Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/cpu/aarch64/assembler_aarch64.hpp
40930 views
1
/*
2
* Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3
* Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
4
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
*
6
* This code is free software; you can redistribute it and/or modify it
7
* under the terms of the GNU General Public License version 2 only, as
8
* published by the Free Software Foundation.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*
24
*/
25
26
#ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP
27
#define CPU_AARCH64_ASSEMBLER_AARCH64_HPP
28
29
#include "asm/register.hpp"
30
31
#ifdef __GNUC__
32
33
// __nop needs volatile so that compiler doesn't optimize it away
34
#define NOP() asm volatile ("nop");
35
36
#elif defined(_MSC_VER)
37
38
// Use MSVC instrinsic: https://docs.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics?view=vs-2019#I
39
#define NOP() __nop();
40
41
#endif
42
43
44
// definitions of various symbolic names for machine registers
45
46
// First intercalls between C and Java which use 8 general registers
47
// and 8 floating registers
48
49
// we also have to copy between x86 and ARM registers but that's a
50
// secondary complication -- not all code employing C call convention
51
// executes as x86 code though -- we generate some of it
52
53
class Argument {
54
public:
55
enum {
56
n_int_register_parameters_c = 8, // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
57
n_float_register_parameters_c = 8, // v0, v1, ... v7 (c_farg0, c_farg1, ... )
58
59
n_int_register_parameters_j = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
60
n_float_register_parameters_j = 8 // v0, v1, ... v7 (j_farg0, j_farg1, ...
61
};
62
};
63
64
REGISTER_DECLARATION(Register, c_rarg0, r0);
65
REGISTER_DECLARATION(Register, c_rarg1, r1);
66
REGISTER_DECLARATION(Register, c_rarg2, r2);
67
REGISTER_DECLARATION(Register, c_rarg3, r3);
68
REGISTER_DECLARATION(Register, c_rarg4, r4);
69
REGISTER_DECLARATION(Register, c_rarg5, r5);
70
REGISTER_DECLARATION(Register, c_rarg6, r6);
71
REGISTER_DECLARATION(Register, c_rarg7, r7);
72
73
REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
74
REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
75
REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
76
REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
77
REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
78
REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
79
REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
80
REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
81
82
// Symbolically name the register arguments used by the Java calling convention.
83
// We have control over the convention for java so we can do what we please.
84
// What pleases us is to offset the java calling convention so that when
85
// we call a suitable jni method the arguments are lined up and we don't
86
// have to do much shuffling. A suitable jni method is non-static and a
87
// small number of arguments
88
//
89
// |--------------------------------------------------------------------|
90
// | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7 |
91
// |--------------------------------------------------------------------|
92
// | r0 r1 r2 r3 r4 r5 r6 r7 |
93
// |--------------------------------------------------------------------|
94
// | j_rarg7 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6 |
95
// |--------------------------------------------------------------------|
96
97
98
REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
99
REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
100
REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
101
REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
102
REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
103
REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
104
REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
105
REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
106
107
// Java floating args are passed as per C
108
109
REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
110
REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
111
REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
112
REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
113
REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
114
REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
115
REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
116
REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
117
118
// registers used to hold VM data either temporarily within a method
119
// or across method calls
120
121
// volatile (caller-save) registers
122
123
// r8 is used for indirect result location return
124
// we use it and r9 as scratch registers
125
REGISTER_DECLARATION(Register, rscratch1, r8);
126
REGISTER_DECLARATION(Register, rscratch2, r9);
127
128
// current method -- must be in a call-clobbered register
129
REGISTER_DECLARATION(Register, rmethod, r12);
130
131
// non-volatile (callee-save) registers are r16-29
132
// of which the following are dedicated global state
133
134
// link register
135
REGISTER_DECLARATION(Register, lr, r30);
136
// frame pointer
137
REGISTER_DECLARATION(Register, rfp, r29);
138
// current thread
139
REGISTER_DECLARATION(Register, rthread, r28);
140
// base of heap
141
REGISTER_DECLARATION(Register, rheapbase, r27);
142
// constant pool cache
143
REGISTER_DECLARATION(Register, rcpool, r26);
144
// monitors allocated on stack
145
REGISTER_DECLARATION(Register, rmonitors, r25);
146
// locals on stack
147
REGISTER_DECLARATION(Register, rlocals, r24);
148
// bytecode pointer
149
REGISTER_DECLARATION(Register, rbcp, r22);
150
// Dispatch table base
151
REGISTER_DECLARATION(Register, rdispatch, r21);
152
// Java stack pointer
153
REGISTER_DECLARATION(Register, esp, r20);
154
155
// Preserved predicate register with all elements set TRUE.
156
REGISTER_DECLARATION(PRegister, ptrue, p7);
157
158
#define assert_cond(ARG1) assert(ARG1, #ARG1)
159
160
namespace asm_util {
161
uint32_t encode_logical_immediate(bool is32, uint64_t imm);
162
};
163
164
using namespace asm_util;
165
166
167
class Assembler;
168
169
class Instruction_aarch64 {
170
unsigned insn;
171
#ifdef ASSERT
172
unsigned bits;
173
#endif
174
Assembler *assem;
175
176
public:
177
178
Instruction_aarch64(class Assembler *as) {
179
#ifdef ASSERT
180
bits = 0;
181
#endif
182
insn = 0;
183
assem = as;
184
}
185
186
inline ~Instruction_aarch64();
187
188
unsigned &get_insn() { return insn; }
189
#ifdef ASSERT
190
unsigned &get_bits() { return bits; }
191
#endif
192
193
static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
194
union {
195
unsigned u;
196
int n;
197
};
198
199
u = val << (31 - hi);
200
n = n >> (31 - hi + lo);
201
return n;
202
}
203
204
static inline uint32_t extract(uint32_t val, int msb, int lsb) {
205
int nbits = msb - lsb + 1;
206
assert_cond(msb >= lsb);
207
uint32_t mask = checked_cast<uint32_t>(right_n_bits(nbits));
208
uint32_t result = val >> lsb;
209
result &= mask;
210
return result;
211
}
212
213
static inline int32_t sextract(uint32_t val, int msb, int lsb) {
214
uint32_t uval = extract(val, msb, lsb);
215
return extend(uval, msb - lsb);
216
}
217
218
static void patch(address a, int msb, int lsb, uint64_t val) {
219
int nbits = msb - lsb + 1;
220
guarantee(val < (1ULL << nbits), "Field too big for insn");
221
assert_cond(msb >= lsb);
222
unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
223
val <<= lsb;
224
mask <<= lsb;
225
unsigned target = *(unsigned *)a;
226
target &= ~mask;
227
target |= val;
228
*(unsigned *)a = target;
229
}
230
231
static void spatch(address a, int msb, int lsb, int64_t val) {
232
int nbits = msb - lsb + 1;
233
int64_t chk = val >> (nbits - 1);
234
guarantee (chk == -1 || chk == 0, "Field too big for insn");
235
unsigned uval = val;
236
unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
237
uval &= mask;
238
uval <<= lsb;
239
mask <<= lsb;
240
unsigned target = *(unsigned *)a;
241
target &= ~mask;
242
target |= uval;
243
*(unsigned *)a = target;
244
}
245
246
void f(unsigned val, int msb, int lsb) {
247
int nbits = msb - lsb + 1;
248
guarantee(val < (1ULL << nbits), "Field too big for insn");
249
assert_cond(msb >= lsb);
250
unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
251
val <<= lsb;
252
mask <<= lsb;
253
insn |= val;
254
assert_cond((bits & mask) == 0);
255
#ifdef ASSERT
256
bits |= mask;
257
#endif
258
}
259
260
void f(unsigned val, int bit) {
261
f(val, bit, bit);
262
}
263
264
void sf(int64_t val, int msb, int lsb) {
265
int nbits = msb - lsb + 1;
266
int64_t chk = val >> (nbits - 1);
267
guarantee (chk == -1 || chk == 0, "Field too big for insn");
268
unsigned uval = val;
269
unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
270
uval &= mask;
271
f(uval, lsb + nbits - 1, lsb);
272
}
273
274
void rf(Register r, int lsb) {
275
f(r->encoding_nocheck(), lsb + 4, lsb);
276
}
277
278
// reg|ZR
279
void zrf(Register r, int lsb) {
280
f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
281
}
282
283
// reg|SP
284
void srf(Register r, int lsb) {
285
f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
286
}
287
288
void rf(FloatRegister r, int lsb) {
289
f(r->encoding_nocheck(), lsb + 4, lsb);
290
}
291
292
void prf(PRegister r, int lsb) {
293
f(r->encoding_nocheck(), lsb + 3, lsb);
294
}
295
296
void pgrf(PRegister r, int lsb) {
297
f(r->encoding_nocheck(), lsb + 2, lsb);
298
}
299
300
unsigned get(int msb = 31, int lsb = 0) {
301
int nbits = msb - lsb + 1;
302
unsigned mask = checked_cast<unsigned>(right_n_bits(nbits)) << lsb;
303
assert_cond((bits & mask) == mask);
304
return (insn & mask) >> lsb;
305
}
306
307
void fixed(unsigned value, unsigned mask) {
308
assert_cond ((mask & bits) == 0);
309
#ifdef ASSERT
310
bits |= mask;
311
#endif
312
insn |= value;
313
}
314
};
315
316
#define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
317
318
class PrePost {
319
int _offset;
320
Register _r;
321
public:
322
PrePost(Register reg, int o) : _offset(o), _r(reg) { }
323
int offset() { return _offset; }
324
Register reg() { return _r; }
325
};
326
327
class Pre : public PrePost {
328
public:
329
Pre(Register reg, int o) : PrePost(reg, o) { }
330
};
331
class Post : public PrePost {
332
Register _idx;
333
bool _is_postreg;
334
public:
335
Post(Register reg, int o) : PrePost(reg, o) { _idx = NULL; _is_postreg = false; }
336
Post(Register reg, Register idx) : PrePost(reg, 0) { _idx = idx; _is_postreg = true; }
337
Register idx_reg() { return _idx; }
338
bool is_postreg() {return _is_postreg; }
339
};
340
341
namespace ext
342
{
343
enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
344
};
345
346
// Addressing modes
347
class Address {
348
public:
349
350
enum mode { no_mode, base_plus_offset, pre, post, post_reg, pcrel,
351
base_plus_offset_reg, literal };
352
353
// Shift and extend for base reg + reg offset addressing
354
class extend {
355
int _option, _shift;
356
ext::operation _op;
357
public:
358
extend() { }
359
extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { }
360
int option() const{ return _option; }
361
int shift() const { return _shift; }
362
ext::operation op() const { return _op; }
363
};
364
class uxtw : public extend {
365
public:
366
uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
367
};
368
class lsl : public extend {
369
public:
370
lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
371
};
372
class sxtw : public extend {
373
public:
374
sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
375
};
376
class sxtx : public extend {
377
public:
378
sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
379
};
380
381
private:
382
Register _base;
383
Register _index;
384
int64_t _offset;
385
enum mode _mode;
386
extend _ext;
387
388
RelocationHolder _rspec;
389
390
// Typically we use AddressLiterals we want to use their rval
391
// However in some situations we want the lval (effect address) of
392
// the item. We provide a special factory for making those lvals.
393
bool _is_lval;
394
395
// If the target is far we'll need to load the ea of this to a
396
// register to reach it. Otherwise if near we can do PC-relative
397
// addressing.
398
address _target;
399
400
public:
401
Address()
402
: _mode(no_mode) { }
403
Address(Register r)
404
: _base(r), _index(noreg), _offset(0), _mode(base_plus_offset), _target(0) { }
405
Address(Register r, int o)
406
: _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
407
Address(Register r, long o)
408
: _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
409
Address(Register r, long long o)
410
: _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
411
Address(Register r, unsigned int o)
412
: _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
413
Address(Register r, unsigned long o)
414
: _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
415
Address(Register r, unsigned long long o)
416
: _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
417
Address(Register r, ByteSize disp)
418
: Address(r, in_bytes(disp)) { }
419
Address(Register r, Register r1, extend ext = lsl())
420
: _base(r), _index(r1), _offset(0), _mode(base_plus_offset_reg),
421
_ext(ext), _target(0) { }
422
Address(Pre p)
423
: _base(p.reg()), _offset(p.offset()), _mode(pre) { }
424
Address(Post p)
425
: _base(p.reg()), _index(p.idx_reg()), _offset(p.offset()),
426
_mode(p.is_postreg() ? post_reg : post), _target(0) { }
427
Address(address target, RelocationHolder const& rspec)
428
: _mode(literal),
429
_rspec(rspec),
430
_is_lval(false),
431
_target(target) { }
432
Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
433
Address(Register base, RegisterOrConstant index, extend ext = lsl())
434
: _base (base),
435
_offset(0), _ext(ext), _target(0) {
436
if (index.is_register()) {
437
_mode = base_plus_offset_reg;
438
_index = index.as_register();
439
} else {
440
guarantee(ext.option() == ext::uxtx, "should be");
441
assert(index.is_constant(), "should be");
442
_mode = base_plus_offset;
443
_offset = index.as_constant() << ext.shift();
444
}
445
}
446
447
Register base() const {
448
guarantee((_mode == base_plus_offset || _mode == base_plus_offset_reg
449
|| _mode == post || _mode == post_reg),
450
"wrong mode");
451
return _base;
452
}
453
int64_t offset() const {
454
return _offset;
455
}
456
Register index() const {
457
return _index;
458
}
459
mode getMode() const {
460
return _mode;
461
}
462
bool uses(Register reg) const { return _base == reg || _index == reg; }
463
address target() const { return _target; }
464
const RelocationHolder& rspec() const { return _rspec; }
465
466
void encode(Instruction_aarch64 *i) const {
467
i->f(0b111, 29, 27);
468
i->srf(_base, 5);
469
470
switch(_mode) {
471
case base_plus_offset:
472
{
473
unsigned size = i->get(31, 30);
474
if (i->get(26, 26) && i->get(23, 23)) {
475
// SIMD Q Type - Size = 128 bits
476
assert(size == 0, "bad size");
477
size = 0b100;
478
}
479
unsigned mask = (1 << size) - 1;
480
if (_offset < 0 || _offset & mask)
481
{
482
i->f(0b00, 25, 24);
483
i->f(0, 21), i->f(0b00, 11, 10);
484
i->sf(_offset, 20, 12);
485
} else {
486
i->f(0b01, 25, 24);
487
i->f(_offset >> size, 21, 10);
488
}
489
}
490
break;
491
492
case base_plus_offset_reg:
493
{
494
i->f(0b00, 25, 24);
495
i->f(1, 21);
496
i->rf(_index, 16);
497
i->f(_ext.option(), 15, 13);
498
unsigned size = i->get(31, 30);
499
if (i->get(26, 26) && i->get(23, 23)) {
500
// SIMD Q Type - Size = 128 bits
501
assert(size == 0, "bad size");
502
size = 0b100;
503
}
504
if (size == 0) // It's a byte
505
i->f(_ext.shift() >= 0, 12);
506
else {
507
assert(_ext.shift() <= 0 || _ext.shift() == (int)size, "bad shift");
508
i->f(_ext.shift() > 0, 12);
509
}
510
i->f(0b10, 11, 10);
511
}
512
break;
513
514
case pre:
515
i->f(0b00, 25, 24);
516
i->f(0, 21), i->f(0b11, 11, 10);
517
i->sf(_offset, 20, 12);
518
break;
519
520
case post:
521
i->f(0b00, 25, 24);
522
i->f(0, 21), i->f(0b01, 11, 10);
523
i->sf(_offset, 20, 12);
524
break;
525
526
default:
527
ShouldNotReachHere();
528
}
529
}
530
531
void encode_pair(Instruction_aarch64 *i) const {
532
switch(_mode) {
533
case base_plus_offset:
534
i->f(0b010, 25, 23);
535
break;
536
case pre:
537
i->f(0b011, 25, 23);
538
break;
539
case post:
540
i->f(0b001, 25, 23);
541
break;
542
default:
543
ShouldNotReachHere();
544
}
545
546
unsigned size; // Operand shift in 32-bit words
547
548
if (i->get(26, 26)) { // float
549
switch(i->get(31, 30)) {
550
case 0b10:
551
size = 2; break;
552
case 0b01:
553
size = 1; break;
554
case 0b00:
555
size = 0; break;
556
default:
557
ShouldNotReachHere();
558
size = 0; // unreachable
559
}
560
} else {
561
size = i->get(31, 31);
562
}
563
564
size = 4 << size;
565
guarantee(_offset % size == 0, "bad offset");
566
i->sf(_offset / size, 21, 15);
567
i->srf(_base, 5);
568
}
569
570
void encode_nontemporal_pair(Instruction_aarch64 *i) const {
571
// Only base + offset is allowed
572
i->f(0b000, 25, 23);
573
unsigned size = i->get(31, 31);
574
size = 4 << size;
575
guarantee(_offset % size == 0, "bad offset");
576
i->sf(_offset / size, 21, 15);
577
i->srf(_base, 5);
578
guarantee(_mode == Address::base_plus_offset,
579
"Bad addressing mode for non-temporal op");
580
}
581
582
void lea(MacroAssembler *, Register) const;
583
584
static bool offset_ok_for_immed(int64_t offset, uint shift);
585
586
static bool offset_ok_for_sve_immed(long offset, int shift, int vl /* sve vector length */) {
587
if (offset % vl == 0) {
588
// Convert address offset into sve imm offset (MUL VL).
