Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/cpu/aarch64/c1_LIRAssembler_aarch64.cpp
40930 views
1
/*
2
* Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved.
3
* Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
4
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
*
6
* This code is free software; you can redistribute it and/or modify it
7
* under the terms of the GNU General Public License version 2 only, as
8
* published by the Free Software Foundation.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*
24
*/
25
26
#include "precompiled.hpp"
27
#include "asm/macroAssembler.inline.hpp"
28
#include "asm/assembler.hpp"
29
#include "c1/c1_CodeStubs.hpp"
30
#include "c1/c1_Compilation.hpp"
31
#include "c1/c1_LIRAssembler.hpp"
32
#include "c1/c1_MacroAssembler.hpp"
33
#include "c1/c1_Runtime1.hpp"
34
#include "c1/c1_ValueStack.hpp"
35
#include "ci/ciArrayKlass.hpp"
36
#include "ci/ciInstance.hpp"
37
#include "code/compiledIC.hpp"
38
#include "gc/shared/collectedHeap.hpp"
39
#include "gc/shared/gc_globals.hpp"
40
#include "nativeInst_aarch64.hpp"
41
#include "oops/objArrayKlass.hpp"
42
#include "runtime/frame.inline.hpp"
43
#include "runtime/sharedRuntime.hpp"
44
#include "runtime/stubRoutines.hpp"
45
#include "utilities/powerOfTwo.hpp"
46
#include "vmreg_aarch64.inline.hpp"
47
48
49
#ifndef PRODUCT
50
#define COMMENT(x) do { __ block_comment(x); } while (0)
51
#else
52
#define COMMENT(x)
53
#endif
54
55
NEEDS_CLEANUP // remove this definitions ?
56
const Register IC_Klass = rscratch2; // where the IC klass is cached
57
const Register SYNC_header = r0; // synchronization header
58
const Register SHIFT_count = r0; // where count for shift operations must be
59
60
#define __ _masm->
61
62
63
static void select_different_registers(Register preserve,
64
Register extra,
65
Register &tmp1,
66
Register &tmp2) {
67
if (tmp1 == preserve) {
68
assert_different_registers(tmp1, tmp2, extra);
69
tmp1 = extra;
70
} else if (tmp2 == preserve) {
71
assert_different_registers(tmp1, tmp2, extra);
72
tmp2 = extra;
73
}
74
assert_different_registers(preserve, tmp1, tmp2);
75
}
76
77
78
79
static void select_different_registers(Register preserve,
80
Register extra,
81
Register &tmp1,
82
Register &tmp2,
83
Register &tmp3) {
84
if (tmp1 == preserve) {
85
assert_different_registers(tmp1, tmp2, tmp3, extra);
86
tmp1 = extra;
87
} else if (tmp2 == preserve) {
88
assert_different_registers(tmp1, tmp2, tmp3, extra);
89
tmp2 = extra;
90
} else if (tmp3 == preserve) {
91
assert_different_registers(tmp1, tmp2, tmp3, extra);
92
tmp3 = extra;
93
}
94
assert_different_registers(preserve, tmp1, tmp2, tmp3);
95
}
96
97
98
bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; }
99
100
101
LIR_Opr LIR_Assembler::receiverOpr() {
102
return FrameMap::receiver_opr;
103
}
104
105
LIR_Opr LIR_Assembler::osrBufferPointer() {
106
return FrameMap::as_pointer_opr(receiverOpr()->as_register());
107
}
108
109
//--------------fpu register translations-----------------------
110
111
112
address LIR_Assembler::float_constant(float f) {
113
address const_addr = __ float_constant(f);
114
if (const_addr == NULL) {
115
bailout("const section overflow");
116
return __ code()->consts()->start();
117
} else {
118
return const_addr;
119
}
120
}
121
122
123
address LIR_Assembler::double_constant(double d) {
124
address const_addr = __ double_constant(d);
125
if (const_addr == NULL) {
126
bailout("const section overflow");
127
return __ code()->consts()->start();
128
} else {
129
return const_addr;
130
}
131
}
132
133
address LIR_Assembler::int_constant(jlong n) {
134
address const_addr = __ long_constant(n);
135
if (const_addr == NULL) {
136
bailout("const section overflow");
137
return __ code()->consts()->start();
138
} else {
139
return const_addr;
140
}
141
}
142
143
void LIR_Assembler::breakpoint() { Unimplemented(); }
144
145
void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); }
146
147
void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); }
148
149
bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; }
150
//-------------------------------------------
151
152
static Register as_reg(LIR_Opr op) {
153
return op->is_double_cpu() ? op->as_register_lo() : op->as_register();
154
}
155
156
static jlong as_long(LIR_Opr data) {
157
jlong result;
158
switch (data->type()) {
159
case T_INT:
160
result = (data->as_jint());
161
break;
162
case T_LONG:
163
result = (data->as_jlong());
164
break;
165
default:
166
ShouldNotReachHere();
167
result = 0; // unreachable
168
}
169
return result;
170
}
171
172
Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
173
Register base = addr->base()->as_pointer_register();
174
LIR_Opr opr = addr->index();
175
if (opr->is_cpu_register()) {
176
Register index;
177
if (opr->is_single_cpu())
178
index = opr->as_register();
179
else
180
index = opr->as_register_lo();
181
assert(addr->disp() == 0, "must be");
182
switch(opr->type()) {
183
case T_INT:
184
return Address(base, index, Address::sxtw(addr->scale()));
185
case T_LONG:
186
return Address(base, index, Address::lsl(addr->scale()));
187
default:
188
ShouldNotReachHere();
189
}
190
} else {
191
intptr_t addr_offset = intptr_t(addr->disp());
192
if (Address::offset_ok_for_immed(addr_offset, addr->scale()))
193
return Address(base, addr_offset, Address::lsl(addr->scale()));
194
else {
195
__ mov(tmp, addr_offset);
196
return Address(base, tmp, Address::lsl(addr->scale()));
197
}
198
}
199
return Address();
200
}
201
202
Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
203
ShouldNotReachHere();
204
return Address();
205
}
206
207
Address LIR_Assembler::as_Address(LIR_Address* addr) {
208
return as_Address(addr, rscratch1);
209
}
210
211
Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
212
return as_Address(addr, rscratch1); // Ouch
213
// FIXME: This needs to be much more clever. See x86.
214
}
215
216
// Ensure a valid Address (base + offset) to a stack-slot. If stack access is
217
// not encodable as a base + (immediate) offset, generate an explicit address
218
// calculation to hold the address in a temporary register.
219
Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) {
220
precond(size == 4 || size == 8);
221
Address addr = frame_map()->address_for_slot(index, adjust);
222
precond(addr.getMode() == Address::base_plus_offset);
223
precond(addr.base() == sp);
224
precond(addr.offset() > 0);
225
uint mask = size - 1;
226
assert((addr.offset() & mask) == 0, "scaled offsets only");
227
return __ legitimize_address(addr, size, tmp);
228
}
229
230
void LIR_Assembler::osr_entry() {
231
offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
232
BlockBegin* osr_entry = compilation()->hir()->osr_entry();
233
ValueStack* entry_state = osr_entry->state();
234
int number_of_locks = entry_state->locks_size();
235
236
// we jump here if osr happens with the interpreter
237
// state set up to continue at the beginning of the
238
// loop that triggered osr - in particular, we have
239
// the following registers setup:
240
//
241
// r2: osr buffer
242
//
243
244
// build frame
245
ciMethod* m = compilation()->method();
246
__ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
247
248
// OSR buffer is
249
//
250
// locals[nlocals-1..0]
251
// monitors[0..number_of_locks]
252
//
253
// locals is a direct copy of the interpreter frame so in the osr buffer
254
// so first slot in the local array is the last local from the interpreter
255
// and last slot is local[0] (receiver) from the interpreter
256
//
257
// Similarly with locks. The first lock slot in the osr buffer is the nth lock
258
// from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
259
// in the interpreter frame (the method lock if a sync method)
260
261
// Initialize monitors in the compiled activation.
262
// r2: pointer to osr buffer
263
//
264
// All other registers are dead at this point and the locals will be
265
// copied into place by code emitted in the IR.
266
267
Register OSR_buf = osrBufferPointer()->as_pointer_register();
268
{ assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
269
int monitor_offset = BytesPerWord * method()->max_locals() +
270
(2 * BytesPerWord) * (number_of_locks - 1);
271
// SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
272
// the OSR buffer using 2 word entries: first the lock and then
273
// the oop.
274
for (int i = 0; i < number_of_locks; i++) {
275
int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
276
#ifdef ASSERT
277
// verify the interpreter's monitor has a non-null object
278
{
279
Label L;
280
__ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord));
281
__ cbnz(rscratch1, L);
282
__ stop("locked object is NULL");
283
__ bind(L);
284
}
285
#endif
286
__ ldr(r19, Address(OSR_buf, slot_offset + 0));
287
__ str(r19, frame_map()->address_for_monitor_lock(i));
288
__ ldr(r19, Address(OSR_buf, slot_offset + 1*BytesPerWord));
289
__ str(r19, frame_map()->address_for_monitor_object(i));
290
}
291
}
292
}
293
294
295
// inline cache check; done before the frame is built.
296
int LIR_Assembler::check_icache() {
297
Register receiver = FrameMap::receiver_opr->as_register();
298
Register ic_klass = IC_Klass;
299
int start_offset = __ offset();
300
__ inline_cache_check(receiver, ic_klass);
301
302
// if icache check fails, then jump to runtime routine
303
// Note: RECEIVER must still contain the receiver!
304
Label dont;
305
__ br(Assembler::EQ, dont);
306
__ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
307
308
// We align the verified entry point unless the method body
309
// (including its inline cache check) will fit in a single 64-byte
310
// icache line.
311
if (! method()->is_accessor() || __ offset() - start_offset > 4 * 4) {
312
// force alignment after the cache check.
313
__ align(CodeEntryAlignment);
314
}
315
316
__ bind(dont);
317
return start_offset;
318
}
319
320
void LIR_Assembler::clinit_barrier(ciMethod* method) {
321
assert(VM_Version::supports_fast_class_init_checks(), "sanity");
322
assert(!method->holder()->is_not_initialized(), "initialization should have been started");
323
324
Label L_skip_barrier;
325
326
__ mov_metadata(rscratch2, method->holder()->constant_encoding());
327
__ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/);
328
__ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
329
__ bind(L_skip_barrier);
330
}
331
332
void LIR_Assembler::jobject2reg(jobject o, Register reg) {
333
if (o == NULL) {
334
__ mov(reg, zr);
335
} else {
336
__ movoop(reg, o, /*immediate*/true);
337
}
338
}
339
340
void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) {
341
address target = NULL;
342
relocInfo::relocType reloc_type = relocInfo::none;
343
344
switch (patching_id(info)) {
345
case PatchingStub::access_field_id:
346
target = Runtime1::entry_for(Runtime1::access_field_patching_id);
347
reloc_type = relocInfo::section_word_type;
348
break;
349
case PatchingStub::load_klass_id:
350
target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
351
reloc_type = relocInfo::metadata_type;
352
break;
353
case PatchingStub::load_mirror_id:
354
target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
355
reloc_type = relocInfo::oop_type;
356
break;
357
case PatchingStub::load_appendix_id:
358
target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
359
reloc_type = relocInfo::oop_type;
360
break;
361
default: ShouldNotReachHere();
362
}
363
364
__ far_call(RuntimeAddress(target));
365
add_call_info_here(info);
366
}
367
368
void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
369
deoptimize_trap(info);
370
}
371
372
373
// This specifies the rsp decrement needed to build the frame
374
int LIR_Assembler::initial_frame_size_in_bytes() const {
375
// if rounding, must let FrameMap know!
376
377
return in_bytes(frame_map()->framesize_in_bytes());
378
}
379
380
381
int LIR_Assembler::emit_exception_handler() {
382
// if the last instruction is a call (typically to do a throw which
383
// is coming at the end after block reordering) the return address
384
// must still point into the code area in order to avoid assertion
385
// failures when searching for the corresponding bci => add a nop
386
// (was bug 5/14/1999 - gri)
387
__ nop();
388
389
// generate code for exception handler
390
address handler_base = __ start_a_stub(exception_handler_size());
391
if (handler_base == NULL) {
392
// not enough space left for the handler
393
bailout("exception handler overflow");
394
return -1;
395
}
396
397
int offset = code_offset();
398
399
// the exception oop and pc are in r0, and r3
400
// no other registers need to be preserved, so invalidate them
401
__ invalidate_registers(false, true, true, false, true, true);
402
403
// check that there is really an exception
404
__ verify_not_null_oop(r0);
405
406
// search an exception handler (r0: exception oop, r3: throwing pc)
407
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id))); __ should_not_reach_here();
408
guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
409
__ end_a_stub();
410
411
return offset;
412
}
413
414
415
// Emit the code to remove the frame from the stack in the exception
416
// unwind path.
