239
if (bpp == 8) \
240
TILED_UNALIGNED_TYPE(uint8_t, store, shift) \
241
else if (bpp == 16) \
242
TILED_UNALIGNED_TYPE(uint16_t, store, shift) \
243
else if (bpp == 24) \
244
TILED_UNALIGNED_TYPE(pan_uint24_t, store, shift) \
245
else if (bpp == 32) \
246
TILED_UNALIGNED_TYPE(uint32_t, store, shift) \
247
else if (bpp == 64) \
248
TILED_UNALIGNED_TYPE(uint64_t, store, shift) \
249
else if (bpp == 128) \
250
TILED_UNALIGNED_TYPE(pan_uint128_t, store, shift) \
251
}
252
253
static void
254
panfrost_access_tiled_image_generic(void *dst, void *src,
255
unsigned sx, unsigned sy,
256
unsigned w, unsigned h,
257
uint32_t dst_stride,
258
uint32_t src_stride,
259
const struct util_format_description *desc,
260
bool _is_store)
261
{
262
unsigned bpp = desc->block.bits;
263
264
if (desc->block.width > 1) {
265
w = DIV_ROUND_UP(w, desc->block.width);
266
h = DIV_ROUND_UP(h, desc->block.height);
267
268
if (_is_store)
269
TILED_UNALIGNED_TYPES(true, 2)
270
else
271
TILED_UNALIGNED_TYPES(false, 2)
272
} else {
273
if (_is_store)
274
TILED_UNALIGNED_TYPES(true, 4)
275
else
276
TILED_UNALIGNED_TYPES(false, 4)
277
}
278
}
279
280
#define OFFSET(src, _x, _y) (void *) ((uint8_t *) src + ((_y) - orig_y) * src_stride + (((_x) - orig_x) * (bpp / 8)))
281
282
static ALWAYS_INLINE void
283
panfrost_access_tiled_image(void *dst, void *src,
284
unsigned x, unsigned y,
285
unsigned w, unsigned h,
286
uint32_t dst_stride,
287
uint32_t src_stride,
288
enum pipe_format format,
289
bool is_store)
290
{
291
const struct util_format_description *desc = util_format_description(format);
292
293
if (desc->block.width > 1 || desc->block.bits == 24) {
294
panfrost_access_tiled_image_generic(dst, (void *) src,
295
x, y, w, h,
296
dst_stride, src_stride, desc, is_store);
297
298
return;
299
}
300
301
unsigned bpp = desc->block.bits;
302
unsigned first_full_tile_x = DIV_ROUND_UP(x, TILE_WIDTH) * TILE_WIDTH;
303
unsigned first_full_tile_y = DIV_ROUND_UP(y, TILE_HEIGHT) * TILE_HEIGHT;
304
unsigned last_full_tile_x = ((x + w) / TILE_WIDTH) * TILE_WIDTH;
305
unsigned last_full_tile_y = ((y + h) / TILE_HEIGHT) * TILE_HEIGHT;
306
307
/* First, tile the top portion */
308
309
unsigned orig_x = x, orig_y = y;
310
311
if (first_full_tile_y != y) {
312
unsigned dist = MIN2(first_full_tile_y - y, h);
313
314
panfrost_access_tiled_image_generic(dst, OFFSET(src, x, y),
315
x, y, w, dist,
316
dst_stride, src_stride, desc, is_store);
317
318
if (dist == h)
319
return;
320
321
y += dist;
322
h -= dist;
323
}
324
325
/* Next, the bottom portion */
326
if (last_full_tile_y != (y + h)) {
327
unsigned dist = (y + h) - last_full_tile_y;
328
329
panfrost_access_tiled_image_generic(dst, OFFSET(src, x, last_full_tile_y),
330
x, last_full_tile_y, w, dist,
331
dst_stride, src_stride, desc, is_store);
332
333
h -= dist;
334
}
335
336
/* The left portion */
337
if (first_full_tile_x != x) {
338
unsigned dist = MIN2(first_full_tile_x - x, w);
339
340
panfrost_access_tiled_image_generic(dst, OFFSET(src, x, y),
341
x, y, dist, h,
342
dst_stride, src_stride, desc, is_store);
343
344
if (dist == w)
345
return;
346
347
x += dist;
348
w -= dist;
349
}
350
351
/* Finally, the right portion */
352
if (last_full_tile_x != (x + w)) {
353
unsigned dist = (x + w) - last_full_tile_x;
354
355
panfrost_access_tiled_image_generic(dst, OFFSET(src, last_full_tile_x, y),
356
last_full_tile_x, y, dist, h,
357
dst_stride, src_stride, desc, is_store);
358
359
w -= dist;
360
}
361
362
if (bpp == 8)
363
panfrost_access_tiled_image_uint8_t(dst, OFFSET(src, x, y), x, y, w, h, dst_stride, src_stride, is_store);
364
else if (bpp == 16)
365
panfrost_access_tiled_image_uint16_t(dst, OFFSET(src, x, y), x, y, w, h, dst_stride, src_stride, is_store);
366
else if (bpp == 32)
367
panfrost_access_tiled_image_uint32_t(dst, OFFSET(src, x, y), x, y, w, h, dst_stride, src_stride, is_store);
368
else if (bpp == 64)
369
panfrost_access_tiled_image_uint64_t(dst, OFFSET(src, x, y), x, y, w, h, dst_stride, src_stride, is_store);
370
else if (bpp == 128)
371
panfrost_access_tiled_image_pan_uint128_t(dst, OFFSET(src, x, y), x, y, w, h, dst_stride, src_stride, is_store);
372
}
373
374
void
375
panfrost_store_tiled_image(void *dst, const void *src,
376
unsigned x, unsigned y,
377
unsigned w, unsigned h,
378
uint32_t dst_stride,
379
uint32_t src_stride,
380
enum pipe_format format)
381
{
382
panfrost_access_tiled_image(dst, (void *) src,
383
x, y, w, h,
384
dst_stride, src_stride, format, true);
385
}
386
387
void
388
panfrost_load_tiled_image(void *dst, const void *src,
389
unsigned x, unsigned y,
390
unsigned w, unsigned h,
391
uint32_t dst_stride,
392
uint32_t src_stride,
393
enum pipe_format format)
394
{
395
panfrost_access_tiled_image((void *) src, dst,
396
x, y, w, h,
397
src_stride, dst_stride, format, false);
398
}
399
400