589
int sve_offset = offset / vl;
590
if (((-(1 << (shift - 1))) <= sve_offset) && (sve_offset < (1 << (shift - 1)))) {
591
// sve_offset can be encoded
592
return true;
593
}
594
}
595
return false;
596
}
597
};
598
599
// Convience classes
600
class RuntimeAddress: public Address {
601
602
public:
603
604
RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
605
606
};
607
608
class OopAddress: public Address {
609
610
public:
611
612
OopAddress(address target) : Address(target, relocInfo::oop_type){}
613
614
};
615
616
class ExternalAddress: public Address {
617
private:
618
static relocInfo::relocType reloc_for_target(address target) {
619
// Sometimes ExternalAddress is used for values which aren't
620
// exactly addresses, like the card table base.
621
// external_word_type can't be used for values in the first page
622
// so just skip the reloc in that case.
623
return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
624
}
625
626
public:
627
628
ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
629
630
};
631
632
class InternalAddress: public Address {
633
634
public:
635
636
InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
637
};
638
639
const int FPUStateSizeInWords = FloatRegisterImpl::number_of_registers *
640
FloatRegisterImpl::save_slots_per_register;
641
642
typedef enum {
643
PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
644
PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
645
PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
646
} prfop;
647
648
class Assembler : public AbstractAssembler {
649
650
#ifndef PRODUCT
651
static const uintptr_t asm_bp;
652
653
void emit_long(jint x) {
654
if ((uintptr_t)pc() == asm_bp)
655
NOP();
656
AbstractAssembler::emit_int32(x);
657
}
658
#else
659
void emit_long(jint x) {
660
AbstractAssembler::emit_int32(x);
661
}
662
#endif
663
664
public:
665
666
enum { instruction_size = 4 };
667
668
//---< calculate length of instruction >---
669
// We just use the values set above.
670
// instruction must start at passed address
671
static unsigned int instr_len(unsigned char *instr) { return instruction_size; }
672
673
//---< longest instructions >---
674
static unsigned int instr_maxlen() { return instruction_size; }
675
676
Address adjust(Register base, int offset, bool preIncrement) {
677
if (preIncrement)
678
return Address(Pre(base, offset));
679
else
680
return Address(Post(base, offset));
681
}
682
683
Address pre(Register base, int offset) {
684
return adjust(base, offset, true);
685
}
686
687
Address post(Register base, int offset) {
688
return adjust(base, offset, false);
689
}
690
691
Address post(Register base, Register idx) {
692
return Address(Post(base, idx));
693
}
694
695
static address locate_next_instruction(address inst);
696
697
Instruction_aarch64* current;
698
699
void set_current(Instruction_aarch64* i) { current = i; }
700
701
void f(unsigned val, int msb, int lsb) {
702
current->f(val, msb, lsb);
703
}
704
void f(unsigned val, int msb) {
705
current->f(val, msb, msb);
706
}
707
void sf(int64_t val, int msb, int lsb) {
708
current->sf(val, msb, lsb);
709
}
710
void rf(Register reg, int lsb) {
711
current->rf(reg, lsb);
712
}
713
void srf(Register reg, int lsb) {
714
current->srf(reg, lsb);
715
}
716
void zrf(Register reg, int lsb) {
717
current->zrf(reg, lsb);
718
}
719
void rf(FloatRegister reg, int lsb) {
720
current->rf(reg, lsb);
721
}
722
void prf(PRegister reg, int lsb) {
723
current->prf(reg, lsb);
724
}
725
void pgrf(PRegister reg, int lsb) {
726
current->pgrf(reg, lsb);
727
}
728
void fixed(unsigned value, unsigned mask) {
729
current->fixed(value, mask);
730
}
731
732
void emit() {
733
emit_long(current->get_insn());
734
assert_cond(current->get_bits() == 0xffffffff);
735
current = NULL;
736
}
737
738
typedef void (Assembler::* uncond_branch_insn)(address dest);
739
typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
740
typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
741
typedef void (Assembler::* prefetch_insn)(address target, prfop);
742
743
void wrap_label(Label &L, uncond_branch_insn insn);
744
void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
745
void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
746
void wrap_label(Label &L, prfop, prefetch_insn insn);
747
748
// PC-rel. addressing
749
750
void adr(Register Rd, address dest);
751
void _adrp(Register Rd, address dest);
752
753
void adr(Register Rd, const Address &dest);
754
void _adrp(Register Rd, const Address &dest);
755
756
void adr(Register Rd, Label &L) {
757
wrap_label(Rd, L, &Assembler::Assembler::adr);
758
}
759
void _adrp(Register Rd, Label &L) {
760
wrap_label(Rd, L, &Assembler::_adrp);
761
}
762
763
void adrp(Register Rd, const Address &dest, uint64_t &offset);
764
765
#undef INSN
766
767
void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
768
int negated_op);
769
770
// Add/subtract (immediate)
771
#define INSN(NAME, decode, negated) \
772
void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) { \
773
starti; \
774
f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
775
zrf(Rd, 0), srf(Rn, 5); \
776
} \
777
\
778
void NAME(Register Rd, Register Rn, unsigned imm) { \
779
starti; \
780
add_sub_immediate(Rd, Rn, imm, decode, negated); \
781
}
782
783
INSN(addsw, 0b001, 0b011);
784
INSN(subsw, 0b011, 0b001);
785
INSN(adds, 0b101, 0b111);
786
INSN(subs, 0b111, 0b101);
787
788
#undef INSN
789
790
#define INSN(NAME, decode, negated) \
791
void NAME(Register Rd, Register Rn, unsigned imm) { \
792
starti; \
793
add_sub_immediate(Rd, Rn, imm, decode, negated); \
794
}
795
796
INSN(addw, 0b000, 0b010);
797
INSN(subw, 0b010, 0b000);
798
INSN(add, 0b100, 0b110);
799
INSN(sub, 0b110, 0b100);
800
801
#undef INSN
802
803
// Logical (immediate)
804
#define INSN(NAME, decode, is32) \
805
void NAME(Register Rd, Register Rn, uint64_t imm) { \
806
starti; \
807
uint32_t val = encode_logical_immediate(is32, imm); \
808
f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10); \
809
srf(Rd, 0), zrf(Rn, 5); \
810
}
811
812
INSN(andw, 0b000, true);
813
INSN(orrw, 0b001, true);
814
INSN(eorw, 0b010, true);
815
INSN(andr, 0b100, false);
816
INSN(orr, 0b101, false);
817
INSN(eor, 0b110, false);
818
819
#undef INSN
820
821
#define INSN(NAME, decode, is32) \
822
void NAME(Register Rd, Register Rn, uint64_t imm) { \
823
starti; \
824
uint32_t val = encode_logical_immediate(is32, imm); \
825
f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10); \
826
zrf(Rd, 0), zrf(Rn, 5); \
827
}
828
829
INSN(ands, 0b111, false);
830
INSN(andsw, 0b011, true);
831
832
#undef INSN
833
834
// Move wide (immediate)
835
#define INSN(NAME, opcode) \
836
void NAME(Register Rd, unsigned imm, unsigned shift = 0) { \
837
assert_cond((shift/16)*16 == shift); \
838
starti; \
839
f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21), \
840
f(imm, 20, 5); \
841
rf(Rd, 0); \
842
}
843
844
INSN(movnw, 0b000);
845
INSN(movzw, 0b010);
846
INSN(movkw, 0b011);
847
INSN(movn, 0b100);
848
INSN(movz, 0b110);
849
INSN(movk, 0b111);
850
851
#undef INSN
852
853
// Bitfield
854
#define INSN(NAME, opcode, size) \
855
void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) { \
856
starti; \
857
guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\
858
f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10); \
859
zrf(Rn, 5), rf(Rd, 0); \
860
}
861
862
INSN(sbfmw, 0b0001001100, 0);
863
INSN(bfmw, 0b0011001100, 0);
864
INSN(ubfmw, 0b0101001100, 0);
865
INSN(sbfm, 0b1001001101, 1);
866
INSN(bfm, 0b1011001101, 1);
867
INSN(ubfm, 0b1101001101, 1);
868
869
#undef INSN
870
871
// Extract
872
#define INSN(NAME, opcode, size) \
873
void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) { \
874
starti; \
875
guarantee(size == 1 || imms < 32, "incorrect imms"); \
876
f(opcode, 31, 21), f(imms, 15, 10); \
877
zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \
878
}
879
880
INSN(extrw, 0b00010011100, 0);
881
INSN(extr, 0b10010011110, 1);
882
883
#undef INSN
884
885
// The maximum range of a branch is fixed for the AArch64
886
// architecture. In debug mode we shrink it in order to test
887
// trampolines, but not so small that branches in the interpreter
888
// are out of range.
889
static const uint64_t branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
890
891
static bool reachable_from_branch_at(address branch, address target) {
892
return uabs(target - branch) < branch_range;
893
}
894
895
// Unconditional branch (immediate)
896
#define INSN(NAME, opcode) \
897
void NAME(address dest) { \
898
starti; \
899
int64_t offset = (dest - pc()) >> 2; \
900
DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
901
f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0); \
902
} \
903
void NAME(Label &L) { \
904
wrap_label(L, &Assembler::NAME); \
905
} \
906
void NAME(const Address &dest);
907
908
INSN(b, 0);
909
INSN(bl, 1);
910
911
#undef INSN
912
913
// Compare & branch (immediate)
914
#define INSN(NAME, opcode) \
915
void NAME(Register Rt, address dest) { \
916
int64_t offset = (dest - pc()) >> 2; \
917
starti; \
918
f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0); \
919
} \
920
void NAME(Register Rt, Label &L) { \
921
wrap_label(Rt, L, &Assembler::NAME); \
922
}
923
924
INSN(cbzw, 0b00110100);
925
INSN(cbnzw, 0b00110101);
926
INSN(cbz, 0b10110100);
927
INSN(cbnz, 0b10110101);
928
929
#undef INSN
930
931
// Test & branch (immediate)
932
#define INSN(NAME, opcode) \
933
void NAME(Register Rt, int bitpos, address dest) { \
934
int64_t offset = (dest - pc()) >> 2; \
935
int b5 = bitpos >> 5; \
936
bitpos &= 0x1f; \
937
starti; \
938
f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
939
rf(Rt, 0); \
940
} \
941
void NAME(Register Rt, int bitpos, Label &L) { \
942
wrap_label(Rt, bitpos, L, &Assembler::NAME); \
943
}
944
945
INSN(tbz, 0b0110110);
946
INSN(tbnz, 0b0110111);
947
948
#undef INSN
949
950
// Conditional branch (immediate)
951
enum Condition
952
{EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
953
954
void br(Condition cond, address dest) {
955
int64_t offset = (dest - pc()) >> 2;
956
starti;
957
f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
958
}
959
960
#define INSN(NAME, cond) \
961
void NAME(address dest) { \
962
br(cond, dest); \
963
}
964
965
INSN(beq, EQ);
966
INSN(bne, NE);
967
INSN(bhs, HS);
968
INSN(bcs, CS);
969
INSN(blo, LO);
970
INSN(bcc, CC);
971
INSN(bmi, MI);
972
INSN(bpl, PL);
973
INSN(bvs, VS);
974
INSN(bvc, VC);
975
INSN(bhi, HI);
976
INSN(bls, LS);
977
INSN(bge, GE);
978
INSN(blt, LT);
979
INSN(bgt, GT);
980
INSN(ble, LE);
981
INSN(bal, AL);
982
INSN(bnv, NV);
983
984
void br(Condition cc, Label &L);
985
986
#undef INSN
987
988
// Exception generation
989
void generate_exception(int opc, int op2, int LL, unsigned imm) {
990
starti;
991
f(0b11010100, 31, 24);
992
f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
993
}
994
995
#define INSN(NAME, opc, op2, LL) \
996
void NAME(unsigned imm) { \
997
generate_exception(opc, op2, LL, imm); \
998
}
999
1000
INSN(svc, 0b000, 0, 0b01);
1001
INSN(hvc, 0b000, 0, 0b10);
1002
INSN(smc, 0b000, 0, 0b11);
1003
INSN(brk, 0b001, 0, 0b00);
1004
INSN(hlt, 0b010, 0, 0b00);
1005
INSN(dcps1, 0b101, 0, 0b01);
1006
INSN(dcps2, 0b101, 0, 0b10);
1007
INSN(dcps3, 0b101, 0, 0b11);
1008
1009
#undef INSN
1010
1011
// System
1012
void system(int op0, int op1, int CRn, int CRm, int op2,
1013
Register rt = dummy_reg)
1014
{
1015
starti;
1016
f(0b11010101000, 31, 21);
1017
f(op0, 20, 19);
1018
f(op1, 18, 16);
1019
f(CRn, 15, 12);
1020
f(CRm, 11, 8);
1021
f(op2, 7, 5);
1022
rf(rt, 0);
1023
}
1024
1025
void hint(int imm) {
1026
system(0b00, 0b011, 0b0010, 0b0000, imm);
1027
}
1028
1029
void nop() {
1030
hint(0);
1031
}
1032
1033
void yield() {
1034
hint(1);
1035
}
1036
1037
void wfe() {
1038
hint(2);
1039
}
1040
1041
void wfi() {
1042
hint(3);
1043
}
1044
1045
void sev() {
1046
hint(4);
1047
}
1048
1049
void sevl() {
1050
hint(5);
1051
}
1052
1053
// we only provide mrs and msr for the special purpose system
1054
// registers where op1 (instr[20:19]) == 11 and, (currently) only
1055
// use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
1056
1057
void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1058
starti;
1059
f(0b1101010100011, 31, 19);
1060
f(op1, 18, 16);
1061
f(CRn, 15, 12);
1062
f(CRm, 11, 8);
1063
f(op2, 7, 5);
1064
// writing zr is ok
1065
zrf(rt, 0);
1066
}
1067
1068
void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1069
starti;
1070
f(0b1101010100111, 31, 19);
1071
f(op1, 18, 16);
1072
f(CRn, 15, 12);
1073
f(CRm, 11, 8);
1074
f(op2, 7, 5);
1075
// reading to zr is a mistake
1076
rf(rt, 0);
1077
}
1078
1079
enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1080
ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1081
1082
void dsb(barrier imm) {
1083
system(0b00, 0b011, 0b00011, imm, 0b100);
1084
}
1085
1086
void dmb(barrier imm) {
1087
system(0b00, 0b011, 0b00011, imm, 0b101);
1088
}
1089
1090
void isb() {
1091
system(0b00, 0b011, 0b00011, SY, 0b110);
1092
}
1093
1094
void sys(int op1, int CRn, int CRm, int op2,
1095
Register rt = (Register)0b11111) {
1096
system(0b01, op1, CRn, CRm, op2, rt);
1097
}
1098
1099
// Only implement operations accessible from EL0 or higher, i.e.,
1100
// op1 CRn CRm op2
1101
// IC IVAU 3 7 5 1
1102
// DC CVAC 3 7 10 1
1103
// DC CVAP 3 7 12 1
1104
// DC CVAU 3 7 11 1
1105
// DC CIVAC 3 7 14 1
1106
// DC ZVA 3 7 4 1
1107
// So only deal with the CRm field.
