Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/cpu/ppc/assembler_ppc.inline.hpp
40930 views
1
/*
2
* Copyright (c) 2002, 2021, Oracle and/or its affiliates. All rights reserved.
3
* Copyright (c) 2012, 2020 SAP SE. All rights reserved.
4
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
*
6
* This code is free software; you can redistribute it and/or modify it
7
* under the terms of the GNU General Public License version 2 only, as
8
* published by the Free Software Foundation.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*
24
*/
25
26
#ifndef CPU_PPC_ASSEMBLER_PPC_INLINE_HPP
27
#define CPU_PPC_ASSEMBLER_PPC_INLINE_HPP
28
29
#include "asm/assembler.inline.hpp"
30
#include "asm/codeBuffer.hpp"
31
#include "code/codeCache.hpp"
32
#include "runtime/vm_version.hpp"
33
34
inline void Assembler::emit_int32(int x) {
35
AbstractAssembler::emit_int32(x);
36
}
37
38
inline void Assembler::emit_data(int x) {
39
emit_int32(x);
40
}
41
42
inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
43
relocate(rtype);
44
emit_int32(x);
45
}
46
47
inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
48
relocate(rspec);
49
emit_int32(x);
50
}
51
52
// Emit an address
53
inline address Assembler::emit_addr(const address addr) {
54
address start = pc();
55
emit_address(addr);
56
return start;
57
}
58
59
#if !defined(ABI_ELFv2)
60
// Emit a function descriptor with the specified entry point, TOC, and
61
// ENV. If the entry point is NULL, the descriptor will point just
62
// past the descriptor.
63
inline address Assembler::emit_fd(address entry, address toc, address env) {
64
FunctionDescriptor* fd = (FunctionDescriptor*)pc();
65
66
assert(sizeof(FunctionDescriptor) == 3*sizeof(address), "function descriptor size");
67
68
(void)emit_addr();
69
(void)emit_addr();
70
(void)emit_addr();
71
72
fd->set_entry(entry == NULL ? pc() : entry);
73
fd->set_toc(toc);
74
fd->set_env(env);
75
76
return (address)fd;
77
}
78
#endif
79
80
// Issue an illegal instruction. 0 is guaranteed to be an illegal instruction.
81
inline void Assembler::illtrap() { Assembler::emit_int32(0); }
82
inline bool Assembler::is_illtrap(int x) { return x == 0; }
83
84
// PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
85
inline void Assembler::addi( Register d, Register a, int si16) { assert(a != R0, "r0 not allowed"); addi_r0ok( d, a, si16); }
86
inline void Assembler::addis( Register d, Register a, int si16) { assert(a != R0, "r0 not allowed"); addis_r0ok(d, a, si16); }
87
inline void Assembler::addi_r0ok(Register d,Register a,int si16) { emit_int32(ADDI_OPCODE | rt(d) | ra(a) | simm(si16, 16)); }
88
inline void Assembler::addis_r0ok(Register d,Register a,int si16) { emit_int32(ADDIS_OPCODE | rt(d) | ra(a) | simm(si16, 16)); }
89
inline void Assembler::addic_( Register d, Register a, int si16) { emit_int32(ADDIC__OPCODE | rt(d) | ra(a) | simm(si16, 16)); }
90
inline void Assembler::subfic( Register d, Register a, int si16) { emit_int32(SUBFIC_OPCODE | rt(d) | ra(a) | simm(si16, 16)); }
91
inline void Assembler::add( Register d, Register a, Register b) { emit_int32(ADD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); }
92
inline void Assembler::add_( Register d, Register a, Register b) { emit_int32(ADD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); }
93
inline void Assembler::subf( Register d, Register a, Register b) { emit_int32(SUBF_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); }
94
inline void Assembler::sub( Register d, Register a, Register b) { subf(d, b, a); }
95
inline void Assembler::subf_( Register d, Register a, Register b) { emit_int32(SUBF_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); }
96
inline void Assembler::addc( Register d, Register a, Register b) { emit_int32(ADDC_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); }
97
inline void Assembler::addc_( Register d, Register a, Register b) { emit_int32(ADDC_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); }
98
inline void Assembler::subfc( Register d, Register a, Register b) { emit_int32(SUBFC_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); }
99
inline void Assembler::subfc_( Register d, Register a, Register b) { emit_int32(SUBFC_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); }
100
inline void Assembler::adde( Register d, Register a, Register b) { emit_int32(ADDE_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); }
101
inline void Assembler::adde_( Register d, Register a, Register b) { emit_int32(ADDE_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); }
