Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/cpu/ppc/assembler_ppc.hpp
40930 views
1
/*
2
* Copyright (c) 2002, 2021, Oracle and/or its affiliates. All rights reserved.
3
* Copyright (c) 2012, 2021 SAP SE. All rights reserved.
4
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
*
6
* This code is free software; you can redistribute it and/or modify it
7
* under the terms of the GNU General Public License version 2 only, as
8
* published by the Free Software Foundation.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*
24
*/
25
26
#ifndef CPU_PPC_ASSEMBLER_PPC_HPP
27
#define CPU_PPC_ASSEMBLER_PPC_HPP
28
29
#include "asm/assembler.hpp"
30
#include "asm/register.hpp"
31
32
// Address is an abstraction used to represent a memory location
33
// as used in assembler instructions.
34
// PPC instructions grok either baseReg + indexReg or baseReg + disp.
35
class Address {
36
private:
37
Register _base; // Base register.
38
Register _index; // Index register.
39
intptr_t _disp; // Displacement.
40
41
public:
42
Address(Register b, Register i, address d = 0)
43
: _base(b), _index(i), _disp((intptr_t)d) {
44
assert(i == noreg || d == 0, "can't have both");
45
}
46
47
Address(Register b, address d = 0)
48
: _base(b), _index(noreg), _disp((intptr_t)d) {}
49
50
Address(Register b, intptr_t d)
51
: _base(b), _index(noreg), _disp(d) {}
52
53
Address(Register b, RegisterOrConstant roc)
54
: _base(b), _index(noreg), _disp(0) {
55
if (roc.is_constant()) _disp = roc.as_constant(); else _index = roc.as_register();
56
}
57
58
Address()
59
: _base(noreg), _index(noreg), _disp(0) {}
60
61
// accessors
62
Register base() const { return _base; }
63
Register index() const { return _index; }
64
int disp() const { return (int)_disp; }
65
bool is_const() const { return _base == noreg && _index == noreg; }
66
};
67
68
class AddressLiteral {
69
private:
70
address _address;
71
RelocationHolder _rspec;
72
73
RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
74
switch (rtype) {
75
case relocInfo::external_word_type:
76
return external_word_Relocation::spec(addr);
77
case relocInfo::internal_word_type:
78
return internal_word_Relocation::spec(addr);
79
case relocInfo::opt_virtual_call_type:
80
return opt_virtual_call_Relocation::spec();
81
case relocInfo::static_call_type:
82
return static_call_Relocation::spec();
83
case relocInfo::runtime_call_type:
84
return runtime_call_Relocation::spec();
85
case relocInfo::none:
86
return RelocationHolder();
87
default:
88
ShouldNotReachHere();
89
return RelocationHolder();
90
}
91
}
92
93
protected:
94
// creation
95
AddressLiteral() : _address(NULL), _rspec(NULL) {}
96
97
public:
98
AddressLiteral(address addr, RelocationHolder const& rspec)
99
: _address(addr),
100
_rspec(rspec) {}
101
102
AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
103
: _address((address) addr),
104
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
105
106
AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
107
: _address((address) addr),
108
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
109
110
intptr_t value() const { return (intptr_t) _address; }
111
112
const RelocationHolder& rspec() const { return _rspec; }
113
};
114
115
// Argument is an abstraction used to represent an outgoing
116
// actual argument or an incoming formal parameter, whether
117
// it resides in memory or in a register, in a manner consistent
118
// with the PPC Application Binary Interface, or ABI. This is
119
// often referred to as the native or C calling convention.
120
121
class Argument {
122
private:
123
int _number; // The number of the argument.
124
public:
125
enum {
126
// Only 8 registers may contain integer parameters.
127
n_register_parameters = 8,
128
// Can have up to 8 floating registers.
129
n_float_register_parameters = 8,
130
131
// PPC C calling conventions.
132
// The first eight arguments are passed in int regs if they are int.
133
n_int_register_parameters_c = 8,
134
// The first thirteen float arguments are passed in float regs.
135
n_float_register_parameters_c = 13,
136
// Only the first 8 parameters are not placed on the stack. Aix disassembly
137
// shows that xlC places all float args after argument 8 on the stack AND
138
// in a register. This is not documented, but we follow this convention, too.
139
n_regs_not_on_stack_c = 8,
140
};
141
// creation
142
Argument(int number) : _number(number) {}
143
144
int number() const { return _number; }
145
146
// Locating register-based arguments:
147
bool is_register() const { return _number < n_register_parameters; }
148
149
Register as_register() const {
150
assert(is_register(), "must be a register argument");
151
return as_Register(number() + R3_ARG1->encoding());
152
}
153
};
154
155
#if !defined(ABI_ELFv2)
156
// A ppc64 function descriptor.
157
struct FunctionDescriptor {
158
private:
159
address _entry;
160
address _toc;
161
address _env;
162
163
public:
164
inline address entry() const { return _entry; }
165
inline address toc() const { return _toc; }
166
inline address env() const { return _env; }
167
168
inline void set_entry(address entry) { _entry = entry; }
169
inline void set_toc( address toc) { _toc = toc; }
170
inline void set_env( address env) { _env = env; }
171
172
inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
173
inline static ByteSize toc_offset() { return byte_offset_of(FunctionDescriptor, _toc); }
174
inline static ByteSize env_offset() { return byte_offset_of(FunctionDescriptor, _env); }
175
176
// Friend functions can be called without loading toc and env.
177
enum {
178
friend_toc = 0xcafe,
179
friend_env = 0xc0de
180
};
181
182
inline bool is_friend_function() const {
183
return (toc() == (address) friend_toc) && (env() == (address) friend_env);
184
}
185
186
// Constructor for stack-allocated instances.
187
FunctionDescriptor() {
188
_entry = (address) 0xbad;
189
_toc = (address) 0xbad;
190
_env = (address) 0xbad;
191
}
192
};
193
#endif
194
195
196
// The PPC Assembler: Pure assembler doing NO optimizations on the
197
// instruction level; i.e., what you write is what you get. The
198
// Assembler is generating code into a CodeBuffer.
199
200
class Assembler : public AbstractAssembler {
201
protected:
202
// Displacement routines
203
static int patched_branch(int dest_pos, int inst, int inst_pos);
204
static int branch_destination(int inst, int pos);
205
206
friend class AbstractAssembler;
207
208
// Code patchers need various routines like inv_wdisp()
209
friend class NativeInstruction;
210
friend class NativeGeneralJump;
211
friend class Relocation;
212
213
public:
214
215
enum shifts {
216
XO_21_29_SHIFT = 2,
217
XO_21_30_SHIFT = 1,
218
XO_27_29_SHIFT = 2,
219
XO_30_31_SHIFT = 0,
220
SPR_5_9_SHIFT = 11u, // SPR_5_9 field in bits 11 -- 15
221
SPR_0_4_SHIFT = 16u, // SPR_0_4 field in bits 16 -- 20
222
RS_SHIFT = 21u, // RS field in bits 21 -- 25
223
OPCODE_SHIFT = 26u, // opcode in bits 26 -- 31
224
225
// Shift counts in prefix word
226
PRE_TYPE_SHIFT = 24u, // Prefix type in bits 24 -- 25
227
PRE_ST1_SHIFT = 23u, // ST1 field in bits 23 -- 23
228
PRE_R_SHIFT = 20u, // R-bit in bits 20 -- 20
229
PRE_ST4_SHIFT = 20u, // ST4 field in bits 23 -- 20
230
};
231
232
enum opcdxos_masks {
233
XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
234
ADDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
235
ADDIS_OPCODE_MASK = (63u << OPCODE_SHIFT),
236
BXX_OPCODE_MASK = (63u << OPCODE_SHIFT),
237
BCXX_OPCODE_MASK = (63u << OPCODE_SHIFT),
238
// trap instructions
239
TDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
240
TWI_OPCODE_MASK = (63u << OPCODE_SHIFT),
241
TD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
242
TW_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
243
LD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
244
STD_OPCODE_MASK = LD_OPCODE_MASK,
245
STDU_OPCODE_MASK = STD_OPCODE_MASK,
246
STDX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
247
STDUX_OPCODE_MASK = STDX_OPCODE_MASK,
248
STW_OPCODE_MASK = (63u << OPCODE_SHIFT),
249
STWU_OPCODE_MASK = STW_OPCODE_MASK,
250
STWX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
251
STWUX_OPCODE_MASK = STWX_OPCODE_MASK,
252
MTCTR_OPCODE_MASK = ~(31u << RS_SHIFT),
253
ORI_OPCODE_MASK = (63u << OPCODE_SHIFT),
254
ORIS_OPCODE_MASK = (63u << OPCODE_SHIFT),
255
RLDICR_OPCODE_MASK = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
256
};
257
258
enum opcdxos {
259
ADD_OPCODE = (31u << OPCODE_SHIFT | 266u << 1),
260
ADDC_OPCODE = (31u << OPCODE_SHIFT | 10u << 1),
261
ADDI_OPCODE = (14u << OPCODE_SHIFT),
262
ADDIS_OPCODE = (15u << OPCODE_SHIFT),
263
ADDIC__OPCODE = (13u << OPCODE_SHIFT),
264
ADDE_OPCODE = (31u << OPCODE_SHIFT | 138u << 1),
265
ADDME_OPCODE = (31u << OPCODE_SHIFT | 234u << 1),
266
ADDZE_OPCODE = (31u << OPCODE_SHIFT | 202u << 1),
267
SUBF_OPCODE = (31u << OPCODE_SHIFT | 40u << 1),
268
SUBFC_OPCODE = (31u << OPCODE_SHIFT | 8u << 1),
269
SUBFE_OPCODE = (31u << OPCODE_SHIFT | 136u << 1),
270
SUBFIC_OPCODE = (8u << OPCODE_SHIFT),
271
SUBFME_OPCODE = (31u << OPCODE_SHIFT | 232u << 1),
272
SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
273
DIVW_OPCODE = (31u << OPCODE_SHIFT | 491u << 1),
274
DIVWU_OPCODE = (31u << OPCODE_SHIFT | 459u << 1),
275
MULLW_OPCODE = (31u << OPCODE_SHIFT | 235u << 1),
276
MULHW_OPCODE = (31u << OPCODE_SHIFT | 75u << 1),
277
MULHWU_OPCODE = (31u << OPCODE_SHIFT | 11u << 1),
278
MULLI_OPCODE = (7u << OPCODE_SHIFT),
279
AND_OPCODE = (31u << OPCODE_SHIFT | 28u << 1),
280
ANDI_OPCODE = (28u << OPCODE_SHIFT),
281
ANDIS_OPCODE = (29u << OPCODE_SHIFT),
282
ANDC_OPCODE = (31u << OPCODE_SHIFT | 60u << 1),
283
ORC_OPCODE = (31u << OPCODE_SHIFT | 412u << 1),
284
OR_OPCODE = (31u << OPCODE_SHIFT | 444u << 1),
285
ORI_OPCODE = (24u << OPCODE_SHIFT),
286
ORIS_OPCODE = (25u << OPCODE_SHIFT),
287
XOR_OPCODE = (31u << OPCODE_SHIFT | 316u << 1),
288
XORI_OPCODE = (26u << OPCODE_SHIFT),
289
XORIS_OPCODE = (27u << OPCODE_SHIFT),
290
291
NEG_OPCODE = (31u << OPCODE_SHIFT | 104u << 1),
292
293
RLWINM_OPCODE = (21u << OPCODE_SHIFT),
294
CLRRWI_OPCODE = RLWINM_OPCODE,
295
CLRLWI_OPCODE = RLWINM_OPCODE,
296
297
RLWIMI_OPCODE = (20u << OPCODE_SHIFT),
298
299
SLW_OPCODE = (31u << OPCODE_SHIFT | 24u << 1),
300
SLWI_OPCODE = RLWINM_OPCODE,
301
SRW_OPCODE = (31u << OPCODE_SHIFT | 536u << 1),
302
SRWI_OPCODE = RLWINM_OPCODE,
303
SRAW_OPCODE = (31u << OPCODE_SHIFT | 792u << 1),
304
SRAWI_OPCODE = (31u << OPCODE_SHIFT | 824u << 1),
305
306
CMP_OPCODE = (31u << OPCODE_SHIFT | 0u << 1),
307
CMPI_OPCODE = (11u << OPCODE_SHIFT),
308
CMPL_OPCODE = (31u << OPCODE_SHIFT | 32u << 1),
309
CMPLI_OPCODE = (10u << OPCODE_SHIFT),
310
CMPRB_OPCODE = (31u << OPCODE_SHIFT | 192u << 1),
311
CMPEQB_OPCODE = (31u << OPCODE_SHIFT | 224u << 1),
312
313
ISEL_OPCODE = (31u << OPCODE_SHIFT | 15u << 1),
314
315
// Special purpose registers
316
MTSPR_OPCODE = (31u << OPCODE_SHIFT | 467u << 1),
317
MFSPR_OPCODE = (31u << OPCODE_SHIFT | 339u << 1),
318
319
MTXER_OPCODE = (MTSPR_OPCODE | 1 << SPR_0_4_SHIFT),
320
MFXER_OPCODE = (MFSPR_OPCODE | 1 << SPR_0_4_SHIFT),
321
322
MTDSCR_OPCODE = (MTSPR_OPCODE | 3 << SPR_0_4_SHIFT),
323
MFDSCR_OPCODE = (MFSPR_OPCODE | 3 << SPR_0_4_SHIFT),
324
325
MTLR_OPCODE = (MTSPR_OPCODE | 8 << SPR_0_4_SHIFT),
326
MFLR_OPCODE = (MFSPR_OPCODE | 8 << SPR_0_4_SHIFT),
327
328
MTCTR_OPCODE = (MTSPR_OPCODE | 9 << SPR_0_4_SHIFT),
329
MFCTR_OPCODE = (MFSPR_OPCODE | 9 << SPR_0_4_SHIFT),
330
331
// Attention: Higher and lower half are inserted in reversed order.