417
int LIR_Assembler::emit_unwind_handler() {
418
#ifndef PRODUCT
419
if (CommentedAssembly) {
420
_masm->block_comment("Unwind handler");
421
}
422
#endif
423
424
int offset = code_offset();
425
426
// Fetch the exception from TLS and clear out exception related thread state
427
__ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
428
__ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
429
__ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
430
431
__ bind(_unwind_handler_entry);
432
__ verify_not_null_oop(r0);
433
if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
434
__ mov(r19, r0); // Preserve the exception
435
}
436
437
// Preform needed unlocking
438
MonitorExitStub* stub = NULL;
439
if (method()->is_synchronized()) {
440
monitor_address(0, FrameMap::r0_opr);
441
stub = new MonitorExitStub(FrameMap::r0_opr, true, 0);
442
__ unlock_object(r5, r4, r0, *stub->entry());
443
__ bind(*stub->continuation());
444
}
445
446
if (compilation()->env()->dtrace_method_probes()) {
447
__ mov(c_rarg0, rthread);
448
__ mov_metadata(c_rarg1, method()->constant_encoding());
449
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1);
450
}
451
452
if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
453
__ mov(r0, r19); // Restore the exception
454
}
455
456
// remove the activation and dispatch to the unwind handler
457
__ block_comment("remove_frame and dispatch to the unwind handler");
458
__ remove_frame(initial_frame_size_in_bytes());
459
__ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
460
461
// Emit the slow path assembly
462
if (stub != NULL) {
463
stub->emit_code(this);
464
}
465
466
return offset;
467
}
468
469
470
int LIR_Assembler::emit_deopt_handler() {
471
// if the last instruction is a call (typically to do a throw which
472
// is coming at the end after block reordering) the return address
473
// must still point into the code area in order to avoid assertion
474
// failures when searching for the corresponding bci => add a nop
475
// (was bug 5/14/1999 - gri)
476
__ nop();
477
478
// generate code for exception handler
479
address handler_base = __ start_a_stub(deopt_handler_size());
480
if (handler_base == NULL) {
481
// not enough space left for the handler
482
bailout("deopt handler overflow");
483
return -1;
484
}
485
486
int offset = code_offset();
487
488
__ adr(lr, pc());
489
__ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
490
guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
491
__ end_a_stub();
492
493
return offset;
494
}
495
496
void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
497
_masm->code_section()->relocate(adr, relocInfo::poll_type);
498
int pc_offset = code_offset();
499
flush_debug_info(pc_offset);
500
info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
501
if (info->exception_handlers() != NULL) {
502
compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
503
}
504
}
505
506
void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
507
assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
508
509
// Pop the stack before the safepoint code
510
__ remove_frame(initial_frame_size_in_bytes());
511
512
if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
513
__ reserved_stack_check();
514
}
515
516
code_stub->set_safepoint_offset(__ offset());
517
__ relocate(relocInfo::poll_return_type);
518
__ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */);
519
__ ret(lr);
520
}
521
522
int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
523
guarantee(info != NULL, "Shouldn't be NULL");
524
__ get_polling_page(rscratch1, relocInfo::poll_type);
525
add_debug_info_for_branch(info); // This isn't just debug info:
526
// it's the oop map
527
__ read_polling_page(rscratch1, relocInfo::poll_type);
528
return __ offset();
529
}
530
531
532
void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
533
if (from_reg == r31_sp)
534
from_reg = sp;
535
if (to_reg == r31_sp)
536
to_reg = sp;
537
__ mov(to_reg, from_reg);
538
}
539
540
void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
541
542
543
void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
544
assert(src->is_constant(), "should not call otherwise");
545
assert(dest->is_register(), "should not call otherwise");
546
LIR_Const* c = src->as_constant_ptr();
547
548
switch (c->type()) {
549
case T_INT: {
550
assert(patch_code == lir_patch_none, "no patching handled here");
551
__ movw(dest->as_register(), c->as_jint());
552
break;
553
}
554
555
case T_ADDRESS: {
556
assert(patch_code == lir_patch_none, "no patching handled here");
557
__ mov(dest->as_register(), c->as_jint());
558
break;
559
}
560
561
case T_LONG: {
562
assert(patch_code == lir_patch_none, "no patching handled here");
563
__ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
564
break;
565
}
566
567
case T_OBJECT: {
568
if (patch_code == lir_patch_none) {
569
jobject2reg(c->as_jobject(), dest->as_register());
570
} else {
571
jobject2reg_with_patching(dest->as_register(), info);
572
}
573
break;
574
}
575
576
case T_METADATA: {
577
if (patch_code != lir_patch_none) {
578
klass2reg_with_patching(dest->as_register(), info);
579
} else {
580
__ mov_metadata(dest->as_register(), c->as_metadata());
581
}
582
break;
583
}
584
585
case T_FLOAT: {
586
if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
587
__ fmovs(dest->as_float_reg(), (c->as_jfloat()));
588
} else {
589
__ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
590
__ ldrs(dest->as_float_reg(), Address(rscratch1));
591
}
592
break;
593
}
594
595
case T_DOUBLE: {
596
if (__ operand_valid_for_float_immediate(c->as_jdouble())) {
597
__ fmovd(dest->as_double_reg(), (c->as_jdouble()));
598
} else {
599
__ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble())));
600
__ ldrd(dest->as_double_reg(), Address(rscratch1));
601
}
602
break;
603
}
604
605
default:
606
ShouldNotReachHere();
607
}
608
}
609
610
void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
611
LIR_Const* c = src->as_constant_ptr();
612
switch (c->type()) {
613
case T_OBJECT:
614
{
615
if (! c->as_jobject())
616
__ str(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
617
else {
618
const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL);
619
reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
620
}
621
}
622
break;
623
case T_ADDRESS:
624
{
625
const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL);
626
reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
627
}
628
case T_INT:
629
case T_FLOAT:
630
{
631
Register reg = zr;
632
if (c->as_jint_bits() == 0)
633
__ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
634
else {
635
__ movw(rscratch1, c->as_jint_bits());
636
__ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix()));
637
}
638
}
639
break;
640
case T_LONG:
641
case T_DOUBLE:
642
{
643
Register reg = zr;
644
if (c->as_jlong_bits() == 0)
645
__ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(),
646
lo_word_offset_in_bytes));
647
else {
648
__ mov(rscratch1, (intptr_t)c->as_jlong_bits());
649
__ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(),
650
lo_word_offset_in_bytes));
651
}
652
}
653
break;
654
default:
655
ShouldNotReachHere();
656
}
657
}
658
659
void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
660
assert(src->is_constant(), "should not call otherwise");
661
LIR_Const* c = src->as_constant_ptr();
662
LIR_Address* to_addr = dest->as_address_ptr();
663
664
void (Assembler::* insn)(Register Rt, const Address &adr);
665
666
switch (type) {
667
case T_ADDRESS:
668
assert(c->as_jint() == 0, "should be");
669
insn = &Assembler::str;
670
break;
671
case T_LONG:
672
assert(c->as_jlong() == 0, "should be");
673
insn = &Assembler::str;
674
break;
675
case T_INT:
676
assert(c->as_jint() == 0, "should be");
677
insn = &Assembler::strw;
678
break;
679
case T_OBJECT:
680
case T_ARRAY:
681
assert(c->as_jobject() == 0, "should be");
682
if (UseCompressedOops && !wide) {
683
insn = &Assembler::strw;
684
} else {
685
insn = &Assembler::str;
686
}
687
break;
688
case T_CHAR:
689
case T_SHORT:
690
assert(c->as_jint() == 0, "should be");
691
insn = &Assembler::strh;
692
break;
693
case T_BOOLEAN:
694
case T_BYTE:
695
assert(c->as_jint() == 0, "should be");
696
insn = &Assembler::strb;
697
break;
698
default:
699
ShouldNotReachHere();
700
insn = &Assembler::str; // unreachable
701
}
702
703
if (info) add_debug_info_for_null_check_here(info);
704
(_masm->*insn)(zr, as_Address(to_addr, rscratch1));
705
}
706
707
void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
708
assert(src->is_register(), "should not call otherwise");
709
assert(dest->is_register(), "should not call otherwise");
710
711
// move between cpu-registers
712
if (dest->is_single_cpu()) {
713
if (src->type() == T_LONG) {
714
// Can do LONG -> OBJECT
715
move_regs(src->as_register_lo(), dest->as_register());
716
return;
717
}
718
assert(src->is_single_cpu(), "must match");
719
if (src->type() == T_OBJECT) {
720
__ verify_oop(src->as_register());
721
}
722
move_regs(src->as_register(), dest->as_register());
723
724
} else if (dest->is_double_cpu()) {
725
if (is_reference_type(src->type())) {
726
// Surprising to me but we can see move of a long to t_object
727
__ verify_oop(src->as_register());
728
move_regs(src->as_register(), dest->as_register_lo());
729
return;
730
}
731
assert(src->is_double_cpu(), "must match");
732
Register f_lo = src->as_register_lo();
733
Register f_hi = src->as_register_hi();
734
Register t_lo = dest->as_register_lo();
735
Register t_hi = dest->as_register_hi();
736
assert(f_hi == f_lo, "must be same");
737
assert(t_hi == t_lo, "must be same");
738
move_regs(f_lo, t_lo);
739
740
} else if (dest->is_single_fpu()) {
741
__ fmovs(dest->as_float_reg(), src->as_float_reg());
742
743
} else if (dest->is_double_fpu()) {
744
__ fmovd(dest->as_double_reg(), src->as_double_reg());
745
746
} else {
747
ShouldNotReachHere();
748
}
749
}
750
751
void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
752
precond(src->is_register() && dest->is_stack());
753
754
uint const c_sz32 = sizeof(uint32_t);
755
uint const c_sz64 = sizeof(uint64_t);
756
757
if (src->is_single_cpu()) {
758
int index = dest->single_stack_ix();
759
if (is_reference_type(type)) {
760
__ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
761
__ verify_oop(src->as_register());
762
} else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) {
763
__ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
764
} else {
765
__ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1));
766
}
767
768
} else if (src->is_double_cpu()) {
769
int index = dest->double_stack_ix();
770
Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
771
__ str(src->as_register_lo(), dest_addr_LO);
772
773
} else if (src->is_single_fpu()) {
774
int index = dest->single_stack_ix();
775
__ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
776
777
} else if (src->is_double_fpu()) {
778
int index = dest->double_stack_ix();
779
__ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
780
781
} else {
782
ShouldNotReachHere();
783
}
784
}
785
786
787
void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
788
LIR_Address* to_addr = dest->as_address_ptr();
789
PatchingStub* patch = NULL;
790
Register compressed_src = rscratch1;
791
792
if (patch_code != lir_patch_none) {
793
deoptimize_trap(info);
794
return;
795
}
796
797
if (is_reference_type(type)) {
798
__ verify_oop(src->as_register());
799
800
if (UseCompressedOops && !wide) {
801
__ encode_heap_oop(compressed_src, src->as_register());
802
} else {
803
compressed_src = src->as_register();
804
}
805
}
806
807
int null_check_here = code_offset();
808
switch (type) {
809
case T_FLOAT: {
810
__ strs(src->as_float_reg(), as_Address(to_addr));
811
break;
812
}
813
814
case T_DOUBLE: {
815
__ strd(src->as_double_reg(), as_Address(to_addr));
816
break;
817
}
818
819
case T_ARRAY: // fall through
820
case T_OBJECT: // fall through
821
if (UseCompressedOops && !wide) {
822
__ strw(compressed_src, as_Address(to_addr, rscratch2));
823
} else {
824
__ str(compressed_src, as_Address(to_addr));
825
}
826
break;
827
case T_METADATA:
828
// We get here to store a method pointer to the stack to pass to
829
// a dtrace runtime call. This can't work on 64 bit with
830
// compressed klass ptrs: T_METADATA can be a compressed klass
831
// ptr or a 64 bit method pointer.