1108
enum icache_maintenance {IVAU = 0b0101};
1109
enum dcache_maintenance {CVAC = 0b1010, CVAP = 0b1100, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1110
1111
void dc(dcache_maintenance cm, Register Rt) {
1112
sys(0b011, 0b0111, cm, 0b001, Rt);
1113
}
1114
1115
void ic(icache_maintenance cm, Register Rt) {
1116
sys(0b011, 0b0111, cm, 0b001, Rt);
1117
}
1118
1119
// A more convenient access to dmb for our purposes
1120
enum Membar_mask_bits {
1121
// We can use ISH for a barrier because the ARM ARM says "This
1122
// architecture assumes that all Processing Elements that use the
1123
// same operating system or hypervisor are in the same Inner
1124
// Shareable shareability domain."
1125
StoreStore = ISHST,
1126
LoadStore = ISHLD,
1127
LoadLoad = ISHLD,
1128
StoreLoad = ISH,
1129
AnyAny = ISH
1130
};
1131
1132
void membar(Membar_mask_bits order_constraint) {
1133
dmb(Assembler::barrier(order_constraint));
1134
}
1135
1136
// Unconditional branch (register)
1137
void branch_reg(Register R, int opc) {
1138
starti;
1139
f(0b1101011, 31, 25);
1140
f(opc, 24, 21);
1141
f(0b11111000000, 20, 10);
1142
rf(R, 5);
1143
f(0b00000, 4, 0);
1144
}
1145
1146
#define INSN(NAME, opc) \
1147
void NAME(Register R) { \
1148
branch_reg(R, opc); \
1149
}
1150
1151
INSN(br, 0b0000);
1152
INSN(blr, 0b0001);
1153
INSN(ret, 0b0010);
1154
1155
void ret(void *p); // This forces a compile-time error for ret(0)
1156
1157
#undef INSN
1158
1159
#define INSN(NAME, opc) \
1160
void NAME() { \
1161
branch_reg(dummy_reg, opc); \
1162
}
1163
1164
INSN(eret, 0b0100);
1165
INSN(drps, 0b0101);
1166
1167
#undef INSN
1168
1169
// Load/store exclusive
1170
enum operand_size { byte, halfword, word, xword };
1171
1172
void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1173
Register Rn, enum operand_size sz, int op, bool ordered) {
1174
starti;
1175
f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1176
rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0);
1177
}
1178
1179
void load_exclusive(Register dst, Register addr,
1180
enum operand_size sz, bool ordered) {
1181
load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1182
sz, 0b010, ordered);
1183
}
1184
1185
void store_exclusive(Register status, Register new_val, Register addr,
1186
enum operand_size sz, bool ordered) {
1187
load_store_exclusive(status, new_val, dummy_reg, addr,
1188
sz, 0b000, ordered);
1189
}
1190
1191
#define INSN4(NAME, sz, op, o0) /* Four registers */ \
1192
void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) { \
1193
guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1194
load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0); \
1195
}
1196
1197
#define INSN3(NAME, sz, op, o0) /* Three registers */ \
1198
void NAME(Register Rs, Register Rt, Register Rn) { \
1199
guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction"); \
1200
load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1201
}
1202
1203
#define INSN2(NAME, sz, op, o0) /* Two registers */ \
1204
void NAME(Register Rt, Register Rn) { \
1205
load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1206
Rn, sz, op, o0); \
1207
}
1208
1209
#define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1210
void NAME(Register Rt1, Register Rt2, Register Rn) { \
1211
guarantee(Rt1 != Rt2, "unpredictable instruction"); \
1212
load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0); \
1213
}
1214
1215
// bytes
1216
INSN3(stxrb, byte, 0b000, 0);
1217
INSN3(stlxrb, byte, 0b000, 1);
1218
INSN2(ldxrb, byte, 0b010, 0);
1219
INSN2(ldaxrb, byte, 0b010, 1);
1220
INSN2(stlrb, byte, 0b100, 1);
1221
INSN2(ldarb, byte, 0b110, 1);
1222
1223
// halfwords
1224
INSN3(stxrh, halfword, 0b000, 0);
1225
INSN3(stlxrh, halfword, 0b000, 1);
1226
INSN2(ldxrh, halfword, 0b010, 0);
1227
INSN2(ldaxrh, halfword, 0b010, 1);
1228
INSN2(stlrh, halfword, 0b100, 1);
1229
INSN2(ldarh, halfword, 0b110, 1);
1230
1231
// words
1232
INSN3(stxrw, word, 0b000, 0);
1233
INSN3(stlxrw, word, 0b000, 1);
1234
INSN4(stxpw, word, 0b001, 0);
1235
INSN4(stlxpw, word, 0b001, 1);
1236
INSN2(ldxrw, word, 0b010, 0);
1237
INSN2(ldaxrw, word, 0b010, 1);
1238
INSN_FOO(ldxpw, word, 0b011, 0);
1239
INSN_FOO(ldaxpw, word, 0b011, 1);
1240
INSN2(stlrw, word, 0b100, 1);
1241
INSN2(ldarw, word, 0b110, 1);
1242
1243
// xwords
1244
INSN3(stxr, xword, 0b000, 0);
1245
INSN3(stlxr, xword, 0b000, 1);
1246
INSN4(stxp, xword, 0b001, 0);
1247
INSN4(stlxp, xword, 0b001, 1);
1248
INSN2(ldxr, xword, 0b010, 0);
1249
INSN2(ldaxr, xword, 0b010, 1);
1250
INSN_FOO(ldxp, xword, 0b011, 0);
1251
INSN_FOO(ldaxp, xword, 0b011, 1);
1252
INSN2(stlr, xword, 0b100, 1);
1253
INSN2(ldar, xword, 0b110, 1);
1254
1255
#undef INSN2
1256
#undef INSN3
1257
#undef INSN4
1258
#undef INSN_FOO
1259
1260
// 8.1 Compare and swap extensions
1261
void lse_cas(Register Rs, Register Rt, Register Rn,
1262
enum operand_size sz, bool a, bool r, bool not_pair) {
1263
starti;
1264
if (! not_pair) { // Pair
1265
assert(sz == word || sz == xword, "invalid size");
1266
/* The size bit is in bit 30, not 31 */
1267
sz = (operand_size)(sz == word ? 0b00:0b01);
1268
}
1269
f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21);
1270
zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0);
1271
}
1272
1273
// CAS
1274
#define INSN(NAME, a, r) \
1275
void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1276
assert(Rs != Rn && Rs != Rt, "unpredictable instruction"); \
1277
lse_cas(Rs, Rt, Rn, sz, a, r, true); \
1278
}
1279
INSN(cas, false, false)
1280
INSN(casa, true, false)
1281
INSN(casl, false, true)
1282
INSN(casal, true, true)
1283
#undef INSN
1284
1285
// CASP
1286
#define INSN(NAME, a, r) \
1287
void NAME(operand_size sz, Register Rs, Register Rs1, \
1288
Register Rt, Register Rt1, Register Rn) { \
1289
assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 && \
1290
Rs->successor() == Rs1 && Rt->successor() == Rt1 && \
1291
Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers"); \
1292
lse_cas(Rs, Rt, Rn, sz, a, r, false); \
1293
}
1294
INSN(casp, false, false)
1295
INSN(caspa, true, false)
1296
INSN(caspl, false, true)
1297
INSN(caspal, true, true)
1298
#undef INSN
1299
1300
// 8.1 Atomic operations
1301
void lse_atomic(Register Rs, Register Rt, Register Rn,
1302
enum operand_size sz, int op1, int op2, bool a, bool r) {
1303
starti;
1304
f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1305
zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0);
1306
}
1307
1308
#define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2) \
1309
void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1310
lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false); \
1311
} \
1312
void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1313
lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false); \
1314
} \
1315
void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1316
lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true); \
1317
} \
1318
void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1319
lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true); \
1320
}
1321
INSN(ldadd, ldadda, ldaddl, ldaddal, 0, 0b000);
1322
INSN(ldbic, ldbica, ldbicl, ldbical, 0, 0b001);
1323
INSN(ldeor, ldeora, ldeorl, ldeoral, 0, 0b010);
1324
INSN(ldorr, ldorra, ldorrl, ldorral, 0, 0b011);
1325
INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1326
INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1327
INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1328
INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1329
INSN(swp, swpa, swpl, swpal, 1, 0b000);
1330
#undef INSN
1331
1332
// Load register (literal)
1333
#define INSN(NAME, opc, V) \
1334
void NAME(Register Rt, address dest) { \
1335
int64_t offset = (dest - pc()) >> 2; \
1336
starti; \
1337
f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \
1338
sf(offset, 23, 5); \
1339
rf(Rt, 0); \
1340
} \
1341
void NAME(Register Rt, address dest, relocInfo::relocType rtype) { \
1342
InstructionMark im(this); \
1343
guarantee(rtype == relocInfo::internal_word_type, \
1344
"only internal_word_type relocs make sense here"); \
1345
code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1346
NAME(Rt, dest); \
1347
} \
1348
void NAME(Register Rt, Label &L) { \
1349
wrap_label(Rt, L, &Assembler::NAME); \
1350
}
1351
1352
INSN(ldrw, 0b00, 0);
1353
INSN(ldr, 0b01, 0);
1354
INSN(ldrsw, 0b10, 0);
1355
1356
#undef INSN
1357
1358
#define INSN(NAME, opc, V) \
1359
void NAME(FloatRegister Rt, address dest) { \
1360
int64_t offset = (dest - pc()) >> 2; \
1361
starti; \
1362
f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \
1363
sf(offset, 23, 5); \
1364
rf((Register)Rt, 0); \
1365
}
1366
1367
INSN(ldrs, 0b00, 1);
1368
INSN(ldrd, 0b01, 1);
1369
INSN(ldrq, 0b10, 1);
1370
1371
#undef INSN
1372
1373
#define INSN(NAME, size, opc) \
1374
void NAME(FloatRegister Rt, Register Rn) { \
1375
starti; \
1376
f(size, 31, 30), f(0b111100, 29, 24), f(opc, 23, 22), f(0, 21); \
1377
f(0, 20, 12), f(0b01, 11, 10); \
1378
rf(Rn, 5), rf((Register)Rt, 0); \
1379
}
1380
1381
INSN(ldrs, 0b10, 0b01);
1382
INSN(ldrd, 0b11, 0b01);
1383
INSN(ldrq, 0b00, 0b11);
1384
1385
#undef INSN
1386
1387
1388
#define INSN(NAME, opc, V) \
1389
void NAME(address dest, prfop op = PLDL1KEEP) { \
1390
int64_t offset = (dest - pc()) >> 2; \
1391
starti; \
1392
f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \
1393
sf(offset, 23, 5); \
1394
f(op, 4, 0); \
1395
} \
1396
void NAME(Label &L, prfop op = PLDL1KEEP) { \
1397
wrap_label(L, op, &Assembler::NAME); \
1398
}
1399
1400
INSN(prfm, 0b11, 0);
1401
1402
#undef INSN
1403
1404
// Load/store
1405
void ld_st1(int opc, int p1, int V, int L,
1406
Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1407
starti;
1408
f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1409
zrf(Rt2, 10), zrf(Rt1, 0);
1410
if (no_allocate) {
1411
adr.encode_nontemporal_pair(current);
1412
} else {
1413
adr.encode_pair(current);
1414
}
1415
}
1416
1417
// Load/store register pair (offset)
1418
#define INSN(NAME, size, p1, V, L, no_allocate) \
1419
void NAME(Register Rt1, Register Rt2, Address adr) { \
1420
ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1421
}
1422
1423
INSN(stpw, 0b00, 0b101, 0, 0, false);
1424
INSN(ldpw, 0b00, 0b101, 0, 1, false);
1425
INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1426
INSN(stp, 0b10, 0b101, 0, 0, false);
1427
INSN(ldp, 0b10, 0b101, 0, 1, false);
1428
1429
// Load/store no-allocate pair (offset)
1430
INSN(stnpw, 0b00, 0b101, 0, 0, true);
1431
INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1432
INSN(stnp, 0b10, 0b101, 0, 0, true);
1433
INSN(ldnp, 0b10, 0b101, 0, 1, true);
1434
1435
#undef INSN
1436
1437
#define INSN(NAME, size, p1, V, L, no_allocate) \
1438
void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) { \
1439
ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1440
}
1441
1442
INSN(stps, 0b00, 0b101, 1, 0, false);
1443
INSN(ldps, 0b00, 0b101, 1, 1, false);
1444
INSN(stpd, 0b01, 0b101, 1, 0, false);
1445
INSN(ldpd, 0b01, 0b101, 1, 1, false);
1446
INSN(stpq, 0b10, 0b101, 1, 0, false);
1447
INSN(ldpq, 0b10, 0b101, 1, 1, false);
1448
1449
#undef INSN
1450
1451
// Load/store register (all modes)
1452
void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1453
starti;
1454
1455
f(V, 26); // general reg?