332
MTTFHAR_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
333
MFTFHAR_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
334
MTTFIAR_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 1 << SPR_0_4_SHIFT),
335
MFTFIAR_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 1 << SPR_0_4_SHIFT),
336
MTTEXASR_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 2 << SPR_0_4_SHIFT),
337
MFTEXASR_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 2 << SPR_0_4_SHIFT),
338
MTTEXASRU_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 3 << SPR_0_4_SHIFT),
339
MFTEXASRU_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 3 << SPR_0_4_SHIFT),
340
341
MTVRSAVE_OPCODE = (MTSPR_OPCODE | 8 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
342
MFVRSAVE_OPCODE = (MFSPR_OPCODE | 8 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
343
344
MFTB_OPCODE = (MFSPR_OPCODE | 8 << SPR_5_9_SHIFT | 12 << SPR_0_4_SHIFT),
345
346
MTCRF_OPCODE = (31u << OPCODE_SHIFT | 144u << 1),
347
MFCR_OPCODE = (31u << OPCODE_SHIFT | 19u << 1),
348
MCRF_OPCODE = (19u << OPCODE_SHIFT | 0u << 1),
349
MCRXRX_OPCODE = (31u << OPCODE_SHIFT | 576u << 1),
350
SETB_OPCODE = (31u << OPCODE_SHIFT | 128u << 1),
351
352
SETBC_OPCODE = (31u << OPCODE_SHIFT | 384u << 1),
353
SETNBC_OPCODE = (31u << OPCODE_SHIFT | 448u << 1),
354
355
// condition register logic instructions
356
CRAND_OPCODE = (19u << OPCODE_SHIFT | 257u << 1),
357
CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
358
CROR_OPCODE = (19u << OPCODE_SHIFT | 449u << 1),
359
CRXOR_OPCODE = (19u << OPCODE_SHIFT | 193u << 1),
360
CRNOR_OPCODE = (19u << OPCODE_SHIFT | 33u << 1),
361
CREQV_OPCODE = (19u << OPCODE_SHIFT | 289u << 1),
362
CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
363
CRORC_OPCODE = (19u << OPCODE_SHIFT | 417u << 1),
364
365
BCLR_OPCODE = (19u << OPCODE_SHIFT | 16u << 1),
366
BXX_OPCODE = (18u << OPCODE_SHIFT),
367
BCXX_OPCODE = (16u << OPCODE_SHIFT),
368
369
// CTR-related opcodes
370
BCCTR_OPCODE = (19u << OPCODE_SHIFT | 528u << 1),
371
372
LWZ_OPCODE = (32u << OPCODE_SHIFT),
373
LWZX_OPCODE = (31u << OPCODE_SHIFT | 23u << 1),
374
LWZU_OPCODE = (33u << OPCODE_SHIFT),
375
LWBRX_OPCODE = (31u << OPCODE_SHIFT | 534 << 1),
376
377
LHA_OPCODE = (42u << OPCODE_SHIFT),
378
LHAX_OPCODE = (31u << OPCODE_SHIFT | 343u << 1),
379
LHAU_OPCODE = (43u << OPCODE_SHIFT),
380
381
LHZ_OPCODE = (40u << OPCODE_SHIFT),
382
LHZX_OPCODE = (31u << OPCODE_SHIFT | 279u << 1),
383
LHZU_OPCODE = (41u << OPCODE_SHIFT),
384
LHBRX_OPCODE = (31u << OPCODE_SHIFT | 790 << 1),
385
386
LBZ_OPCODE = (34u << OPCODE_SHIFT),
387
LBZX_OPCODE = (31u << OPCODE_SHIFT | 87u << 1),
388
LBZU_OPCODE = (35u << OPCODE_SHIFT),
389
390
STW_OPCODE = (36u << OPCODE_SHIFT),
391
STWX_OPCODE = (31u << OPCODE_SHIFT | 151u << 1),
392
STWU_OPCODE = (37u << OPCODE_SHIFT),
393
STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),
394
STWBRX_OPCODE = (31u << OPCODE_SHIFT | 662u << 1),
395
396
STH_OPCODE = (44u << OPCODE_SHIFT),
397
STHX_OPCODE = (31u << OPCODE_SHIFT | 407u << 1),
398
STHU_OPCODE = (45u << OPCODE_SHIFT),
399
STHBRX_OPCODE = (31u << OPCODE_SHIFT | 918u << 1),
400
401
STB_OPCODE = (38u << OPCODE_SHIFT),
402
STBX_OPCODE = (31u << OPCODE_SHIFT | 215u << 1),
403
STBU_OPCODE = (39u << OPCODE_SHIFT),
404
405
EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
406
EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
407
EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1), // X-FORM
408
409
// 32 bit opcode encodings
410
411
LWA_OPCODE = (58u << OPCODE_SHIFT | 2u << XO_30_31_SHIFT), // DS-FORM
412
LWAX_OPCODE = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM
413
414
CNTLZW_OPCODE = (31u << OPCODE_SHIFT | 26u << XO_21_30_SHIFT), // X-FORM
415
CNTTZW_OPCODE = (31u << OPCODE_SHIFT | 538u << XO_21_30_SHIFT), // X-FORM
416
417
// 64 bit opcode encodings
418
419
LD_OPCODE = (58u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM
420
LDU_OPCODE = (58u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM
421
LDX_OPCODE = (31u << OPCODE_SHIFT | 21u << XO_21_30_SHIFT), // X-FORM
422
LDBRX_OPCODE = (31u << OPCODE_SHIFT | 532u << 1), // X-FORM
423
424
STD_OPCODE = (62u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM
425
STDU_OPCODE = (62u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM
426
STDUX_OPCODE = (31u << OPCODE_SHIFT | 181u << 1), // X-FORM
427
STDX_OPCODE = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM
428
STDBRX_OPCODE = (31u << OPCODE_SHIFT | 660u << 1), // X-FORM
429
430
RLDICR_OPCODE = (30u << OPCODE_SHIFT | 1u << XO_27_29_SHIFT), // MD-FORM
431
RLDICL_OPCODE = (30u << OPCODE_SHIFT | 0u << XO_27_29_SHIFT), // MD-FORM
432
RLDIC_OPCODE = (30u << OPCODE_SHIFT | 2u << XO_27_29_SHIFT), // MD-FORM
433
RLDIMI_OPCODE = (30u << OPCODE_SHIFT | 3u << XO_27_29_SHIFT), // MD-FORM
434
435
SRADI_OPCODE = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM
436
437
SLD_OPCODE = (31u << OPCODE_SHIFT | 27u << 1), // X-FORM
438
SRD_OPCODE = (31u << OPCODE_SHIFT | 539u << 1), // X-FORM
439
SRAD_OPCODE = (31u << OPCODE_SHIFT | 794u << 1), // X-FORM
440
441
MULLD_OPCODE = (31u << OPCODE_SHIFT | 233u << 1), // XO-FORM
442
MULHD_OPCODE = (31u << OPCODE_SHIFT | 73u << 1), // XO-FORM
443
MULHDU_OPCODE = (31u << OPCODE_SHIFT | 9u << 1), // XO-FORM
444
DIVD_OPCODE = (31u << OPCODE_SHIFT | 489u << 1), // XO-FORM
445
446
CNTLZD_OPCODE = (31u << OPCODE_SHIFT | 58u << XO_21_30_SHIFT), // X-FORM
447
CNTTZD_OPCODE = (31u << OPCODE_SHIFT | 570u << XO_21_30_SHIFT), // X-FORM
448
NAND_OPCODE = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
449
NOR_OPCODE = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM
450
451
// Byte reverse opcodes (introduced with Power10)
452
BRH_OPCODE = (31u << OPCODE_SHIFT | 219u << 1), // X-FORM
453
BRW_OPCODE = (31u << OPCODE_SHIFT | 155u << 1), // X-FORM
454
BRD_OPCODE = (31u << OPCODE_SHIFT | 187u << 1), // X-FORM
455
456
// opcodes only used for floating arithmetic
457
FADD_OPCODE = (63u << OPCODE_SHIFT | 21u << 1),
458
FADDS_OPCODE = (59u << OPCODE_SHIFT | 21u << 1),
459
FCMPU_OPCODE = (63u << OPCODE_SHIFT | 00u << 1),
460
FDIV_OPCODE = (63u << OPCODE_SHIFT | 18u << 1),
461
FDIVS_OPCODE = (59u << OPCODE_SHIFT | 18u << 1),
462
FMR_OPCODE = (63u << OPCODE_SHIFT | 72u << 1),
463
FRIN_OPCODE = (63u << OPCODE_SHIFT | 392u << 1),
464
FRIP_OPCODE = (63u << OPCODE_SHIFT | 456u << 1),
465
FRIM_OPCODE = (63u << OPCODE_SHIFT | 488u << 1),
466
// These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
467
// on Power7. Do not use.
468
// MFFGPR_OPCODE = (31u << OPCODE_SHIFT | 607u << 1),
469
// MFTGPR_OPCODE = (31u << OPCODE_SHIFT | 735u << 1),
470
CMPB_OPCODE = (31u << OPCODE_SHIFT | 508 << 1),
471
POPCNTB_OPCODE = (31u << OPCODE_SHIFT | 122 << 1),
472
POPCNTW_OPCODE = (31u << OPCODE_SHIFT | 378 << 1),
473
POPCNTD_OPCODE = (31u << OPCODE_SHIFT | 506 << 1),
474
FABS_OPCODE = (63u << OPCODE_SHIFT | 264u << 1),
475
FNABS_OPCODE = (63u << OPCODE_SHIFT | 136u << 1),
476
FMUL_OPCODE = (63u << OPCODE_SHIFT | 25u << 1),
477
FMULS_OPCODE = (59u << OPCODE_SHIFT | 25u << 1),
478
FNEG_OPCODE = (63u << OPCODE_SHIFT | 40u << 1),
479
FSUB_OPCODE = (63u << OPCODE_SHIFT | 20u << 1),
480
FSUBS_OPCODE = (59u << OPCODE_SHIFT | 20u << 1),
481
482
// PPC64-internal FPU conversion opcodes
483
FCFID_OPCODE = (63u << OPCODE_SHIFT | 846u << 1),
484
FCFIDS_OPCODE = (59u << OPCODE_SHIFT | 846u << 1),
485
FCTID_OPCODE = (63u << OPCODE_SHIFT | 814u << 1),
486
FCTIDZ_OPCODE = (63u << OPCODE_SHIFT | 815u << 1),
487
FCTIW_OPCODE = (63u << OPCODE_SHIFT | 14u << 1),
488
FCTIWZ_OPCODE = (63u << OPCODE_SHIFT | 15u << 1),
489
FRSP_OPCODE = (63u << OPCODE_SHIFT | 12u << 1),
490
491
// Fused multiply-accumulate instructions.
492
FMADD_OPCODE = (63u << OPCODE_SHIFT | 29u << 1),
493
FMADDS_OPCODE = (59u << OPCODE_SHIFT | 29u << 1),
494
FMSUB_OPCODE = (63u << OPCODE_SHIFT | 28u << 1),
495
FMSUBS_OPCODE = (59u << OPCODE_SHIFT | 28u << 1),
496
FNMADD_OPCODE = (63u << OPCODE_SHIFT | 31u << 1),
497
FNMADDS_OPCODE = (59u << OPCODE_SHIFT | 31u << 1),
498
FNMSUB_OPCODE = (63u << OPCODE_SHIFT | 30u << 1),
499
FNMSUBS_OPCODE = (59u << OPCODE_SHIFT | 30u << 1),
500
501
LFD_OPCODE = (50u << OPCODE_SHIFT | 00u << 1),
502
LFDU_OPCODE = (51u << OPCODE_SHIFT | 00u << 1),
503
LFDX_OPCODE = (31u << OPCODE_SHIFT | 599u << 1),
504
LFS_OPCODE = (48u << OPCODE_SHIFT | 00u << 1),
505
LFSU_OPCODE = (49u << OPCODE_SHIFT | 00u << 1),
506
LFSX_OPCODE = (31u << OPCODE_SHIFT | 535u << 1),
507
508
STFD_OPCODE = (54u << OPCODE_SHIFT | 00u << 1),
509
STFDU_OPCODE = (55u << OPCODE_SHIFT | 00u << 1),
510
STFDX_OPCODE = (31u << OPCODE_SHIFT | 727u << 1),
511
STFS_OPCODE = (52u << OPCODE_SHIFT | 00u << 1),
512
STFSU_OPCODE = (53u << OPCODE_SHIFT | 00u << 1),
513
STFSX_OPCODE = (31u << OPCODE_SHIFT | 663u << 1),
514
515
FSQRT_OPCODE = (63u << OPCODE_SHIFT | 22u << 1), // A-FORM
516
FSQRTS_OPCODE = (59u << OPCODE_SHIFT | 22u << 1), // A-FORM
517
518
// Vector instruction support for >= Power6
519
// Vector Storage Access
520
LVEBX_OPCODE = (31u << OPCODE_SHIFT | 7u << 1),
521
LVEHX_OPCODE = (31u << OPCODE_SHIFT | 39u << 1),
522
LVEWX_OPCODE = (31u << OPCODE_SHIFT | 71u << 1),
523
LVX_OPCODE = (31u << OPCODE_SHIFT | 103u << 1),
524
LVXL_OPCODE = (31u << OPCODE_SHIFT | 359u << 1),
525
STVEBX_OPCODE = (31u << OPCODE_SHIFT | 135u << 1),
526
STVEHX_OPCODE = (31u << OPCODE_SHIFT | 167u << 1),
527
STVEWX_OPCODE = (31u << OPCODE_SHIFT | 199u << 1),
528
STVX_OPCODE = (31u << OPCODE_SHIFT | 231u << 1),
529
STVXL_OPCODE = (31u << OPCODE_SHIFT | 487u << 1),
530
LVSL_OPCODE = (31u << OPCODE_SHIFT | 6u << 1),
531
LVSR_OPCODE = (31u << OPCODE_SHIFT | 38u << 1),
532
533
// Vector-Scalar (VSX) instruction support.
534
LXV_OPCODE = (61u << OPCODE_SHIFT | 1u ),
535
LXVL_OPCODE = (31u << OPCODE_SHIFT | 269u << 1),
536
STXV_OPCODE = (61u << OPCODE_SHIFT | 5u ),
537
STXVL_OPCODE = (31u << OPCODE_SHIFT | 397u << 1),
538
LXVD2X_OPCODE = (31u << OPCODE_SHIFT | 844u << 1),
539
STXVD2X_OPCODE = (31u << OPCODE_SHIFT | 972u << 1),
540
MTVSRD_OPCODE = (31u << OPCODE_SHIFT | 179u << 1),
541
MTVSRDD_OPCODE = (31u << OPCODE_SHIFT | 435u << 1),
542
MTVSRWZ_OPCODE = (31u << OPCODE_SHIFT | 243u << 1),
543
MFVSRD_OPCODE = (31u << OPCODE_SHIFT | 51u << 1),
544
MTVSRWA_OPCODE = (31u << OPCODE_SHIFT | 211u << 1),
545
MFVSRWZ_OPCODE = (31u << OPCODE_SHIFT | 115u << 1),
546
XXPERMDI_OPCODE= (60u << OPCODE_SHIFT | 10u << 3),
547
XXMRGHW_OPCODE = (60u << OPCODE_SHIFT | 18u << 3),
548
XXMRGLW_OPCODE = (60u << OPCODE_SHIFT | 50u << 3),
549
XXSPLTW_OPCODE = (60u << OPCODE_SHIFT | 164u << 2),
550
XXLAND_OPCODE = (60u << OPCODE_SHIFT | 130u << 3),
551
XXLOR_OPCODE = (60u << OPCODE_SHIFT | 146u << 3),
552
XXLXOR_OPCODE = (60u << OPCODE_SHIFT | 154u << 3),
553
XXLEQV_OPCODE = (60u << OPCODE_SHIFT | 186u << 3),
554
XVDIVSP_OPCODE = (60u << OPCODE_SHIFT | 88u << 3),
555
XXBRD_OPCODE = (60u << OPCODE_SHIFT | 475u << 2 | 23u << 16), // XX2-FORM
556
XXBRW_OPCODE = (60u << OPCODE_SHIFT | 475u << 2 | 15u << 16), // XX2-FORM
557
XXPERM_OPCODE = (60u << OPCODE_SHIFT | 26u << 3),
558
XXSEL_OPCODE = (60u << OPCODE_SHIFT | 3u << 4),
559
XXSPLTIB_OPCODE= (60u << OPCODE_SHIFT | 360u << 1),
560
XVDIVDP_OPCODE = (60u << OPCODE_SHIFT | 120u << 3),
561
XVABSSP_OPCODE = (60u << OPCODE_SHIFT | 409u << 2),
562
XVABSDP_OPCODE = (60u << OPCODE_SHIFT | 473u << 2),
563
XVNEGSP_OPCODE = (60u << OPCODE_SHIFT | 441u << 2),
564
XVNEGDP_OPCODE = (60u << OPCODE_SHIFT | 505u << 2),
565
XVSQRTSP_OPCODE= (60u << OPCODE_SHIFT | 139u << 2),
566
XVSQRTDP_OPCODE= (60u << OPCODE_SHIFT | 203u << 2),
567
XSCVDPSPN_OPCODE=(60u << OPCODE_SHIFT | 267u << 2),
568
XVADDDP_OPCODE = (60u << OPCODE_SHIFT | 96u << 3),
569
XVSUBDP_OPCODE = (60u << OPCODE_SHIFT | 104u << 3),
570
XVMULSP_OPCODE = (60u << OPCODE_SHIFT | 80u << 3),
571
XVMULDP_OPCODE = (60u << OPCODE_SHIFT | 112u << 3),
572
XVMADDASP_OPCODE=(60u << OPCODE_SHIFT | 65u << 3),
573
XVMADDADP_OPCODE=(60u << OPCODE_SHIFT | 97u << 3),
574
XVMSUBASP_OPCODE=(60u << OPCODE_SHIFT | 81u << 3),
575
XVMSUBADP_OPCODE=(60u << OPCODE_SHIFT | 113u << 3),
576
XVNMSUBASP_OPCODE=(60u<< OPCODE_SHIFT | 209u << 3),