832
ShouldNotReachHere();
833
__ str(src->as_register(), as_Address(to_addr));
834
break;
835
case T_ADDRESS:
836
__ str(src->as_register(), as_Address(to_addr));
837
break;
838
case T_INT:
839
__ strw(src->as_register(), as_Address(to_addr));
840
break;
841
842
case T_LONG: {
843
__ str(src->as_register_lo(), as_Address_lo(to_addr));
844
break;
845
}
846
847
case T_BYTE: // fall through
848
case T_BOOLEAN: {
849
__ strb(src->as_register(), as_Address(to_addr));
850
break;
851
}
852
853
case T_CHAR: // fall through
854
case T_SHORT:
855
__ strh(src->as_register(), as_Address(to_addr));
856
break;
857
858
default:
859
ShouldNotReachHere();
860
}
861
if (info != NULL) {
862
add_debug_info_for_null_check(null_check_here, info);
863
}
864
}
865
866
867
void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
868
precond(src->is_stack() && dest->is_register());
869
870
uint const c_sz32 = sizeof(uint32_t);
871
uint const c_sz64 = sizeof(uint64_t);
872
873
if (dest->is_single_cpu()) {
874
int index = src->single_stack_ix();
875
if (is_reference_type(type)) {
876
__ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
877
__ verify_oop(dest->as_register());
878
} else if (type == T_METADATA || type == T_ADDRESS) {
879
__ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
880
} else {
881
__ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1));
882
}
883
884
} else if (dest->is_double_cpu()) {
885
int index = src->double_stack_ix();
886
Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
887
__ ldr(dest->as_register_lo(), src_addr_LO);
888
889
} else if (dest->is_single_fpu()) {
890
int index = src->single_stack_ix();
891
__ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
892
893
} else if (dest->is_double_fpu()) {
894
int index = src->double_stack_ix();
895
__ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
896
897
} else {
898
ShouldNotReachHere();
899
}
900
}
901
902
903
void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
904
address target = NULL;
905
relocInfo::relocType reloc_type = relocInfo::none;
906
907
switch (patching_id(info)) {
908
case PatchingStub::access_field_id:
909
target = Runtime1::entry_for(Runtime1::access_field_patching_id);
910
reloc_type = relocInfo::section_word_type;
911
break;
912
case PatchingStub::load_klass_id:
913
target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
914
reloc_type = relocInfo::metadata_type;
915
break;
916
case PatchingStub::load_mirror_id:
917
target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
918
reloc_type = relocInfo::oop_type;
919
break;
920
case PatchingStub::load_appendix_id:
921
target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
922
reloc_type = relocInfo::oop_type;
923
break;
924
default: ShouldNotReachHere();
925
}
926
927
__ far_call(RuntimeAddress(target));
928
add_call_info_here(info);
929
}
930
931
void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
932
933
LIR_Opr temp;
934
if (type == T_LONG || type == T_DOUBLE)
935
temp = FrameMap::rscratch1_long_opr;
936
else
937
temp = FrameMap::rscratch1_opr;
938
939
stack2reg(src, temp, src->type());
940
reg2stack(temp, dest, dest->type(), false);
941
}
942
943
944
void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
945
LIR_Address* addr = src->as_address_ptr();
946
LIR_Address* from_addr = src->as_address_ptr();
947
948
if (addr->base()->type() == T_OBJECT) {
949
__ verify_oop(addr->base()->as_pointer_register());
950
}
951
952
if (patch_code != lir_patch_none) {
953
deoptimize_trap(info);
954
return;
955
}
956
957
if (info != NULL) {
958
add_debug_info_for_null_check_here(info);
959
}
960
int null_check_here = code_offset();
961
switch (type) {
962
case T_FLOAT: {
963
__ ldrs(dest->as_float_reg(), as_Address(from_addr));
964
break;
965
}
966
967
case T_DOUBLE: {
968
__ ldrd(dest->as_double_reg(), as_Address(from_addr));
969
break;
970
}
971
972
case T_ARRAY: // fall through
973
case T_OBJECT: // fall through
974
if (UseCompressedOops && !wide) {
975
__ ldrw(dest->as_register(), as_Address(from_addr));
976
} else {
977
__ ldr(dest->as_register(), as_Address(from_addr));
978
}
979
break;
980
case T_METADATA:
981
// We get here to store a method pointer to the stack to pass to
982
// a dtrace runtime call. This can't work on 64 bit with
983
// compressed klass ptrs: T_METADATA can be a compressed klass
984
// ptr or a 64 bit method pointer.
985
ShouldNotReachHere();
986
__ ldr(dest->as_register(), as_Address(from_addr));
987
break;
988
case T_ADDRESS:
989
// FIXME: OMG this is a horrible kludge. Any offset from an
990
// address that matches klass_offset_in_bytes() will be loaded
991
// as a word, not a long.
992
if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
993
__ ldrw(dest->as_register(), as_Address(from_addr));
994
} else {
995
__ ldr(dest->as_register(), as_Address(from_addr));
996
}
997
break;
998
case T_INT:
999
__ ldrw(dest->as_register(), as_Address(from_addr));
1000
break;
1001
1002
case T_LONG: {
1003
__ ldr(dest->as_register_lo(), as_Address_lo(from_addr));
1004
break;
1005
}
1006
1007
case T_BYTE:
1008
__ ldrsb(dest->as_register(), as_Address(from_addr));
1009
break;
1010
case T_BOOLEAN: {
1011
__ ldrb(dest->as_register(), as_Address(from_addr));
1012
break;
1013
}
1014
1015
case T_CHAR:
1016
__ ldrh(dest->as_register(), as_Address(from_addr));
1017
break;
1018
case T_SHORT:
1019
__ ldrsh(dest->as_register(), as_Address(from_addr));
1020
break;
1021
1022
default:
1023
ShouldNotReachHere();
1024
}
1025
1026
if (is_reference_type(type)) {
1027
if (UseCompressedOops && !wide) {
1028
__ decode_heap_oop(dest->as_register());
1029
}
1030
1031
if (!UseZGC) {
1032
// Load barrier has not yet been applied, so ZGC can't verify the oop here
1033
__ verify_oop(dest->as_register());
1034
}
1035
} else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1036
if (UseCompressedClassPointers) {
1037
__ decode_klass_not_null(dest->as_register());
1038
}
1039
}
1040
}
1041
1042
1043
int LIR_Assembler::array_element_size(BasicType type) const {
1044
int elem_size = type2aelembytes(type);
1045
return exact_log2(elem_size);
1046
}
1047
1048
1049
void LIR_Assembler::emit_op3(LIR_Op3* op) {
1050
switch (op->code()) {
1051
case lir_idiv:
1052
case lir_irem:
1053
arithmetic_idiv(op->code(),
1054
op->in_opr1(),
1055
op->in_opr2(),
1056
op->in_opr3(),
1057
op->result_opr(),
1058
op->info());
1059
break;
1060
case lir_fmad:
1061
__ fmaddd(op->result_opr()->as_double_reg(),
1062
op->in_opr1()->as_double_reg(),
1063
op->in_opr2()->as_double_reg(),
1064
op->in_opr3()->as_double_reg());
1065
break;
1066
case lir_fmaf:
1067
__ fmadds(op->result_opr()->as_float_reg(),
1068
op->in_opr1()->as_float_reg(),
1069
op->in_opr2()->as_float_reg(),
1070
op->in_opr3()->as_float_reg());
1071
break;
1072
default: ShouldNotReachHere(); break;
1073
}
1074
}
1075
1076
void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1077
#ifdef ASSERT
1078
assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1079
if (op->block() != NULL) _branch_target_blocks.append(op->block());
1080
if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1081
#endif
1082
1083
if (op->cond() == lir_cond_always) {
1084
if (op->info() != NULL) add_debug_info_for_branch(op->info());
1085
__ b(*(op->label()));
1086
} else {
1087
Assembler::Condition acond;
1088
if (op->code() == lir_cond_float_branch) {
1089
bool is_unordered = (op->ublock() == op->block());
1090
// Assembler::EQ does not permit unordered branches, so we add
1091
// another branch here. Likewise, Assembler::NE does not permit
1092
// ordered branches.
1093
if ((is_unordered && op->cond() == lir_cond_equal)
1094
|| (!is_unordered && op->cond() == lir_cond_notEqual))
1095
__ br(Assembler::VS, *(op->ublock()->label()));
1096
switch(op->cond()) {
1097
case lir_cond_equal: acond = Assembler::EQ; break;
1098
case lir_cond_notEqual: acond = Assembler::NE; break;
1099
case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break;
1100
case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break;
1101
case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break;
1102
case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break;
1103
default: ShouldNotReachHere();
1104
acond = Assembler::EQ; // unreachable
1105
}
1106
} else {
1107
switch (op->cond()) {
1108
case lir_cond_equal: acond = Assembler::EQ; break;
1109
case lir_cond_notEqual: acond = Assembler::NE; break;
1110
case lir_cond_less: acond = Assembler::LT; break;
1111
case lir_cond_lessEqual: acond = Assembler::LE; break;
1112
case lir_cond_greaterEqual: acond = Assembler::GE; break;
1113
case lir_cond_greater: acond = Assembler::GT; break;
1114
case lir_cond_belowEqual: acond = Assembler::LS; break;
1115
case lir_cond_aboveEqual: acond = Assembler::HS; break;
1116
default: ShouldNotReachHere();
1117
acond = Assembler::EQ; // unreachable
1118
}
1119
}
1120
__ br(acond,*(op->label()));
1121
}
1122
}
1123
1124
1125
1126
void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1127
LIR_Opr src = op->in_opr();
1128
LIR_Opr dest = op->result_opr();
1129
1130
switch (op->bytecode()) {
1131
case Bytecodes::_i2f:
1132
{
1133
__ scvtfws(dest->as_float_reg(), src->as_register());
1134
break;
1135
}
1136
case Bytecodes::_i2d:
1137
{
1138
__ scvtfwd(dest->as_double_reg(), src->as_register());
1139
break;
1140
}
1141
case Bytecodes::_l2d:
1142
{
1143
__ scvtfd(dest->as_double_reg(), src->as_register_lo());
1144
break;
1145
}
1146
case Bytecodes::_l2f:
1147
{
1148
__ scvtfs(dest->as_float_reg(), src->as_register_lo());
1149
break;
1150
}
1151
case Bytecodes::_f2d:
1152
{
1153
__ fcvts(dest->as_double_reg(), src->as_float_reg());
1154
break;
1155
}
1156
case Bytecodes::_d2f:
1157
{
1158
__ fcvtd(dest->as_float_reg(), src->as_double_reg());
1159
break;
1160
}
1161
case Bytecodes::_i2c:
1162
{
1163
__ ubfx(dest->as_register(), src->as_register(), 0, 16);
1164
break;
1165
}
1166
case Bytecodes::_i2l:
1167
{
1168
__ sxtw(dest->as_register_lo(), src->as_register());
1169
break;
1170
}
1171
case Bytecodes::_i2s:
1172
{
1173
__ sxth(dest->as_register(), src->as_register());
1174
break;
1175
}
1176
case Bytecodes::_i2b:
1177
{
1178
__ sxtb(dest->as_register(), src->as_register());
1179
break;
1180
}
1181
case Bytecodes::_l2i:
1182
{
1183
_masm->block_comment("FIXME: This could be a no-op");
1184
__ uxtw(dest->as_register(), src->as_register_lo());
1185
break;
1186
}
1187
case Bytecodes::_d2l:
1188
{
1189
__ fcvtzd(dest->as_register_lo(), src->as_double_reg());
1190
break;
1191
}
1192
case Bytecodes::_f2i:
1193
{
1194
__ fcvtzsw(dest->as_register(), src->as_float_reg());
1195
break;
1196
}
1197
case Bytecodes::_f2l:
1198
{
1199
__ fcvtzs(dest->as_register_lo(), src->as_float_reg());
1200
break;
1201
}
1202
case Bytecodes::_d2i:
1203
{
1204
__ fcvtzdw(dest->as_register(), src->as_double_reg());
1205
break;
1206
}
1207
default: ShouldNotReachHere();
1208
}
1209
}
1210
1211
void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1212
if (op->init_check()) {
1213
__ ldrb(rscratch1, Address(op->klass()->as_register(),
1214
InstanceKlass::init_state_offset()));
1215
__ cmpw(rscratch1, InstanceKlass::fully_initialized);
1216
add_debug_info_for_null_check_here(op->stub()->info());
1217
__ br(Assembler::NE, *op->stub()->entry());
1218
}
1219
__ allocate_object(op->obj()->as_register(),
1220
op->tmp1()->as_register(),
1221
op->tmp2()->as_register(),
1222
op->header_size(),
1223
op->object_size(),
1224
op->klass()->as_register(),
1225
*op->stub()->entry());
1226
__ bind(*op->stub()->continuation());
1227
}
1228
1229
void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1230
Register len = op->len()->as_register();
1231
__ uxtw(len, len);
1232
1233
if (UseSlowPath ||
1234
(!UseFastNewObjectArray && is_reference_type(op->type())) ||
1235
(!UseFastNewTypeArray && !is_reference_type(op->type()))) {
1236
__ b(*op->stub()->entry());
1237
} else {
1238
Register tmp1 = op->tmp1()->as_register();
1239
Register tmp2 = op->tmp2()->as_register();
1240
Register tmp3 = op->tmp3()->as_register();
1241
if (len == tmp1) {
1242
tmp1 = tmp3;
1243
} else if (len == tmp2) {
1244
tmp2 = tmp3;
1245
} else if (len == tmp3) {
1246
// everything is ok
1247
} else {
1248
__ mov(tmp3, len);
1249
}
1250
__ allocate_array(op->obj()->as_register(),
1251
len,
1252
tmp1,
1253
tmp2,
1254
arrayOopDesc::header_size(op->type()),
1255
array_element_size(op->type()),
1256
op->klass()->as_register(),
1257
*op->stub()->entry());
1258
}
1259
__ bind(*op->stub()->continuation());
1260
}
1261
1262
void LIR_Assembler::type_profile_helper(Register mdo,
1263
ciMethodData *md, ciProfileData *data,
1264
Register recv, Label* update_done) {
1265
for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1266
Label next_test;
1267
// See if the receiver is receiver[n].