1456
zrf(Rt, 0);
1457
1458
// Encoding for literal loads is done here (rather than pushed
1459
// down into Address::encode) because the encoding of this
1460
// instruction is too different from all of the other forms to
1461
// make it worth sharing.
1462
if (adr.getMode() == Address::literal) {
1463
assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1464
assert(op == 0b01, "literal form can only be used with loads");
1465
f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1466
int64_t offset = (adr.target() - pc()) >> 2;
1467
sf(offset, 23, 5);
1468
code_section()->relocate(pc(), adr.rspec());
1469
return;
1470
}
1471
1472
f(size, 31, 30);
1473
f(op, 23, 22); // str
1474
adr.encode(current);
1475
}
1476
1477
#define INSN(NAME, size, op) \
1478
void NAME(Register Rt, const Address &adr) { \
1479
ld_st2(Rt, adr, size, op); \
1480
} \
1481
1482
INSN(str, 0b11, 0b00);
1483
INSN(strw, 0b10, 0b00);
1484
INSN(strb, 0b00, 0b00);
1485
INSN(strh, 0b01, 0b00);
1486
1487
INSN(ldr, 0b11, 0b01);
1488
INSN(ldrw, 0b10, 0b01);
1489
INSN(ldrb, 0b00, 0b01);
1490
INSN(ldrh, 0b01, 0b01);
1491
1492
INSN(ldrsb, 0b00, 0b10);
1493
INSN(ldrsbw, 0b00, 0b11);
1494
INSN(ldrsh, 0b01, 0b10);
1495
INSN(ldrshw, 0b01, 0b11);
1496
INSN(ldrsw, 0b10, 0b10);
1497
1498
#undef INSN
1499
1500
#define INSN(NAME, size, op) \
1501
void NAME(const Address &adr, prfop pfop = PLDL1KEEP) { \
1502
ld_st2((Register)pfop, adr, size, op); \
1503
}
1504
1505
INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1506
// writeback modes, but the assembler
1507
// doesn't enfore that.
1508
1509
#undef INSN
1510
1511
#define INSN(NAME, size, op) \
1512
void NAME(FloatRegister Rt, const Address &adr) { \
1513
ld_st2((Register)Rt, adr, size, op, 1); \
1514
}
1515
1516
INSN(strd, 0b11, 0b00);
1517
INSN(strs, 0b10, 0b00);
1518
INSN(ldrd, 0b11, 0b01);
1519
INSN(ldrs, 0b10, 0b01);
1520
INSN(strq, 0b00, 0b10);
1521
INSN(ldrq, 0x00, 0b11);
1522
1523
#undef INSN
1524
1525
/* SIMD extensions
1526
*
1527
* We just use FloatRegister in the following. They are exactly the same
1528
* as SIMD registers.
1529
*/
1530
public:
1531
1532
enum SIMD_Arrangement {
1533
T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
1534
};
1535
1536
enum SIMD_RegVariant {
1537
B, H, S, D, Q, INVALID
1538
};
1539
1540
enum shift_kind { LSL, LSR, ASR, ROR };
1541
1542
void op_shifted_reg(unsigned decode,
1543
enum shift_kind kind, unsigned shift,
1544
unsigned size, unsigned op) {
1545
f(size, 31);
1546
f(op, 30, 29);
1547
f(decode, 28, 24);
1548
f(shift, 15, 10);
1549
f(kind, 23, 22);
1550
}
1551
1552
// Logical (shifted register)
1553
#define INSN(NAME, size, op, N) \
1554
void NAME(Register Rd, Register Rn, Register Rm, \
1555
enum shift_kind kind = LSL, unsigned shift = 0) { \
1556
starti; \
1557
guarantee(size == 1 || shift < 32, "incorrect shift"); \
1558
f(N, 21); \
1559
zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \
1560
op_shifted_reg(0b01010, kind, shift, size, op); \
1561
}
1562
1563
INSN(andr, 1, 0b00, 0);
1564
INSN(orr, 1, 0b01, 0);
1565
INSN(eor, 1, 0b10, 0);
1566
INSN(ands, 1, 0b11, 0);
1567
INSN(andw, 0, 0b00, 0);
1568
INSN(orrw, 0, 0b01, 0);
1569
INSN(eorw, 0, 0b10, 0);
1570
INSN(andsw, 0, 0b11, 0);
1571
1572
#undef INSN
1573
1574
#define INSN(NAME, size, op, N) \
1575
void NAME(Register Rd, Register Rn, Register Rm, \
1576
enum shift_kind kind = LSL, unsigned shift = 0) { \
1577
starti; \
1578
f(N, 21); \
1579
zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \
1580
op_shifted_reg(0b01010, kind, shift, size, op); \
1581
} \
1582
\
1583
/* These instructions have no immediate form. Provide an overload so \
1584
that if anyone does try to use an immediate operand -- this has \
1585
happened! -- we'll get a compile-time error. */ \
1586
void NAME(Register Rd, Register Rn, unsigned imm, \
1587
enum shift_kind kind = LSL, unsigned shift = 0) { \
1588
assert(false, " can't be used with immediate operand"); \
1589
}
1590
1591
INSN(bic, 1, 0b00, 1);
1592
INSN(orn, 1, 0b01, 1);
1593
INSN(eon, 1, 0b10, 1);
1594
INSN(bics, 1, 0b11, 1);
1595
INSN(bicw, 0, 0b00, 1);
1596
INSN(ornw, 0, 0b01, 1);
1597
INSN(eonw, 0, 0b10, 1);
1598
INSN(bicsw, 0, 0b11, 1);
1599
1600
#undef INSN
1601
1602
#ifdef _WIN64
1603
// In MSVC, `mvn` is defined as a macro and it affects compilation
1604
#undef mvn
1605
#endif
1606
1607
// Aliases for short forms of orn
1608
void mvn(Register Rd, Register Rm,
1609
enum shift_kind kind = LSL, unsigned shift = 0) {
1610
orn(Rd, zr, Rm, kind, shift);
1611
}
1612
1613
void mvnw(Register Rd, Register Rm,
1614
enum shift_kind kind = LSL, unsigned shift = 0) {
1615
ornw(Rd, zr, Rm, kind, shift);
1616
}
1617
1618
// Add/subtract (shifted register)
1619
#define INSN(NAME, size, op) \
1620
void NAME(Register Rd, Register Rn, Register Rm, \
1621
enum shift_kind kind, unsigned shift = 0) { \
1622
starti; \
1623
f(0, 21); \
1624
assert_cond(kind != ROR); \
1625
guarantee(size == 1 || shift < 32, "incorrect shift");\
1626
zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16); \
1627
op_shifted_reg(0b01011, kind, shift, size, op); \
1628
}
1629
1630
INSN(add, 1, 0b000);
1631
INSN(sub, 1, 0b10);
1632
INSN(addw, 0, 0b000);
1633
INSN(subw, 0, 0b10);
1634
1635
INSN(adds, 1, 0b001);
1636
INSN(subs, 1, 0b11);
1637
INSN(addsw, 0, 0b001);
1638
INSN(subsw, 0, 0b11);
1639
1640
#undef INSN
1641
1642
// Add/subtract (extended register)
1643
#define INSN(NAME, op) \
1644
void NAME(Register Rd, Register Rn, Register Rm, \
1645
ext::operation option, int amount = 0) { \
1646
starti; \
1647
zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0); \
1648
add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1649
}
1650
1651
void add_sub_extended_reg(unsigned op, unsigned decode,
1652
Register Rd, Register Rn, Register Rm,
1653
unsigned opt, ext::operation option, unsigned imm) {
1654
guarantee(imm <= 4, "shift amount must be <= 4");
1655
f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1656
f(option, 15, 13), f(imm, 12, 10);
1657
}
1658
1659
INSN(addw, 0b000);
1660
INSN(subw, 0b010);
1661
INSN(add, 0b100);
1662
INSN(sub, 0b110);
1663
1664
#undef INSN
1665
1666
#define INSN(NAME, op) \
1667
void NAME(Register Rd, Register Rn, Register Rm, \
1668
ext::operation option, int amount = 0) { \
1669
starti; \
1670
zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0); \
1671
add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1672
}
1673
1674
INSN(addsw, 0b001);
1675
INSN(subsw, 0b011);
1676
INSN(adds, 0b101);
1677
INSN(subs, 0b111);
1678
1679
#undef INSN
1680
1681
// Aliases for short forms of add and sub
1682
#define INSN(NAME) \
1683
void NAME(Register Rd, Register Rn, Register Rm) { \
1684
if (Rd == sp || Rn == sp) \
1685
NAME(Rd, Rn, Rm, ext::uxtx); \
1686
else \
1687
NAME(Rd, Rn, Rm, LSL); \
1688
}
1689
1690
INSN(addw);
1691
INSN(subw);
1692
INSN(add);
1693
INSN(sub);
1694
1695
INSN(addsw);
1696
INSN(subsw);
1697
INSN(adds);
1698
INSN(subs);
1699
1700
#undef INSN
1701
1702
// Add/subtract (with carry)
1703
void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1704
starti;
1705
f(op, 31, 29);
1706
f(0b11010000, 28, 21);
1707
f(0b000000, 15, 10);
1708
zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1709
}
1710
1711
#define INSN(NAME, op) \
1712
void NAME(Register Rd, Register Rn, Register Rm) { \
1713
add_sub_carry(op, Rd, Rn, Rm); \
1714
}
1715
1716
INSN(adcw, 0b000);
1717
INSN(adcsw, 0b001);
1718
INSN(sbcw, 0b010);
1719
INSN(sbcsw, 0b011);
1720
INSN(adc, 0b100);
1721
INSN(adcs, 0b101);
1722
INSN(sbc,0b110);
1723
INSN(sbcs, 0b111);
1724
1725
#undef INSN
1726
1727
// Conditional compare (both kinds)
1728
void conditional_compare(unsigned op, int o1, int o2, int o3,
1729
Register Rn, unsigned imm5, unsigned nzcv,
1730
unsigned cond) {
1731
starti;
1732
f(op, 31, 29);
1733
f(0b11010010, 28, 21);
1734
f(cond, 15, 12);
1735
f(o1, 11);
1736
f(o2, 10);
1737
f(o3, 4);
1738
f(nzcv, 3, 0);
1739
f(imm5, 20, 16), zrf(Rn, 5);
1740
}
1741
1742
#define INSN(NAME, op) \
1743
void NAME(Register Rn, Register Rm, int imm, Condition cond) { \
1744
int regNumber = (Rm == zr ? 31 : (uintptr_t)Rm); \
1745
conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond); \
1746
} \
1747
\
1748
void NAME(Register Rn, int imm5, int imm, Condition cond) { \
1749
conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond); \
1750
}
1751
1752
INSN(ccmnw, 0b001);
1753
INSN(ccmpw, 0b011);
1754
INSN(ccmn, 0b101);
1755
INSN(ccmp, 0b111);
1756
1757
#undef INSN
1758
1759
// Conditional select
1760
void conditional_select(unsigned op, unsigned op2,
1761
Register Rd, Register Rn, Register Rm,
1762
unsigned cond) {
1763
starti;
1764
f(op, 31, 29);
1765
f(0b11010100, 28, 21);
1766
f(cond, 15, 12);
1767
f(op2, 11, 10);
1768
zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1769
}
1770
1771
#define INSN(NAME, op, op2) \
1772
void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1773
conditional_select(op, op2, Rd, Rn, Rm, cond); \
1774
}
1775
1776
INSN(cselw, 0b000, 0b00);
1777
INSN(csincw, 0b000, 0b01);
1778
INSN(csinvw, 0b010, 0b00);
1779
INSN(csnegw, 0b010, 0b01);
1780
INSN(csel, 0b100, 0b00);
1781
INSN(csinc, 0b100, 0b01);
1782
INSN(csinv, 0b110, 0b00);
1783
INSN(csneg, 0b110, 0b01);
1784
1785
#undef INSN
1786
1787
// Data processing
1788
void data_processing(unsigned op29, unsigned opcode,
1789
Register Rd, Register Rn) {
1790
f(op29, 31, 29), f(0b11010110, 28, 21);
1791
f(opcode, 15, 10);
1792
rf(Rn, 5), rf(Rd, 0);
1793
}
1794
1795
// (1 source)
1796
#define INSN(NAME, op29, opcode2, opcode) \
1797
void NAME(Register Rd, Register Rn) { \
1798
starti; \
1799
f(opcode2, 20, 16); \
1800
data_processing(op29, opcode, Rd, Rn); \
1801
}
1802
1803
INSN(rbitw, 0b010, 0b00000, 0b00000);
1804
INSN(rev16w, 0b010, 0b00000, 0b00001);
1805
INSN(revw, 0b010, 0b00000, 0b00010);
1806
INSN(clzw, 0b010, 0b00000, 0b00100);
1807
INSN(clsw, 0b010, 0b00000, 0b00101);
1808
1809
INSN(rbit, 0b110, 0b00000, 0b00000);
1810
INSN(rev16, 0b110, 0b00000, 0b00001);
1811
INSN(rev32, 0b110, 0b00000, 0b00010);
1812
INSN(rev, 0b110, 0b00000, 0b00011);
1813
INSN(clz, 0b110, 0b00000, 0b00100);
1814
INSN(cls, 0b110, 0b00000, 0b00101);
1815
1816
#undef INSN
1817
1818
// (2 sources)
1819
#define INSN(NAME, op29, opcode) \
1820
void NAME(Register Rd, Register Rn, Register Rm) { \
1821
starti; \
1822
rf(Rm, 16); \
1823
data_processing(op29, opcode, Rd, Rn); \
1824
}
1825
1826
INSN(udivw, 0b000, 0b000010);
1827
INSN(sdivw, 0b000, 0b000011);
1828
INSN(lslvw, 0b000, 0b001000);
1829
INSN(lsrvw, 0b000, 0b001001);
1830
INSN(asrvw, 0b000, 0b001010);
1831
INSN(rorvw, 0b000, 0b001011);
1832
1833
INSN(udiv, 0b100, 0b000010);