102
inline void Assembler::subfe( Register d, Register a, Register b) { emit_int32(SUBFE_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); }
103
inline void Assembler::subfe_( Register d, Register a, Register b) { emit_int32(SUBFE_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); }
104
inline void Assembler::addme( Register d, Register a) { emit_int32(ADDME_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); }
105
inline void Assembler::addme_( Register d, Register a) { emit_int32(ADDME_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); }
106
inline void Assembler::subfme( Register d, Register a) { emit_int32(SUBFME_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); }
107
inline void Assembler::subfme_(Register d, Register a) { emit_int32(SUBFME_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); }
108
inline void Assembler::addze( Register d, Register a) { emit_int32(ADDZE_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); }
109
inline void Assembler::addze_( Register d, Register a) { emit_int32(ADDZE_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); }
110
inline void Assembler::subfze( Register d, Register a) { emit_int32(SUBFZE_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); }
111
inline void Assembler::subfze_(Register d, Register a) { emit_int32(SUBFZE_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); }
112
inline void Assembler::neg( Register d, Register a) { emit_int32(NEG_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); }
113
inline void Assembler::neg_( Register d, Register a) { emit_int32(NEG_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); }
114
inline void Assembler::mulli( Register d, Register a, int si16) { emit_int32(MULLI_OPCODE | rt(d) | ra(a) | simm(si16, 16)); }
115
inline void Assembler::mulld( Register d, Register a, Register b) { emit_int32(MULLD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); }
116
inline void Assembler::mulld_( Register d, Register a, Register b) { emit_int32(MULLD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); }
117
inline void Assembler::mullw( Register d, Register a, Register b) { emit_int32(MULLW_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); }
118
inline void Assembler::mullw_( Register d, Register a, Register b) { emit_int32(MULLW_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); }
119
inline void Assembler::mulhw( Register d, Register a, Register b) { emit_int32(MULHW_OPCODE | rt(d) | ra(a) | rb(b) | rc(0)); }
120
inline void Assembler::mulhw_( Register d, Register a, Register b) { emit_int32(MULHW_OPCODE | rt(d) | ra(a) | rb(b) | rc(1)); }
121
inline void Assembler::mulhwu( Register d, Register a, Register b) { emit_int32(MULHWU_OPCODE | rt(d) | ra(a) | rb(b) | rc(0)); }
122
inline void Assembler::mulhwu_(Register d, Register a, Register b) { emit_int32(MULHWU_OPCODE | rt(d) | ra(a) | rb(b) | rc(1)); }
123
inline void Assembler::mulhd( Register d, Register a, Register b) { emit_int32(MULHD_OPCODE | rt(d) | ra(a) | rb(b) | rc(0)); }
124
inline void Assembler::mulhd_( Register d, Register a, Register b) { emit_int32(MULHD_OPCODE | rt(d) | ra(a) | rb(b) | rc(1)); }
125
inline void Assembler::mulhdu( Register d, Register a, Register b) { emit_int32(MULHDU_OPCODE | rt(d) | ra(a) | rb(b) | rc(0)); }
126
inline void Assembler::mulhdu_(Register d, Register a, Register b) { emit_int32(MULHDU_OPCODE | rt(d) | ra(a) | rb(b) | rc(1)); }
127
inline void Assembler::divd( Register d, Register a, Register b) { emit_int32(DIVD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); }
128
inline void Assembler::divd_( Register d, Register a, Register b) { emit_int32(DIVD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); }
129
inline void Assembler::divw( Register d, Register a, Register b) { emit_int32(DIVW_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); }
130
inline void Assembler::divw_( Register d, Register a, Register b) { emit_int32(DIVW_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); }
131
inline void Assembler::divwu( Register d, Register a, Register b) { emit_int32(DIVWU_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); }
132
inline void Assembler::divwu_( Register d, Register a, Register b) { emit_int32(DIVWU_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); }
133
134
// Prefixed instructions, introduced by POWER10
135
inline void Assembler::paddi(Register d, Register a, long si34, bool r = false) {