1268
__ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1269
__ ldr(rscratch1, Address(rscratch2));
1270
__ cmp(recv, rscratch1);
1271
__ br(Assembler::NE, next_test);
1272
Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1273
__ addptr(data_addr, DataLayout::counter_increment);
1274
__ b(*update_done);
1275
__ bind(next_test);
1276
}
1277
1278
// Didn't find receiver; find next empty slot and fill it in
1279
for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1280
Label next_test;
1281
__ lea(rscratch2,
1282
Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1283
Address recv_addr(rscratch2);
1284
__ ldr(rscratch1, recv_addr);
1285
__ cbnz(rscratch1, next_test);
1286
__ str(recv, recv_addr);
1287
__ mov(rscratch1, DataLayout::counter_increment);
1288
__ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))));
1289
__ str(rscratch1, Address(rscratch2));
1290
__ b(*update_done);
1291
__ bind(next_test);
1292
}
1293
}
1294
1295
void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1296
// we always need a stub for the failure case.
1297
CodeStub* stub = op->stub();
1298
Register obj = op->object()->as_register();
1299
Register k_RInfo = op->tmp1()->as_register();
1300
Register klass_RInfo = op->tmp2()->as_register();
1301
Register dst = op->result_opr()->as_register();
1302
ciKlass* k = op->klass();
1303
Register Rtmp1 = noreg;
1304
1305
// check if it needs to be profiled
1306
ciMethodData* md;
1307
ciProfileData* data;
1308
1309
const bool should_profile = op->should_profile();
1310
1311
if (should_profile) {
1312
ciMethod* method = op->profiled_method();
1313
assert(method != NULL, "Should have method");
1314
int bci = op->profiled_bci();
1315
md = method->method_data_or_null();
1316
assert(md != NULL, "Sanity");
1317
data = md->bci_to_data(bci);
1318
assert(data != NULL, "need data for type check");
1319
assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1320
}
1321
Label profile_cast_success, profile_cast_failure;
1322
Label *success_target = should_profile ? &profile_cast_success : success;
1323
Label *failure_target = should_profile ? &profile_cast_failure : failure;
1324
1325
if (obj == k_RInfo) {
1326
k_RInfo = dst;
1327
} else if (obj == klass_RInfo) {
1328
klass_RInfo = dst;
1329
}
1330
if (k->is_loaded() && !UseCompressedClassPointers) {
1331
select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1332
} else {
1333
Rtmp1 = op->tmp3()->as_register();
1334
select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1335
}
1336
1337
assert_different_registers(obj, k_RInfo, klass_RInfo);
1338
1339
if (should_profile) {
1340
Label not_null;
1341
__ cbnz(obj, not_null);
1342
// Object is null; update MDO and exit
1343
Register mdo = klass_RInfo;
1344
__ mov_metadata(mdo, md->constant_encoding());
1345
Address data_addr
1346
= __ form_address(rscratch2, mdo,
1347
md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1348
0);
1349
__ ldrb(rscratch1, data_addr);
1350
__ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1351
__ strb(rscratch1, data_addr);
1352
__ b(*obj_is_null);
1353
__ bind(not_null);
1354
} else {
1355
__ cbz(obj, *obj_is_null);
1356
}
1357
1358
if (!k->is_loaded()) {
1359
klass2reg_with_patching(k_RInfo, op->info_for_patch());
1360
} else {
1361
__ mov_metadata(k_RInfo, k->constant_encoding());
1362
}
1363
__ verify_oop(obj);
1364
1365
if (op->fast_check()) {
1366
// get object class
1367
// not a safepoint as obj null check happens earlier
1368
__ load_klass(rscratch1, obj);
1369
__ cmp( rscratch1, k_RInfo);
1370
1371
__ br(Assembler::NE, *failure_target);
1372
// successful cast, fall through to profile or jump
1373
} else {
1374
// get object class
1375
// not a safepoint as obj null check happens earlier
1376
__ load_klass(klass_RInfo, obj);
1377
if (k->is_loaded()) {
1378
// See if we get an immediate positive hit
1379
__ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset())));
1380
__ cmp(k_RInfo, rscratch1);
1381
if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1382
__ br(Assembler::NE, *failure_target);
1383
// successful cast, fall through to profile or jump
1384
} else {
1385
// See if we get an immediate positive hit
1386
__ br(Assembler::EQ, *success_target);
1387
// check for self
1388
__ cmp(klass_RInfo, k_RInfo);
1389
__ br(Assembler::EQ, *success_target);
1390
1391
__ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1392
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1393
__ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1394
// result is a boolean
1395
__ cbzw(klass_RInfo, *failure_target);
1396
// successful cast, fall through to profile or jump
1397
}
1398
} else {
1399
// perform the fast part of the checking logic
1400
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1401
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
1402
__ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1403
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1404
__ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1405
// result is a boolean
1406
__ cbz(k_RInfo, *failure_target);
1407
// successful cast, fall through to profile or jump
1408
}
1409
}
1410
if (should_profile) {
1411
Register mdo = klass_RInfo, recv = k_RInfo;
1412
__ bind(profile_cast_success);
1413
__ mov_metadata(mdo, md->constant_encoding());
1414
__ load_klass(recv, obj);
1415
Label update_done;
1416
type_profile_helper(mdo, md, data, recv, success);
1417
__ b(*success);
1418
1419
__ bind(profile_cast_failure);
1420
__ mov_metadata(mdo, md->constant_encoding());
1421
Address counter_addr
1422
= __ form_address(rscratch2, mdo,
1423
md->byte_offset_of_slot(data, CounterData::count_offset()),
1424
0);
1425
__ ldr(rscratch1, counter_addr);
1426
__ sub(rscratch1, rscratch1, DataLayout::counter_increment);
1427
__ str(rscratch1, counter_addr);
1428
__ b(*failure);
1429
}
1430
__ b(*success);
1431
}
1432
1433
1434
void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1435
const bool should_profile = op->should_profile();
1436
1437
LIR_Code code = op->code();
1438
if (code == lir_store_check) {
1439
Register value = op->object()->as_register();
1440
Register array = op->array()->as_register();
1441
Register k_RInfo = op->tmp1()->as_register();
1442
Register klass_RInfo = op->tmp2()->as_register();
1443
Register Rtmp1 = op->tmp3()->as_register();
1444
1445
CodeStub* stub = op->stub();
1446
1447
// check if it needs to be profiled
1448
ciMethodData* md;
1449
ciProfileData* data;
1450
1451
if (should_profile) {
1452
ciMethod* method = op->profiled_method();
1453
assert(method != NULL, "Should have method");
1454
int bci = op->profiled_bci();
1455
md = method->method_data_or_null();
1456
assert(md != NULL, "Sanity");
1457
data = md->bci_to_data(bci);
1458
assert(data != NULL, "need data for type check");
1459
assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1460
}
1461
Label profile_cast_success, profile_cast_failure, done;
1462
Label *success_target = should_profile ? &profile_cast_success : &done;
1463
Label *failure_target = should_profile ? &profile_cast_failure : stub->entry();
1464
1465
if (should_profile) {
1466
Label not_null;
1467
__ cbnz(value, not_null);
1468
// Object is null; update MDO and exit
1469
Register mdo = klass_RInfo;
1470
__ mov_metadata(mdo, md->constant_encoding());
1471
Address data_addr
1472
= __ form_address(rscratch2, mdo,
1473
md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1474
0);
1475
__ ldrb(rscratch1, data_addr);
1476
__ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1477
__ strb(rscratch1, data_addr);
1478
__ b(done);
1479
__ bind(not_null);
1480
} else {
1481
__ cbz(value, done);
1482
}
1483
1484
add_debug_info_for_null_check_here(op->info_for_exception());
1485
__ load_klass(k_RInfo, array);
1486
__ load_klass(klass_RInfo, value);
1487
1488
// get instance klass (it's already uncompressed)
1489
__ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1490
// perform the fast part of the checking logic
1491
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1492
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
1493
__ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1494
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1495
__ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1496
// result is a boolean
1497
__ cbzw(k_RInfo, *failure_target);
1498
// fall through to the success case
1499
1500
if (should_profile) {
1501
Register mdo = klass_RInfo, recv = k_RInfo;
1502
__ bind(profile_cast_success);
1503
__ mov_metadata(mdo, md->constant_encoding());
1504
__ load_klass(recv, value);
1505
Label update_done;
1506
type_profile_helper(mdo, md, data, recv, &done);
1507
__ b(done);
1508
1509
__ bind(profile_cast_failure);
1510
__ mov_metadata(mdo, md->constant_encoding());
1511
Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1512
__ lea(rscratch2, counter_addr);
1513
__ ldr(rscratch1, Address(rscratch2));
1514
__ sub(rscratch1, rscratch1, DataLayout::counter_increment);
1515
__ str(rscratch1, Address(rscratch2));
1516
__ b(*stub->entry());
1517
}
1518
1519
__ bind(done);
1520
} else if (code == lir_checkcast) {
1521
Register obj = op->object()->as_register();
1522
Register dst = op->result_opr()->as_register();
1523
Label success;
1524
emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1525
__ bind(success);
1526
if (dst != obj) {
1527
__ mov(dst, obj);
1528
}
1529
} else if (code == lir_instanceof) {
1530
Register obj = op->object()->as_register();
1531
Register dst = op->result_opr()->as_register();
1532
Label success, failure, done;
1533
emit_typecheck_helper(op, &success, &failure, &failure);
1534
__ bind(failure);
1535
__ mov(dst, zr);
1536
__ b(done);
1537
__ bind(success);
1538
__ mov(dst, 1);
1539
__ bind(done);
1540
} else {
1541
ShouldNotReachHere();
1542
}
1543
}
1544
1545
void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
1546
__ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1547
__ cset(rscratch1, Assembler::NE);
1548
__ membar(__ AnyAny);
1549
}
1550
1551
void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
1552
__ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1553
__ cset(rscratch1, Assembler::NE);
1554
__ membar(__ AnyAny);
1555
}
1556
1557
1558
void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1559
assert(VM_Version::supports_cx8(), "wrong machine");
1560
Register addr;
1561
if (op->addr()->is_register()) {
1562
addr = as_reg(op->addr());
1563
} else {
1564
assert(op->addr()->is_address(), "what else?");
1565
LIR_Address* addr_ptr = op->addr()->as_address_ptr();
1566
assert(addr_ptr->disp() == 0, "need 0 disp");
1567
assert(addr_ptr->index() == LIR_OprDesc::illegalOpr(), "need 0 index");
1568
addr = as_reg(addr_ptr->base());
1569
}
1570
Register newval = as_reg(op->new_value());
1571
Register cmpval = as_reg(op->cmp_value());
1572
1573
if (op->code() == lir_cas_obj) {
1574
if (UseCompressedOops) {
1575
Register t1 = op->tmp1()->as_register();
1576
assert(op->tmp1()->is_valid(), "must be");
1577
__ encode_heap_oop(t1, cmpval);
1578
cmpval = t1;
1579
__ encode_heap_oop(rscratch2, newval);
1580
newval = rscratch2;
1581
casw(addr, newval, cmpval);
1582
} else {
1583
casl(addr, newval, cmpval);
1584
}
1585
} else if (op->code() == lir_cas_int) {
1586
casw(addr, newval, cmpval);
1587
} else {
1588
casl(addr, newval, cmpval);
1589
}
1590
}
1591
1592
1593
void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1594
1595
Assembler::Condition acond, ncond;
1596
switch (condition) {
1597
case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break;
1598
case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break;
1599
case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break;
1600
case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break;
1601
case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break;
1602
case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break;
1603
case lir_cond_belowEqual:
1604
case lir_cond_aboveEqual:
1605
default: ShouldNotReachHere();
1606
acond = Assembler::EQ; ncond = Assembler::NE; // unreachable
1607
}
1608
1609
assert(result->is_single_cpu() || result->is_double_cpu(),
1610
"expect single register for result");
1611
if (opr1->is_constant() && opr2->is_constant()
1612
&& opr1->type() == T_INT && opr2->type() == T_INT) {
1613
jint val1 = opr1->as_jint();
1614
jint val2 = opr2->as_jint();
1615
if (val1 == 0 && val2 == 1) {
1616
__ cset(result->as_register(), ncond);
1617
return;
1618
} else if (val1 == 1 && val2 == 0) {
1619
__ cset(result->as_register(), acond);
1620
return;
1621
}
1622
}
1623
1624
if (opr1->is_constant() && opr2->is_constant()
1625
&& opr1->type() == T_LONG && opr2->type() == T_LONG) {
1626
jlong val1 = opr1->as_jlong();
1627
jlong val2 = opr2->as_jlong();
1628
if (val1 == 0 && val2 == 1) {
1629
__ cset(result->as_register_lo(), ncond);
1630
return;
1631
} else if (val1 == 1 && val2 == 0) {
1632
__ cset(result->as_register_lo(), acond);
1633
return;
1634
}
1635
}
1636
1637
if (opr1->is_stack()) {
1638
stack2reg(opr1, FrameMap::rscratch1_opr, result->type());
1639
opr1 = FrameMap::rscratch1_opr;
1640
} else if (opr1->is_constant()) {
1641
LIR_Opr tmp
1642
= opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr;
1643
const2reg(opr1, tmp, lir_patch_none, NULL);
1644
opr1 = tmp;
1645
}
1646
1647
if (opr2->is_stack()) {
1648
stack2reg(opr2, FrameMap::rscratch2_opr, result->type());
1649
opr2 = FrameMap::rscratch2_opr;
1650
} else if (opr2->is_constant()) {
1651
LIR_Opr tmp
1652
= opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr;
1653
const2reg(opr2, tmp, lir_patch_none, NULL);
1654
opr2 = tmp;
1655
}
1656
1657
if (result->type() == T_LONG)
1658
__ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond);
1659
else
1660
__ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond);
1661
}
1662
1663
void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1664
assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1665
1666
if (left->is_single_cpu()) {
1667
Register lreg = left->as_register();
1668
Register dreg = as_reg(dest);
1669
1670
if (right->is_single_cpu()) {
1671
// cpu register - cpu register
1672
1673
assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT,
1674
"should be");
1675
Register rreg = right->as_register();
1676
switch (code) {
1677
case lir_add: __ addw (dest->as_register(), lreg, rreg); break;
1678
case lir_sub: __ subw (dest->as_register(), lreg, rreg); break;
1679
case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break;
1680
default: ShouldNotReachHere();
1681
}
1682
1683
} else if (right->is_double_cpu()) {
1684
Register rreg = right->as_register_lo();
1685
// single_cpu + double_cpu: can happen with obj+long
1686
assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1687
switch (code) {
1688
case lir_add: __ add(dreg, lreg, rreg); break;
1689
case lir_sub: __ sub(dreg, lreg, rreg); break;
1690
default: ShouldNotReachHere();
1691
}
1692
} else if (right->is_constant()) {
1693
// cpu register - constant
1694
jlong c;
1695
1696
// FIXME. This is fugly: we really need to factor all this logic.