1834
INSN(sdiv, 0b100, 0b000011);
1835
INSN(lslv, 0b100, 0b001000);
1836
INSN(lsrv, 0b100, 0b001001);
1837
INSN(asrv, 0b100, 0b001010);
1838
INSN(rorv, 0b100, 0b001011);
1839
1840
#undef INSN
1841
1842
// (3 sources)
1843
void data_processing(unsigned op54, unsigned op31, unsigned o0,
1844
Register Rd, Register Rn, Register Rm,
1845
Register Ra) {
1846
starti;
1847
f(op54, 31, 29), f(0b11011, 28, 24);
1848
f(op31, 23, 21), f(o0, 15);
1849
zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1850
}
1851
1852
#define INSN(NAME, op54, op31, o0) \
1853
void NAME(Register Rd, Register Rn, Register Rm, Register Ra) { \
1854
data_processing(op54, op31, o0, Rd, Rn, Rm, Ra); \
1855
}
1856
1857
INSN(maddw, 0b000, 0b000, 0);
1858
INSN(msubw, 0b000, 0b000, 1);
1859
INSN(madd, 0b100, 0b000, 0);
1860
INSN(msub, 0b100, 0b000, 1);
1861
INSN(smaddl, 0b100, 0b001, 0);
1862
INSN(smsubl, 0b100, 0b001, 1);
1863
INSN(umaddl, 0b100, 0b101, 0);
1864
INSN(umsubl, 0b100, 0b101, 1);
1865
1866
#undef INSN
1867
1868
#define INSN(NAME, op54, op31, o0) \
1869
void NAME(Register Rd, Register Rn, Register Rm) { \
1870
data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31); \
1871
}
1872
1873
INSN(smulh, 0b100, 0b010, 0);
1874
INSN(umulh, 0b100, 0b110, 0);
1875
1876
#undef INSN
1877
1878
// Floating-point data-processing (1 source)
1879
void data_processing(unsigned op31, unsigned type, unsigned opcode,
1880
FloatRegister Vd, FloatRegister Vn) {
1881
starti;
1882
f(op31, 31, 29);
1883
f(0b11110, 28, 24);
1884
f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1885
rf(Vn, 5), rf(Vd, 0);
1886
}
1887
1888
#define INSN(NAME, op31, type, opcode) \
1889
void NAME(FloatRegister Vd, FloatRegister Vn) { \
1890
data_processing(op31, type, opcode, Vd, Vn); \
1891
}
1892
1893
private:
1894
INSN(i_fmovs, 0b000, 0b00, 0b000000);
1895
public:
1896
INSN(fabss, 0b000, 0b00, 0b000001);
1897
INSN(fnegs, 0b000, 0b00, 0b000010);
1898
INSN(fsqrts, 0b000, 0b00, 0b000011);
1899
INSN(fcvts, 0b000, 0b00, 0b000101); // Single-precision to double-precision
1900
1901
private:
1902
INSN(i_fmovd, 0b000, 0b01, 0b000000);
1903
public:
1904
INSN(fabsd, 0b000, 0b01, 0b000001);
1905
INSN(fnegd, 0b000, 0b01, 0b000010);
1906
INSN(fsqrtd, 0b000, 0b01, 0b000011);
1907
INSN(fcvtd, 0b000, 0b01, 0b000100); // Double-precision to single-precision
1908
1909
void fmovd(FloatRegister Vd, FloatRegister Vn) {
1910
assert(Vd != Vn, "should be");
1911
i_fmovd(Vd, Vn);
1912
}
1913
1914
void fmovs(FloatRegister Vd, FloatRegister Vn) {
1915
assert(Vd != Vn, "should be");
1916
i_fmovs(Vd, Vn);
1917
}
1918
1919
private:
1920
void _fcvt_narrow_extend(FloatRegister Vd, SIMD_Arrangement Ta,
1921
FloatRegister Vn, SIMD_Arrangement Tb, bool do_extend) {
1922
assert((do_extend && (Tb >> 1) + 1 == (Ta >> 1))
1923
|| (!do_extend && (Ta >> 1) + 1 == (Tb >> 1)), "Incompatible arrangement");
1924
starti;
1925
int op30 = (do_extend ? Tb : Ta) & 1;
1926
int op22 = ((do_extend ? Ta : Tb) >> 1) & 1;
1927
f(0, 31), f(op30, 30), f(0b0011100, 29, 23), f(op22, 22);
1928
f(0b100001011, 21, 13), f(do_extend ? 1 : 0, 12), f(0b10, 11, 10);
1929
rf(Vn, 5), rf(Vd, 0);
1930
}
1931
1932
public:
1933
void fcvtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) {
1934
assert(Tb == T4H || Tb == T8H|| Tb == T2S || Tb == T4S, "invalid arrangement");
1935
_fcvt_narrow_extend(Vd, Ta, Vn, Tb, true);
1936
}
1937
1938
void fcvtn(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) {
1939
assert(Ta == T4H || Ta == T8H|| Ta == T2S || Ta == T4S, "invalid arrangement");
1940
_fcvt_narrow_extend(Vd, Ta, Vn, Tb, false);
1941
}
1942
1943
#undef INSN
1944
1945
// Floating-point data-processing (2 source)
1946
void data_processing(unsigned op31, unsigned type, unsigned opcode,
1947
FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1948
starti;
1949
f(op31, 31, 29);
1950
f(0b11110, 28, 24);
1951
f(type, 23, 22), f(1, 21), f(opcode, 15, 10);
1952
rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1953
}
1954
1955
#define INSN(NAME, op31, type, opcode) \
1956
void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \
1957
data_processing(op31, type, opcode, Vd, Vn, Vm); \
1958
}
1959
1960
INSN(fabds, 0b011, 0b10, 0b110101);
1961
INSN(fmuls, 0b000, 0b00, 0b000010);
1962
INSN(fdivs, 0b000, 0b00, 0b000110);
1963
INSN(fadds, 0b000, 0b00, 0b001010);
1964
INSN(fsubs, 0b000, 0b00, 0b001110);
1965
INSN(fmaxs, 0b000, 0b00, 0b010010);
1966
INSN(fmins, 0b000, 0b00, 0b010110);
1967
INSN(fnmuls, 0b000, 0b00, 0b100010);
1968
1969
INSN(fabdd, 0b011, 0b11, 0b110101);
1970
INSN(fmuld, 0b000, 0b01, 0b000010);
1971
INSN(fdivd, 0b000, 0b01, 0b000110);
1972
INSN(faddd, 0b000, 0b01, 0b001010);
1973
INSN(fsubd, 0b000, 0b01, 0b001110);
1974
INSN(fmaxd, 0b000, 0b01, 0b010010);
1975
INSN(fmind, 0b000, 0b01, 0b010110);
1976
INSN(fnmuld, 0b000, 0b01, 0b100010);
1977
1978
#undef INSN
1979
1980
// Floating-point data-processing (3 source)
1981
void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1982
FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1983
FloatRegister Va) {
1984
starti;
1985
f(op31, 31, 29);
1986
f(0b11111, 28, 24);
1987
f(type, 23, 22), f(o1, 21), f(o0, 15);
1988
rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1989
}
1990
1991
#define INSN(NAME, op31, type, o1, o0) \
1992
void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, \
1993
FloatRegister Va) { \
1994
data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va); \
1995
}
1996
1997
INSN(fmadds, 0b000, 0b00, 0, 0);
1998
INSN(fmsubs, 0b000, 0b00, 0, 1);
1999
INSN(fnmadds, 0b000, 0b00, 1, 0);
2000
INSN(fnmsubs, 0b000, 0b00, 1, 1);
2001
2002
INSN(fmaddd, 0b000, 0b01, 0, 0);
2003
INSN(fmsubd, 0b000, 0b01, 0, 1);
2004
INSN(fnmaddd, 0b000, 0b01, 1, 0);
2005
INSN(fnmsub, 0b000, 0b01, 1, 1);
2006
2007
#undef INSN
2008
2009
// Floating-point conditional select
2010
void fp_conditional_select(unsigned op31, unsigned type,
2011
unsigned op1, unsigned op2,
2012
Condition cond, FloatRegister Vd,
2013
FloatRegister Vn, FloatRegister Vm) {
2014
starti;
2015
f(op31, 31, 29);
2016
f(0b11110, 28, 24);
2017
f(type, 23, 22);
2018
f(op1, 21, 21);
2019
f(op2, 11, 10);
2020
f(cond, 15, 12);
2021
rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
2022
}
2023
2024
#define INSN(NAME, op31, type, op1, op2) \
2025
void NAME(FloatRegister Vd, FloatRegister Vn, \
2026
FloatRegister Vm, Condition cond) { \
2027
fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm); \
2028
}
2029
2030
INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
2031
INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
2032
2033
#undef INSN
2034
2035
// Floating-point<->integer conversions
2036
void float_int_convert(unsigned op31, unsigned type,
2037
unsigned rmode, unsigned opcode,
2038
Register Rd, Register Rn) {
2039
starti;
2040
f(op31, 31, 29);
2041
f(0b11110, 28, 24);
2042
f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
2043
f(opcode, 18, 16), f(0b000000, 15, 10);
2044
zrf(Rn, 5), zrf(Rd, 0);
2045
}
2046
2047
#define INSN(NAME, op31, type, rmode, opcode) \
2048
void NAME(Register Rd, FloatRegister Vn) { \
2049
float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn); \
2050
}
2051
2052
INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
2053
INSN(fcvtzs, 0b100, 0b00, 0b11, 0b000);
2054
INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
2055
INSN(fcvtzd, 0b100, 0b01, 0b11, 0b000);
2056
2057
INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
2058
INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
2059
2060
// INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
2061
2062
#undef INSN
2063
2064
#define INSN(NAME, op31, type, rmode, opcode) \
2065
void NAME(FloatRegister Vd, Register Rn) { \
2066
float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn); \
2067
}
2068
2069
INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
2070
INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
2071
2072
INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
2073
INSN(scvtfs, 0b100, 0b00, 0b00, 0b010);
2074
INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
2075
INSN(scvtfd, 0b100, 0b01, 0b00, 0b010);
2076
2077
// INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
2078
2079
#undef INSN
2080
2081
enum sign_kind { SIGNED, UNSIGNED };
2082
2083
private:
2084
void _xcvtf_scalar_integer(sign_kind sign, unsigned sz,
2085
FloatRegister Rd, FloatRegister Rn) {
2086
starti;
2087
f(0b01, 31, 30), f(sign == SIGNED ? 0 : 1, 29);
2088
f(0b111100, 27, 23), f((sz >> 1) & 1, 22), f(0b100001110110, 21, 10);
2089
rf(Rn, 5), rf(Rd, 0);
2090
}
2091
2092
public:
2093
#define INSN(NAME, sign, sz) \
2094
void NAME(FloatRegister Rd, FloatRegister Rn) { \
2095
_xcvtf_scalar_integer(sign, sz, Rd, Rn); \
2096
}
2097
2098
INSN(scvtfs, SIGNED, 0);
2099
INSN(scvtfd, SIGNED, 1);
2100
2101
#undef INSN
2102
2103
private:
2104
void _xcvtf_vector_integer(sign_kind sign, SIMD_Arrangement T,
2105
FloatRegister Rd, FloatRegister Rn) {
2106
assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
2107
starti;
2108
f(0, 31), f(T & 1, 30), f(sign == SIGNED ? 0 : 1, 29);
2109
f(0b011100, 28, 23), f((T >> 1) & 1, 22), f(0b100001110110, 21, 10);
2110
rf(Rn, 5), rf(Rd, 0);
2111
}
2112
2113
public:
2114
void scvtfv(SIMD_Arrangement T, FloatRegister Rd, FloatRegister Rn) {
2115
_xcvtf_vector_integer(SIGNED, T, Rd, Rn);
2116
}
2117
2118
// Floating-point compare
2119
void float_compare(unsigned op31, unsigned type,
2120
unsigned op, unsigned op2,
2121
FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
2122
starti;
2123
f(op31, 31, 29);
2124
f(0b11110, 28, 24);
2125
f(type, 23, 22), f(1, 21);
2126
f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
2127
rf(Vn, 5), rf(Vm, 16);
2128
}
2129
2130
2131
#define INSN(NAME, op31, type, op, op2) \
2132
void NAME(FloatRegister Vn, FloatRegister Vm) { \
2133
float_compare(op31, type, op, op2, Vn, Vm); \
2134
}
2135
2136
#define INSN1(NAME, op31, type, op, op2) \
2137
void NAME(FloatRegister Vn, double d) { \
2138
assert_cond(d == 0.0); \
2139
float_compare(op31, type, op, op2, Vn); \
2140
}
2141
2142
INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
2143
INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
2144
// INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
2145
// INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
2146
2147
INSN(fcmpd, 0b000, 0b01, 0b00, 0b00000);
2148
INSN1(fcmpd, 0b000, 0b01, 0b00, 0b01000);
2149
// INSN(fcmped, 0b000, 0b01, 0b00, 0b10000);
2150
// INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
2151
2152
#undef INSN
2153
#undef INSN1
2154
2155
// Floating-point compare. 3-registers versions (scalar).