136
assert(a != R0 || r, "r0 not allowed, unless R is set (CIA relative)");
137
paddi_r0ok( d, a, si34, r);
138
}
139
140
inline void Assembler::paddi_r0ok(Register d, Register a, long si34, bool r = false) {
141
emit_int32(PADDI_PREFIX_OPCODE | r_eo(r) | d0_eo(si34));
142
emit_int32(PADDI_SUFFIX_OPCODE | rt(d) | ra(a) | d1_eo(si34));
143
}
144
145
// Fixed-Point Arithmetic Instructions with Overflow detection
146
inline void Assembler::addo( Register d, Register a, Register b) { emit_int32(ADD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); }
147
inline void Assembler::addo_( Register d, Register a, Register b) { emit_int32(ADD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); }
148
inline void Assembler::subfo( Register d, Register a, Register b) { emit_int32(SUBF_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); }
149
inline void Assembler::subfo_( Register d, Register a, Register b) { emit_int32(SUBF_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); }
150
inline void Assembler::addco( Register d, Register a, Register b) { emit_int32(ADDC_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); }
151
inline void Assembler::addco_( Register d, Register a, Register b) { emit_int32(ADDC_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); }
152
inline void Assembler::subfco( Register d, Register a, Register b) { emit_int32(SUBFC_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); }
153
inline void Assembler::subfco_( Register d, Register a, Register b) { emit_int32(SUBFC_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); }
154
inline void Assembler::addeo( Register d, Register a, Register b) { emit_int32(ADDE_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); }
155
inline void Assembler::addeo_( Register d, Register a, Register b) { emit_int32(ADDE_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); }
156
inline void Assembler::subfeo( Register d, Register a, Register b) { emit_int32(SUBFE_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); }
157
inline void Assembler::subfeo_( Register d, Register a, Register b) { emit_int32(SUBFE_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); }
158
inline void Assembler::addmeo( Register d, Register a) { emit_int32(ADDME_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); }
159
inline void Assembler::addmeo_( Register d, Register a) { emit_int32(ADDME_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); }
160
inline void Assembler::subfmeo( Register d, Register a) { emit_int32(SUBFME_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); }
161
inline void Assembler::subfmeo_(Register d, Register a) { emit_int32(SUBFME_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); }
162
inline void Assembler::addzeo( Register d, Register a) { emit_int32(ADDZE_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); }
163
inline void Assembler::addzeo_( Register d, Register a) { emit_int32(ADDZE_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); }
164
inline void Assembler::subfzeo( Register d, Register a) { emit_int32(SUBFZE_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); }
165
inline void Assembler::subfzeo_(Register d, Register a) { emit_int32(SUBFZE_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); }
166
inline void Assembler::nego( Register d, Register a) { emit_int32(NEG_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); }
167
inline void Assembler::nego_( Register d, Register a) { emit_int32(NEG_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); }
168
inline void Assembler::mulldo( Register d, Register a, Register b) { emit_int32(MULLD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); }
169
inline void Assembler::mulldo_( Register d, Register a, Register b) { emit_int32(MULLD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); }
170
inline void Assembler::mullwo( Register d, Register a, Register b) { emit_int32(MULLW_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); }
171
inline void Assembler::mullwo_( Register d, Register a, Register b) { emit_int32(MULLW_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); }
172
inline void Assembler::divdo( Register d, Register a, Register b) { emit_int32(DIVD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); }
173
inline void Assembler::divdo_( Register d, Register a, Register b) { emit_int32(DIVD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); }
174