1697
switch(right->type()) {
1698
case T_LONG:
1699
c = right->as_constant_ptr()->as_jlong();
1700
break;
1701
case T_INT:
1702
case T_ADDRESS:
1703
c = right->as_constant_ptr()->as_jint();
1704
break;
1705
default:
1706
ShouldNotReachHere();
1707
c = 0; // unreachable
1708
break;
1709
}
1710
1711
assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1712
if (c == 0 && dreg == lreg) {
1713
COMMENT("effective nop elided");
1714
return;
1715
}
1716
switch(left->type()) {
1717
case T_INT:
1718
switch (code) {
1719
case lir_add: __ addw(dreg, lreg, c); break;
1720
case lir_sub: __ subw(dreg, lreg, c); break;
1721
default: ShouldNotReachHere();
1722
}
1723
break;
1724
case T_OBJECT:
1725
case T_ADDRESS:
1726
switch (code) {
1727
case lir_add: __ add(dreg, lreg, c); break;
1728
case lir_sub: __ sub(dreg, lreg, c); break;
1729
default: ShouldNotReachHere();
1730
}
1731
break;
1732
default:
1733
ShouldNotReachHere();
1734
}
1735
} else {
1736
ShouldNotReachHere();
1737
}
1738
1739
} else if (left->is_double_cpu()) {
1740
Register lreg_lo = left->as_register_lo();
1741
1742
if (right->is_double_cpu()) {
1743
// cpu register - cpu register
1744
Register rreg_lo = right->as_register_lo();
1745
switch (code) {
1746
case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1747
case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1748
case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1749
case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break;
1750
case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break;
1751
default:
1752
ShouldNotReachHere();
1753
}
1754
1755
} else if (right->is_constant()) {
1756
jlong c = right->as_constant_ptr()->as_jlong();
1757
Register dreg = as_reg(dest);
1758
switch (code) {
1759
case lir_add:
1760
case lir_sub:
1761
if (c == 0 && dreg == lreg_lo) {
1762
COMMENT("effective nop elided");
1763
return;
1764
}
1765
code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c);
1766
break;
1767
case lir_div:
1768
assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1769
if (c == 1) {
1770
// move lreg_lo to dreg if divisor is 1
1771
__ mov(dreg, lreg_lo);
1772
} else {
1773
unsigned int shift = log2i_exact(c);
1774
// use rscratch1 as intermediate result register
1775
__ asr(rscratch1, lreg_lo, 63);
1776
__ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift);
1777
__ asr(dreg, rscratch1, shift);
1778
}
1779
break;
1780
case lir_rem:
1781
assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1782
if (c == 1) {
1783
// move 0 to dreg if divisor is 1
1784
__ mov(dreg, zr);
1785
} else {
1786
// use rscratch1 as intermediate result register
1787
__ negs(rscratch1, lreg_lo);
1788
__ andr(dreg, lreg_lo, c - 1);
1789
__ andr(rscratch1, rscratch1, c - 1);
1790
__ csneg(dreg, dreg, rscratch1, Assembler::MI);
1791
}
1792
break;
1793
default:
1794
ShouldNotReachHere();
1795
}
1796
} else {
1797
ShouldNotReachHere();
1798
}
1799
} else if (left->is_single_fpu()) {
1800
assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register");
1801
switch (code) {
1802
case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1803
case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1804
case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1805
case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1806
default:
1807
ShouldNotReachHere();
1808
}
1809
} else if (left->is_double_fpu()) {
1810
if (right->is_double_fpu()) {
1811
// fpu register - fpu register
1812
switch (code) {
1813
case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1814
case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1815
case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1816
case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1817
default:
1818
ShouldNotReachHere();
1819
}
1820
} else {
1821
if (right->is_constant()) {
1822
ShouldNotReachHere();
1823
}
1824
ShouldNotReachHere();
1825
}
1826
} else if (left->is_single_stack() || left->is_address()) {
1827
assert(left == dest, "left and dest must be equal");
1828
ShouldNotReachHere();
1829
} else {
1830
ShouldNotReachHere();
1831
}
1832
}
1833
1834
void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); }
1835
1836
1837
void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
1838
switch(code) {
1839
case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break;
1840
case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break;
1841
default : ShouldNotReachHere();
1842
}
1843
}
1844
1845
void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1846
1847
assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register");
1848
Register Rleft = left->is_single_cpu() ? left->as_register() :
1849
left->as_register_lo();
1850
if (dst->is_single_cpu()) {
1851
Register Rdst = dst->as_register();
1852
if (right->is_constant()) {
1853
switch (code) {
1854
case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break;
1855
case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break;
1856
case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break;
1857
default: ShouldNotReachHere(); break;
1858
}
1859
} else {
1860
Register Rright = right->is_single_cpu() ? right->as_register() :
1861
right->as_register_lo();
1862
switch (code) {
1863
case lir_logic_and: __ andw (Rdst, Rleft, Rright); break;
1864
case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break;
1865
case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break;
1866
default: ShouldNotReachHere(); break;
1867
}
1868
}
1869
} else {
1870
Register Rdst = dst->as_register_lo();
1871
if (right->is_constant()) {
1872
switch (code) {
1873
case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break;
1874
case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break;
1875
case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break;
1876
default: ShouldNotReachHere(); break;
1877
}
1878
} else {
1879
Register Rright = right->is_single_cpu() ? right->as_register() :
1880
right->as_register_lo();
1881
switch (code) {
1882
case lir_logic_and: __ andr (Rdst, Rleft, Rright); break;
1883
case lir_logic_or: __ orr (Rdst, Rleft, Rright); break;
1884
case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break;
1885
default: ShouldNotReachHere(); break;
1886
}
1887
}
1888
}
1889
}
1890
1891
1892
1893
void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) {
1894
1895
// opcode check
1896
assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem");
1897
bool is_irem = (code == lir_irem);
1898
1899
// operand check
1900
assert(left->is_single_cpu(), "left must be register");
1901
assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
1902
assert(result->is_single_cpu(), "result must be register");
1903
Register lreg = left->as_register();
1904
Register dreg = result->as_register();
1905
1906
// power-of-2 constant check and codegen
1907
if (right->is_constant()) {
1908
int c = right->as_constant_ptr()->as_jint();
1909
assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1910
if (is_irem) {
1911
if (c == 1) {
1912
// move 0 to dreg if divisor is 1
1913
__ movw(dreg, zr);
1914
} else {
1915
// use rscratch1 as intermediate result register
1916
__ negsw(rscratch1, lreg);
1917
__ andw(dreg, lreg, c - 1);
1918
__ andw(rscratch1, rscratch1, c - 1);
1919
__ csnegw(dreg, dreg, rscratch1, Assembler::MI);
1920
}
1921
} else {
1922
if (c == 1) {
1923
// move lreg to dreg if divisor is 1
1924
__ movw(dreg, lreg);
1925
} else {
1926
unsigned int shift = exact_log2(c);
1927
// use rscratch1 as intermediate result register
1928
__ asrw(rscratch1, lreg, 31);
1929
__ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift);
1930
__ asrw(dreg, rscratch1, shift);
1931
}
1932
}
1933
} else {
1934
Register rreg = right->as_register();
1935
__ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1);
1936
}
1937
}
1938
1939
1940
void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1941
if (opr1->is_constant() && opr2->is_single_cpu()) {
1942
// tableswitch
1943
Register reg = as_reg(opr2);
1944
struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()];
1945
__ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after);
1946
} else if (opr1->is_single_cpu() || opr1->is_double_cpu()) {
1947
Register reg1 = as_reg(opr1);
1948
if (opr2->is_single_cpu()) {
1949
// cpu register - cpu register
1950
Register reg2 = opr2->as_register();
1951
if (is_reference_type(opr1->type())) {
1952
__ cmpoop(reg1, reg2);
1953
} else {
1954
assert(!is_reference_type(opr2->type()), "cmp int, oop?");
1955
__ cmpw(reg1, reg2);
1956
}
1957
return;
1958
}
1959
if (opr2->is_double_cpu()) {
1960
// cpu register - cpu register
1961
Register reg2 = opr2->as_register_lo();
1962
__ cmp(reg1, reg2);
1963
return;
1964
}
1965
1966
if (opr2->is_constant()) {
1967
bool is_32bit = false; // width of register operand
1968
jlong imm;
1969
1970
switch(opr2->type()) {
1971
case T_INT:
1972
imm = opr2->as_constant_ptr()->as_jint();
1973
is_32bit = true;
1974
break;
1975
case T_LONG:
1976
imm = opr2->as_constant_ptr()->as_jlong();
1977
break;
1978
case T_ADDRESS:
1979
imm = opr2->as_constant_ptr()->as_jint();
1980
break;
1981
case T_METADATA:
1982
imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata());
1983
break;
1984
case T_OBJECT:
1985
case T_ARRAY:
1986
jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1);
1987
__ cmpoop(reg1, rscratch1);
1988
return;
1989
default:
1990
ShouldNotReachHere();
1991
imm = 0; // unreachable
1992
break;
1993
}
1994
1995
if (Assembler::operand_valid_for_add_sub_immediate(imm)) {
1996
if (is_32bit)
1997
__ cmpw(reg1, imm);
1998
else
1999
__ subs(zr, reg1, imm);
2000
return;
2001
} else {
2002
__ mov(rscratch1, imm);
2003
if (is_32bit)
2004
__ cmpw(reg1, rscratch1);
2005
else
2006
__ cmp(reg1, rscratch1);
2007
return;
2008
}
2009
} else
2010
ShouldNotReachHere();
2011
} else if (opr1->is_single_fpu()) {
2012
FloatRegister reg1 = opr1->as_float_reg();
2013
assert(opr2->is_single_fpu(), "expect single float register");
2014
FloatRegister reg2 = opr2->as_float_reg();
2015
__ fcmps(reg1, reg2);
2016
} else if (opr1->is_double_fpu()) {
2017
FloatRegister reg1 = opr1->as_double_reg();
2018
assert(opr2->is_double_fpu(), "expect double float register");
2019
FloatRegister reg2 = opr2->as_double_reg();
2020
__ fcmpd(reg1, reg2);
2021
} else {
2022
ShouldNotReachHere();
2023
}
2024
}
2025
2026
void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
2027
if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2028
bool is_unordered_less = (code == lir_ucmp_fd2i);
2029
if (left->is_single_fpu()) {
2030
__ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
2031
} else if (left->is_double_fpu()) {
2032
__ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
2033
} else {
2034
ShouldNotReachHere();
2035
}
2036
} else if (code == lir_cmp_l2i) {
2037
Label done;
2038
__ cmp(left->as_register_lo(), right->as_register_lo());
2039
__ mov(dst->as_register(), (uint64_t)-1L);
2040
__ br(Assembler::LT, done);
2041
__ csinc(dst->as_register(), zr, zr, Assembler::EQ);
2042
__ bind(done);
2043
} else {
2044
ShouldNotReachHere();
2045
}
2046
}
2047
2048
2049
void LIR_Assembler::align_call(LIR_Code code) { }
2050
2051
2052
void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2053
address call = __ trampoline_call(Address(op->addr(), rtype));
2054
if (call == NULL) {
2055
bailout("trampoline stub overflow");
2056
return;
2057
}
2058
add_call_info(code_offset(), op->info());
2059
}
2060
2061
2062
void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2063
address call = __ ic_call(op->addr());
2064
if (call == NULL) {
2065
bailout("trampoline stub overflow");
2066
return;
2067
}
2068
add_call_info(code_offset(), op->info());
2069
}
2070
2071
void LIR_Assembler::emit_static_call_stub() {
2072
address call_pc = __ pc();
2073
address stub = __ start_a_stub(call_stub_size());
2074
if (stub == NULL) {
2075
bailout("static call stub overflow");
2076
return;
2077
}
2078
2079
int start = __ offset();
2080
2081
__ relocate(static_stub_Relocation::spec(call_pc));
2082
__ emit_static_call_stub();
2083
2084
assert(__ offset() - start + CompiledStaticCall::to_trampoline_stub_size()
2085
<= call_stub_size(), "stub too big");
2086
__ end_a_stub();
2087
}
2088
2089
2090
void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2091
assert(exceptionOop->as_register() == r0, "must match");
2092
assert(exceptionPC->as_register() == r3, "must match");
2093
2094
// exception object is not added to oop map by LinearScan
2095
// (LinearScan assumes that no oops are in fixed registers)
2096
info->add_register_oop(exceptionOop);
2097
Runtime1::StubID unwind_id;
2098
2099
// get current pc information
2100
// pc is only needed if the method has an exception handler, the unwind code does not need it.