577
XVNMSUBADP_OPCODE=(60u<< OPCODE_SHIFT | 241u << 3),
578
XVRDPI_OPCODE = (60u << OPCODE_SHIFT | 201u << 2),
579
XVRDPIM_OPCODE = (60u << OPCODE_SHIFT | 249u << 2),
580
XVRDPIP_OPCODE = (60u << OPCODE_SHIFT | 233u << 2),
581
582
// Deliver A Random Number (introduced with POWER9)
583
DARN_OPCODE = (31u << OPCODE_SHIFT | 755u << 1),
584
585
// Vector Permute and Formatting
586
VPKPX_OPCODE = (4u << OPCODE_SHIFT | 782u ),
587
VPKSHSS_OPCODE = (4u << OPCODE_SHIFT | 398u ),
588
VPKSWSS_OPCODE = (4u << OPCODE_SHIFT | 462u ),
589
VPKSHUS_OPCODE = (4u << OPCODE_SHIFT | 270u ),
590
VPKSWUS_OPCODE = (4u << OPCODE_SHIFT | 334u ),
591
VPKUHUM_OPCODE = (4u << OPCODE_SHIFT | 14u ),
592
VPKUWUM_OPCODE = (4u << OPCODE_SHIFT | 78u ),
593
VPKUHUS_OPCODE = (4u << OPCODE_SHIFT | 142u ),
594
VPKUWUS_OPCODE = (4u << OPCODE_SHIFT | 206u ),
595
VUPKHPX_OPCODE = (4u << OPCODE_SHIFT | 846u ),
596
VUPKHSB_OPCODE = (4u << OPCODE_SHIFT | 526u ),
597
VUPKHSH_OPCODE = (4u << OPCODE_SHIFT | 590u ),
598
VUPKLPX_OPCODE = (4u << OPCODE_SHIFT | 974u ),
599
VUPKLSB_OPCODE = (4u << OPCODE_SHIFT | 654u ),
600
VUPKLSH_OPCODE = (4u << OPCODE_SHIFT | 718u ),
601
602
VMRGHB_OPCODE = (4u << OPCODE_SHIFT | 12u ),
603
VMRGHW_OPCODE = (4u << OPCODE_SHIFT | 140u ),
604
VMRGHH_OPCODE = (4u << OPCODE_SHIFT | 76u ),
605
VMRGLB_OPCODE = (4u << OPCODE_SHIFT | 268u ),
606
VMRGLW_OPCODE = (4u << OPCODE_SHIFT | 396u ),
607
VMRGLH_OPCODE = (4u << OPCODE_SHIFT | 332u ),
608
609
VSPLT_OPCODE = (4u << OPCODE_SHIFT | 524u ),
610
VSPLTH_OPCODE = (4u << OPCODE_SHIFT | 588u ),
611
VSPLTW_OPCODE = (4u << OPCODE_SHIFT | 652u ),
612
VSPLTISB_OPCODE= (4u << OPCODE_SHIFT | 780u ),
613
VSPLTISH_OPCODE= (4u << OPCODE_SHIFT | 844u ),
614
VSPLTISW_OPCODE= (4u << OPCODE_SHIFT | 908u ),
615
616
VPEXTD_OPCODE = (4u << OPCODE_SHIFT | 1421u ),
617
VPERM_OPCODE = (4u << OPCODE_SHIFT | 43u ),
618
VSEL_OPCODE = (4u << OPCODE_SHIFT | 42u ),
619
620
VSL_OPCODE = (4u << OPCODE_SHIFT | 452u ),
621
VSLDOI_OPCODE = (4u << OPCODE_SHIFT | 44u ),
622
VSLO_OPCODE = (4u << OPCODE_SHIFT | 1036u ),
623
VSR_OPCODE = (4u << OPCODE_SHIFT | 708u ),
624
VSRO_OPCODE = (4u << OPCODE_SHIFT | 1100u ),
625
626
// Vector Integer
627
VADDCUW_OPCODE = (4u << OPCODE_SHIFT | 384u ),
628
VADDSHS_OPCODE = (4u << OPCODE_SHIFT | 832u ),
629
VADDSBS_OPCODE = (4u << OPCODE_SHIFT | 768u ),
630
VADDSWS_OPCODE = (4u << OPCODE_SHIFT | 896u ),
631
VADDUBM_OPCODE = (4u << OPCODE_SHIFT | 0u ),
632
VADDUWM_OPCODE = (4u << OPCODE_SHIFT | 128u ),
633
VADDUHM_OPCODE = (4u << OPCODE_SHIFT | 64u ),
634
VADDUDM_OPCODE = (4u << OPCODE_SHIFT | 192u ),
635
VADDUBS_OPCODE = (4u << OPCODE_SHIFT | 512u ),
636
VADDUWS_OPCODE = (4u << OPCODE_SHIFT | 640u ),
637
VADDUHS_OPCODE = (4u << OPCODE_SHIFT | 576u ),
638
VADDFP_OPCODE = (4u << OPCODE_SHIFT | 10u ),
639
VSUBCUW_OPCODE = (4u << OPCODE_SHIFT | 1408u ),
640
VSUBSHS_OPCODE = (4u << OPCODE_SHIFT | 1856u ),
641
VSUBSBS_OPCODE = (4u << OPCODE_SHIFT | 1792u ),
642
VSUBSWS_OPCODE = (4u << OPCODE_SHIFT | 1920u ),
643
VSUBUBM_OPCODE = (4u << OPCODE_SHIFT | 1024u ),
644
VSUBUWM_OPCODE = (4u << OPCODE_SHIFT | 1152u ),
645
VSUBUHM_OPCODE = (4u << OPCODE_SHIFT | 1088u ),
646
VSUBUDM_OPCODE = (4u << OPCODE_SHIFT | 1216u ),
647
VSUBUBS_OPCODE = (4u << OPCODE_SHIFT | 1536u ),
648
VSUBUWS_OPCODE = (4u << OPCODE_SHIFT | 1664u ),
649
VSUBUHS_OPCODE = (4u << OPCODE_SHIFT | 1600u ),
650
VSUBFP_OPCODE = (4u << OPCODE_SHIFT | 74u ),
651
652
VMULESB_OPCODE = (4u << OPCODE_SHIFT | 776u ),
653
VMULEUB_OPCODE = (4u << OPCODE_SHIFT | 520u ),
654
VMULESH_OPCODE = (4u << OPCODE_SHIFT | 840u ),
655
VMULEUH_OPCODE = (4u << OPCODE_SHIFT | 584u ),
656
VMULOSB_OPCODE = (4u << OPCODE_SHIFT | 264u ),
657
VMULOUB_OPCODE = (4u << OPCODE_SHIFT | 8u ),
658
VMULOSH_OPCODE = (4u << OPCODE_SHIFT | 328u ),
659
VMULOSW_OPCODE = (4u << OPCODE_SHIFT | 392u ),
660
VMULOUH_OPCODE = (4u << OPCODE_SHIFT | 72u ),
661
VMULUWM_OPCODE = (4u << OPCODE_SHIFT | 137u ),
662
VMHADDSHS_OPCODE=(4u << OPCODE_SHIFT | 32u ),
663
VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT | 33u ),
664
VMLADDUHM_OPCODE=(4u << OPCODE_SHIFT | 34u ),
665
VMSUBUHM_OPCODE= (4u << OPCODE_SHIFT | 36u ),
666
VMSUMMBM_OPCODE= (4u << OPCODE_SHIFT | 37u ),
667
VMSUMSHM_OPCODE= (4u << OPCODE_SHIFT | 40u ),
668
VMSUMSHS_OPCODE= (4u << OPCODE_SHIFT | 41u ),
669
VMSUMUHM_OPCODE= (4u << OPCODE_SHIFT | 38u ),
670
VMSUMUHS_OPCODE= (4u << OPCODE_SHIFT | 39u ),
671
VMADDFP_OPCODE = (4u << OPCODE_SHIFT | 46u ),
672
673
VSUMSWS_OPCODE = (4u << OPCODE_SHIFT | 1928u ),
674
VSUM2SWS_OPCODE= (4u << OPCODE_SHIFT | 1672u ),
675
VSUM4SBS_OPCODE= (4u << OPCODE_SHIFT | 1800u ),
676
VSUM4UBS_OPCODE= (4u << OPCODE_SHIFT | 1544u ),
677
VSUM4SHS_OPCODE= (4u << OPCODE_SHIFT | 1608u ),
678
679
VAVGSB_OPCODE = (4u << OPCODE_SHIFT | 1282u ),
680
VAVGSW_OPCODE = (4u << OPCODE_SHIFT | 1410u ),
681
VAVGSH_OPCODE = (4u << OPCODE_SHIFT | 1346u ),
682
VAVGUB_OPCODE = (4u << OPCODE_SHIFT | 1026u ),
683
VAVGUW_OPCODE = (4u << OPCODE_SHIFT | 1154u ),
684
VAVGUH_OPCODE = (4u << OPCODE_SHIFT | 1090u ),
685
686
VMAXSB_OPCODE = (4u << OPCODE_SHIFT | 258u ),
687
VMAXSW_OPCODE = (4u << OPCODE_SHIFT | 386u ),
688
VMAXSH_OPCODE = (4u << OPCODE_SHIFT | 322u ),
689
VMAXUB_OPCODE = (4u << OPCODE_SHIFT | 2u ),
690
VMAXUW_OPCODE = (4u << OPCODE_SHIFT | 130u ),
691
VMAXUH_OPCODE = (4u << OPCODE_SHIFT | 66u ),
692
VMINSB_OPCODE = (4u << OPCODE_SHIFT | 770u ),
693
VMINSW_OPCODE = (4u << OPCODE_SHIFT | 898u ),
694
VMINSH_OPCODE = (4u << OPCODE_SHIFT | 834u ),
695
VMINUB_OPCODE = (4u << OPCODE_SHIFT | 514u ),
696
VMINUW_OPCODE = (4u << OPCODE_SHIFT | 642u ),
697
VMINUH_OPCODE = (4u << OPCODE_SHIFT | 578u ),
698
699
VCMPEQUB_OPCODE= (4u << OPCODE_SHIFT | 6u ),
700
VCMPEQUH_OPCODE= (4u << OPCODE_SHIFT | 70u ),
701
VCMPEQUW_OPCODE= (4u << OPCODE_SHIFT | 134u ),
702
VCMPGTSH_OPCODE= (4u << OPCODE_SHIFT | 838u ),
703
VCMPGTSB_OPCODE= (4u << OPCODE_SHIFT | 774u ),
704
VCMPGTSW_OPCODE= (4u << OPCODE_SHIFT | 902u ),
705
VCMPGTUB_OPCODE= (4u << OPCODE_SHIFT | 518u ),
706
VCMPGTUH_OPCODE= (4u << OPCODE_SHIFT | 582u ),
707
VCMPGTUW_OPCODE= (4u << OPCODE_SHIFT | 646u ),
708
709
VAND_OPCODE = (4u << OPCODE_SHIFT | 1028u ),
710
VANDC_OPCODE = (4u << OPCODE_SHIFT | 1092u ),
711
VNOR_OPCODE = (4u << OPCODE_SHIFT | 1284u ),
712
VOR_OPCODE = (4u << OPCODE_SHIFT | 1156u ),
713
VXOR_OPCODE = (4u << OPCODE_SHIFT | 1220u ),
714
VRLD_OPCODE = (4u << OPCODE_SHIFT | 196u ),
715
VRLB_OPCODE = (4u << OPCODE_SHIFT | 4u ),
716
VRLW_OPCODE = (4u << OPCODE_SHIFT | 132u ),
717
VRLH_OPCODE = (4u << OPCODE_SHIFT | 68u ),
718
VSLB_OPCODE = (4u << OPCODE_SHIFT | 260u ),
719
VSKW_OPCODE = (4u << OPCODE_SHIFT | 388u ),
720
VSLH_OPCODE = (4u << OPCODE_SHIFT | 324u ),
721
VSRB_OPCODE = (4u << OPCODE_SHIFT | 516u ),
722
VSRW_OPCODE = (4u << OPCODE_SHIFT | 644u ),
723
VSRH_OPCODE = (4u << OPCODE_SHIFT | 580u ),
724
VSRAB_OPCODE = (4u << OPCODE_SHIFT | 772u ),
725
VSRAW_OPCODE = (4u << OPCODE_SHIFT | 900u ),
726
VSRAH_OPCODE = (4u << OPCODE_SHIFT | 836u ),
727
VPOPCNTW_OPCODE= (4u << OPCODE_SHIFT | 1923u ),
728
729
// Vector Floating-Point
730
// not implemented yet
731
732
// Vector Status and Control
733
MTVSCR_OPCODE = (4u << OPCODE_SHIFT | 1604u ),
734
MFVSCR_OPCODE = (4u << OPCODE_SHIFT | 1540u ),
735
736
// AES (introduced with Power 8)
737
VCIPHER_OPCODE = (4u << OPCODE_SHIFT | 1288u),
738
VCIPHERLAST_OPCODE = (4u << OPCODE_SHIFT | 1289u),
739
VNCIPHER_OPCODE = (4u << OPCODE_SHIFT | 1352u),
740
VNCIPHERLAST_OPCODE = (4u << OPCODE_SHIFT | 1353u),
741
VSBOX_OPCODE = (4u << OPCODE_SHIFT | 1480u),
742
743
// SHA (introduced with Power 8)
744
VSHASIGMAD_OPCODE = (4u << OPCODE_SHIFT | 1730u),
745
VSHASIGMAW_OPCODE = (4u << OPCODE_SHIFT | 1666u),
746
747
// Vector Binary Polynomial Multiplication (introduced with Power 8)
748
VPMSUMB_OPCODE = (4u << OPCODE_SHIFT | 1032u),
749
VPMSUMD_OPCODE = (4u << OPCODE_SHIFT | 1224u),
750
VPMSUMH_OPCODE = (4u << OPCODE_SHIFT | 1096u),
751
VPMSUMW_OPCODE = (4u << OPCODE_SHIFT | 1160u),
752
753
// Vector Permute and Xor (introduced with Power 8)
754
VPERMXOR_OPCODE = (4u << OPCODE_SHIFT | 45u),
755
756
// Transactional Memory instructions (introduced with Power 8)
757
TBEGIN_OPCODE = (31u << OPCODE_SHIFT | 654u << 1),
758
TEND_OPCODE = (31u << OPCODE_SHIFT | 686u << 1),
759
TABORT_OPCODE = (31u << OPCODE_SHIFT | 910u << 1),
760
TABORTWC_OPCODE = (31u << OPCODE_SHIFT | 782u << 1),
761
TABORTWCI_OPCODE = (31u << OPCODE_SHIFT | 846u << 1),
762
TABORTDC_OPCODE = (31u << OPCODE_SHIFT | 814u << 1),
763
TABORTDCI_OPCODE = (31u << OPCODE_SHIFT | 878u << 1),
764
TSR_OPCODE = (31u << OPCODE_SHIFT | 750u << 1),
765
TCHECK_OPCODE = (31u << OPCODE_SHIFT | 718u << 1),
766
767
// Icache and dcache related instructions
768
DCBA_OPCODE = (31u << OPCODE_SHIFT | 758u << 1),
769
DCBZ_OPCODE = (31u << OPCODE_SHIFT | 1014u << 1),
770
DCBST_OPCODE = (31u << OPCODE_SHIFT | 54u << 1),
771
DCBF_OPCODE = (31u << OPCODE_SHIFT | 86u << 1),
772
773
DCBT_OPCODE = (31u << OPCODE_SHIFT | 278u << 1),
774
DCBTST_OPCODE = (31u << OPCODE_SHIFT | 246u << 1),
775
ICBI_OPCODE = (31u << OPCODE_SHIFT | 982u << 1),
776
777
// Instruction synchronization
778
ISYNC_OPCODE = (19u << OPCODE_SHIFT | 150u << 1),
779
// Memory barriers
780
SYNC_OPCODE = (31u << OPCODE_SHIFT | 598u << 1),
781
EIEIO_OPCODE = (31u << OPCODE_SHIFT | 854u << 1),
782
783
// Wait instructions for polling.
784
WAIT_OPCODE = (31u << OPCODE_SHIFT | 62u << 1),
785
786
// Trap instructions
787
TDI_OPCODE = (2u << OPCODE_SHIFT),
788
TWI_OPCODE = (3u << OPCODE_SHIFT),
789
TD_OPCODE = (31u << OPCODE_SHIFT | 68u << 1),
790
TW_OPCODE = (31u << OPCODE_SHIFT | 4u << 1),
791
792
// Atomics.
793
LBARX_OPCODE = (31u << OPCODE_SHIFT | 52u << 1),
794
LHARX_OPCODE = (31u << OPCODE_SHIFT | 116u << 1),
795
LWARX_OPCODE = (31u << OPCODE_SHIFT | 20u << 1),
796
LDARX_OPCODE = (31u << OPCODE_SHIFT | 84u << 1),
797
LQARX_OPCODE = (31u << OPCODE_SHIFT | 276u << 1),
798
STBCX_OPCODE = (31u << OPCODE_SHIFT | 694u << 1),
799
STHCX_OPCODE = (31u << OPCODE_SHIFT | 726u << 1),
800
STWCX_OPCODE = (31u << OPCODE_SHIFT | 150u << 1),
801
STDCX_OPCODE = (31u << OPCODE_SHIFT | 214u << 1),
802
STQCX_OPCODE = (31u << OPCODE_SHIFT | 182u << 1)
803
804
};
805
806
enum opcdeos_mask {
807
// Mask for prefix primary opcode field
808
PREFIX_OPCODE_MASK = (63u << OPCODE_SHIFT),
809
// Mask for prefix opcode and type fields
810
PREFIX_OPCODE_TYPE_MASK = (63u << OPCODE_SHIFT) | (3u << PRE_TYPE_SHIFT),
811
// Masks for type 00/10 and type 01/11, including opcode, type, and st fieds
812
PREFIX_OPCODE_TYPEx0_MASK = PREFIX_OPCODE_TYPE_MASK | ( 1u << PRE_ST1_SHIFT),
813
PREFIX_OPCODE_TYPEx1_MASK = PREFIX_OPCODE_TYPE_MASK | (15u << PRE_ST4_SHIFT),
814
815
// Masks for each instructions
816
PADDI_PREFIX_OPCODE_MASK = PREFIX_OPCODE_TYPEx0_MASK,
817
PADDI_SUFFIX_OPCODE_MASK = ADDI_OPCODE_MASK,
818
};
819
820
enum opcdeos {
821
PREFIX_PRIMARY_OPCODE = (1u << OPCODE_SHIFT),
822
823
// Prefixed addi/li
824
PADDI_PREFIX_OPCODE = PREFIX_PRIMARY_OPCODE | (2u << PRE_TYPE_SHIFT),
825
PADDI_SUFFIX_OPCODE = ADDI_OPCODE,
826
};
827
828
// Trap instructions TO bits
829
enum trap_to_bits {
830
// single bits
831
traptoLessThanSigned = 1 << 4, // 0, left end
832
traptoGreaterThanSigned = 1 << 3,
833
traptoEqual = 1 << 2,
834
traptoLessThanUnsigned = 1 << 1,
835
traptoGreaterThanUnsigned = 1 << 0, // 4, right end
836
837
// compound ones
838
traptoUnconditional = (traptoLessThanSigned |
839
traptoGreaterThanSigned |
840
traptoEqual |
841
traptoLessThanUnsigned |
842
traptoGreaterThanUnsigned)
843
};
844
845
// Branch hints BH field
846
enum branch_hint_bh {
847
// bclr cases:
848
bhintbhBCLRisReturn = 0,
849
bhintbhBCLRisNotReturnButSame = 1,
850
bhintbhBCLRisNotPredictable = 3,
851
852
// bcctr cases:
853
bhintbhBCCTRisNotReturnButSame = 0,
854
bhintbhBCCTRisNotPredictable = 3
855
};
856
857
// Branch prediction hints AT field
858
enum branch_hint_at {
859
bhintatNoHint = 0, // at=00
860
bhintatIsNotTaken = 2, // at=10
861
bhintatIsTaken = 3 // at=11
862
};
863
864
// Branch prediction hints
865
enum branch_hint_concept {
866
// Use the same encoding as branch_hint_at to simply code.