inline void Assembler::divwo( Register d, Register a, Register b) { emit_int32(DIVW_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); }
175
inline void Assembler::divwo_( Register d, Register a, Register b) { emit_int32(DIVW_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); }
176
177
// extended mnemonics
178
inline void Assembler::li( Register d, int si16) { Assembler::addi_r0ok( d, R0, si16); }
179
inline void Assembler::lis( Register d, int si16) { Assembler::addis_r0ok(d, R0, si16); }
180
inline void Assembler::addir(Register d, int si16, Register a) { Assembler::addi(d, a, si16); }
181
inline void Assembler::subi( Register d, Register a, int si16) { Assembler::addi(d, a, -si16); }
182
183
// Prefixed instructions, introduced by POWER10
184
inline void Assembler::pli(Register d, long si34) { Assembler::paddi_r0ok( d, R0, si34, false); }
185
186
// PPC 1, section 3.3.9, Fixed-Point Compare Instructions
187
inline void Assembler::cmpi( ConditionRegister f, int l, Register a, int si16) { emit_int32( CMPI_OPCODE | bf(f) | l10(l) | ra(a) | simm(si16,16)); }
188
inline void Assembler::cmp( ConditionRegister f, int l, Register a, Register b) { emit_int32( CMP_OPCODE | bf(f) | l10(l) | ra(a) | rb(b)); }
189
inline void Assembler::cmpli( ConditionRegister f, int l, Register a, int ui16) { emit_int32( CMPLI_OPCODE | bf(f) | l10(l) | ra(a) | uimm(ui16,16)); }
190
inline void Assembler::cmpl( ConditionRegister f, int l, Register a, Register b) { emit_int32( CMPL_OPCODE | bf(f) | l10(l) | ra(a) | rb(b)); }
191
inline void Assembler::cmprb( ConditionRegister f, int l, Register a, Register b) { emit_int32( CMPRB_OPCODE | bf(f) | l10(l) | ra(a) | rb(b)); }
192
inline void Assembler::cmpeqb(ConditionRegister f, Register a, Register b) { emit_int32( CMPEQB_OPCODE| bf(f) | ra(a) | rb(b)); }
193
194
// extended mnemonics of Compare Instructions
195
inline void Assembler::cmpwi( ConditionRegister crx, Register a, int si16) { Assembler::cmpi( crx, 0, a, si16); }
196
inline void Assembler::cmpdi( ConditionRegister crx, Register a, int si16) { Assembler::cmpi( crx, 1, a, si16); }
197
inline void Assembler::cmpw( ConditionRegister crx, Register a, Register b) { Assembler::cmp( crx, 0, a, b); }
198
inline void Assembler::cmpd( ConditionRegister crx, Register a, Register b) { Assembler::cmp( crx, 1, a, b); }
199
inline void Assembler::cmplwi(ConditionRegister crx, Register a, int ui16) { Assembler::cmpli(crx, 0, a, ui16); }
200
inline void Assembler::cmpldi(ConditionRegister crx, Register a, int ui16) { Assembler::cmpli(crx, 1, a, ui16); }
201
inline void Assembler::cmplw( ConditionRegister crx, Register a, Register b) { Assembler::cmpl( crx, 0, a, b); }
202
inline void Assembler::cmpld( ConditionRegister crx, Register a, Register b) { Assembler::cmpl( crx, 1, a, b); }
203
204
inline void Assembler::isel(Register d, Register a, Register b, int c) { guarantee(VM_Version::has_isel(), "opcode not supported on this hardware");
205
emit_int32(ISEL_OPCODE | rt(d) | ra(a) | rb(b) | bc(c)); }
206
207
// PPC 1, section 3.3.11, Fixed-Point Logical Instructions
208
inline void Assembler::andi_( Register a, Register s, int ui16) { emit_int32(ANDI_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); }
209
inline void Assembler::andis_( Register a, Register s, int ui16) { emit_int32(ANDIS_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); }
210
inline void Assembler::ori( Register a, Register s, int ui16) { emit_int32(ORI_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); }
211
inline void Assembler::oris( Register a, Register s, int ui16) { emit_int32(ORIS_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); }
212
inline void Assembler::xori( Register a, Register s, int ui16) { emit_int32(XORI_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); }
213
inline void Assembler::xoris( Register a, Register s, int ui16) { emit_int32(XORIS_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); }
214
inline void Assembler::andr( Register a, Register s, Register b) { emit_int32(AND_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
215
inline void Assembler::and_( Register a, Register s, Register b) { emit_int32(AND_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); }
216
217
inline void Assembler::or_unchecked(Register a, Register s, Register b){ emit_int32(OR_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
218
inline void Assembler::orr( Register a, Register s, Register b) { if (a==s && s==b) { Assembler::nop(); } else { Assembler::or_unchecked(a,s,b); } }