2101
if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) {
2102
// As no instructions have been generated yet for this LIR node it's
2103
// possible that an oop map already exists for the current offset.
2104
// In that case insert an dummy NOP here to ensure all oop map PCs
2105
// are unique. See JDK-8237483.
2106
__ nop();
2107
}
2108
int pc_for_athrow_offset = __ offset();
2109
InternalAddress pc_for_athrow(__ pc());
2110
__ adr(exceptionPC->as_register(), pc_for_athrow);
2111
add_call_info(pc_for_athrow_offset, info); // for exception handler
2112
2113
__ verify_not_null_oop(r0);
2114
// search an exception handler (r0: exception oop, r3: throwing pc)
2115
if (compilation()->has_fpu_code()) {
2116
unwind_id = Runtime1::handle_exception_id;
2117
} else {
2118
unwind_id = Runtime1::handle_exception_nofpu_id;
2119
}
2120
__ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2121
2122
// FIXME: enough room for two byte trap ????
2123
__ nop();
2124
}
2125
2126
2127
void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2128
assert(exceptionOop->as_register() == r0, "must match");
2129
2130
__ b(_unwind_handler_entry);
2131
}
2132
2133
2134
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2135
Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2136
Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2137
2138
switch (left->type()) {
2139
case T_INT: {
2140
switch (code) {
2141
case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break;
2142
case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break;
2143
case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break;
2144
default:
2145
ShouldNotReachHere();
2146
break;
2147
}
2148
break;
2149
case T_LONG:
2150
case T_ADDRESS:
2151
case T_OBJECT:
2152
switch (code) {
2153
case lir_shl: __ lslv (dreg, lreg, count->as_register()); break;
2154
case lir_shr: __ asrv (dreg, lreg, count->as_register()); break;
2155
case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break;
2156
default:
2157
ShouldNotReachHere();
2158
break;
2159
}
2160
break;
2161
default:
2162
ShouldNotReachHere();
2163
break;
2164
}
2165
}
2166
}
2167
2168
2169
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2170
Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2171
Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2172
2173
switch (left->type()) {
2174
case T_INT: {
2175
switch (code) {
2176
case lir_shl: __ lslw (dreg, lreg, count); break;
2177
case lir_shr: __ asrw (dreg, lreg, count); break;
2178
case lir_ushr: __ lsrw (dreg, lreg, count); break;
2179
default:
2180
ShouldNotReachHere();
2181
break;
2182
}
2183
break;
2184
case T_LONG:
2185
case T_ADDRESS:
2186
case T_OBJECT:
2187
switch (code) {
2188
case lir_shl: __ lsl (dreg, lreg, count); break;
2189
case lir_shr: __ asr (dreg, lreg, count); break;
2190
case lir_ushr: __ lsr (dreg, lreg, count); break;
2191
default:
2192
ShouldNotReachHere();
2193
break;
2194
}
2195
break;
2196
default:
2197
ShouldNotReachHere();
2198
break;
2199
}
2200
}
2201
}
2202
2203
2204
void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2205
assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2206
int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2207
assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2208
__ str (r, Address(sp, offset_from_rsp_in_bytes));
2209
}
2210
2211
2212
void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
2213
assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2214
int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2215
assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2216
__ mov (rscratch1, c);
2217
__ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
2218
}
2219
2220
2221
void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
2222
ShouldNotReachHere();
2223
assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2224
int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2225
assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2226
__ lea(rscratch1, __ constant_oop_address(o));
2227
__ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
2228
}
2229
2230
2231
// This code replaces a call to arraycopy; no exception may
2232
// be thrown in this code, they must be thrown in the System.arraycopy
2233
// activation frame; we could save some checks if this would not be the case
2234
void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2235
ciArrayKlass* default_type = op->expected_type();
2236
Register src = op->src()->as_register();
2237
Register dst = op->dst()->as_register();
2238
Register src_pos = op->src_pos()->as_register();
2239
Register dst_pos = op->dst_pos()->as_register();
2240
Register length = op->length()->as_register();
2241
Register tmp = op->tmp()->as_register();
2242
2243
CodeStub* stub = op->stub();
2244
int flags = op->flags();
2245
BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2246
if (is_reference_type(basic_type)) basic_type = T_OBJECT;
2247
2248
// if we don't know anything, just go through the generic arraycopy
2249
if (default_type == NULL // || basic_type == T_OBJECT
2250
) {
2251
Label done;
2252
assert(src == r1 && src_pos == r2, "mismatch in calling convention");
2253
2254
// Save the arguments in case the generic arraycopy fails and we
2255
// have to fall back to the JNI stub
2256
__ stp(dst, dst_pos, Address(sp, 0*BytesPerWord));
2257
__ stp(length, src_pos, Address(sp, 2*BytesPerWord));
2258
__ str(src, Address(sp, 4*BytesPerWord));
2259
2260
address copyfunc_addr = StubRoutines::generic_arraycopy();
2261
assert(copyfunc_addr != NULL, "generic arraycopy stub required");
2262
2263
// The arguments are in java calling convention so we shift them
2264
// to C convention
2265
assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
2266
__ mov(c_rarg0, j_rarg0);
2267
assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
2268
__ mov(c_rarg1, j_rarg1);
2269
assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
2270
__ mov(c_rarg2, j_rarg2);
2271
assert_different_registers(c_rarg3, j_rarg4);
2272
__ mov(c_rarg3, j_rarg3);
2273
__ mov(c_rarg4, j_rarg4);
2274
#ifndef PRODUCT
2275
if (PrintC1Statistics) {
2276
__ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
2277
}
2278
#endif
2279
__ far_call(RuntimeAddress(copyfunc_addr));
2280
2281
__ cbz(r0, *stub->continuation());
2282
2283
// Reload values from the stack so they are where the stub
2284
// expects them.
2285
__ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord));
2286
__ ldp(length, src_pos, Address(sp, 2*BytesPerWord));
2287
__ ldr(src, Address(sp, 4*BytesPerWord));
2288
2289
// r0 is -1^K where K == partial copied count
2290
__ eonw(rscratch1, r0, zr);
2291
// adjust length down and src/end pos up by partial copied count
2292
__ subw(length, length, rscratch1);
2293
__ addw(src_pos, src_pos, rscratch1);
2294
__ addw(dst_pos, dst_pos, rscratch1);
2295
__ b(*stub->entry());
2296
2297
__ bind(*stub->continuation());
2298
return;
2299
}
2300
2301
assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2302
2303
int elem_size = type2aelembytes(basic_type);
2304
int scale = exact_log2(elem_size);
2305
2306
Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2307
Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2308
Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
2309
Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
2310
2311
// test for NULL
2312
if (flags & LIR_OpArrayCopy::src_null_check) {
2313
__ cbz(src, *stub->entry());
2314
}
2315
if (flags & LIR_OpArrayCopy::dst_null_check) {
2316
__ cbz(dst, *stub->entry());
2317
}
2318
2319
// If the compiler was not able to prove that exact type of the source or the destination
2320
// of the arraycopy is an array type, check at runtime if the source or the destination is
2321
// an instance type.
2322
if (flags & LIR_OpArrayCopy::type_check) {
2323
if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
2324
__ load_klass(tmp, dst);
2325
__ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2326
__ cmpw(rscratch1, Klass::_lh_neutral_value);
2327
__ br(Assembler::GE, *stub->entry());
2328
}
2329
2330
if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
2331
__ load_klass(tmp, src);
2332
__ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2333
__ cmpw(rscratch1, Klass::_lh_neutral_value);
2334
__ br(Assembler::GE, *stub->entry());
2335
}
2336
}
2337
2338
// check if negative
2339
if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2340
__ cmpw(src_pos, 0);
2341
__ br(Assembler::LT, *stub->entry());
2342
}
2343
if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2344
__ cmpw(dst_pos, 0);
2345
__ br(Assembler::LT, *stub->entry());
2346
}
2347
2348
if (flags & LIR_OpArrayCopy::length_positive_check) {
2349
__ cmpw(length, 0);
2350
__ br(Assembler::LT, *stub->entry());
2351
}
2352
2353
if (flags & LIR_OpArrayCopy::src_range_check) {
2354
__ addw(tmp, src_pos, length);
2355
__ ldrw(rscratch1, src_length_addr);
2356
__ cmpw(tmp, rscratch1);
2357
__ br(Assembler::HI, *stub->entry());
2358
}
2359
if (flags & LIR_OpArrayCopy::dst_range_check) {
2360
__ addw(tmp, dst_pos, length);
2361
__ ldrw(rscratch1, dst_length_addr);
2362
__ cmpw(tmp, rscratch1);
2363
__ br(Assembler::HI, *stub->entry());
2364
}
2365
2366
if (flags & LIR_OpArrayCopy::type_check) {
2367
// We don't know the array types are compatible
2368
if (basic_type != T_OBJECT) {
2369
// Simple test for basic type arrays
2370
if (UseCompressedClassPointers) {
2371
__ ldrw(tmp, src_klass_addr);
2372
__ ldrw(rscratch1, dst_klass_addr);
2373
__ cmpw(tmp, rscratch1);
2374
} else {
2375
__ ldr(tmp, src_klass_addr);
2376
__ ldr(rscratch1, dst_klass_addr);
2377
__ cmp(tmp, rscratch1);
2378
}
2379
__ br(Assembler::NE, *stub->entry());
2380
} else {
2381
// For object arrays, if src is a sub class of dst then we can
2382
// safely do the copy.
2383
Label cont, slow;
2384
2385
#define PUSH(r1, r2) \
2386
stp(r1, r2, __ pre(sp, -2 * wordSize));
2387
2388
#define POP(r1, r2) \
2389
ldp(r1, r2, __ post(sp, 2 * wordSize));
2390
2391
__ PUSH(src, dst);
2392
2393
__ load_klass(src, src);
2394
__ load_klass(dst, dst);
2395
2396
__ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
2397
2398
__ PUSH(src, dst);
2399
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
2400
__ POP(src, dst);
2401
2402
__ cbnz(src, cont);
2403
2404
__ bind(slow);
2405
__ POP(src, dst);
2406
2407
address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2408
if (copyfunc_addr != NULL) { // use stub if available
2409
// src is not a sub class of dst so we have to do a
2410
// per-element check.
2411
2412
int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2413
if ((flags & mask) != mask) {
2414
// Check that at least both of them object arrays.
2415
assert(flags & mask, "one of the two should be known to be an object array");
2416
2417
if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2418
__ load_klass(tmp, src);
2419
} else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2420
__ load_klass(tmp, dst);
2421
}
2422
int lh_offset = in_bytes(Klass::layout_helper_offset());
2423
Address klass_lh_addr(tmp, lh_offset);
2424
jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2425
__ ldrw(rscratch1, klass_lh_addr);
2426
__ mov(rscratch2, objArray_lh);
2427
__ eorw(rscratch1, rscratch1, rscratch2);
2428
__ cbnzw(rscratch1, *stub->entry());
2429
}
2430
2431
// Spill because stubs can use any register they like and it's
2432
// easier to restore just those that we care about.