867
bhintNoHint = bhintatNoHint,
868
bhintIsNotTaken = bhintatIsNotTaken,
869
bhintIsTaken = bhintatIsTaken
870
};
871
872
// Used in BO field of branch instruction.
873
enum branch_condition {
874
bcondCRbiIs0 = 4, // bo=001at
875
bcondCRbiIs1 = 12, // bo=011at
876
bcondAlways = 20 // bo=10100
877
};
878
879
// Branch condition with combined prediction hints.
880
enum branch_condition_with_hint {
881
bcondCRbiIs0_bhintNoHint = bcondCRbiIs0 | bhintatNoHint,
882
bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
883
bcondCRbiIs0_bhintIsTaken = bcondCRbiIs0 | bhintatIsTaken,
884
bcondCRbiIs1_bhintNoHint = bcondCRbiIs1 | bhintatNoHint,
885
bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
886
bcondCRbiIs1_bhintIsTaken = bcondCRbiIs1 | bhintatIsTaken,
887
};
888
889
// Elemental Memory Barriers (>=Power 8)
890
enum Elemental_Membar_mask_bits {
891
StoreStore = 1 << 0,
892
StoreLoad = 1 << 1,
893
LoadStore = 1 << 2,
894
LoadLoad = 1 << 3
895
};
896
897
// Branch prediction hints.
898
inline static int add_bhint_to_boint(const int bhint, const int boint) {
899
switch (boint) {
900
case bcondCRbiIs0:
901
case bcondCRbiIs1:
902
// branch_hint and branch_hint_at have same encodings
903
assert( (int)bhintNoHint == (int)bhintatNoHint
904
&& (int)bhintIsNotTaken == (int)bhintatIsNotTaken
905
&& (int)bhintIsTaken == (int)bhintatIsTaken,
906
"wrong encodings");
907
assert((bhint & 0x03) == bhint, "wrong encodings");
908
return (boint & ~0x03) | bhint;
909
case bcondAlways:
910
// no branch_hint
911
return boint;
912
default:
913
ShouldNotReachHere();
914
return 0;
915
}
916
}
917
918
// Extract bcond from boint.
919
inline static int inv_boint_bcond(const int boint) {
920
int r_bcond = boint & ~0x03;
921
assert(r_bcond == bcondCRbiIs0 ||
922
r_bcond == bcondCRbiIs1 ||
923
r_bcond == bcondAlways,
924
"bad branch condition");
925
return r_bcond;
926
}
927
928
// Extract bhint from boint.
929
inline static int inv_boint_bhint(const int boint) {
930
int r_bhint = boint & 0x03;
931
assert(r_bhint == bhintatNoHint ||
932
r_bhint == bhintatIsNotTaken ||
933
r_bhint == bhintatIsTaken,
934
"bad branch hint");
935
return r_bhint;
936
}
937
938
// Calculate opposite of given bcond.
939
inline static int opposite_bcond(const int bcond) {
940
switch (bcond) {
941
case bcondCRbiIs0:
942
return bcondCRbiIs1;
943
case bcondCRbiIs1:
944
return bcondCRbiIs0;
945
default:
946
ShouldNotReachHere();
947
return 0;
948
}
949
}
950
951
// Calculate opposite of given bhint.
952
inline static int opposite_bhint(const int bhint) {
953
switch (bhint) {
954
case bhintatNoHint:
955
return bhintatNoHint;
956
case bhintatIsNotTaken:
957
return bhintatIsTaken;
958
case bhintatIsTaken:
959
return bhintatIsNotTaken;
960
default:
961
ShouldNotReachHere();
962
return 0;
963
}
964
}
965
966
// PPC branch instructions
967
enum ppcops {
968
b_op = 18,
969
bc_op = 16,
970
bcr_op = 19
971
};
972
973
enum Condition {
974
negative = 0,
975
less = 0,
976
positive = 1,
977
greater = 1,
978
zero = 2,
979
equal = 2,
980
summary_overflow = 3,
981
};
982
983
public:
984
// Helper functions for groups of instructions
985
986
enum Predict { pt = 1, pn = 0 }; // pt = predict taken
987
988
//---< calculate length of instruction >---
989
// With PPC64 being a RISC architecture, this always is BytesPerInstWord
990
// instruction must start at passed address
991
static unsigned int instr_len(unsigned char *instr) { return BytesPerInstWord; }
992
993
//---< longest instructions >---
994
static unsigned int instr_maxlen() { return BytesPerInstWord; }
995
996
// Test if x is within signed immediate range for nbits.
997
static bool is_simm(int x, unsigned int nbits) {
998
assert(0 < nbits && nbits < 32, "out of bounds");
999
const int min = -(((int)1) << nbits-1);
1000
const int maxplus1 = (((int)1) << nbits-1);
1001
return min <= x && x < maxplus1;
1002
}
1003
1004
static bool is_simm(jlong x, unsigned int nbits) {
1005
assert(0 < nbits && nbits < 64, "out of bounds");
1006
const jlong min = -(((jlong)1) << nbits-1);
1007
const jlong maxplus1 = (((jlong)1) << nbits-1);
1008
return min <= x && x < maxplus1;
1009
}
1010
1011
// Test if x is within unsigned immediate range for nbits.
1012
static bool is_uimm(int x, unsigned int nbits) {
1013
assert(0 < nbits && nbits < 32, "out of bounds");
1014
const unsigned int maxplus1 = (((unsigned int)1) << nbits);
1015
return (unsigned int)x < maxplus1;
1016
}
1017
1018
static bool is_uimm(jlong x, unsigned int nbits) {
1019
assert(0 < nbits && nbits < 64, "out of bounds");
1020
const julong maxplus1 = (((julong)1) << nbits);
1021
return (julong)x < maxplus1;
1022
}
1023
1024
protected:
1025
// helpers
1026
1027
// X is supposed to fit in a field "nbits" wide
1028
// and be sign-extended. Check the range.
1029
static void assert_signed_range(intptr_t x, int nbits) {
1030
assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
1031
"value out of range");
1032
}
1033
1034
static void assert_signed_word_disp_range(intptr_t x, int nbits) {
1035
assert((x & 3) == 0, "not word aligned");
1036
assert_signed_range(x, nbits + 2);
1037
}
1038
1039
static void assert_unsigned_const(int x, int nbits) {
1040
assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
1041
}
1042
1043
static int fmask(juint hi_bit, juint lo_bit) {
1044
assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
1045
return (1 << ( hi_bit-lo_bit + 1 )) - 1;
1046
}
1047
1048
// inverse of u_field
1049
static int inv_u_field(int x, int hi_bit, int lo_bit) {
1050
juint r = juint(x) >> lo_bit;
1051
r &= fmask(hi_bit, lo_bit);
1052
return int(r);
1053
}
1054
1055
// signed version: extract from field and sign-extend
1056
static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
1057
x = x << (31-hi_bit);
1058
x = x >> (31-hi_bit+lo_bit);
1059
return x;
1060
}
1061
1062
static int u_field(int x, int hi_bit, int lo_bit) {
1063
assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
1064
int r = x << lo_bit;
1065
assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
1066
return r;
1067
}
1068
1069
// Same as u_field for signed values
1070
static int s_field(int x, int hi_bit, int lo_bit) {
1071
int nbits = hi_bit - lo_bit + 1;
1072
assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
1073
"value out of range");
1074
x &= fmask(hi_bit, lo_bit);
1075
int r = x << lo_bit;
1076
return r;
1077
}
1078
1079
// inv_op for ppc instructions
1080
static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }
1081
1082
// Determine target address from li, bd field of branch instruction.
1083
static intptr_t inv_li_field(int x) {
1084
intptr_t r = inv_s_field_ppc(x, 25, 2);
1085
r = (r << 2);
1086
return r;
1087
}
1088
static intptr_t inv_bd_field(int x, intptr_t pos) {
1089
intptr_t r = inv_s_field_ppc(x, 15, 2);
1090
r = (r << 2) + pos;
1091
return r;
1092
}
1093
1094
#define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
1095
#define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
1096
// Extract instruction fields from instruction words.
1097
public:
1098
static int inv_ra_field(int x) { return inv_opp_u_field(x, 15, 11); }
1099
static int inv_rb_field(int x) { return inv_opp_u_field(x, 20, 16); }
1100
static int inv_rt_field(int x) { return inv_opp_u_field(x, 10, 6); }
1101
static int inv_rta_field(int x) { return inv_opp_u_field(x, 15, 11); }
1102
static int inv_rs_field(int x) { return inv_opp_u_field(x, 10, 6); }
1103
// Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
1104
// Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
1105
static int inv_ds_field(int x) { return inv_opp_s_field(x, 29, 16) << 2; }
1106
static int inv_d1_field(int x) { return inv_opp_s_field(x, 31, 16); }
1107
static int inv_si_field(int x) { return inv_opp_s_field(x, 31, 16); }
1108
static int inv_to_field(int x) { return inv_opp_u_field(x, 10, 6); }
1109
static int inv_lk_field(int x) { return inv_opp_u_field(x, 31, 31); }
1110
static int inv_bo_field(int x) { return inv_opp_u_field(x, 10, 6); }
1111
static int inv_bi_field(int x) { return inv_opp_u_field(x, 15, 11); }
1112
1113
// For extended opcodes (prefixed instructions) introduced with Power 10
1114
static long inv_r_eo( int x) { return inv_opp_u_field(x, 11, 11); }
1115
static long inv_type( int x) { return inv_opp_u_field(x, 7, 6); }
1116
static long inv_st_x0( int x) { return inv_opp_u_field(x, 8, 8); }
1117
static long inv_st_x1( int x) { return inv_opp_u_field(x, 11, 8); }
1118
1119
// - 8LS:D/MLS:D Formats
1120
static long inv_d0_eo( long x) { return inv_opp_u_field(x, 31, 14); }
1121
1122
// - 8RR:XX4/8RR:D Formats
1123
static long inv_imm0_eo(int x) { return inv_opp_u_field(x, 31, 16); }
1124
static long inv_uimm_eo(int x) { return inv_opp_u_field(x, 31, 29); }
1125
static long inv_imm_eo( int x) { return inv_opp_u_field(x, 31, 24); }
1126
1127
#define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
1128
#define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))
1129
1130
// instruction fields
1131
static int aa( int x) { return opp_u_field(x, 30, 30); }
1132
static int ba( int x) { return opp_u_field(x, 15, 11); }
1133
static int bb( int x) { return opp_u_field(x, 20, 16); }
1134
static int bc( int x) { return opp_u_field(x, 25, 21); }
1135
static int bd( int x) { return opp_s_field(x, 29, 16); }
1136
static int bf( ConditionRegister cr) { return bf(cr->encoding()); }
1137
static int bf( int x) { return opp_u_field(x, 8, 6); }
1138
static int bfa(ConditionRegister cr) { return bfa(cr->encoding()); }
1139
static int bfa( int x) { return opp_u_field(x, 13, 11); }
1140
static int bh( int x) { return opp_u_field(x, 20, 19); }
1141
static int bi( int x) { return opp_u_field(x, 15, 11); }
1142
static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
1143
static int bo( int x) { return opp_u_field(x, 10, 6); }
1144
static int bt( int x) { return opp_u_field(x, 10, 6); }
1145
static int d1( int x) { return opp_s_field(x, 31, 16); }
1146
static int ds( int x) { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
1147
static int eh( int x) { return opp_u_field(x, 31, 31); }
1148
static int flm( int x) { return opp_u_field(x, 14, 7); }
1149
static int fra( FloatRegister r) { return fra(r->encoding());}
1150
static int frb( FloatRegister r) { return frb(r->encoding());}
1151
static int frc( FloatRegister r) { return frc(r->encoding());}
1152
static int frs( FloatRegister r) { return frs(r->encoding());}
1153
static int frt( FloatRegister r) { return frt(r->encoding());}
1154
static int fra( int x) { return opp_u_field(x, 15, 11); }
1155
static int frb( int x) { return opp_u_field(x, 20, 16); }
1156
static int frc( int x) { return opp_u_field(x, 25, 21); }
1157
static int frs( int x) { return opp_u_field(x, 10, 6); }
1158
static int frt( int x) { return opp_u_field(x, 10, 6); }
1159
static int fxm( int x) { return opp_u_field(x, 19, 12); }
1160
static int imm8( int x) { return opp_u_field(uimm(x, 8), 20, 13); }
1161
static int l10( int x) { assert(x == 0 || x == 1, "must be 0 or 1"); return opp_u_field(x, 10, 10); }
1162
static int l14( int x) { return opp_u_field(x, 15, 14); }
1163
static int l15( int x) { return opp_u_field(x, 15, 15); }
1164
static int l910( int x) { return opp_u_field(x, 10, 9); }
1165
static int e1215( int x) { return opp_u_field(x, 15, 12); }
1166
static int lev( int x) { return opp_u_field(x, 26, 20); }
1167
static int li( int x) { return opp_s_field(x, 29, 6); }
1168
static int lk( int x) { return opp_u_field(x, 31, 31); }
1169
static int mb2125( int x) { return opp_u_field(x, 25, 21); }
1170
static int me2630( int x) { return opp_u_field(x, 30, 26); }
1171
static int mb2126( int x) { return opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
1172
static int me2126( int x) { return mb2126(x); }
1173
static int nb( int x) { return opp_u_field(x, 20, 16); }
1174
//static int opcd( int x) { return opp_u_field(x, 5, 0); } // is contained in our opcodes
1175
static int oe( int x) { return opp_u_field(x, 21, 21); }
1176
static int ra( Register r) { return ra(r->encoding()); }
1177
static int ra( int x) { return opp_u_field(x, 15, 11); }
1178
static int rb( Register r) { return rb(r->encoding()); }
1179
static int rb( int x) { return opp_u_field(x, 20, 16); }
1180
static int rc( int x) { return opp_u_field(x, 31, 31); }
1181
static int rs( Register r) { return rs(r->encoding()); }
1182
static int rs( int x) { return opp_u_field(x, 10, 6); }
1183
// we don't want to use R0 in memory accesses, because it has value `0' then
1184
static int ra0mem( Register r) { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
1185
static int ra0mem( int x) { assert(x != 0, "cannot use register 0 in memory access"); return ra(x); }
1186
1187
// register r is target
1188
static int rt( Register r) { return rs(r); }
1189
static int rt( int x) { return rs(x); }
1190
static int rta( Register r) { return ra(r); }
1191
static int rta0mem( Register r) { rta(r); return ra0mem(r); }
1192
1193
static int sh1620( int x) { return opp_u_field(x, 20, 16); }
1194
static int sh30( int x) { return opp_u_field(x, 30, 30); }
1195
static int sh162030( int x) { return sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
1196
static int si( int x) { return opp_s_field(x, 31, 16); }
1197
static int spr( int x) { return opp_u_field(x, 20, 11); }
1198
static int sr( int x) { return opp_u_field(x, 15, 12); }
1199
static int tbr( int x) { return opp_u_field(x, 20, 11); }
1200
static int th( int x) { return opp_u_field(x, 10, 7); }
1201
static int thct( int x) { assert((x&8) == 0, "must be valid cache specification"); return th(x); }
1202
static int thds( int x) { assert((x&8) == 8, "must be valid stream specification"); return th(x); }
1203
static int to( int x) { return opp_u_field(x, 10, 6); }
1204
static int u( int x) { return opp_u_field(x, 19, 16); }
1205
static int ui( int x) { return opp_u_field(x, 31, 16); }
1206
1207
// Support vector instructions for >= Power6.
1208
static int vra( int x) { return opp_u_field(x, 15, 11); }
1209
static int vrb( int x) { return opp_u_field(x, 20, 16); }
1210
static int vrc( int x) { return opp_u_field(x, 25, 21); }
1211
static int vrs( int x) { return opp_u_field(x, 10, 6); }
1212
static int vrt( int x) { return opp_u_field(x, 10, 6); }
1213
1214
static int vra( VectorRegister r) { return vra(r->encoding());}
1215
static int vrb( VectorRegister r) { return vrb(r->encoding());}
1216
static int vrc( VectorRegister r) { return vrc(r->encoding());}
1217
static int vrs( VectorRegister r) { return vrs(r->encoding());}
1218
static int vrt( VectorRegister r) { return vrt(r->encoding());}
1219
1220
// Only used on SHA sigma instructions (VX-form)
1221
static int vst( int x) { return opp_u_field(x, 16, 16); }
1222
static int vsix( int x) { return opp_u_field(x, 20, 17); }
1223
1224
// Support Vector-Scalar (VSX) instructions.