2156
#define INSN(NAME, sz, e) \
2157
void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \
2158
starti; \
2159
f(0b01111110, 31, 24), f(e, 23), f(sz, 22), f(1, 21), rf(Vm, 16); \
2160
f(0b111011, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2161
} \
2162
2163
INSN(facged, 1, 0); // facge-double
2164
INSN(facges, 0, 0); // facge-single
2165
INSN(facgtd, 1, 1); // facgt-double
2166
INSN(facgts, 0, 1); // facgt-single
2167
2168
#undef INSN
2169
2170
// Floating-point Move (immediate)
2171
private:
2172
unsigned pack(double value);
2173
2174
void fmov_imm(FloatRegister Vn, double value, unsigned size) {
2175
starti;
2176
f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
2177
f(pack(value), 20, 13), f(0b10000000, 12, 5);
2178
rf(Vn, 0);
2179
}
2180
2181
public:
2182
2183
void fmovs(FloatRegister Vn, double value) {
2184
if (value)
2185
fmov_imm(Vn, value, 0b00);
2186
else
2187
movi(Vn, T2S, 0);
2188
}
2189
void fmovd(FloatRegister Vn, double value) {
2190
if (value)
2191
fmov_imm(Vn, value, 0b01);
2192
else
2193
movi(Vn, T1D, 0);
2194
}
2195
2196
// Floating-point rounding
2197
// type: half-precision = 11
2198
// single = 00
2199
// double = 01
2200
// rmode: A = Away = 100
2201
// I = current = 111
2202
// M = MinusInf = 010
2203
// N = eveN = 000
2204
// P = PlusInf = 001
2205
// X = eXact = 110
2206
// Z = Zero = 011
2207
void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) {
2208
starti;
2209
f(0b00011110, 31, 24);
2210
f(type, 23, 22);
2211
f(0b1001, 21, 18);
2212
f(rmode, 17, 15);
2213
f(0b10000, 14, 10);
2214
rf(Rn, 5), rf(Rd, 0);
2215
}
2216
#define INSN(NAME, type, rmode) \
2217
void NAME(FloatRegister Vd, FloatRegister Vn) { \
2218
float_round(type, rmode, Vd, Vn); \
2219
}
2220
2221
public:
2222
INSN(frintah, 0b11, 0b100);
2223
INSN(frintih, 0b11, 0b111);
2224
INSN(frintmh, 0b11, 0b010);
2225
INSN(frintnh, 0b11, 0b000);
2226
INSN(frintph, 0b11, 0b001);
2227
INSN(frintxh, 0b11, 0b110);
2228
INSN(frintzh, 0b11, 0b011);
2229
2230
INSN(frintas, 0b00, 0b100);
2231
INSN(frintis, 0b00, 0b111);
2232
INSN(frintms, 0b00, 0b010);
2233
INSN(frintns, 0b00, 0b000);
2234
INSN(frintps, 0b00, 0b001);
2235
INSN(frintxs, 0b00, 0b110);
2236
INSN(frintzs, 0b00, 0b011);
2237
2238
INSN(frintad, 0b01, 0b100);
2239
INSN(frintid, 0b01, 0b111);
2240
INSN(frintmd, 0b01, 0b010);
2241
INSN(frintnd, 0b01, 0b000);
2242
INSN(frintpd, 0b01, 0b001);
2243
INSN(frintxd, 0b01, 0b110);
2244
INSN(frintzd, 0b01, 0b011);
2245
#undef INSN
2246
2247
private:
2248
static short SIMD_Size_in_bytes[];
2249
2250
public:
2251
#define INSN(NAME, op) \
2252
void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) { \
2253
ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2254
} \
2255
2256
INSN(ldr, 1);
2257
INSN(str, 0);
2258
2259
#undef INSN
2260
2261
private:
2262
2263
void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2264
starti;
2265
f(0,31), f((int)T & 1, 30);
2266
f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2267
f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2268
}
2269
void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2270
int imm, int op1, int op2, int regs) {
2271
2272
bool replicate = op2 >> 2 == 3;
2273
// post-index value (imm) is formed differently for replicate/non-replicate ld* instructions
2274
int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs;
2275
guarantee(T < T1Q , "incorrect arrangement");
2276
guarantee(imm == expectedImmediate, "bad offset");
2277
starti;
2278
f(0,31), f((int)T & 1, 30);
2279
f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2280
f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2281
}
2282
void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2283
Register Xm, int op1, int op2) {
2284
starti;
2285
f(0,31), f((int)T & 1, 30);
2286
f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2287
f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2288
}
2289
2290
void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) {
2291
switch (a.getMode()) {
2292
case Address::base_plus_offset:
2293
guarantee(a.offset() == 0, "no offset allowed here");
2294
ld_st(Vt, T, a.base(), op1, op2);
2295
break;
2296
case Address::post:
2297
ld_st(Vt, T, a.base(), a.offset(), op1, op2, regs);
2298
break;
2299
case Address::post_reg:
2300
ld_st(Vt, T, a.base(), a.index(), op1, op2);
2301
break;
2302
default:
2303
ShouldNotReachHere();
2304
}
2305
}
2306
2307
public:
2308
2309
#define INSN1(NAME, op1, op2) \
2310
void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) { \
2311
ld_st(Vt, T, a, op1, op2, 1); \
2312
}
2313
2314
#define INSN2(NAME, op1, op2) \
2315
void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2316
assert(Vt->successor() == Vt2, "Registers must be ordered"); \
2317
ld_st(Vt, T, a, op1, op2, 2); \
2318
}
2319
2320
#define INSN3(NAME, op1, op2) \
2321
void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \
2322
SIMD_Arrangement T, const Address &a) { \
2323
assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3, \
2324
"Registers must be ordered"); \
2325
ld_st(Vt, T, a, op1, op2, 3); \
2326
}
2327
2328
#define INSN4(NAME, op1, op2) \
2329
void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \
2330
FloatRegister Vt4, SIMD_Arrangement T, const Address &a) { \
2331
assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 && \
2332
Vt3->successor() == Vt4, "Registers must be ordered"); \
2333
ld_st(Vt, T, a, op1, op2, 4); \
2334
}
2335
2336
INSN1(ld1, 0b001100010, 0b0111);
2337
INSN2(ld1, 0b001100010, 0b1010);
2338
INSN3(ld1, 0b001100010, 0b0110);
2339
INSN4(ld1, 0b001100010, 0b0010);
2340
2341
INSN2(ld2, 0b001100010, 0b1000);
2342
INSN3(ld3, 0b001100010, 0b0100);
2343
INSN4(ld4, 0b001100010, 0b0000);
2344
2345
INSN1(st1, 0b001100000, 0b0111);
2346
INSN2(st1, 0b001100000, 0b1010);
2347
INSN3(st1, 0b001100000, 0b0110);
2348
INSN4(st1, 0b001100000, 0b0010);
2349
2350
INSN2(st2, 0b001100000, 0b1000);
2351
INSN3(st3, 0b001100000, 0b0100);
2352
INSN4(st4, 0b001100000, 0b0000);
2353
2354
INSN1(ld1r, 0b001101010, 0b1100);
2355
INSN2(ld2r, 0b001101011, 0b1100);
2356
INSN3(ld3r, 0b001101010, 0b1110);
2357
INSN4(ld4r, 0b001101011, 0b1110);
2358
2359
#undef INSN1
2360
#undef INSN2
2361
#undef INSN3
2362
#undef INSN4
2363
2364
#define INSN(NAME, opc) \
2365
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2366
starti; \
2367
assert(T == T8B || T == T16B, "must be T8B or T16B"); \
2368
f(0, 31), f((int)T & 1, 30), f(opc, 29, 21); \
2369
rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2370
}
2371
2372
INSN(eor, 0b101110001);
2373
INSN(orr, 0b001110101);
2374
INSN(andr, 0b001110001);
2375
INSN(bic, 0b001110011);
2376
INSN(bif, 0b101110111);
2377
INSN(bit, 0b101110101);
2378
INSN(bsl, 0b101110011);
2379
INSN(orn, 0b001110111);
2380
2381
#undef INSN
2382
2383
#define INSN(NAME, opc, opc2, acceptT2D) \
2384
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2385
guarantee(T != T1Q && T != T1D, "incorrect arrangement"); \
2386
if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement"); \
2387
starti; \
2388
f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24); \
2389
f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10); \
2390
rf(Vn, 5), rf(Vd, 0); \
2391
}
2392
2393
INSN(addv, 0, 0b100001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2394
INSN(subv, 1, 0b100001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2395
INSN(uqsubv, 1, 0b001011, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2396
INSN(mulv, 0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2397
INSN(mlav, 0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2398
INSN(mlsv, 1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2399
INSN(sshl, 0, 0b010001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2400
INSN(ushl, 1, 0b010001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2401
INSN(addpv, 0, 0b101111, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2402
INSN(smullv, 0, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2403
INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2404
INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2405
INSN(maxv, 0, 0b011001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2406
INSN(minv, 0, 0b011011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2407
INSN(smaxp, 0, 0b101001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2408
INSN(sminp, 0, 0b101011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2409
INSN(cmeq, 1, 0b100011, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2410
INSN(cmgt, 0, 0b001101, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2411
INSN(cmge, 0, 0b001111, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2412
INSN(cmhi, 1, 0b001101, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2413
2414
#undef INSN
2415
2416
#define INSN(NAME, opc, opc2, accepted) \
2417
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
2418
guarantee(T != T1Q && T != T1D, "incorrect arrangement"); \
2419
if (accepted < 3) guarantee(T != T2D, "incorrect arrangement"); \
2420
if (accepted < 2) guarantee(T != T2S, "incorrect arrangement"); \
2421
if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement"); \
2422
starti; \
2423
f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24); \
2424
f((int)T >> 1, 23, 22), f(opc2, 21, 10); \
2425
rf(Vn, 5), rf(Vd, 0); \
2426
}
2427
2428
INSN(absr, 0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2429
INSN(negr, 1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2430
INSN(notr, 1, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2431
INSN(addv, 0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
2432
INSN(smaxv, 0, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
2433
INSN(umaxv, 1, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
2434
INSN(sminv, 0, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
2435
INSN(uminv, 1, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
2436
INSN(cls, 0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2437
INSN(clz, 1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2438
INSN(cnt, 0, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2439
INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2440
INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
2441
2442
#undef INSN
2443
2444
#define INSN(NAME, opc) \
2445
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
2446
starti; \
2447
assert(T == T4S, "arrangement must be T4S"); \
2448
f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23), \
2449
f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0); \
2450
}
2451
2452
INSN(fmaxv, 0);
2453
INSN(fminv, 1);
2454
2455
#undef INSN
2456
2457
#define INSN(NAME, op0, cmode0) \
2458
void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) { \
2459
unsigned cmode = cmode0; \
2460
unsigned op = op0; \
2461
starti; \
2462
assert(lsl == 0 || \
2463
((T == T4H || T == T8H) && lsl == 8) || \
2464
((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\
2465
cmode |= lsl >> 2; \
2466
if (T == T4H || T == T8H) cmode |= 0b1000; \
2467
if (!(T == T4H || T == T8H || T == T2S || T == T4S)) { \
2468
assert(op == 0 && cmode0 == 0, "must be MOVI"); \
2469
cmode = 0b1110; \
2470
if (T == T1D || T == T2D) op = 1; \
2471
} \
2472
f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19); \
2473
f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5); \
2474
rf(Vd, 0); \
2475
}
2476
2477
INSN(movi, 0, 0);
2478
INSN(orri, 0, 1);
2479
INSN(mvni, 1, 0);
2480
INSN(bici, 1, 1);
2481
2482
#undef INSN
2483
2484
#define INSN(NAME, op1, op2, op3) \
2485
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2486
starti; \
2487
assert(T == T2S || T == T4S || T == T2D, "invalid arrangement"); \
2488
f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23); \
2489
f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2490
}
2491
2492
INSN(fabd, 1, 1, 0b110101);
2493
INSN(fadd, 0, 0, 0b110101);
2494
INSN(fdiv, 1, 0, 0b111111);
2495
INSN(fmul, 1, 0, 0b110111);
2496
INSN(fsub, 0, 1, 0b110101);
2497
INSN(fmla, 0, 0, 0b110011);
2498
INSN(fmls, 0, 1, 0b110011);
2499
INSN(fmax, 0, 0, 0b111101);
2500
INSN(fmin, 0, 1, 0b111101);
2501
INSN(fcmeq, 0, 0, 0b111001);
2502
INSN(fcmgt, 1, 1, 0b111001);
2503
INSN(fcmge, 1, 0, 0b111001);
2504
2505
#undef INSN
2506
2507
#define INSN(NAME, opc) \
2508
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2509
starti; \
2510
assert(T == T4S, "arrangement must be T4S"); \
2511
f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2512
}
2513
2514
INSN(sha1c, 0b000000);
2515
INSN(sha1m, 0b001000);
2516
INSN(sha1p, 0b000100);
2517
INSN(sha1su0, 0b001100);
2518
INSN(sha256h2, 0b010100);
2519
INSN(sha256h, 0b010000);
2520
INSN(sha256su1, 0b011000);
2521
2522
#undef INSN
2523
2524
#define INSN(NAME, opc) \
2525
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
2526
starti; \
2527
assert(T == T4S, "arrangement must be T4S"); \
2528
f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2529
}
2530
2531