2433
__ stp(dst, dst_pos, Address(sp, 0*BytesPerWord));
2434
__ stp(length, src_pos, Address(sp, 2*BytesPerWord));
2435
__ str(src, Address(sp, 4*BytesPerWord));
2436
2437
__ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2438
__ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2439
assert_different_registers(c_rarg0, dst, dst_pos, length);
2440
__ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2441
__ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2442
assert_different_registers(c_rarg1, dst, length);
2443
__ uxtw(c_rarg2, length);
2444
assert_different_registers(c_rarg2, dst);
2445
2446
__ load_klass(c_rarg4, dst);
2447
__ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
2448
__ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
2449
__ far_call(RuntimeAddress(copyfunc_addr));
2450
2451
#ifndef PRODUCT
2452
if (PrintC1Statistics) {
2453
Label failed;
2454
__ cbnz(r0, failed);
2455
__ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
2456
__ bind(failed);
2457
}
2458
#endif
2459
2460
__ cbz(r0, *stub->continuation());
2461
2462
#ifndef PRODUCT
2463
if (PrintC1Statistics) {
2464
__ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
2465
}
2466
#endif
2467
assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1);
2468
2469
// Restore previously spilled arguments
2470
__ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord));
2471
__ ldp(length, src_pos, Address(sp, 2*BytesPerWord));
2472
__ ldr(src, Address(sp, 4*BytesPerWord));
2473
2474
// return value is -1^K where K is partial copied count
2475
__ eonw(rscratch1, r0, zr);
2476
// adjust length down and src/end pos up by partial copied count
2477
__ subw(length, length, rscratch1);
2478
__ addw(src_pos, src_pos, rscratch1);
2479
__ addw(dst_pos, dst_pos, rscratch1);
2480
}
2481
2482
__ b(*stub->entry());
2483
2484
__ bind(cont);
2485
__ POP(src, dst);
2486
}
2487
}
2488
2489
#ifdef ASSERT
2490
if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2491
// Sanity check the known type with the incoming class. For the
2492
// primitive case the types must match exactly with src.klass and
2493
// dst.klass each exactly matching the default type. For the
2494
// object array case, if no type check is needed then either the
2495
// dst type is exactly the expected type and the src type is a
2496
// subtype which we can't check or src is the same array as dst
2497
// but not necessarily exactly of type default_type.
2498
Label known_ok, halt;
2499
__ mov_metadata(tmp, default_type->constant_encoding());
2500
if (UseCompressedClassPointers) {
2501
__ encode_klass_not_null(tmp);
2502
}
2503
2504
if (basic_type != T_OBJECT) {
2505
2506
if (UseCompressedClassPointers) {
2507
__ ldrw(rscratch1, dst_klass_addr);
2508
__ cmpw(tmp, rscratch1);
2509
} else {
2510
__ ldr(rscratch1, dst_klass_addr);
2511
__ cmp(tmp, rscratch1);
2512
}
2513
__ br(Assembler::NE, halt);
2514
if (UseCompressedClassPointers) {
2515
__ ldrw(rscratch1, src_klass_addr);
2516
__ cmpw(tmp, rscratch1);
2517
} else {
2518
__ ldr(rscratch1, src_klass_addr);
2519
__ cmp(tmp, rscratch1);
2520
}
2521
__ br(Assembler::EQ, known_ok);
2522
} else {
2523
if (UseCompressedClassPointers) {
2524
__ ldrw(rscratch1, dst_klass_addr);
2525
__ cmpw(tmp, rscratch1);
2526
} else {
2527
__ ldr(rscratch1, dst_klass_addr);
2528
__ cmp(tmp, rscratch1);
2529
}
2530
__ br(Assembler::EQ, known_ok);
2531
__ cmp(src, dst);
2532
__ br(Assembler::EQ, known_ok);
2533
}
2534
__ bind(halt);
2535
__ stop("incorrect type information in arraycopy");
2536
__ bind(known_ok);
2537
}
2538
#endif
2539
2540
#ifndef PRODUCT
2541
if (PrintC1Statistics) {
2542
__ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
2543
}
2544
#endif
2545
2546
__ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2547
__ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2548
assert_different_registers(c_rarg0, dst, dst_pos, length);
2549
__ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2550
__ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2551
assert_different_registers(c_rarg1, dst, length);
2552
__ uxtw(c_rarg2, length);
2553
assert_different_registers(c_rarg2, dst);
2554
2555
bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2556
bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2557
const char *name;
2558
address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2559
2560
CodeBlob *cb = CodeCache::find_blob(entry);
2561
if (cb) {
2562
__ far_call(RuntimeAddress(entry));
2563
} else {
2564
__ call_VM_leaf(entry, 3);
2565
}
2566
2567
__ bind(*stub->continuation());
2568
}
2569
2570
2571
2572
2573
void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2574
Register obj = op->obj_opr()->as_register(); // may not be an oop
2575
Register hdr = op->hdr_opr()->as_register();
2576
Register lock = op->lock_opr()->as_register();
2577
if (!UseFastLocking) {
2578
__ b(*op->stub()->entry());
2579
} else if (op->code() == lir_lock) {
2580
Register scratch = noreg;
2581
if (UseBiasedLocking) {
2582
scratch = op->scratch_opr()->as_register();
2583
}
2584
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2585
// add debug info for NullPointerException only if one is possible
2586
int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
2587
if (op->info() != NULL) {
2588
add_debug_info_for_null_check(null_check_offset, op->info());
2589
}
2590
// done
2591
} else if (op->code() == lir_unlock) {
2592
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2593
__ unlock_object(hdr, obj, lock, *op->stub()->entry());
2594
} else {
2595
Unimplemented();
2596
}
2597
__ bind(*op->stub()->continuation());
2598
}
2599
2600
2601
void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2602
ciMethod* method = op->profiled_method();
2603
int bci = op->profiled_bci();
2604
ciMethod* callee = op->profiled_callee();
2605
2606
// Update counter for all call types
2607
ciMethodData* md = method->method_data_or_null();
2608
assert(md != NULL, "Sanity");
2609
ciProfileData* data = md->bci_to_data(bci);
2610
assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
2611
assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
2612
Register mdo = op->mdo()->as_register();
2613
__ mov_metadata(mdo, md->constant_encoding());
2614
Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2615
// Perform additional virtual call profiling for invokevirtual and
2616
// invokeinterface bytecodes
2617
if (op->should_profile_receiver_type()) {
2618
assert(op->recv()->is_single_cpu(), "recv must be allocated");
2619
Register recv = op->recv()->as_register();
2620
assert_different_registers(mdo, recv);
2621
assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2622
ciKlass* known_klass = op->known_holder();
2623
if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2624
// We know the type that will be seen at this call site; we can
2625
// statically update the MethodData* rather than needing to do
2626
// dynamic tests on the receiver type
2627
2628
// NOTE: we should probably put a lock around this search to
2629
// avoid collisions by concurrent compilations
2630
ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2631
uint i;
2632
for (i = 0; i < VirtualCallData::row_limit(); i++) {
2633
ciKlass* receiver = vc_data->receiver(i);
2634
if (known_klass->equals(receiver)) {
2635
Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2636
__ addptr(data_addr, DataLayout::counter_increment);
2637
return;
2638
}
2639
}
2640
2641
// Receiver type not found in profile data; select an empty slot
2642
2643
// Note that this is less efficient than it should be because it
2644
// always does a write to the receiver part of the
2645
// VirtualCallData rather than just the first time
2646
for (i = 0; i < VirtualCallData::row_limit(); i++) {
2647
ciKlass* receiver = vc_data->receiver(i);
2648
if (receiver == NULL) {
2649
Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2650
__ mov_metadata(rscratch1, known_klass->constant_encoding());
2651
__ lea(rscratch2, recv_addr);
2652
__ str(rscratch1, Address(rscratch2));
2653
Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2654
__ addptr(data_addr, DataLayout::counter_increment);
2655
return;
2656
}
2657
}
2658
} else {
2659
__ load_klass(recv, recv);
2660
Label update_done;
2661
type_profile_helper(mdo, md, data, recv, &update_done);
2662
// Receiver did not match any saved receiver and there is no empty row for it.
2663
// Increment total counter to indicate polymorphic case.
2664
__ addptr(counter_addr, DataLayout::counter_increment);
2665
2666
__ bind(update_done);
2667
}
2668
} else {
2669
// Static call
2670
__ addptr(counter_addr, DataLayout::counter_increment);
2671
}
2672
}
2673
2674
2675
void LIR_Assembler::emit_delay(LIR_OpDelay*) {
2676
Unimplemented();
2677
}
2678
2679
2680
void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
2681
__ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
2682
}
2683
2684
void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2685
assert(op->crc()->is_single_cpu(), "crc must be register");
2686
assert(op->val()->is_single_cpu(), "byte value must be register");
2687
assert(op->result_opr()->is_single_cpu(), "result must be register");
2688
Register crc = op->crc()->as_register();
2689
Register val = op->val()->as_register();
2690
Register res = op->result_opr()->as_register();
2691
2692
assert_different_registers(val, crc, res);
2693
uint64_t offset;
2694
__ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2695
if (offset) __ add(res, res, offset);
2696
2697
__ mvnw(crc, crc); // ~crc
2698
__ update_byte_crc32(crc, val, res);
2699
__ mvnw(res, crc); // ~crc
2700
}
2701
2702
void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2703
COMMENT("emit_profile_type {");
2704
Register obj = op->obj()->as_register();
2705
Register tmp = op->tmp()->as_pointer_register();
2706
Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2707
ciKlass* exact_klass = op->exact_klass();
2708
intptr_t current_klass = op->current_klass();
2709
bool not_null = op->not_null();
2710
bool no_conflict = op->no_conflict();
2711
2712
Label update, next, none;
2713
2714
bool do_null = !not_null;
2715
bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2716
bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2717
2718
assert(do_null || do_update, "why are we here?");
2719
assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2720
assert(mdo_addr.base() != rscratch1, "wrong register");
2721
2722
__ verify_oop(obj);
2723
2724
if (tmp != obj) {
2725
__ mov(tmp, obj);
2726
}
2727
if (do_null) {
2728
__ cbnz(tmp, update);
2729
if (!TypeEntries::was_null_seen(current_klass)) {
2730
__ ldr(rscratch2, mdo_addr);
2731
__ orr(rscratch2, rscratch2, TypeEntries::null_seen);
2732
__ str(rscratch2, mdo_addr);
2733
}
2734
if (do_update) {
2735
#ifndef ASSERT
2736
__ b(next);
2737
}
2738
#else
2739
__ b(next);
2740
}
2741
} else {
2742
__ cbnz(tmp, update);
2743
__ stop("unexpected null obj");
2744
#endif
2745
}
2746
2747
__ bind(update);
2748
2749
if (do_update) {
2750
#ifdef ASSERT
2751
if (exact_klass != NULL) {
2752
Label ok;
2753
__ load_klass(tmp, tmp);
2754
__ mov_metadata(rscratch1, exact_klass->constant_encoding());
2755
__ eor(rscratch1, tmp, rscratch1);
2756
__ cbz(rscratch1, ok);
2757
__ stop("exact klass and actual klass differ");
2758
__ bind(ok);
2759
}
2760
#endif
2761
if (!no_conflict) {
2762
if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
2763
if (exact_klass != NULL) {
2764
__ mov_metadata(tmp, exact_klass->constant_encoding());
2765
} else {
2766
__ load_klass(tmp, tmp);
2767
}
2768
2769
__ ldr(rscratch2, mdo_addr);
2770
__ eor(tmp, tmp, rscratch2);
2771
__ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2772
// klass seen before, nothing to do. The unknown bit may have been
2773
// set already but no need to check.
2774
__ cbz(rscratch1, next);
2775
2776
__ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2777
2778
if (TypeEntries::is_type_none(current_klass)) {
2779
__ cbz(rscratch2, none);
2780
__ cmp(rscratch2, (u1)TypeEntries::null_seen);
2781
__ br(Assembler::EQ, none);
2782
// There is a chance that the checks above (re-reading profiling
2783
// data from memory) fail if another thread has just set the
2784
// profiling to this obj's klass
2785
__ dmb(Assembler::ISHLD);
2786
__ ldr(rscratch2, mdo_addr);
2787
__ eor(tmp, tmp, rscratch2);
2788
__ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2789
__ cbz(rscratch1, next);
2790
}
2791
} else {
2792
assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2793
ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2794
2795
__ ldr(tmp, mdo_addr);
2796
__ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2797
}
2798
2799
// different than before. Cannot keep accurate profile.
2800
__ ldr(rscratch2, mdo_addr);
2801
__ orr(rscratch2, rscratch2, TypeEntries::type_unknown);
2802
__ str(rscratch2, mdo_addr);
2803
2804
if (TypeEntries::is_type_none(current_klass)) {
2805
__ b(next);
2806
2807
__ bind(none);
2808
// first time here. Set profile type.