1225
static int vsra( int x) { return opp_u_field(x & 0x1F, 15, 11) | opp_u_field((x & 0x20) >> 5, 29, 29); }
1226
static int vsrb( int x) { return opp_u_field(x & 0x1F, 20, 16) | opp_u_field((x & 0x20) >> 5, 30, 30); }
1227
static int vsrc( int x) { return opp_u_field(x & 0x1F, 25, 21) | opp_u_field((x & 0x20) >> 5, 28, 28); }
1228
static int vsrs( int x) { return opp_u_field(x & 0x1F, 10, 6) | opp_u_field((x & 0x20) >> 5, 31, 31); }
1229
static int vsrt( int x) { return vsrs(x); }
1230
static int vsdm( int x) { return opp_u_field(x, 23, 22); }
1231
static int vsrs_dq( int x) { return opp_u_field(x & 0x1F, 10, 6) | opp_u_field((x & 0x20) >> 5, 28, 28); }
1232
static int vsrt_dq( int x) { return vsrs_dq(x); }
1233
1234
static int vsra( VectorSRegister r) { return vsra(r->encoding());}
1235
static int vsrb( VectorSRegister r) { return vsrb(r->encoding());}
1236
static int vsrc( VectorSRegister r) { return vsrc(r->encoding());}
1237
static int vsrs( VectorSRegister r) { return vsrs(r->encoding());}
1238
static int vsrt( VectorSRegister r) { return vsrt(r->encoding());}
1239
static int vsrs_dq(VectorSRegister r) { return vsrs_dq(r->encoding());}
1240
static int vsrt_dq(VectorSRegister r) { return vsrt_dq(r->encoding());}
1241
1242
static int vsplt_uim( int x) { return opp_u_field(x, 15, 12); } // for vsplt* instructions
1243
static int vsplti_sim(int x) { return opp_u_field(x, 15, 11); } // for vsplti* instructions
1244
static int vsldoi_shb(int x) { return opp_u_field(x, 25, 22); } // for vsldoi instruction
1245
static int vcmp_rc( int x) { return opp_u_field(x, 21, 21); } // for vcmp* instructions
1246
static int xxsplt_uim(int x) { return opp_u_field(x, 15, 14); } // for xxsplt* instructions
1247
1248
// For extended opcodes (prefixed instructions) introduced with Power 10
1249
static long r_eo( int x) { return opp_u_field(x, 11, 11); }
1250
static long type( int x) { return opp_u_field(x, 7, 6); }
1251
static long st_x0( int x) { return opp_u_field(x, 8, 8); }
1252
static long st_x1( int x) { return opp_u_field(x, 11, 8); }
1253
1254
// - 8LS:D/MLS:D Formats
1255
static long d0_eo( long x) { return opp_u_field((x >> 16) & 0x3FFFF, 31, 14); }
1256
static long d1_eo( long x) { return opp_u_field(x & 0xFFFF, 31, 16); }
1257
static long s0_eo( long x) { return d0_eo(x); }
1258
static long s1_eo( long x) { return d1_eo(x); }
1259
1260
// - 8RR:XX4/8RR:D Formats
1261
static long imm0_eo( int x) { return opp_u_field(x >> 16, 31, 16); }
1262
static long imm1_eo( int x) { return opp_u_field(x & 0xFFFF, 31, 16); }
1263
static long uimm_eo( int x) { return opp_u_field(x, 31, 29); }
1264
static long imm_eo( int x) { return opp_u_field(x, 31, 24); }
1265
1266
//static int xo1( int x) { return opp_u_field(x, 29, 21); }// is contained in our opcodes
1267
//static int xo2( int x) { return opp_u_field(x, 30, 21); }// is contained in our opcodes
1268
//static int xo3( int x) { return opp_u_field(x, 30, 22); }// is contained in our opcodes
1269
//static int xo4( int x) { return opp_u_field(x, 30, 26); }// is contained in our opcodes
1270
//static int xo5( int x) { return opp_u_field(x, 29, 27); }// is contained in our opcodes
1271
//static int xo6( int x) { return opp_u_field(x, 30, 27); }// is contained in our opcodes
1272
//static int xo7( int x) { return opp_u_field(x, 31, 30); }// is contained in our opcodes
1273
1274
protected:
1275
// Compute relative address for branch.
1276
static intptr_t disp(intptr_t x, intptr_t off) {
1277
int xx = x - off;
1278
xx = xx >> 2;
1279
return xx;
1280
}
1281
1282
public:
1283
// signed immediate, in low bits, nbits long
1284
static int simm(int x, int nbits) {
1285
assert_signed_range(x, nbits);
1286
return x & ((1 << nbits) - 1);
1287
}
1288
1289
// unsigned immediate, in low bits, nbits long
1290
static int uimm(int x, int nbits) {
1291
assert_unsigned_const(x, nbits);
1292
return x & ((1 << nbits) - 1);
1293
}
1294
1295
static void set_imm(int* instr, short s) {
1296
// imm is always in the lower 16 bits of the instruction,
1297
// so this is endian-neutral. Same for the get_imm below.
1298
uint32_t w = *(uint32_t *)instr;
1299
*instr = (int)((w & ~0x0000FFFF) | (s & 0x0000FFFF));
1300
}
1301
1302
static int get_imm(address a, int instruction_number) {
1303
return (short)((int *)a)[instruction_number];
1304
}
1305
1306
static inline int hi16_signed( int x) { return (int)(int16_t)(x >> 16); }
1307
static inline int lo16_unsigned(int x) { return x & 0xffff; }
1308
1309
protected:
1310
1311
// Extract the top 32 bits in a 64 bit word.
1312
static int32_t hi32(int64_t x) {
1313
int32_t r = int32_t((uint64_t)x >> 32);
1314
return r;
1315
}
1316
1317
public:
1318
1319
static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
1320
return ((addr + (a - 1)) & ~(a - 1));
1321
}
1322
1323
static inline bool is_aligned(unsigned int addr, unsigned int a) {
1324
return (0 == addr % a);
1325
}
1326
1327
void flush() {
1328
AbstractAssembler::flush();
1329
}
1330
1331
inline void emit_int32(int); // shadows AbstractAssembler::emit_int32
1332
inline void emit_data(int);
1333
inline void emit_data(int, RelocationHolder const&);
1334
inline void emit_data(int, relocInfo::relocType rtype);
1335
1336
// Emit an address.
1337
inline address emit_addr(const address addr = NULL);
1338
1339
#if !defined(ABI_ELFv2)
1340
// Emit a function descriptor with the specified entry point, TOC,
1341
// and ENV. If the entry point is NULL, the descriptor will point
1342
// just past the descriptor.
1343
// Use values from friend functions as defaults.
1344
inline address emit_fd(address entry = NULL,
1345
address toc = (address) FunctionDescriptor::friend_toc,
1346
address env = (address) FunctionDescriptor::friend_env);
1347
#endif
1348
1349
/////////////////////////////////////////////////////////////////////////////////////
1350
// PPC instructions
1351
/////////////////////////////////////////////////////////////////////////////////////
1352
1353
// Memory instructions use r0 as hard coded 0, e.g. to simulate loading
1354
// immediates. The normal instruction encoders enforce that r0 is not
1355
// passed to them. Use either extended mnemonics encoders or the special ra0
1356
// versions.
1357
1358
// Issue an illegal instruction.
1359
inline void illtrap();
1360
static inline bool is_illtrap(int x);
1361
1362
// PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
1363
inline void addi( Register d, Register a, int si16);
1364
inline void addis(Register d, Register a, int si16);
1365
1366
// Prefixed add immediate, introduced by POWER10
1367
inline void paddi(Register d, Register a, long si34, bool r);
1368
inline void pli( Register d, long si34);
1369
1370
private:
1371
inline void addi_r0ok( Register d, Register a, int si16);
1372
inline void addis_r0ok(Register d, Register a, int si16);
1373
inline void paddi_r0ok(Register d, Register a, long si34, bool r);
1374
public:
1375
inline void addic_( Register d, Register a, int si16);
1376
inline void subfic( Register d, Register a, int si16);
1377
inline void add( Register d, Register a, Register b);
1378
inline void add_( Register d, Register a, Register b);
1379
inline void subf( Register d, Register a, Register b); // d = b - a "Sub_from", as in ppc spec.
1380
inline void sub( Register d, Register a, Register b); // d = a - b Swap operands of subf for readability.
1381
inline void subf_( Register d, Register a, Register b);
1382
inline void addc( Register d, Register a, Register b);
1383
inline void addc_( Register d, Register a, Register b);
1384
inline void subfc( Register d, Register a, Register b);
1385
inline void subfc_( Register d, Register a, Register b);
1386
inline void adde( Register d, Register a, Register b);
1387
inline void adde_( Register d, Register a, Register b);
1388
inline void subfe( Register d, Register a, Register b);
1389
inline void subfe_( Register d, Register a, Register b);
1390
inline void addme( Register d, Register a);
1391
inline void addme_( Register d, Register a);
1392
inline void subfme( Register d, Register a);
1393
inline void subfme_(Register d, Register a);
1394
inline void addze( Register d, Register a);
1395
inline void addze_( Register d, Register a);
1396
inline void subfze( Register d, Register a);
1397
inline void subfze_(Register d, Register a);
1398
inline void neg( Register d, Register a);
1399
inline void neg_( Register d, Register a);
1400
inline void mulli( Register d, Register a, int si16);
1401
inline void mulld( Register d, Register a, Register b);
1402
inline void mulld_( Register d, Register a, Register b);
1403
inline void mullw( Register d, Register a, Register b);
1404
inline void mullw_( Register d, Register a, Register b);
1405
inline void mulhw( Register d, Register a, Register b);
1406
inline void mulhw_( Register d, Register a, Register b);
1407
inline void mulhwu( Register d, Register a, Register b);
1408
inline void mulhwu_(Register d, Register a, Register b);
1409
inline void mulhd( Register d, Register a, Register b);
1410
inline void mulhd_( Register d, Register a, Register b);
1411
inline void mulhdu( Register d, Register a, Register b);
1412
inline void mulhdu_(Register d, Register a, Register b);
1413
inline void divd( Register d, Register a, Register b);
1414
inline void divd_( Register d, Register a, Register b);
1415
inline void divw( Register d, Register a, Register b);
1416
inline void divw_( Register d, Register a, Register b);
1417
inline void divwu( Register d, Register a, Register b);
1418
inline void divwu_( Register d, Register a, Register b);
1419
1420
// Fixed-Point Arithmetic Instructions with Overflow detection
1421
inline void addo( Register d, Register a, Register b);
1422
inline void addo_( Register d, Register a, Register b);
1423
inline void subfo( Register d, Register a, Register b);
1424
inline void subfo_( Register d, Register a, Register b);
1425
inline void addco( Register d, Register a, Register b);
1426
inline void addco_( Register d, Register a, Register b);
1427
inline void subfco( Register d, Register a, Register b);
1428
inline void subfco_( Register d, Register a, Register b);
1429
inline void addeo( Register d, Register a, Register b);
1430
inline void addeo_( Register d, Register a, Register b);
1431
inline void subfeo( Register d, Register a, Register b);
1432
inline void subfeo_( Register d, Register a, Register b);
1433
inline void addmeo( Register d, Register a);
1434
inline void addmeo_( Register d, Register a);
1435
inline void subfmeo( Register d, Register a);
1436
inline void subfmeo_(Register d, Register a);
1437
inline void addzeo( Register d, Register a);
1438
inline void addzeo_( Register d, Register a);
1439
inline void subfzeo( Register d, Register a);
1440
inline void subfzeo_(Register d, Register a);
1441
inline void nego( Register d, Register a);
1442
inline void nego_( Register d, Register a);
1443
inline void mulldo( Register d, Register a, Register b);
1444
inline void mulldo_( Register d, Register a, Register b);
1445
inline void mullwo( Register d, Register a, Register b);
1446
inline void mullwo_( Register d, Register a, Register b);
1447
inline void divdo( Register d, Register a, Register b);
1448
inline void divdo_( Register d, Register a, Register b);
1449
inline void divwo( Register d, Register a, Register b);
1450
inline void divwo_( Register d, Register a, Register b);
1451
1452
// extended mnemonics
1453
inline void li( Register d, int si16);
1454
inline void lis( Register d, int si16);
1455
inline void addir(Register d, int si16, Register a);
1456
inline void subi( Register d, Register a, int si16);
1457
1458
static bool is_addi(int x) {
1459
return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
1460
}
1461
static bool is_addis(int x) {
1462
return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
1463
}
1464
static bool is_bxx(int x) {
1465
return BXX_OPCODE == (x & BXX_OPCODE_MASK);
1466
}
1467
static bool is_b(int x) {
1468
return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
1469
}
1470
static bool is_bl(int x) {
1471
return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
1472
}
1473
static bool is_bcxx(int x) {
1474
return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
1475
}
1476
static bool is_bxx_or_bcxx(int x) {
1477
return is_bxx(x) || is_bcxx(x);
1478
}
1479
static bool is_bctrl(int x) {
1480
return x == 0x4e800421;
1481
}
1482
static bool is_bctr(int x) {
1483
return x == 0x4e800420;
1484
}
1485
static bool is_bclr(int x) {
1486
return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
1487
}
1488
static bool is_li(int x) {
1489
return is_addi(x) && inv_ra_field(x)==0;
1490
}
1491
static bool is_lis(int x) {
1492
return is_addis(x) && inv_ra_field(x)==0;
1493
}
1494
static bool is_mtctr(int x) {
1495
return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
1496
}
1497
static bool is_ld(int x) {
1498
return LD_OPCODE == (x & LD_OPCODE_MASK);
1499
}
1500
static bool is_std(int x) {
1501
return STD_OPCODE == (x & STD_OPCODE_MASK);
1502
}
1503
static bool is_stdu(int x) {
1504
return STDU_OPCODE == (x & STDU_OPCODE_MASK);
1505
}
1506
static bool is_stdx(int x) {
1507
return STDX_OPCODE == (x & STDX_OPCODE_MASK);
1508
}
1509
static bool is_stdux(int x) {
1510
return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
1511
}
1512
static bool is_stwx(int x) {
1513
return STWX_OPCODE == (x & STWX_OPCODE_MASK);
1514
}
1515
static bool is_stwux(int x) {
1516
return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
1517
}
1518
static bool is_stw(int x) {
1519
return STW_OPCODE == (x & STW_OPCODE_MASK);
1520
}
1521
static bool is_stwu(int x) {
1522
return STWU_OPCODE == (x & STWU_OPCODE_MASK);
1523
}
1524
static bool is_ori(int x) {
1525
return ORI_OPCODE == (x & ORI_OPCODE_MASK);
1526
};
1527
static bool is_oris(int x) {
1528
return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
1529
};
1530
static bool is_rldicr(int x) {
1531
return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
1532
};
1533
static bool is_nop(int x) {
1534
return x == 0x60000000;
1535
}
1536
// endgroup opcode for Power6
1537
static bool is_endgroup(int x) {
1538
return is_ori(x) && inv_ra_field(x) == 1 && inv_rs_field(x) == 1 && inv_d1_field(x) == 0;
1539
}
1540
1541
1542
private:
1543
// PPC 1, section 3.3.9, Fixed-Point Compare Instructions
1544
inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
1545
inline void cmp( ConditionRegister bf, int l, Register a, Register b);
1546
inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
1547
inline void cmpl( ConditionRegister bf, int l, Register a, Register b);
1548
1549
public:
1550
// extended mnemonics of Compare Instructions
1551
inline void cmpwi( ConditionRegister crx, Register a, int si16);
1552
inline void cmpdi( ConditionRegister crx, Register a, int si16);
1553
inline void cmpw( ConditionRegister crx, Register a, Register b);
1554
inline void cmpd( ConditionRegister crx, Register a, Register b);
1555
inline void cmplwi(ConditionRegister crx, Register a, int ui16);
1556
inline void cmpldi(ConditionRegister crx, Register a, int ui16);
1557
inline void cmplw( ConditionRegister crx, Register a, Register b);
1558
inline void cmpld( ConditionRegister crx, Register a, Register b);
1559
1560
// >= Power9
1561
inline void cmprb( ConditionRegister bf, int l, Register a, Register b);
1562
inline void cmpeqb(ConditionRegister bf, Register a, Register b);
1563
1564
inline void isel( Register d, Register a, Register b, int bc);
1565
// Convenient version which takes: Condition register, Condition code and invert flag. Omit b to keep old value.
1566
inline void isel( Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b = noreg);
1567
// Set d = 0 if (cr.cc) equals 1, otherwise b.
1568
inline void isel_0( Register d, ConditionRegister cr, Condition cc, Register b = noreg);
1569
1570
// PPC 1, section 3.3.11, Fixed-Point Logical Instructions
1571
void andi( Register a, Register s, long ui16); // optimized version
1572
inline void andi_( Register a, Register s, int ui16);
1573
inline void andis_( Register a, Register s, int ui16);
1574
inline void ori( Register a, Register s, int ui16);
1575
inline void oris( Register a, Register s, int ui16);
1576
inline void xori( Register a, Register s, int ui16);
1577
inline void xoris( Register a, Register s, int ui16);
1578
inline void andr( Register a, Register s, Register b); // suffixed by 'r' as 'and' is C++ keyword
1579
inline void and_( Register a, Register s, Register b);
1580
// Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a
1581
// SMT-priority change instruction (see SMT instructions below).