INSN(sha1h, 0b000010);
2532
INSN(sha1su1, 0b000110);
2533
INSN(sha256su0, 0b001010);
2534
2535
#undef INSN
2536
2537
#define INSN(NAME, opc) \
2538
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2539
starti; \
2540
assert(T == T2D, "arrangement must be T2D"); \
2541
f(0b11001110011, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2542
}
2543
2544
INSN(sha512h, 0b100000);
2545
INSN(sha512h2, 0b100001);
2546
INSN(sha512su1, 0b100010);
2547
2548
#undef INSN
2549
2550
#define INSN(NAME, opc) \
2551
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
2552
starti; \
2553
assert(T == T2D, "arrangement must be T2D"); \
2554
f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0); \
2555
}
2556
2557
INSN(sha512su0, 0b1100111011000000100000);
2558
2559
#undef INSN
2560
2561
#define INSN(NAME, opc) \
2562
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, FloatRegister Va) { \
2563
starti; \
2564
assert(T == T16B, "arrangement must be T16B"); \
2565
f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(0b0, 15, 15), rf(Va, 10), rf(Vn, 5), rf(Vd, 0); \
2566
}
2567
2568
INSN(eor3, 0b000);
2569
INSN(bcax, 0b001);
2570
2571
#undef INSN
2572
2573
#define INSN(NAME, opc) \
2574
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, unsigned imm) { \
2575
starti; \
2576
assert(T == T2D, "arrangement must be T2D"); \
2577
f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(imm, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2578
}
2579
2580
INSN(xar, 0b100);
2581
2582
#undef INSN
2583
2584
#define INSN(NAME, opc) \
2585
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2586
starti; \
2587
assert(T == T2D, "arrangement must be T2D"); \
2588
f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(0b100011, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2589
}
2590
2591
INSN(rax1, 0b011);
2592
2593
#undef INSN
2594
2595
#define INSN(NAME, opc) \
2596
void NAME(FloatRegister Vd, FloatRegister Vn) { \
2597
starti; \
2598
f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0); \
2599
}
2600
2601
INSN(aese, 0b0100111000101000010010);
2602
INSN(aesd, 0b0100111000101000010110);
2603
INSN(aesmc, 0b0100111000101000011010);
2604
INSN(aesimc, 0b0100111000101000011110);
2605
2606
#undef INSN
2607
2608
#define INSN(NAME, op1, op2) \
2609
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \
2610
starti; \
2611
assert(T == T2S || T == T4S || T == T2D, "invalid arrangement"); \
2612
assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index"); \
2613
f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23); \
2614
f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16); \
2615
f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10); \
2616
rf(Vn, 5), rf(Vd, 0); \
2617
}
2618
2619
// FMLA/FMLS - Vector - Scalar
2620
INSN(fmlavs, 0, 0b0001);
2621
INSN(fmlsvs, 0, 0b0101);
2622
// FMULX - Vector - Scalar
2623
INSN(fmulxvs, 1, 0b1001);
2624
2625
#undef INSN
2626
2627
// Floating-point Reciprocal Estimate
2628
void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2629
assert(type == D || type == S, "Wrong type for frecpe");
2630
starti;
2631
f(0b010111101, 31, 23);
2632
f(type == D ? 1 : 0, 22);
2633
f(0b100001110110, 21, 10);
2634
rf(Vn, 5), rf(Vd, 0);
2635
}
2636
2637
// (long) {a, b} -> (a + b)
2638
void addpd(FloatRegister Vd, FloatRegister Vn) {
2639
starti;
2640
f(0b0101111011110001101110, 31, 10);
2641
rf(Vn, 5), rf(Vd, 0);
2642
}
2643
2644
// Floating-point AdvSIMD scalar pairwise
2645
#define INSN(NAME, op1, op2) \
2646
void NAME(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) { \
2647
starti; \
2648
assert(type == D || type == S, "Wrong type for faddp/fmaxp/fminp"); \
2649
f(0b0111111, 31, 25), f(op1, 24, 23), \
2650
f(type == S ? 0 : 1, 22), f(0b11000, 21, 17), f(op2, 16, 10), rf(Vn, 5), rf(Vd, 0); \
2651
}
2652
2653
INSN(faddp, 0b00, 0b0110110);
2654
INSN(fmaxp, 0b00, 0b0111110);
2655
INSN(fminp, 0b01, 0b0111110);
2656
2657
#undef INSN
2658
2659
void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2660
starti;
2661
assert(T != Q, "invalid register variant");
2662
f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2663
f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2664
}
2665
2666
#define INSN(NAME, cond, op1, op2) \
2667
void NAME(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) { \
2668
starti; \
2669
assert(cond, "invalid register variant"); \
2670
f(0, 31), f(op1, 30), f(0b001110000, 29, 21); \
2671
f(((idx << 1) | 1) << (int)T, 20, 16), f(op2, 15, 10); \
2672
rf(Vn, 5), rf(Rd, 0); \
2673
}
2674
2675
INSN(umov, (T != Q), (T == D ? 1 : 0), 0b001111);
2676
INSN(smov, (T < D), 1, 0b001011);
2677
2678
#undef INSN
2679
2680
#define INSN(NAME, opc, opc2, isSHR) \
2681
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
2682
starti; \
2683
/* The encodings for the immh:immb fields (bits 22:16) in *SHR are \
2684
* 0001 xxx 8B/16B, shift = 16 - UInt(immh:immb) \
2685
* 001x xxx 4H/8H, shift = 32 - UInt(immh:immb) \
2686
* 01xx xxx 2S/4S, shift = 64 - UInt(immh:immb) \
2687
* 1xxx xxx 1D/2D, shift = 128 - UInt(immh:immb) \
2688
* (1D is RESERVED) \
2689
* for SHL shift is calculated as: \
2690
* 0001 xxx 8B/16B, shift = UInt(immh:immb) - 8 \
2691
* 001x xxx 4H/8H, shift = UInt(immh:immb) - 16 \
2692
* 01xx xxx 2S/4S, shift = UInt(immh:immb) - 32 \
2693
* 1xxx xxx 1D/2D, shift = UInt(immh:immb) - 64 \
2694
* (1D is RESERVED) \
2695
*/ \
2696
guarantee(!isSHR || (isSHR && (shift != 0)), "impossible encoding");\
2697
assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value"); \
2698
int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0))); \
2699
int encodedShift = isSHR ? cVal - shift : cVal + shift; \
2700
f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23), \
2701
f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2702
}
2703
2704
INSN(shl, 0, 0b010101, /* isSHR = */ false);
2705
INSN(sshr, 0, 0b000001, /* isSHR = */ true);
2706
INSN(ushr, 1, 0b000001, /* isSHR = */ true);
2707
INSN(usra, 1, 0b000101, /* isSHR = */ true);
2708
INSN(ssra, 0, 0b000101, /* isSHR = */ true);
2709
2710
#undef INSN
2711
2712
#define INSN(NAME, opc, opc2, isSHR) \
2713
void NAME(FloatRegister Vd, FloatRegister Vn, int shift){ \
2714
starti; \
2715
int encodedShift = isSHR ? 128 - shift : 64 + shift; \
2716
f(0b01, 31, 30), f(opc, 29), f(0b111110, 28, 23), \
2717
f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2718
}
2719
2720
INSN(shld, 0, 0b010101, /* isSHR = */ false);
2721
INSN(sshrd, 0, 0b000001, /* isSHR = */ true);
2722
INSN(ushrd, 1, 0b000001, /* isSHR = */ true);
2723
2724
#undef INSN
2725
2726
private:
2727
void _xshll(sign_kind sign, FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2728
starti;
2729
/* The encodings for the immh:immb fields (bits 22:16) are
2730
* 0001 xxx 8H, 8B/16B shift = xxx
2731
* 001x xxx 4S, 4H/8H shift = xxxx
2732
* 01xx xxx 2D, 2S/4S shift = xxxxx
2733
* 1xxx xxx RESERVED
2734
*/
2735
assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2736
assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2737
f(0, 31), f(Tb & 1, 30), f(sign == SIGNED ? 0 : 1, 29), f(0b011110, 28, 23);
2738
f((1 << ((Tb>>1)+3))|shift, 22, 16);
2739
f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2740
}
2741
2742
public:
2743
void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2744
assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
2745
_xshll(UNSIGNED, Vd, Ta, Vn, Tb, shift);
2746
}
2747
2748
void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2749
assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
2750
_xshll(UNSIGNED, Vd, Ta, Vn, Tb, shift);
2751
}
2752
2753
void uxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) {
2754
ushll(Vd, Ta, Vn, Tb, 0);
2755
}
2756
2757
void sshll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2758
assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
2759
_xshll(SIGNED, Vd, Ta, Vn, Tb, shift);
2760
}
2761
2762
void sshll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2763
assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
2764
_xshll(SIGNED, Vd, Ta, Vn, Tb, shift);
2765
}
2766
2767
void sxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) {
2768
sshll(Vd, Ta, Vn, Tb, 0);
2769
}
2770
2771
// Move from general purpose register
2772
// mov Vd.T[index], Rn
2773
void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2774
starti;
2775
f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2776
f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0);
2777
}
2778
2779
// Move to general purpose register
2780
// mov Rd, Vn.T[index]
2781
void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2782
guarantee(T >= T2S && T < T1Q, "only D and S arrangements are supported");
2783
starti;
2784
f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2785
f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2786
f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2787
}
2788
2789
private:
2790
void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2791
starti;
2792
assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
2793
(Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
2794
int size = (Ta == T1Q) ? 0b11 : 0b00;
2795
f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
2796
f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
2797
}
2798
2799
public:
2800
void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2801
assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier");
2802
_pmull(Vd, Ta, Vn, Vm, Tb);
2803
}
2804
2805
void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2806
assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
2807
_pmull(Vd, Ta, Vn, Vm, Tb);
2808
}
2809
2810
void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2811
starti;
2812
int size_b = (int)Tb >> 1;
2813
int size_a = (int)Ta >> 1;
2814
assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2815
f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2816
f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2817
}
2818
2819
void xtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2820
starti;
2821
int size_b = (int)Tb >> 1;
2822
int size_a = (int)Ta >> 1;
2823
assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2824
f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size_b, 23, 22);
2825
f(0b100001001010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2826
}
2827
2828
void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2829
{
2830
starti;
2831
assert(T != T1D, "reserved encoding");
2832
f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2833
f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0);
2834
}
2835
2836
void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2837
{
2838
starti;
2839
assert(T != T1D, "reserved encoding");
2840
f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2841
f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2842
f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2843
}
2844
2845
// AdvSIMD ZIP/UZP/TRN
2846
#define INSN(NAME, opcode) \
2847
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2848
guarantee(T != T1D && T != T1Q, "invalid arrangement"); \
2849
starti; \
2850
f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15); \
2851
f(opcode, 14, 12), f(0b10, 11, 10); \
2852
rf(Vm, 16), rf(Vn, 5), rf(Vd, 0); \
2853
f(T & 1, 30), f(T >> 1, 23, 22); \
2854
}
2855
2856
INSN(uzp1, 0b001);
2857
INSN(trn1, 0b010);
2858
INSN(zip1, 0b011);
2859
INSN(uzp2, 0b101);
2860
INSN(trn2, 0b110);
2861
INSN(zip2, 0b111);
2862
2863
#undef INSN
2864
2865
// CRC32 instructions
2866
#define INSN(NAME, c, sf, sz) \
2867
void NAME(Register Rd, Register Rn, Register Rm) { \
2868
starti; \
2869
f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12); \
2870
f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0); \
2871
}
2872
2873
INSN(crc32b, 0, 0, 0b00);
2874
INSN(crc32h, 0, 0, 0b01);
2875
INSN(crc32w, 0, 0, 0b10);
2876
INSN(crc32x, 0, 1, 0b11);
2877
INSN(crc32cb, 1, 0, 0b00);
2878
INSN(crc32ch, 1, 0, 0b01);
2879
INSN(crc32cw, 1, 0, 0b10);
2880
INSN(crc32cx, 1, 1, 0b11);
2881
2882
#undef INSN
2883
2884
// Table vector lookup
2885
#define INSN(NAME, op) \
2886
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
2887
starti; \
2888
assert(T == T8B || T == T16B, "invalid arrangement"); \
2889
assert(0 < registers && registers <= 4, "invalid number of registers"); \
2890
f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
2891
f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2892
}
2893
2894
INSN(tbl, 0);
2895
INSN(tbx, 1);
2896
2897
#undef INSN
2898
2899
// AdvSIMD two-reg misc
2900
// In this instruction group, the 2 bits in the size field ([23:22]) may be
2901
// fixed or determined by the "SIMD_Arrangement T", or both. The additional
2902
// parameter "tmask" is a 2-bit mask used to indicate which bits in the size
2903
// field are determined by the SIMD_Arrangement. The bit of "tmask" should be
2904
// set to 1 if corresponding bit marked as "x" in the ArmARM.