2809
__ str(tmp, mdo_addr);
2810
}
2811
} else {
2812
// There's a single possible klass at this profile point
2813
assert(exact_klass != NULL, "should be");
2814
if (TypeEntries::is_type_none(current_klass)) {
2815
__ mov_metadata(tmp, exact_klass->constant_encoding());
2816
__ ldr(rscratch2, mdo_addr);
2817
__ eor(tmp, tmp, rscratch2);
2818
__ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2819
__ cbz(rscratch1, next);
2820
#ifdef ASSERT
2821
{
2822
Label ok;
2823
__ ldr(rscratch1, mdo_addr);
2824
__ cbz(rscratch1, ok);
2825
__ cmp(rscratch1, (u1)TypeEntries::null_seen);
2826
__ br(Assembler::EQ, ok);
2827
// may have been set by another thread
2828
__ dmb(Assembler::ISHLD);
2829
__ mov_metadata(rscratch1, exact_klass->constant_encoding());
2830
__ ldr(rscratch2, mdo_addr);
2831
__ eor(rscratch2, rscratch1, rscratch2);
2832
__ andr(rscratch2, rscratch2, TypeEntries::type_mask);
2833
__ cbz(rscratch2, ok);
2834
2835
__ stop("unexpected profiling mismatch");
2836
__ bind(ok);
2837
}
2838
#endif
2839
// first time here. Set profile type.
2840
__ ldr(tmp, mdo_addr);
2841
} else {
2842
assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2843
ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2844
2845
__ ldr(tmp, mdo_addr);
2846
__ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2847
2848
__ orr(tmp, tmp, TypeEntries::type_unknown);
2849
__ str(tmp, mdo_addr);
2850
// FIXME: Write barrier needed here?
2851
}
2852
}
2853
2854
__ bind(next);
2855
}
2856
COMMENT("} emit_profile_type");
2857
}
2858
2859
2860
void LIR_Assembler::align_backward_branch_target() {
2861
}
2862
2863
2864
void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2865
// tmp must be unused
2866
assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2867
2868
if (left->is_single_cpu()) {
2869
assert(dest->is_single_cpu(), "expect single result reg");
2870
__ negw(dest->as_register(), left->as_register());
2871
} else if (left->is_double_cpu()) {
2872
assert(dest->is_double_cpu(), "expect double result reg");
2873
__ neg(dest->as_register_lo(), left->as_register_lo());
2874
} else if (left->is_single_fpu()) {
2875
assert(dest->is_single_fpu(), "expect single float result reg");
2876
__ fnegs(dest->as_float_reg(), left->as_float_reg());
2877
} else {
2878
assert(left->is_double_fpu(), "expect double float operand reg");
2879
assert(dest->is_double_fpu(), "expect double float result reg");
2880
__ fnegd(dest->as_double_reg(), left->as_double_reg());
2881
}
2882
}
2883
2884
2885
void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2886
if (patch_code != lir_patch_none) {
2887
deoptimize_trap(info);
2888
return;
2889
}
2890
2891
__ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr()));
2892
}
2893
2894
2895
void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2896
assert(!tmp->is_valid(), "don't need temporary");
2897
2898
CodeBlob *cb = CodeCache::find_blob(dest);
2899
if (cb) {
2900
__ far_call(RuntimeAddress(dest));
2901
} else {
2902
__ mov(rscratch1, RuntimeAddress(dest));
2903
__ blr(rscratch1);
2904
}
2905
2906
if (info != NULL) {
2907
add_call_info_here(info);
2908
}
2909
}
2910
2911
void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2912
if (dest->is_address() || src->is_address()) {
2913
move_op(src, dest, type, lir_patch_none, info,
2914
/*pop_fpu_stack*/false, /*unaligned*/false, /*wide*/false);
2915
} else {
2916
ShouldNotReachHere();
2917
}
2918
}
2919
2920
#ifdef ASSERT
2921
// emit run-time assertion
2922
void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2923
assert(op->code() == lir_assert, "must be");
2924
2925
if (op->in_opr1()->is_valid()) {
2926
assert(op->in_opr2()->is_valid(), "both operands must be valid");
2927
comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
2928
} else {
2929
assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
2930
assert(op->condition() == lir_cond_always, "no other conditions allowed");
2931
}
2932
2933
Label ok;
2934
if (op->condition() != lir_cond_always) {
2935
Assembler::Condition acond = Assembler::AL;
2936
switch (op->condition()) {
2937
case lir_cond_equal: acond = Assembler::EQ; break;
2938
case lir_cond_notEqual: acond = Assembler::NE; break;
2939
case lir_cond_less: acond = Assembler::LT; break;
2940
case lir_cond_lessEqual: acond = Assembler::LE; break;
2941
case lir_cond_greaterEqual: acond = Assembler::GE; break;
2942
case lir_cond_greater: acond = Assembler::GT; break;
2943
case lir_cond_belowEqual: acond = Assembler::LS; break;
2944
case lir_cond_aboveEqual: acond = Assembler::HS; break;
2945
default: ShouldNotReachHere();
2946
}
2947
__ br(acond, ok);
2948
}
2949
if (op->halt()) {
2950
const char* str = __ code_string(op->msg());
2951
__ stop(str);
2952
} else {
2953
breakpoint();
2954
}
2955
__ bind(ok);
2956
}
2957
#endif
2958
2959
#ifndef PRODUCT
2960
#define COMMENT(x) do { __ block_comment(x); } while (0)
2961
#else
2962
#define COMMENT(x)
2963
#endif
2964
2965
void LIR_Assembler::membar() {
2966
COMMENT("membar");
2967
__ membar(MacroAssembler::AnyAny);
2968
}
2969
2970
void LIR_Assembler::membar_acquire() {
2971
__ membar(Assembler::LoadLoad|Assembler::LoadStore);
2972
}
2973
2974
void LIR_Assembler::membar_release() {
2975
__ membar(Assembler::LoadStore|Assembler::StoreStore);
2976
}
2977
2978
void LIR_Assembler::membar_loadload() {
2979
__ membar(Assembler::LoadLoad);
2980
}
2981
2982
void LIR_Assembler::membar_storestore() {
2983
__ membar(MacroAssembler::StoreStore);
2984
}
2985
2986
void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
2987
2988
void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
2989
2990
void LIR_Assembler::on_spin_wait() {
2991
Unimplemented();
2992
}
2993
2994
void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2995
__ mov(result_reg->as_register(), rthread);
2996
}
2997
2998
2999
void LIR_Assembler::peephole(LIR_List *lir) {
3000
#if 0
3001
if (tableswitch_count >= max_tableswitches)
3002
return;
3003
3004
/*
3005
This finite-state automaton recognizes sequences of compare-and-
3006
branch instructions. We will turn them into a tableswitch. You
3007
could argue that C1 really shouldn't be doing this sort of
3008
optimization, but without it the code is really horrible.
3009
*/
3010
3011
enum { start_s, cmp1_s, beq_s, cmp_s } state;
3012
int first_key, last_key = -2147483648;
3013
int next_key = 0;
3014
int start_insn = -1;
3015
int last_insn = -1;
3016
Register reg = noreg;
3017
LIR_Opr reg_opr;
3018
state = start_s;
3019
3020
LIR_OpList* inst = lir->instructions_list();
3021
for (int i = 0; i < inst->length(); i++) {
3022
LIR_Op* op = inst->at(i);
3023
switch (state) {
3024
case start_s:
3025
first_key = -1;
3026
start_insn = i;
3027
switch (op->code()) {
3028
case lir_cmp:
3029
LIR_Opr opr1 = op->as_Op2()->in_opr1();
3030
LIR_Opr opr2 = op->as_Op2()->in_opr2();
3031
if (opr1->is_cpu_register() && opr1->is_single_cpu()
3032
&& opr2->is_constant()
3033
&& opr2->type() == T_INT) {
3034
reg_opr = opr1;
3035
reg = opr1->as_register();
3036
first_key = opr2->as_constant_ptr()->as_jint();
3037
next_key = first_key + 1;
3038
state = cmp_s;
3039
goto next_state;
3040
}
3041
break;
3042
}
3043
break;
3044
case cmp_s:
3045
switch (op->code()) {
3046
case lir_branch:
3047
if (op->as_OpBranch()->cond() == lir_cond_equal) {
3048
state = beq_s;
3049
last_insn = i;
3050
goto next_state;
3051
}
3052
}
3053
state = start_s;
3054
break;
3055
case beq_s:
3056
switch (op->code()) {
3057
case lir_cmp: {
3058
LIR_Opr opr1 = op->as_Op2()->in_opr1();
3059
LIR_Opr opr2 = op->as_Op2()->in_opr2();
3060
if (opr1->is_cpu_register() && opr1->is_single_cpu()
3061
&& opr1->as_register() == reg
3062
&& opr2->is_constant()
3063
&& opr2->type() == T_INT
3064
&& opr2->as_constant_ptr()->as_jint() == next_key) {
3065
last_key = next_key;
3066
next_key++;
3067
state = cmp_s;
3068
goto next_state;
3069
}
3070
}
3071
}
3072
last_key = next_key;
3073
state = start_s;
3074
break;
3075
default:
3076
assert(false, "impossible state");
3077
}
3078
if (state == start_s) {
3079
if (first_key < last_key - 5L && reg != noreg) {
3080
{
3081
// printf("found run register %d starting at insn %d low value %d high value %d\n",
3082
// reg->encoding(),
3083
// start_insn, first_key, last_key);
3084
// for (int i = 0; i < inst->length(); i++) {
3085
// inst->at(i)->print();
3086
// tty->print("\n");
3087
// }
3088
// tty->print("\n");
3089
}
3090
3091
struct tableswitch *sw = &switches[tableswitch_count];
3092
sw->_insn_index = start_insn, sw->_first_key = first_key,
3093
sw->_last_key = last_key, sw->_reg = reg;
3094
inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after));
3095
{
3096
// Insert the new table of branches
3097
int offset = last_insn;
3098
for (int n = first_key; n < last_key; n++) {
3099
inst->insert_before
3100
(last_insn + 1,
3101
new LIR_OpBranch(lir_cond_always, T_ILLEGAL,
3102
inst->at(offset)->as_OpBranch()->label()));
3103
offset -= 2, i++;
3104
}
3105
}
3106
// Delete all the old compare-and-branch instructions
3107
for (int n = first_key; n < last_key; n++) {
3108
inst->remove_at(start_insn);
3109
inst->remove_at(start_insn);
3110
}
3111
// Insert the tableswitch instruction
3112
inst->insert_before(start_insn,
3113
new LIR_Op2(lir_cmp, lir_cond_always,
3114
LIR_OprFact::intConst(tableswitch_count),
3115
reg_opr));
3116
inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches));
3117
tableswitch_count++;
3118
}
3119
reg = noreg;
3120
last_key = -2147483648;
3121
}
3122
next_state:
3123
;
3124
}
3125
#endif
3126
}
3127
3128
void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) {
3129
Address addr = as_Address(src->as_address_ptr());
3130
BasicType type = src->type();
3131
bool is_oop = is_reference_type(type);
3132
3133
void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr);
3134
void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr);
3135
3136
switch(type) {
3137
case T_INT:
3138
xchg = &MacroAssembler::atomic_xchgalw;
3139
add = &MacroAssembler::atomic_addalw;
3140
break;
3141
case T_LONG:
3142
xchg = &MacroAssembler::atomic_xchgal;
3143
add = &MacroAssembler::atomic_addal;
3144
break;
3145
case T_OBJECT:
3146
case T_ARRAY:
3147
if (UseCompressedOops) {
3148
xchg = &MacroAssembler::atomic_xchgalw;
3149
add = &MacroAssembler::atomic_addalw;
3150
} else {
3151
xchg = &MacroAssembler::atomic_xchgal;
3152
add = &MacroAssembler::atomic_addal;
3153
}
3154
break;
3155
default:
3156
ShouldNotReachHere();
3157
xchg = &MacroAssembler::atomic_xchgal;
3158
add = &MacroAssembler::atomic_addal; // unreachable
3159
}
3160
3161
switch (code) {
3162
case lir_xadd:
3163
{
3164
RegisterOrConstant inc;
3165
Register tmp = as_reg(tmp_op);
3166
Register dst = as_reg(dest);
3167
if (data->is_constant()) {
3168
inc = RegisterOrConstant(as_long(data));
3169
assert_different_registers(dst, addr.base(), tmp,
3170
rscratch1, rscratch2);
3171
} else {
3172
inc = RegisterOrConstant(as_reg(data));
3173
assert_different_registers(inc.as_register(), dst, addr.base(), tmp,
3174
rscratch1, rscratch2);
3175
}
3176
__ lea(tmp, addr);
3177
(_masm->*add)(dst, inc, tmp);
3178
break;
3179
}
3180
case lir_xchg:
3181
{
3182
Register tmp = tmp_op->as_register();
3183
Register obj = as_reg(data);
3184
Register dst = as_reg(dest);
3185
if (is_oop && UseCompressedOops) {
3186
__ encode_heap_oop(rscratch2, obj);
3187
obj = rscratch2;
3188
}
3189
assert_different_registers(obj, addr.base(), tmp, rscratch1, dst);
3190
__ lea(tmp, addr);
3191
(_masm->*xchg)(dst, obj, tmp);
3192
if (is_oop && UseCompressedOops) {
3193
__ decode_heap_oop(dst);
3194
}
3195
}
3196
break;
3197
default:
3198
ShouldNotReachHere();
3199
}
3200
__ membar(__ AnyAny);
3201
}
3202
3203
#undef __
3204
3205