1582
inline void or_unchecked(Register a, Register s, Register b);
1583
inline void orr( Register a, Register s, Register b); // suffixed by 'r' as 'or' is C++ keyword
1584
inline void or_( Register a, Register s, Register b);
1585
inline void xorr( Register a, Register s, Register b); // suffixed by 'r' as 'xor' is C++ keyword
1586
inline void xor_( Register a, Register s, Register b);
1587
inline void nand( Register a, Register s, Register b);
1588
inline void nand_( Register a, Register s, Register b);
1589
inline void nor( Register a, Register s, Register b);
1590
inline void nor_( Register a, Register s, Register b);
1591
inline void andc( Register a, Register s, Register b);
1592
inline void andc_( Register a, Register s, Register b);
1593
inline void orc( Register a, Register s, Register b);
1594
inline void orc_( Register a, Register s, Register b);
1595
inline void extsb( Register a, Register s);
1596
inline void extsb_( Register a, Register s);
1597
inline void extsh( Register a, Register s);
1598
inline void extsh_( Register a, Register s);
1599
inline void extsw( Register a, Register s);
1600
inline void extsw_( Register a, Register s);
1601
1602
// extended mnemonics
1603
inline void nop();
1604
// NOP for FP and BR units (different versions to allow them to be in one group)
1605
inline void fpnop0();
1606
inline void fpnop1();
1607
inline void brnop0();
1608
inline void brnop1();
1609
inline void brnop2();
1610
1611
inline void mr( Register d, Register s);
1612
inline void ori_opt( Register d, int ui16);
1613
inline void oris_opt(Register d, int ui16);
1614
1615
// endgroup opcode for Power6
1616
inline void endgroup();
1617
1618
// count instructions
1619
inline void cntlzw( Register a, Register s);
1620
inline void cntlzw_( Register a, Register s);
1621
inline void cntlzd( Register a, Register s);
1622
inline void cntlzd_( Register a, Register s);
1623
inline void cnttzw( Register a, Register s);
1624
inline void cnttzw_( Register a, Register s);
1625
inline void cnttzd( Register a, Register s);
1626
inline void cnttzd_( Register a, Register s);
1627
1628
// PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
1629
inline void sld( Register a, Register s, Register b);
1630
inline void sld_( Register a, Register s, Register b);
1631
inline void slw( Register a, Register s, Register b);
1632
inline void slw_( Register a, Register s, Register b);
1633
inline void srd( Register a, Register s, Register b);
1634
inline void srd_( Register a, Register s, Register b);
1635
inline void srw( Register a, Register s, Register b);
1636
inline void srw_( Register a, Register s, Register b);
1637
inline void srad( Register a, Register s, Register b);
1638
inline void srad_( Register a, Register s, Register b);
1639
inline void sraw( Register a, Register s, Register b);
1640
inline void sraw_( Register a, Register s, Register b);
1641
inline void sradi( Register a, Register s, int sh6);
1642
inline void sradi_( Register a, Register s, int sh6);
1643
inline void srawi( Register a, Register s, int sh5);
1644
inline void srawi_( Register a, Register s, int sh5);
1645
1646
// extended mnemonics for Shift Instructions
1647
inline void sldi( Register a, Register s, int sh6);
1648
inline void sldi_( Register a, Register s, int sh6);
1649
inline void slwi( Register a, Register s, int sh5);
1650
inline void slwi_( Register a, Register s, int sh5);
1651
inline void srdi( Register a, Register s, int sh6);
1652
inline void srdi_( Register a, Register s, int sh6);
1653
inline void srwi( Register a, Register s, int sh5);
1654
inline void srwi_( Register a, Register s, int sh5);
1655
1656
inline void clrrdi( Register a, Register s, int ui6);
1657
inline void clrrdi_( Register a, Register s, int ui6);
1658
inline void clrldi( Register a, Register s, int ui6);
1659
inline void clrldi_( Register a, Register s, int ui6);
1660
inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
1661
inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
1662
inline void extrdi( Register a, Register s, int n, int b);
1663
// testbit with condition register
1664
inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);
1665
1666
// Byte reverse instructions (introduced with Power10)
1667
inline void brh( Register a, Register s);
1668
inline void brw( Register a, Register s);
1669
inline void brd( Register a, Register s);
1670
1671
// rotate instructions
1672
inline void rotldi( Register a, Register s, int n);
1673
inline void rotrdi( Register a, Register s, int n);
1674
inline void rotlwi( Register a, Register s, int n);
1675
inline void rotrwi( Register a, Register s, int n);
1676
1677
// Rotate Instructions
1678
inline void rldic( Register a, Register s, int sh6, int mb6);
1679
inline void rldic_( Register a, Register s, int sh6, int mb6);
1680
inline void rldicr( Register a, Register s, int sh6, int mb6);
1681
inline void rldicr_( Register a, Register s, int sh6, int mb6);
1682
inline void rldicl( Register a, Register s, int sh6, int mb6);
1683
inline void rldicl_( Register a, Register s, int sh6, int mb6);
1684
inline void rlwinm( Register a, Register s, int sh5, int mb5, int me5);
1685
inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
1686
inline void rldimi( Register a, Register s, int sh6, int mb6);
1687
inline void rldimi_( Register a, Register s, int sh6, int mb6);
1688
inline void rlwimi( Register a, Register s, int sh5, int mb5, int me5);
1689
inline void insrdi( Register a, Register s, int n, int b);
1690
inline void insrwi( Register a, Register s, int n, int b);
1691
1692
// PPC 1, section 3.3.2 Fixed-Point Load Instructions
1693
// 4 bytes
1694
inline void lwzx( Register d, Register s1, Register s2);
1695
inline void lwz( Register d, int si16, Register s1);
1696
inline void lwzu( Register d, int si16, Register s1);
1697
1698
// 4 bytes
1699
inline void lwax( Register d, Register s1, Register s2);
1700
inline void lwa( Register d, int si16, Register s1);
1701
1702
// 4 bytes reversed
1703
inline void lwbrx( Register d, Register s1, Register s2);
1704
1705
// 2 bytes
1706
inline void lhzx( Register d, Register s1, Register s2);
1707
inline void lhz( Register d, int si16, Register s1);
1708
inline void lhzu( Register d, int si16, Register s1);
1709
1710
// 2 bytes reversed
1711
inline void lhbrx( Register d, Register s1, Register s2);
1712
1713
// 2 bytes
1714
inline void lhax( Register d, Register s1, Register s2);
1715
inline void lha( Register d, int si16, Register s1);
1716
inline void lhau( Register d, int si16, Register s1);
1717
1718
// 1 byte
1719
inline void lbzx( Register d, Register s1, Register s2);
1720
inline void lbz( Register d, int si16, Register s1);
1721
inline void lbzu( Register d, int si16, Register s1);
1722
1723
// 8 bytes
1724
inline void ldx( Register d, Register s1, Register s2);
1725
inline void ld( Register d, int si16, Register s1);
1726
inline void ldu( Register d, int si16, Register s1);
1727
1728
// 8 bytes reversed
1729
inline void ldbrx( Register d, Register s1, Register s2);
1730
1731
// For convenience. Load pointer into d from b+s1.
1732
inline void ld_ptr(Register d, int b, Register s1);
1733
inline void ld_ptr(Register d, ByteSize b, Register s1);
1734
1735
// PPC 1, section 3.3.3 Fixed-Point Store Instructions
1736
inline void stwx( Register d, Register s1, Register s2);
1737
inline void stw( Register d, int si16, Register s1);
1738
inline void stwu( Register d, int si16, Register s1);
1739
inline void stwbrx( Register d, Register s1, Register s2);
1740
1741
inline void sthx( Register d, Register s1, Register s2);
1742
inline void sth( Register d, int si16, Register s1);
1743
inline void sthu( Register d, int si16, Register s1);
1744
inline void sthbrx( Register d, Register s1, Register s2);
1745
1746
inline void stbx( Register d, Register s1, Register s2);
1747
inline void stb( Register d, int si16, Register s1);
1748
inline void stbu( Register d, int si16, Register s1);
1749
1750
inline void stdx( Register d, Register s1, Register s2);
1751
inline void std( Register d, int si16, Register s1);
1752
inline void stdu( Register d, int si16, Register s1);
1753
inline void stdux(Register s, Register a, Register b);
1754
inline void stdbrx( Register d, Register s1, Register s2);
1755
1756
inline void st_ptr(Register d, int si16, Register s1);
1757
inline void st_ptr(Register d, ByteSize b, Register s1);
1758
1759
// PPC 1, section 3.3.13 Move To/From System Register Instructions
1760
inline void mtlr( Register s1);
1761
inline void mflr( Register d);
1762
inline void mtctr(Register s1);
1763
inline void mfctr(Register d);
1764
inline void mtcrf(int fxm, Register s);
1765
inline void mfcr( Register d);
1766
inline void mcrf( ConditionRegister crd, ConditionRegister cra);
1767
inline void mtcr( Register s);
1768
// >= Power9
1769
inline void mcrxrx(ConditionRegister cra);
1770
inline void setb( Register d, ConditionRegister cra);
1771
1772
// >= Power10
1773
inline void setbc( Register d, int biint);
1774
inline void setbc( Register d, ConditionRegister cr, Condition cc);
1775
inline void setnbc(Register d, int biint);
1776
inline void setnbc(Register d, ConditionRegister cr, Condition cc);
1777
1778
// Special purpose registers
1779
// Exception Register
1780
inline void mtxer(Register s1);
1781
inline void mfxer(Register d);
1782
// Vector Register Save Register
1783
inline void mtvrsave(Register s1);
1784
inline void mfvrsave(Register d);
1785
// Timebase
1786
inline void mftb(Register d);
1787
// Introduced with Power 8:
1788
// Data Stream Control Register
1789
inline void mtdscr(Register s1);
1790
inline void mfdscr(Register d );
1791
// Transactional Memory Registers
1792
inline void mftfhar(Register d);
1793
inline void mftfiar(Register d);
1794
inline void mftexasr(Register d);
1795
inline void mftexasru(Register d);
1796
1797
// TEXASR bit description
1798
enum transaction_failure_reason {
1799
// Upper half (TEXASRU):
1800
tm_failure_code = 0, // The Failure Code is copied from tabort or treclaim operand.
1801
tm_failure_persistent = 7, // The failure is likely to recur on each execution.
1802
tm_disallowed = 8, // The instruction is not permitted.
1803
tm_nesting_of = 9, // The maximum transaction level was exceeded.
1804
tm_footprint_of = 10, // The tracking limit for transactional storage accesses was exceeded.
1805
tm_self_induced_cf = 11, // A self-induced conflict occurred in Suspended state.
1806
tm_non_trans_cf = 12, // A conflict occurred with a non-transactional access by another processor.
1807
tm_trans_cf = 13, // A conflict occurred with another transaction.
1808
tm_translation_cf = 14, // A conflict occurred with a TLB invalidation.
1809
tm_inst_fetch_cf = 16, // An instruction fetch was performed from a block that was previously written transactionally.
1810
tm_tabort = 31, // Termination was caused by the execution of an abort instruction.
1811
// Lower half:
1812
tm_suspended = 32, // Failure was recorded in Suspended state.
1813
tm_failure_summary = 36, // Failure has been detected and recorded.
1814
tm_tfiar_exact = 37, // Value in the TFIAR is exact.
1815
tm_rot = 38, // Rollback-only transaction.
1816
tm_transaction_level = 52, // Transaction level (nesting depth + 1).
1817
};
1818
1819
// PPC 1, section 2.4.1 Branch Instructions
1820
inline void b( address a, relocInfo::relocType rt = relocInfo::none);
1821
inline void b( Label& L);
1822
inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
1823
inline void bl( Label& L);
1824
inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1825
inline void bc( int boint, int biint, Label& L);
1826
inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1827
inline void bcl(int boint, int biint, Label& L);
1828
1829
inline void bclr( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1830
inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1831
inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
1832
relocInfo::relocType rt = relocInfo::none);
1833
inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
1834
relocInfo::relocType rt = relocInfo::none);
1835
1836
// helper function for b, bcxx
1837
inline bool is_within_range_of_b(address a, address pc);
1838
inline bool is_within_range_of_bcxx(address a, address pc);
1839
1840
// get the destination of a bxx branch (b, bl, ba, bla)
1841
static inline address bxx_destination(address baddr);
1842
static inline address bxx_destination(int instr, address pc);
1843
static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);
1844
1845
// extended mnemonics for branch instructions
1846
inline void blt(ConditionRegister crx, Label& L);
1847
inline void bgt(ConditionRegister crx, Label& L);
1848
inline void beq(ConditionRegister crx, Label& L);
1849
inline void bso(ConditionRegister crx, Label& L);
1850
inline void bge(ConditionRegister crx, Label& L);
1851
inline void ble(ConditionRegister crx, Label& L);
1852
inline void bne(ConditionRegister crx, Label& L);
1853
inline void bns(ConditionRegister crx, Label& L);
1854
1855
// Branch instructions with static prediction hints.
1856
inline void blt_predict_taken( ConditionRegister crx, Label& L);
1857
inline void bgt_predict_taken( ConditionRegister crx, Label& L);
1858
inline void beq_predict_taken( ConditionRegister crx, Label& L);
1859
inline void bso_predict_taken( ConditionRegister crx, Label& L);
1860
inline void bge_predict_taken( ConditionRegister crx, Label& L);
1861
inline void ble_predict_taken( ConditionRegister crx, Label& L);
1862
inline void bne_predict_taken( ConditionRegister crx, Label& L);
1863
inline void bns_predict_taken( ConditionRegister crx, Label& L);
1864
inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
1865
inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
1866
inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
1867
inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
1868
inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
1869
inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
1870
inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
1871
inline void bns_predict_not_taken(ConditionRegister crx, Label& L);
1872
1873
// for use in conjunction with testbitdi:
1874
inline void btrue( ConditionRegister crx, Label& L);
1875
inline void bfalse(ConditionRegister crx, Label& L);
1876
1877
inline void bltl(ConditionRegister crx, Label& L);
1878
inline void bgtl(ConditionRegister crx, Label& L);
1879
inline void beql(ConditionRegister crx, Label& L);
1880
inline void bsol(ConditionRegister crx, Label& L);
1881
inline void bgel(ConditionRegister crx, Label& L);
1882
inline void blel(ConditionRegister crx, Label& L);
1883
inline void bnel(ConditionRegister crx, Label& L);
1884
inline void bnsl(ConditionRegister crx, Label& L);
1885
1886
// extended mnemonics for Branch Instructions via LR
1887
// We use `blr' for returns.
1888
inline void blr(relocInfo::relocType rt = relocInfo::none);
1889
1890
// extended mnemonics for Branch Instructions with CTR
1891
// bdnz means `decrement CTR and jump to L if CTR is not zero'
1892
inline void bdnz(Label& L);
1893
// Decrement and branch if result is zero.
1894
inline void bdz(Label& L);
1895
// we use `bctr[l]' for jumps/calls in function descriptor glue
1896
// code, e.g. calls to runtime functions
1897
inline void bctr( relocInfo::relocType rt = relocInfo::none);
1898
inline void bctrl(relocInfo::relocType rt = relocInfo::none);
1899
// conditional jumps/branches via CTR
1900
inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1901
inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1902
inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1903
inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1904
1905
// condition register logic instructions
1906
// NOTE: There's a preferred form: d and s2 should point into the same condition register.
1907
inline void crand( int d, int s1, int s2);
1908
inline void crnand(int d, int s1, int s2);
1909
inline void cror( int d, int s1, int s2);
1910
inline void crxor( int d, int s1, int s2);
1911
inline void crnor( int d, int s1, int s2);
1912
inline void creqv( int d, int s1, int s2);
1913
inline void crandc(int d, int s1, int s2);
1914
inline void crorc( int d, int s1, int s2);
1915
1916
// More convenient version.
1917
int condition_register_bit(ConditionRegister cr, Condition c) {
1918
return 4 * (int)(intptr_t)cr + c;
1919
}
1920
void crand( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1921
void crnand(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1922
void cror( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1923
void crxor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1924
void crnor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1925
void creqv( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1926
void crandc(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1927
void crorc( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1928
1929
// icache and dcache related instructions
1930
inline void icbi( Register s1, Register s2);
1931
//inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
1932
inline void dcbz( Register s1, Register s2);
1933
inline void dcbst( Register s1, Register s2);
1934
inline void dcbf( Register s1, Register s2);
1935
1936
enum ct_cache_specification {
1937
ct_primary_cache = 0,
1938
ct_secondary_cache = 2
1939
};
1940
// dcache read hint
1941
inline void dcbt( Register s1, Register s2);
1942
inline void dcbtct( Register s1, Register s2, int ct);
1943
inline void dcbtds( Register s1, Register s2, int ds);
1944
// dcache write hint
1945
inline void dcbtst( Register s1, Register s2);
1946
inline void dcbtstct(Register s1, Register s2, int ct);
1947
1948
// machine barrier instructions:
1949
//
1950
// - sync two-way memory barrier, aka fence
1951
// - lwsync orders Store|Store,
1952
// Load|Store,
1953
// Load|Load,
1954
// but not Store|Load
1955
// - eieio orders memory accesses for device memory (only)
1956
// - isync invalidates speculatively executed instructions
1957
// From the Power ISA 2.06 documentation:
1958
// "[...] an isync instruction prevents the execution of
1959
// instructions following the isync until instructions
1960
// preceding the isync have completed, [...]"