2905
#define INSN(NAME, U, size, tmask, opcode) \
2906
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
2907
starti; \
2908
assert((ASSERTION), MSG); \
2909
f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24); \
2910
f(size | ((int)(T >> 1) & tmask), 23, 22), f(0b10000, 21, 17); \
2911
f(opcode, 16, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2912
}
2913
2914
#define MSG "invalid arrangement"
2915
2916
#define ASSERTION (T == T2S || T == T4S || T == T2D)
2917
INSN(fsqrt, 1, 0b10, 0b01, 0b11111);
2918
INSN(fabs, 0, 0b10, 0b01, 0b01111);
2919
INSN(fneg, 1, 0b10, 0b01, 0b01111);
2920
INSN(frintn, 0, 0b00, 0b01, 0b11000);
2921
INSN(frintm, 0, 0b00, 0b01, 0b11001);
2922
INSN(frintp, 0, 0b10, 0b01, 0b11000);
2923
#undef ASSERTION
2924
2925
#define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
2926
INSN(rev64, 0, 0b00, 0b11, 0b00000);
2927
#undef ASSERTION
2928
2929
#define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
2930
INSN(rev32, 1, 0b00, 0b11, 0b00000);
2931
#undef ASSERTION
2932
2933
#define ASSERTION (T == T8B || T == T16B)
2934
INSN(rev16, 0, 0b00, 0b11, 0b00001);
2935
INSN(rbit, 1, 0b01, 0b00, 0b00101);
2936
#undef ASSERTION
2937
2938
#undef MSG
2939
2940
#undef INSN
2941
2942
void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
2943
{
2944
starti;
2945
assert(T == T8B || T == T16B, "invalid arrangement");
2946
assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
2947
f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
2948
rf(Vm, 16), f(0, 15), f(index, 14, 11);
2949
f(0, 10), rf(Vn, 5), rf(Vd, 0);
2950
}
2951
2952
// SVE arithmetics - unpredicated
2953
#define INSN(NAME, opcode) \
2954
void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
2955
starti; \
2956
assert(T != Q, "invalid register variant"); \
2957
f(0b00000100, 31, 24), f(T, 23, 22), f(1, 21), \
2958
rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0); \
2959
}
2960
INSN(sve_add, 0b000);
2961
INSN(sve_sub, 0b001);
2962
#undef INSN
2963
2964
// SVE floating-point arithmetic - unpredicated
2965
#define INSN(NAME, opcode) \
2966
void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
2967
starti; \
2968
assert(T == S || T == D, "invalid register variant"); \
2969
f(0b01100101, 31, 24), f(T, 23, 22), f(0, 21), \
2970
rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0); \
2971
}
2972
2973
INSN(sve_fadd, 0b000);
2974
INSN(sve_fmul, 0b010);
2975
INSN(sve_fsub, 0b001);
2976
#undef INSN
2977
2978
private:
2979
void sve_predicate_reg_insn(unsigned op24, unsigned op13,
2980
FloatRegister Zd_or_Vd, SIMD_RegVariant T,
2981
PRegister Pg, FloatRegister Zn_or_Vn) {
2982
starti;
2983
f(op24, 31, 24), f(T, 23, 22), f(op13, 21, 13);
2984
pgrf(Pg, 10), rf(Zn_or_Vn, 5), rf(Zd_or_Vd, 0);
2985
}
2986
2987
public:
2988
2989
// SVE integer arithmetics - predicate
2990
#define INSN(NAME, op1, op2) \
2991
void NAME(FloatRegister Zdn_or_Zd_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Znm_or_Vn) { \
2992
assert(T != Q, "invalid register variant"); \
2993
sve_predicate_reg_insn(op1, op2, Zdn_or_Zd_or_Vd, T, Pg, Znm_or_Vn); \
2994
}
2995
2996
INSN(sve_abs, 0b00000100, 0b010110101); // vector abs, unary
2997
INSN(sve_add, 0b00000100, 0b000000000); // vector add
2998
INSN(sve_andv, 0b00000100, 0b011010001); // bitwise and reduction to scalar
2999
INSN(sve_asr, 0b00000100, 0b010000100); // vector arithmetic shift right
3000
INSN(sve_cnt, 0b00000100, 0b011010101) // count non-zero bits
3001
INSN(sve_cpy, 0b00000101, 0b100000100); // copy scalar to each active vector element
3002
INSN(sve_eorv, 0b00000100, 0b011001001); // bitwise xor reduction to scalar
3003
INSN(sve_lsl, 0b00000100, 0b010011100); // vector logical shift left
3004
INSN(sve_lsr, 0b00000100, 0b010001100); // vector logical shift right
3005
INSN(sve_mul, 0b00000100, 0b010000000); // vector mul
3006
INSN(sve_neg, 0b00000100, 0b010111101); // vector neg, unary
3007
INSN(sve_not, 0b00000100, 0b011110101); // bitwise invert vector, unary
3008
INSN(sve_orv, 0b00000100, 0b011000001); // bitwise or reduction to scalar
3009
INSN(sve_smax, 0b00000100, 0b001000000); // signed maximum vectors
3010
INSN(sve_smaxv, 0b00000100, 0b001000001); // signed maximum reduction to scalar
3011
INSN(sve_smin, 0b00000100, 0b001010000); // signed minimum vectors
3012
INSN(sve_sminv, 0b00000100, 0b001010001); // signed minimum reduction to scalar
3013
INSN(sve_sub, 0b00000100, 0b000001000); // vector sub
3014
INSN(sve_uaddv, 0b00000100, 0b000001001); // unsigned add reduction to scalar
3015
#undef INSN
3016
3017
// SVE floating-point arithmetics - predicate
3018
#define INSN(NAME, op1, op2) \
3019
void NAME(FloatRegister Zd_or_Zdn_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn_or_Zm) { \
3020
assert(T == S || T == D, "invalid register variant"); \
3021
sve_predicate_reg_insn(op1, op2, Zd_or_Zdn_or_Vd, T, Pg, Zn_or_Zm); \
3022
}
3023
3024
INSN(sve_fabs, 0b00000100, 0b011100101);
3025
INSN(sve_fadd, 0b01100101, 0b000000100);
3026
INSN(sve_fadda, 0b01100101, 0b011000001); // add strictly-ordered reduction to scalar Vd
3027
INSN(sve_fdiv, 0b01100101, 0b001101100);
3028
INSN(sve_fmax, 0b01100101, 0b000110100); // floating-point maximum
3029
INSN(sve_fmaxv, 0b01100101, 0b000110001); // floating-point maximum recursive reduction to scalar
3030
INSN(sve_fmin, 0b01100101, 0b000111100); // floating-point minimum
3031
INSN(sve_fminv, 0b01100101, 0b000111001); // floating-point minimum recursive reduction to scalar
3032
INSN(sve_fmul, 0b01100101, 0b000010100);
3033
INSN(sve_fneg, 0b00000100, 0b011101101);
3034
INSN(sve_frintm, 0b01100101, 0b000010101); // floating-point round to integral value, toward minus infinity
3035
INSN(sve_frintn, 0b01100101, 0b000000101); // floating-point round to integral value, nearest with ties to even
3036
INSN(sve_frintp, 0b01100101, 0b000001101); // floating-point round to integral value, toward plus infinity
3037
INSN(sve_fsqrt, 0b01100101, 0b001101101);
3038
INSN(sve_fsub, 0b01100101, 0b000001100);
3039
#undef INSN
3040
3041
// SVE multiple-add/sub - predicated
3042
#define INSN(NAME, op0, op1, op2) \
3043
void NAME(FloatRegister Zda, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn, FloatRegister Zm) { \
3044
starti; \
3045
assert(T != Q, "invalid size"); \
3046
f(op0, 31, 24), f(T, 23, 22), f(op1, 21), rf(Zm, 16); \
3047
f(op2, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zda, 0); \
3048
}
3049
3050
INSN(sve_fmla, 0b01100101, 1, 0b000); // floating-point fused multiply-add: Zda = Zda + Zn * Zm
3051
INSN(sve_fmls, 0b01100101, 1, 0b001); // floating-point fused multiply-subtract: Zda = Zda + -Zn * Zm
3052
INSN(sve_fnmla, 0b01100101, 1, 0b010); // floating-point negated fused multiply-add: Zda = -Zda + -Zn * Zm
3053
INSN(sve_fnmls, 0b01100101, 1, 0b011); // floating-point negated fused multiply-subtract: Zda = -Zda + Zn * Zm
3054
INSN(sve_mla, 0b00000100, 0, 0b010); // multiply-add: Zda = Zda + Zn*Zm
3055
INSN(sve_mls, 0b00000100, 0, 0b011); // multiply-subtract: Zda = Zda + -Zn*Zm
3056
#undef INSN
3057
3058
// SVE bitwise logical - unpredicated
3059
#define INSN(NAME, opc) \
3060
void NAME(FloatRegister Zd, FloatRegister Zn, FloatRegister Zm) { \
3061
starti; \
3062
f(0b00000100, 31, 24), f(opc, 23, 22), f(1, 21), \
3063
rf(Zm, 16), f(0b001100, 15, 10), rf(Zn, 5), rf(Zd, 0); \
3064
}
3065
INSN(sve_and, 0b00);
3066
INSN(sve_eor, 0b10);
3067
INSN(sve_orr, 0b01);
3068
INSN(sve_bic, 0b11);
3069
#undef INSN
3070
3071
// SVE shift immediate - unpredicated
3072
#define INSN(NAME, opc, isSHR) \
3073
void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, int shift) { \
3074
starti; \
3075
/* The encodings for the tszh:tszl:imm3 fields (bits 23:22 20:19 18:16) \
3076
* for shift right is calculated as: \
3077
* 0001 xxx B, shift = 16 - UInt(tszh:tszl:imm3) \
3078
* 001x xxx H, shift = 32 - UInt(tszh:tszl:imm3) \
3079
* 01xx xxx S, shift = 64 - UInt(tszh:tszl:imm3) \
3080
* 1xxx xxx D, shift = 128 - UInt(tszh:tszl:imm3) \
3081
* for shift left is calculated as: \
3082
* 0001 xxx B, shift = UInt(tszh:tszl:imm3) - 8 \
3083
* 001x xxx H, shift = UInt(tszh:tszl:imm3) - 16 \
3084
* 01xx xxx S, shift = UInt(tszh:tszl:imm3) - 32 \
3085
* 1xxx xxx D, shift = UInt(tszh:tszl:imm3) - 64 \
3086
*/ \
3087
assert(T != Q, "Invalid register variant"); \
3088
if (isSHR) { \
3089
assert(((1 << (T + 3)) >= shift) && (shift > 0) , "Invalid shift value"); \
3090
} else { \
3091
assert(((1 << (T + 3)) > shift) && (shift >= 0) , "Invalid shift value"); \
3092
} \
3093
int cVal = (1 << ((T + 3) + (isSHR ? 1 : 0))); \
3094
int encodedShift = isSHR ? cVal - shift : cVal + shift; \
3095
int tszh = encodedShift >> 5; \
3096
int tszl_imm = encodedShift & 0x1f; \
3097
f(0b00000100, 31, 24); \
3098
f(tszh, 23, 22), f(1,21), f(tszl_imm, 20, 16); \
3099
f(0b100, 15, 13), f(opc, 12, 10), rf(Zn, 5), rf(Zd, 0); \
3100
}
3101
3102
INSN(sve_asr, 0b100, /* isSHR = */ true);
3103
INSN(sve_lsl, 0b111, /* isSHR = */ false);
3104
INSN(sve_lsr, 0b101, /* isSHR = */ true);
3105
#undef INSN
3106
3107
private:
3108
3109
// Scalar base + immediate index
3110
void sve_ld_st1(FloatRegister Zt, Register Xn, int imm, PRegister Pg,
3111
SIMD_RegVariant T, int op1, int type, int op2) {
3112
starti;
3113
assert_cond(T >= type);
3114
f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21);
3115
f(0, 20), sf(imm, 19, 16), f(op2, 15, 13);
3116
pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);
3117
}
3118
3119
// Scalar base + scalar index
3120
void sve_ld_st1(FloatRegister Zt, Register Xn, Register Xm, PRegister Pg,
3121
SIMD_RegVariant T, int op1, int type, int op2) {
3122
starti;
3123
assert_cond(T >= type);
3124
f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21);
3125
rf(Xm, 16), f(op2, 15, 13);
3126
pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);
3127
}
3128
3129
void sve_ld_st1(FloatRegister Zt, PRegister Pg,
3130
SIMD_RegVariant T, const Address &a,
3131
int op1, int type, int imm_op2, int scalar_op2) {
3132
switch (a.getMode()) {
3133
case Address::base_plus_offset:
3134
sve_ld_st1(Zt, a.base(), a.offset(), Pg, T, op1, type, imm_op2);
3135
break;
3136
case Address::base_plus_offset_reg:
3137
sve_ld_st1(Zt, a.base(), a.index(), Pg, T, op1, type, scalar_op2);
3138
break;
3139
default:
3140
ShouldNotReachHere();
3141
}
3142
}
3143
3144
public:
3145
3146
// SVE load/store - predicated
3147
#define INSN(NAME, op1, type, imm_op2, scalar_op2) \
3148
void NAME(FloatRegister Zt, SIMD_RegVariant T, PRegister Pg, const Address &a) { \
3149
assert(T != Q, "invalid register variant"); \
3150
sve_ld_st1(Zt, Pg, T, a, op1, type, imm_op2, scalar_op2); \
3151
}
3152
3153
INSN(sve_ld1b, 0b1010010, 0b00, 0b101, 0b010);
3154
INSN(sve_st1b, 0b1110010, 0b00, 0b111, 0b010);
3155
INSN(sve_ld1h, 0b1010010, 0b01, 0b101, 0b010);
3156
INSN(sve_st1h, 0b1110010, 0b01, 0b111, 0b010);
3157
INSN(sve_ld1w, 0b1010010, 0b10, 0b101, 0b010);
3158
INSN(sve_st1w, 0b1110010, 0b10, 0b111, 0b010);
3159
INSN(sve_ld1d, 0b1010010, 0b11, 0b101, 0b010);
3160
INSN(sve_st1d, 0b1110010, 0b11, 0b111, 0b010);
3161
#undef INSN
3162
3163
// SVE load/store - unpredicated
3164
#define INSN(NAME, op1) \
3165
void NAME(FloatRegister Zt, const Address &a) { \
3166
starti; \
3167
assert(a.index() == noreg, "invalid address variant"); \
3168
f(op1, 31, 29), f(0b0010110, 28, 22), sf(a.offset() >> 3, 21, 16), \
3169
f(0b010, 15, 13), f(a.offset() & 0x7, 12, 10), srf(a.base(), 5), rf(Zt, 0); \
3170
}
3171
3172
INSN(sve_ldr, 0b100); // LDR (vector)
3173
INSN(sve_str, 0b111); // STR (vector)
3174
#undef INSN
3175
3176
#define INSN(NAME, op) \
3177
void NAME(Register Xd, Register Xn, int imm6) { \
3178
starti; \
3179
f(0b000001000, 31, 23), f(op, 22, 21); \
3180
srf(Xn, 16), f(0b01010, 15, 11), sf(imm6, 10, 5), srf(Xd, 0); \
3181
}
3182
3183
INSN(sve_addvl, 0b01);
3184
INSN(sve_addpl, 0b11);
3185
#undef INSN
3186
3187
// SVE inc/dec register by element count
3188
#define INSN(NAME, op) \
3189
void NAME(Register Xdn, SIMD_RegVariant T, unsigned imm4 = 1, int pattern = 0b11111) { \
3190
starti; \
3191
assert(T != Q, "invalid size"); \
3192
f(0b00000100,31, 24), f(T, 23, 22), f(0b11, 21, 20); \
3193
f(imm4 - 1, 19, 16), f(0b11100, 15, 11), f(op, 10), f(pattern, 9, 5), rf(Xdn, 0); \
3194
}
3195
3196
INSN(sve_inc, 0);
3197
INSN(sve_dec, 1);
3198
#undef INSN
3199
3200
// SVE predicate count
3201
void sve_cntp(Register Xd, SIMD_RegVariant T, PRegister Pg, PRegister Pn) {
3202
starti;
3203
assert(T != Q, "invalid size");
3204
f(0b00100101, 31, 24), f(T, 23, 22), f(0b10000010, 21, 14);
3205
prf(Pg, 10), f(0, 9), prf(Pn, 5), rf(Xd, 0);
3206
}
3207
3208
// SVE dup scalar
3209
void sve_dup(FloatRegister Zd, SIMD_RegVariant T, Register Rn) {
3210
starti;
3211
assert(T != Q, "invalid size");
3212
f(0b00000101, 31, 24), f(T, 23, 22), f(0b100000001110, 21, 10);
3213
srf(Rn, 5), rf(Zd, 0);
3214
}
3215
3216
// SVE dup imm
3217
void sve_dup(FloatRegister Zd, SIMD_RegVariant T, int imm8) {
3218
starti;
3219
assert(T != Q, "invalid size");
3220
int sh = 0;
3221
if (imm8 <= 127 && imm8 >= -128) {
3222
sh = 0;
3223
} else if (T != B && imm8 <= 32512 && imm8 >= -32768 && (imm8 & 0xff) == 0) {
3224
sh = 1;
3225
imm8 = (imm8 >> 8);
3226
} else {
3227
guarantee(false, "invalid immediate");
3228
}
3229
f(0b00100101, 31, 24), f(T, 23, 22), f(0b11100011, 21, 14);
3230
f(sh, 13), sf(imm8, 12, 5), rf(Zd, 0);
3231
}
3232
3233
void sve_ptrue(PRegister pd, SIMD_RegVariant esize, int pattern = 0b11111) {
3234
starti;
3235
f(0b00100101, 31, 24), f(esize, 23, 22), f(0b011000111000, 21, 10);
3236
f(pattern, 9, 5), f(0b0, 4), prf(pd, 0);
3237
}
3238
3239
Assembler(CodeBuffer* code) : AbstractAssembler(code) {
3240
}
3241
3242
// Stack overflow checking
3243
virtual void bang_stack_with_offset(int offset);
3244
3245
static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
3246
static bool operand_valid_for_add_sub_immediate(int64_t imm);
3247
static bool operand_valid_for_float_immediate(double imm);
3248
3249
void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
3250
void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
3251
};
3252
3253
inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
3254
Assembler::Membar_mask_bits b) {
3255
return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
3256
}
3257
3258
Instruction_aarch64::~Instruction_aarch64() {
3259
assem->emit();
3260
}
3261
3262
#undef starti
3263
3264
// Invert a condition
3265
inline const Assembler::Condition operator~(const Assembler::Condition cond) {
3266
return Assembler::Condition(int(cond) ^ 1);
3267
}
3268
3269
class BiasedLockingCounters;
3270
3271
extern "C" void das(uint64_t start, int len);
3272
3273
#endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP
3274
3275