1961
// From IBM's AIX assembler reference:
1962
// "The isync [...] instructions causes the processor to
1963
// refetch any instructions that might have been fetched
1964
// prior to the isync instruction. The instruction isync
1965
// causes the processor to wait for all previous instructions
1966
// to complete. Then any instructions already fetched are
1967
// discarded and instruction processing continues in the
1968
// environment established by the previous instructions."
1969
//
1970
// semantic barrier instructions:
1971
// (as defined in orderAccess.hpp)
1972
//
1973
// - release orders Store|Store, (maps to lwsync)
1974
// Load|Store
1975
// - acquire orders Load|Store, (maps to lwsync)
1976
// Load|Load
1977
// - fence orders Store|Store, (maps to sync)
1978
// Load|Store,
1979
// Load|Load,
1980
// Store|Load
1981
//
1982
private:
1983
inline void sync(int l);
1984
public:
1985
inline void sync();
1986
inline void lwsync();
1987
inline void ptesync();
1988
inline void eieio();
1989
inline void isync();
1990
inline void elemental_membar(int e); // Elemental Memory Barriers (>=Power 8)
1991
1992
// Wait instructions for polling. Attention: May result in SIGILL.
1993
inline void wait();
1994
inline void waitrsv(); // >=Power7
1995
1996
// atomics
1997
inline void lbarx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
1998
inline void lharx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
1999
inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
2000
inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
2001
inline void lqarx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
2002
inline bool lxarx_hint_exclusive_access();
2003
inline void lbarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
2004
inline void lharx( Register d, Register a, Register b, bool hint_exclusive_access = false);
2005
inline void lwarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
2006
inline void ldarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
2007
inline void lqarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
2008
inline void stbcx_( Register s, Register a, Register b);
2009
inline void sthcx_( Register s, Register a, Register b);
2010
inline void stwcx_( Register s, Register a, Register b);
2011
inline void stdcx_( Register s, Register a, Register b);
2012
inline void stqcx_( Register s, Register a, Register b);
2013
2014
// Instructions for adjusting thread priority for simultaneous
2015
// multithreading (SMT) on Power5.
2016
private:
2017
inline void smt_prio_very_low();
2018
inline void smt_prio_medium_high();
2019
inline void smt_prio_high();
2020
2021
public:
2022
inline void smt_prio_low();
2023
inline void smt_prio_medium_low();
2024
inline void smt_prio_medium();
2025
// >= Power7
2026
inline void smt_yield();
2027
inline void smt_mdoio();
2028
inline void smt_mdoom();
2029
// >= Power8
2030
inline void smt_miso();
2031
2032
// trap instructions
2033
inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
2034
// NOT FOR DIRECT USE!!
2035
protected:
2036
inline void tdi_unchecked(int tobits, Register a, int si16);
2037
inline void twi_unchecked(int tobits, Register a, int si16);
2038
inline void tdi( int tobits, Register a, int si16); // asserts UseSIGTRAP
2039
inline void twi( int tobits, Register a, int si16); // asserts UseSIGTRAP
2040
inline void td( int tobits, Register a, Register b); // asserts UseSIGTRAP
2041
inline void tw( int tobits, Register a, Register b); // asserts UseSIGTRAP
2042
2043
public:
2044
static bool is_tdi(int x, int tobits, int ra, int si16) {
2045
return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
2046
&& (tobits == inv_to_field(x))
2047
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x))
2048
&& (si16 == inv_si_field(x));
2049
}
2050
2051
static int tdi_get_si16(int x, int tobits, int ra) {
2052
if (TDI_OPCODE == (x & TDI_OPCODE_MASK)
2053
&& (tobits == inv_to_field(x))
2054
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x))) {
2055
return inv_si_field(x);
2056
}
2057
return -1; // No valid tdi instruction.
2058
}
2059
2060
static bool is_twi(int x, int tobits, int ra, int si16) {
2061
return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
2062
&& (tobits == inv_to_field(x))
2063
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x))
2064
&& (si16 == inv_si_field(x));
2065
}
2066
2067
static bool is_twi(int x, int tobits, int ra) {
2068
return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
2069
&& (tobits == inv_to_field(x))
2070
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x));
2071
}
2072
2073
static bool is_td(int x, int tobits, int ra, int rb) {
2074
return (TD_OPCODE == (x & TD_OPCODE_MASK))
2075
&& (tobits == inv_to_field(x))
2076
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x))
2077
&& (rb == -1/*any reg*/ || rb == inv_rb_field(x));
2078
}
2079
2080
static bool is_tw(int x, int tobits, int ra, int rb) {
2081
return (TW_OPCODE == (x & TW_OPCODE_MASK))
2082
&& (tobits == inv_to_field(x))
2083
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x))
2084
&& (rb == -1/*any reg*/ || rb == inv_rb_field(x));
2085
}
2086
2087
// PPC floating point instructions
2088
// PPC 1, section 4.6.2 Floating-Point Load Instructions
2089
inline void lfs( FloatRegister d, int si16, Register a);
2090
inline void lfsu( FloatRegister d, int si16, Register a);
2091
inline void lfsx( FloatRegister d, Register a, Register b);
2092
inline void lfd( FloatRegister d, int si16, Register a);
2093
inline void lfdu( FloatRegister d, int si16, Register a);
2094
inline void lfdx( FloatRegister d, Register a, Register b);
2095
2096
// PPC 1, section 4.6.3 Floating-Point Store Instructions
2097
inline void stfs( FloatRegister s, int si16, Register a);
2098
inline void stfsu( FloatRegister s, int si16, Register a);
2099
inline void stfsx( FloatRegister s, Register a, Register b);
2100
inline void stfd( FloatRegister s, int si16, Register a);
2101
inline void stfdu( FloatRegister s, int si16, Register a);
2102
inline void stfdx( FloatRegister s, Register a, Register b);
2103
2104
// PPC 1, section 4.6.4 Floating-Point Move Instructions
2105
inline void fmr( FloatRegister d, FloatRegister b);
2106
inline void fmr_( FloatRegister d, FloatRegister b);
2107
2108
inline void frin( FloatRegister d, FloatRegister b);
2109
inline void frip( FloatRegister d, FloatRegister b);
2110
inline void frim( FloatRegister d, FloatRegister b);
2111
2112
// inline void mffgpr( FloatRegister d, Register b);
2113
// inline void mftgpr( Register d, FloatRegister b);
2114
inline void cmpb( Register a, Register s, Register b);
2115
inline void popcntb(Register a, Register s);
2116
inline void popcntw(Register a, Register s);
2117
inline void popcntd(Register a, Register s);
2118
2119
inline void fneg( FloatRegister d, FloatRegister b);
2120
inline void fneg_( FloatRegister d, FloatRegister b);
2121
inline void fabs( FloatRegister d, FloatRegister b);
2122
inline void fabs_( FloatRegister d, FloatRegister b);
2123
inline void fnabs( FloatRegister d, FloatRegister b);
2124
inline void fnabs_(FloatRegister d, FloatRegister b);
2125
2126
// PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
2127
inline void fadd( FloatRegister d, FloatRegister a, FloatRegister b);
2128
inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
2129
inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
2130
inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
2131
inline void fsub( FloatRegister d, FloatRegister a, FloatRegister b);
2132
inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
2133
inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
2134
inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
2135
inline void fmul( FloatRegister d, FloatRegister a, FloatRegister c);
2136
inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
2137
inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
2138
inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
2139
inline void fdiv( FloatRegister d, FloatRegister a, FloatRegister b);
2140
inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
2141
inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
2142
inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);
2143
2144
// Fused multiply-accumulate instructions.
2145
// WARNING: Use only when rounding between the 2 parts is not desired.
2146
// Some floating point tck tests will fail if used incorrectly.
2147
inline void fmadd( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2148
inline void fmadd_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2149
inline void fmadds( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2150
inline void fmadds_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2151
inline void fmsub( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2152
inline void fmsub_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2153
inline void fmsubs( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2154
inline void fmsubs_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2155
inline void fnmadd( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2156
inline void fnmadd_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2157
inline void fnmadds( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2158
inline void fnmadds_(FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2159
inline void fnmsub( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2160
inline void fnmsub_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2161
inline void fnmsubs( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2162
inline void fnmsubs_(FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2163
2164
// PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
2165
inline void frsp( FloatRegister d, FloatRegister b);
2166
inline void fctid( FloatRegister d, FloatRegister b);
2167
inline void fctidz(FloatRegister d, FloatRegister b);
2168
inline void fctiw( FloatRegister d, FloatRegister b);
2169
inline void fctiwz(FloatRegister d, FloatRegister b);
2170
inline void fcfid( FloatRegister d, FloatRegister b);
2171
inline void fcfids(FloatRegister d, FloatRegister b);
2172
2173
// PPC 1, section 4.6.7 Floating-Point Compare Instructions
2174
inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);
2175
2176
inline void fsqrt( FloatRegister d, FloatRegister b);
2177
inline void fsqrts(FloatRegister d, FloatRegister b);
2178
2179
// Vector instructions for >= Power6.
2180
inline void lvebx( VectorRegister d, Register s1, Register s2);
2181
inline void lvehx( VectorRegister d, Register s1, Register s2);
2182
inline void lvewx( VectorRegister d, Register s1, Register s2);
2183
inline void lvx( VectorRegister d, Register s1, Register s2);
2184
inline void lvxl( VectorRegister d, Register s1, Register s2);
2185
inline void stvebx( VectorRegister d, Register s1, Register s2);
2186
inline void stvehx( VectorRegister d, Register s1, Register s2);
2187
inline void stvewx( VectorRegister d, Register s1, Register s2);
2188
inline void stvx( VectorRegister d, Register s1, Register s2);
2189
inline void stvxl( VectorRegister d, Register s1, Register s2);
2190
inline void lvsl( VectorRegister d, Register s1, Register s2);
2191
inline void lvsr( VectorRegister d, Register s1, Register s2);
2192
inline void vpkpx( VectorRegister d, VectorRegister a, VectorRegister b);
2193
inline void vpkshss( VectorRegister d, VectorRegister a, VectorRegister b);
2194
inline void vpkswss( VectorRegister d, VectorRegister a, VectorRegister b);
2195
inline void vpkshus( VectorRegister d, VectorRegister a, VectorRegister b);
2196
inline void vpkswus( VectorRegister d, VectorRegister a, VectorRegister b);
2197
inline void vpkuhum( VectorRegister d, VectorRegister a, VectorRegister b);
2198
inline void vpkuwum( VectorRegister d, VectorRegister a, VectorRegister b);
2199
inline void vpkuhus( VectorRegister d, VectorRegister a, VectorRegister b);
2200
inline void vpkuwus( VectorRegister d, VectorRegister a, VectorRegister b);
2201
inline void vupkhpx( VectorRegister d, VectorRegister b);
2202
inline void vupkhsb( VectorRegister d, VectorRegister b);
2203
inline void vupkhsh( VectorRegister d, VectorRegister b);
2204
inline void vupklpx( VectorRegister d, VectorRegister b);
2205
inline void vupklsb( VectorRegister d, VectorRegister b);
2206
inline void vupklsh( VectorRegister d, VectorRegister b);
2207
inline void vmrghb( VectorRegister d, VectorRegister a, VectorRegister b);
2208
inline void vmrghw( VectorRegister d, VectorRegister a, VectorRegister b);
2209
inline void vmrghh( VectorRegister d, VectorRegister a, VectorRegister b);
2210
inline void vmrglb( VectorRegister d, VectorRegister a, VectorRegister b);
2211
inline void vmrglw( VectorRegister d, VectorRegister a, VectorRegister b);
2212
inline void vmrglh( VectorRegister d, VectorRegister a, VectorRegister b);
2213
inline void vsplt( VectorRegister d, int ui4, VectorRegister b);
2214
inline void vsplth( VectorRegister d, int ui3, VectorRegister b);
2215
inline void vspltw( VectorRegister d, int ui2, VectorRegister b);
2216
inline void vspltisb( VectorRegister d, int si5);
2217
inline void vspltish( VectorRegister d, int si5);
2218
inline void vspltisw( VectorRegister d, int si5);
2219
inline void vperm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2220
inline void vpextd( VectorRegister d, VectorRegister a, VectorRegister b);
2221
inline void vsel( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2222
inline void vsl( VectorRegister d, VectorRegister a, VectorRegister b);
2223
inline void vsldoi( VectorRegister d, VectorRegister a, VectorRegister b, int ui4);
2224
inline void vslo( VectorRegister d, VectorRegister a, VectorRegister b);
2225
inline void vsr( VectorRegister d, VectorRegister a, VectorRegister b);
2226
inline void vsro( VectorRegister d, VectorRegister a, VectorRegister b);
2227
inline void vaddcuw( VectorRegister d, VectorRegister a, VectorRegister b);
2228
inline void vaddshs( VectorRegister d, VectorRegister a, VectorRegister b);
2229
inline void vaddsbs( VectorRegister d, VectorRegister a, VectorRegister b);
2230
inline void vaddsws( VectorRegister d, VectorRegister a, VectorRegister b);
2231
inline void vaddubm( VectorRegister d, VectorRegister a, VectorRegister b);
2232
inline void vadduwm( VectorRegister d, VectorRegister a, VectorRegister b);
2233
inline void vadduhm( VectorRegister d, VectorRegister a, VectorRegister b);
2234
inline void vaddudm( VectorRegister d, VectorRegister a, VectorRegister b);
2235
inline void vaddubs( VectorRegister d, VectorRegister a, VectorRegister b);
2236
inline void vadduws( VectorRegister d, VectorRegister a, VectorRegister b);
2237
inline void vadduhs( VectorRegister d, VectorRegister a, VectorRegister b);
2238
inline void vaddfp( VectorRegister d, VectorRegister a, VectorRegister b);
2239
inline void vsubcuw( VectorRegister d, VectorRegister a, VectorRegister b);
2240
inline void vsubshs( VectorRegister d, VectorRegister a, VectorRegister b);
2241
inline void vsubsbs( VectorRegister d, VectorRegister a, VectorRegister b);
2242
inline void vsubsws( VectorRegister d, VectorRegister a, VectorRegister b);
2243
inline void vsububm( VectorRegister d, VectorRegister a, VectorRegister b);
2244
inline void vsubuwm( VectorRegister d, VectorRegister a, VectorRegister b);
2245
inline void vsubuhm( VectorRegister d, VectorRegister a, VectorRegister b);
2246
inline void vsubudm( VectorRegister d, VectorRegister a, VectorRegister b);
2247
inline void vsububs( VectorRegister d, VectorRegister a, VectorRegister b);
2248
inline void vsubuws( VectorRegister d, VectorRegister a, VectorRegister b);
2249
inline void vsubuhs( VectorRegister d, VectorRegister a, VectorRegister b);
2250
inline void vsubfp( VectorRegister d, VectorRegister a, VectorRegister b);
2251
inline void vmulesb( VectorRegister d, VectorRegister a, VectorRegister b);
2252
inline void vmuleub( VectorRegister d, VectorRegister a, VectorRegister b);
2253
inline void vmulesh( VectorRegister d, VectorRegister a, VectorRegister b);
2254
inline void vmuleuh( VectorRegister d, VectorRegister a, VectorRegister b);
2255
inline void vmulosb( VectorRegister d, VectorRegister a, VectorRegister b);
2256
inline void vmuloub( VectorRegister d, VectorRegister a, VectorRegister b);
2257
inline void vmulosh( VectorRegister d, VectorRegister a, VectorRegister b);
2258
inline void vmulosw( VectorRegister d, VectorRegister a, VectorRegister b);
2259
inline void vmulouh( VectorRegister d, VectorRegister a, VectorRegister b);
2260
inline void vmuluwm( VectorRegister d, VectorRegister a, VectorRegister b);
2261
inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2262
inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
2263
inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2264
inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2265
inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2266
inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2267
inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2268
inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2269
inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2270
inline void vmaddfp( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2271
inline void vsumsws( VectorRegister d, VectorRegister a, VectorRegister b);
2272
inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
2273
inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
2274
inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
2275
inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
2276
inline void vavgsb( VectorRegister d, VectorRegister a, VectorRegister b);
2277
inline void vavgsw( VectorRegister d, VectorRegister a, VectorRegister b);
2278
inline void vavgsh( VectorRegister d, VectorRegister a, VectorRegister b);
2279
inline void vavgub( VectorRegister d, VectorRegister a, VectorRegister b);
2280
inline void vavguw( VectorRegister d, VectorRegister a, VectorRegister b);
2281
inline void vavguh( VectorRegister d, VectorRegister a, VectorRegister b);
2282
inline void vmaxsb( VectorRegister d, VectorRegister a, VectorRegister b);
2283
inline void vmaxsw( VectorRegister d, VectorRegister a, VectorRegister b);
2284
inline void vmaxsh( VectorRegister d, VectorRegister a, VectorRegister b);
2285
inline void vmaxub( VectorRegister d, VectorRegister a, VectorRegister b);
2286
inline void vmaxuw( VectorRegister d, VectorRegister a, VectorRegister b);
2287
inline void vmaxuh( VectorRegister d, VectorRegister a, VectorRegister b);
2288
inline void vminsb( VectorRegister d, VectorRegister a, VectorRegister b);
2289
inline void vminsw( VectorRegister d, VectorRegister a, VectorRegister b);
2290
inline void vminsh( VectorRegister d, VectorRegister a, VectorRegister b);
2291
inline void vminub( VectorRegister d, VectorRegister a, VectorRegister b);
2292
inline void vminuw( VectorRegister d, VectorRegister a, VectorRegister b);
2293
inline void vminuh( VectorRegister d, VectorRegister a, VectorRegister b);
2294
inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
2295
inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
2296
inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
2297
inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
2298
inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
2299
inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
2300
inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
2301
inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
2302
inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
2303
inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
2304
inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
2305
inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
2306
inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
2307
inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
2308
inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
2309
inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
2310
inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
2311
inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
2312
inline void vand( VectorRegister d, VectorRegister a, VectorRegister b);
2313
inline void vandc( VectorRegister d, VectorRegister a, VectorRegister b);
2314
inline void vnor( VectorRegister d, VectorRegister a, VectorRegister b);
2315
inline void vor( VectorRegister d, VectorRegister a, VectorRegister b);
2316
inline void vmr( VectorRegister d, VectorRegister a);
2317
inline void vxor( VectorRegister d, VectorRegister a, VectorRegister b);
2318
inline void vrld( VectorRegister d, VectorRegister a, VectorRegister b);
2319
inline void vrlb( VectorRegister d, VectorRegister a, VectorRegister b);
2320
inline void vrlw( VectorRegister d, VectorRegister a, VectorRegister b);
2321
inline void vrlh( VectorRegister d, VectorRegister a, VectorRegister b);
2322
inline void vslb( VectorRegister d, VectorRegister a, VectorRegister b);
2323
inline void vskw( VectorRegister d, VectorRegister a, VectorRegister b);
2324
inline void vslh( VectorRegister d, VectorRegister a, VectorRegister b);
2325
inline void vsrb( VectorRegister d, VectorRegister a, VectorRegister b);
2326
inline void vsrw( VectorRegister d, VectorRegister a, VectorRegister b);
2327
inline void vsrh( VectorRegister d, VectorRegister a, VectorRegister b);
2328
inline void vsrab( VectorRegister d, VectorRegister a, VectorRegister b);
2329
inline void vsraw( VectorRegister d, VectorRegister a, VectorRegister b);
2330
inline void vsrah( VectorRegister d, VectorRegister a, VectorRegister b);
2331
inline void vpopcntw( VectorRegister d, VectorRegister b);
2332
// Vector Floating-Point not implemented yet
2333
inline void mtvscr( VectorRegister b);
2334
inline void mfvscr( VectorRegister d);
2335
2336
// Vector-Scalar (VSX) instructions.
2337
inline void lxv( VectorSRegister d, int si16, Register a);
2338
inline void stxv( VectorSRegister d, int si16, Register a);
2339
inline void lxvl( VectorSRegister d, Register a, Register b);
2340
inline void stxvl( VectorSRegister d, Register a, Register b);
2341
inline void lxvd2x( VectorSRegister d, Register a);
2342
inline void lxvd2x( VectorSRegister d, Register a, Register b);
2343
inline void stxvd2x( VectorSRegister d, Register a);
2344
inline void stxvd2x( VectorSRegister d, Register a, Register b);
2345
inline void mtvrwz( VectorRegister d, Register a);
2346
inline void mfvrwz( Register a, VectorRegister d);
2347
inline void mtvrd( VectorRegister d, Register a);
2348
inline void mfvrd( Register a, VectorRegister d);
2349
inline void xxperm( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2350
inline void xxpermdi( VectorSRegister d, VectorSRegister a, VectorSRegister b, int dm);
2351
inline void xxmrghw( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2352
inline void xxmrglw( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2353
inline void mtvsrd( VectorSRegister d, Register a);
2354
inline void mfvsrd( Register d, VectorSRegister a);
2355
inline void mtvsrdd( VectorSRegister d, Register a, Register b);
2356
inline void mtvsrwz( VectorSRegister d, Register a);
2357
inline void mfvsrwz( Register d, VectorSRegister a);
2358
inline void xxspltw( VectorSRegister d, VectorSRegister b, int ui2);
2359
inline void xxlor( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2360
inline void xxlxor( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2361
inline void xxleqv( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2362
inline void xxbrd( VectorSRegister d, VectorSRegister b);
2363
inline void xxbrw( VectorSRegister d, VectorSRegister b);
2364
inline void xxland( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2365
inline void xxsel( VectorSRegister d, VectorSRegister a, VectorSRegister b, VectorSRegister c);
2366
inline void xxspltib( VectorSRegister d, int ui8);
2367
inline void xvdivsp( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2368
inline void xvdivdp( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2369
inline void xvabssp( VectorSRegister d, VectorSRegister b);
2370
inline void xvabsdp( VectorSRegister d, VectorSRegister b);
2371
inline void xvnegsp( VectorSRegister d, VectorSRegister b);
2372
inline void xvnegdp( VectorSRegister d, VectorSRegister b);
2373
inline void xvsqrtsp( VectorSRegister d, VectorSRegister b);
2374
inline void xvsqrtdp( VectorSRegister d, VectorSRegister b);
2375
inline void xscvdpspn(VectorSRegister d, VectorSRegister b);
2376
inline void xvadddp( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2377
inline void xvsubdp( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2378
inline void xvmulsp( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2379
inline void xvmuldp( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2380
inline void xvmaddasp(VectorSRegister d, VectorSRegister a, VectorSRegister b);
2381
inline void xvmaddadp(VectorSRegister d, VectorSRegister a, VectorSRegister b);
2382
inline void xvmsubasp(VectorSRegister d, VectorSRegister a, VectorSRegister b);
2383
inline void xvmsubadp(VectorSRegister d, VectorSRegister a, VectorSRegister b);
2384
inline void xvnmsubasp(VectorSRegister d, VectorSRegister a, VectorSRegister b);
2385
inline void xvnmsubadp(VectorSRegister d, VectorSRegister a, VectorSRegister b);
2386
inline void xvrdpi( VectorSRegister d, VectorSRegister b);
2387
inline void xvrdpim( VectorSRegister d, VectorSRegister b);
2388
inline void xvrdpip( VectorSRegister d, VectorSRegister b);
2389
2390
// VSX Extended Mnemonics
2391
inline void xxspltd( VectorSRegister d, VectorSRegister a, int x);
2392
inline void xxmrghd( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2393
inline void xxmrgld( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2394
inline void xxswapd( VectorSRegister d, VectorSRegister a);
2395
2396
// Vector-Scalar (VSX) instructions.
2397
inline void mtfprd( FloatRegister d, Register a);
2398
inline void mtfprwa( FloatRegister d, Register a);
2399
inline void mffprd( Register a, FloatRegister d);
2400
2401
// Deliver A Random Number (introduced with POWER9)
2402
inline void darn( Register d, int l = 1 /*L=CRN*/);
2403
2404
// AES (introduced with Power 8)
2405
inline void vcipher( VectorRegister d, VectorRegister a, VectorRegister b);
2406
inline void vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b);
2407
inline void vncipher( VectorRegister d, VectorRegister a, VectorRegister b);
2408
inline void vncipherlast(VectorRegister d, VectorRegister a, VectorRegister b);
2409
inline void vsbox( VectorRegister d, VectorRegister a);
2410
2411
// SHA (introduced with Power 8)
2412
inline void vshasigmad(VectorRegister d, VectorRegister a, bool st, int six);
2413
inline void vshasigmaw(VectorRegister d, VectorRegister a, bool st, int six);
2414
2415
// Vector Binary Polynomial Multiplication (introduced with Power 8)
2416
inline void vpmsumb( VectorRegister d, VectorRegister a, VectorRegister b);
2417
inline void vpmsumd( VectorRegister d, VectorRegister a, VectorRegister b);
2418
inline void vpmsumh( VectorRegister d, VectorRegister a, VectorRegister b);
2419
inline void vpmsumw( VectorRegister d, VectorRegister a, VectorRegister b);
2420
2421
// Vector Permute and Xor (introduced with Power 8)
2422
inline void vpermxor( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2423
2424
// Transactional Memory instructions (introduced with Power 8)
2425
inline void tbegin_(); // R=0
2426
inline void tbeginrot_(); // R=1 Rollback-Only Transaction
2427
inline void tend_(); // A=0
2428
inline void tendall_(); // A=1
2429
inline void tabort_();
2430
inline void tabort_(Register a);
2431
inline void tabortwc_(int t, Register a, Register b);
2432
inline void tabortwci_(int t, Register a, int si);
2433
inline void tabortdc_(int t, Register a, Register b);
2434
inline void tabortdci_(int t, Register a, int si);
2435
inline void tsuspend_(); // tsr with L=0
2436
inline void tresume_(); // tsr with L=1
2437
inline void tcheck(int f);
2438
2439
static bool is_tbegin(int x) {
2440
return TBEGIN_OPCODE == (x & (0x3f << OPCODE_SHIFT | 0x3ff << 1));
2441
}
2442
2443
// The following encoders use r0 as second operand. These instructions
2444
// read r0 as '0'.
2445
inline void lwzx( Register d, Register s2);
2446
inline void lwz( Register d, int si16);
2447
inline void lwax( Register d, Register s2);
2448
inline void lwa( Register d, int si16);
2449
inline void lwbrx(Register d, Register s2);
2450
inline void lhzx( Register d, Register s2);
2451
inline void lhz( Register d, int si16);
2452
inline void lhax( Register d, Register s2);
2453
inline void lha( Register d, int si16);
2454
inline void lhbrx(Register d, Register s2);
2455
inline void lbzx( Register d, Register s2);
2456
inline void lbz( Register d, int si16);
2457
inline void ldx( Register d, Register s2);
2458
inline void ld( Register d, int si16);
2459
inline void ldbrx(Register d, Register s2);
2460
inline void stwx( Register d, Register s2);
2461
inline void stw( Register d, int si16);
2462
inline void stwbrx( Register d, Register s2);
2463
inline void sthx( Register d, Register s2);
2464
inline void sth( Register d, int si16);
2465
inline void sthbrx( Register d, Register s2);
2466
inline void stbx( Register d, Register s2);
2467
inline void stb( Register d, int si16);
2468
inline void stdx( Register d, Register s2);
2469
inline void std( Register d, int si16);
2470
inline void stdbrx( Register d, Register s2);
2471
2472
// PPC 2, section 3.2.1 Instruction Cache Instructions
2473
inline void icbi( Register s2);
2474
// PPC 2, section 3.2.2 Data Cache Instructions
2475
//inlinevoid dcba( Register s2); // Instruction for embedded processor only.
2476
inline void dcbz( Register s2);
2477
inline void dcbst( Register s2);
2478
inline void dcbf( Register s2);
2479
// dcache read hint
2480
inline void dcbt( Register s2);
2481
inline void dcbtct( Register s2, int ct);
2482
inline void dcbtds( Register s2, int ds);
2483
// dcache write hint
2484
inline void dcbtst( Register s2);
2485
inline void dcbtstct(Register s2, int ct);
2486
2487
// Atomics: use ra0mem to disallow R0 as base.
2488
inline void lbarx_unchecked(Register d, Register b, int eh1);
2489
inline void lharx_unchecked(Register d, Register b, int eh1);
2490
inline void lwarx_unchecked(Register d, Register b, int eh1);
2491
inline void ldarx_unchecked(Register d, Register b, int eh1);
2492
inline void lqarx_unchecked(Register d, Register b, int eh1);
2493
inline void lbarx( Register d, Register b, bool hint_exclusive_access);
2494
inline void lharx( Register d, Register b, bool hint_exclusive_access);
2495
inline void lwarx( Register d, Register b, bool hint_exclusive_access);
2496
inline void ldarx( Register d, Register b, bool hint_exclusive_access);
2497
inline void lqarx( Register d, Register b, bool hint_exclusive_access);
2498
inline void stbcx_(Register s, Register b);
2499
inline void sthcx_(Register s, Register b);
2500
inline void stwcx_(Register s, Register b);
2501
inline void stdcx_(Register s, Register b);
2502
inline void stqcx_(Register s, Register b);
2503
inline void lfs( FloatRegister d, int si16);
2504
inline void lfsx( FloatRegister d, Register b);
2505
inline void lfd( FloatRegister d, int si16);
2506
inline void lfdx( FloatRegister d, Register b);
2507
inline void stfs( FloatRegister s, int si16);
2508
inline void stfsx( FloatRegister s, Register b);
2509
inline void stfd( FloatRegister s, int si16);
2510
inline void stfdx( FloatRegister s, Register b);
2511
inline void lvebx( VectorRegister d, Register s2);
2512
inline void lvehx( VectorRegister d, Register s2);
2513
inline void lvewx( VectorRegister d, Register s2);
2514
inline void lvx( VectorRegister d, Register s2);
2515
inline void lvxl( VectorRegister d, Register s2);
2516
inline void stvebx(VectorRegister d, Register s2);
2517
inline void stvehx(VectorRegister d, Register s2);
2518
inline void stvewx(VectorRegister d, Register s2);
2519
inline void stvx( VectorRegister d, Register s2);
2520
inline void stvxl( VectorRegister d, Register s2);
2521
inline void lvsl( VectorRegister d, Register s2);
2522
inline void lvsr( VectorRegister d, Register s2);
2523
2524
// Endianess specific concatenation of 2 loaded vectors.
2525
inline void load_perm(VectorRegister perm, Register addr);
2526
inline void vec_perm(VectorRegister first_dest, VectorRegister second, VectorRegister perm);
2527
inline void vec_perm(VectorRegister dest, VectorRegister first, VectorRegister second, VectorRegister perm);
2528
2529
// RegisterOrConstant versions.
2530
// These emitters choose between the versions using two registers and
2531
// those with register and immediate, depending on the content of roc.
2532
// If the constant is not encodable as immediate, instructions to
2533
// load the constant are emitted beforehand. Store instructions need a
2534
// tmp reg if the constant is not encodable as immediate.
2535
// Size unpredictable.
2536
void ld( Register d, RegisterOrConstant roc, Register s1 = noreg);
2537
void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
2538
void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2539
void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
2540
void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2541
void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2542
void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2543
void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2544
void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2545
void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2546
void add( Register d, RegisterOrConstant roc, Register s1);
2547
void subf(Register d, RegisterOrConstant roc, Register s1);
2548
void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);
2549
// Load pointer d from s1+roc.
2550
void ld_ptr(Register d, RegisterOrConstant roc, Register s1 = noreg) { ld(d, roc, s1); }
2551
2552
// Emit several instructions to load a 64 bit constant. This issues a fixed
2553
// instruction pattern so that the constant can be patched later on.
2554
enum {
2555
load_const_size = 5 * BytesPerInstWord
2556
};
2557
void load_const(Register d, long a, Register tmp = noreg);
2558
inline void load_const(Register d, void* a, Register tmp = noreg);
2559
inline void load_const(Register d, Label& L, Register tmp = noreg);
2560
inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);
2561
inline void load_const32(Register d, int i); // load signed int (patchable)
2562
2563
// Load a 64 bit constant, optimized, not identifyable.
2564
// Tmp can be used to increase ILP. Set return_simm16_rest = true to get a
2565
// 16 bit immediate offset. This is useful if the offset can be encoded in
2566
// a succeeding instruction.
2567
int load_const_optimized(Register d, long a, Register tmp = noreg, bool return_simm16_rest = false);
2568
inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
2569
return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
2570
}
2571
2572
// If return_simm16_rest, the return value needs to get added afterwards.
2573
int add_const_optimized(Register d, Register s, long x, Register tmp = R0, bool return_simm16_rest = false);
2574
inline int add_const_optimized(Register d, Register s, void* a, Register tmp = R0, bool return_simm16_rest = false) {
2575
return add_const_optimized(d, s, (long)(unsigned long)a, tmp, return_simm16_rest);
2576
}
2577
2578
// If return_simm16_rest, the return value needs to get added afterwards.
2579
inline int sub_const_optimized(Register d, Register s, long x, Register tmp = R0, bool return_simm16_rest = false) {
2580
return add_const_optimized(d, s, -x, tmp, return_simm16_rest);
2581
}
2582
inline int sub_const_optimized(Register d, Register s, void* a, Register tmp = R0, bool return_simm16_rest = false) {
2583
return sub_const_optimized(d, s, (long)(unsigned long)a, tmp, return_simm16_rest);
2584
}
2585
2586
// Creation
2587
Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2588
#ifdef CHECK_DELAY
2589
delay_state = no_delay;
2590
#endif
2591
}
2592
2593
// Testing
2594
#ifndef PRODUCT
2595
void test_asm();
2596
#endif
2597
};
2598
2599
2600
#endif // CPU_PPC_ASSEMBLER_PPC_HPP
2601
2602