219
inline void Assembler::or_( Register a, Register s, Register b) { emit_int32(OR_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); }
220
inline void Assembler::xorr( Register a, Register s, Register b) { emit_int32(XOR_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
221
inline void Assembler::xor_( Register a, Register s, Register b) { emit_int32(XOR_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); }
222
inline void Assembler::nand( Register a, Register s, Register b) { emit_int32(NAND_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
223
inline void Assembler::nand_( Register a, Register s, Register b) { emit_int32(NAND_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); }
224
inline void Assembler::nor( Register a, Register s, Register b) { emit_int32(NOR_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
225
inline void Assembler::nor_( Register a, Register s, Register b) { emit_int32(NOR_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); }
226
inline void Assembler::andc( Register a, Register s, Register b) { emit_int32(ANDC_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
227
inline void Assembler::andc_( Register a, Register s, Register b) { emit_int32(ANDC_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); }
228
inline void Assembler::orc( Register a, Register s, Register b) { emit_int32(ORC_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
229
inline void Assembler::orc_( Register a, Register s, Register b) { emit_int32(ORC_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); }
230
inline void Assembler::extsb( Register a, Register s) { emit_int32(EXTSB_OPCODE | rta(a) | rs(s) | rc(0)); }
231
inline void Assembler::extsb_( Register a, Register s) { emit_int32(EXTSB_OPCODE | rta(a) | rs(s) | rc(1)); }
232
inline void Assembler::extsh( Register a, Register s) { emit_int32(EXTSH_OPCODE | rta(a) | rs(s) | rc(0)); }
233
inline void Assembler::extsh_( Register a, Register s) { emit_int32(EXTSH_OPCODE | rta(a) | rs(s) | rc(1)); }
234
inline void Assembler::extsw( Register a, Register s) { emit_int32(EXTSW_OPCODE | rta(a) | rs(s) | rc(0)); }
235
inline void Assembler::extsw_( Register a, Register s) { emit_int32(EXTSW_OPCODE | rta(a) | rs(s) | rc(1)); }
236
237
// extended mnemonics
238
inline void Assembler::nop() { Assembler::ori(R0, R0, 0); }
239
// NOP for FP and BR units (different versions to allow them to be in one group)
240
inline void Assembler::fpnop0() { Assembler::fmr(F30, F30); }
241
inline void Assembler::fpnop1() { Assembler::fmr(F31, F31); }
242
inline void Assembler::brnop0() { Assembler::mcrf(CCR2, CCR2); }
243
inline void Assembler::brnop1() { Assembler::mcrf(CCR3, CCR3); }
244
inline void Assembler::brnop2() { Assembler::mcrf(CCR4, CCR4); }
245
246
inline void Assembler::mr( Register d, Register s) { Assembler::orr(d, s, s); }
247
inline void Assembler::ori_opt( Register d, int ui16) { if (ui16!=0) Assembler::ori( d, d, ui16); }
248
inline void Assembler::oris_opt(Register d, int ui16) { if (ui16!=0) Assembler::oris(d, d, ui16); }
249
250
inline void Assembler::endgroup() { Assembler::ori(R1, R1, 0); }
251
252
// count instructions
253
inline void Assembler::cntlzw( Register a, Register s) { emit_int32(CNTLZW_OPCODE | rta(a) | rs(s) | rc(0)); }
254
inline void Assembler::cntlzw_( Register a, Register s) { emit_int32(CNTLZW_OPCODE | rta(a) | rs(s) | rc(1)); }
255
inline void Assembler::cntlzd( Register a, Register s) { emit_int32(CNTLZD_OPCODE | rta(a) | rs(s) | rc(0)); }
256
inline void Assembler::cntlzd_( Register a, Register s) { emit_int32(CNTLZD_OPCODE | rta(a) | rs(s) | rc(1)); }
257
inline void Assembler::cnttzw( Register a, Register s) { emit_int32(CNTTZW_OPCODE | rta(a) | rs(s) | rc(0)); }
258
inline void Assembler::cnttzw_( Register a, Register s) { emit_int32(CNTTZW_OPCODE | rta(a) | rs(s) | rc(1)); }
259
inline void Assembler::cnttzd( Register a, Register s) { emit_int32(CNTTZD_OPCODE | rta(a) | rs(s) | rc(0)); }
260
inline void Assembler::cnttzd_( Register a, Register s) { emit_int32(CNTTZD_OPCODE | rta(a) | rs(s) | rc(1)); }
261
262
// PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
263
inline void Assembler::sld( Register a, Register s, Register b) { emit_int32(SLD_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
264
inline void Assembler::sld_( Register a, Register s, Register b) { emit_int32(SLD_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); }
265
inline void Assembler::slw( Register a, Register s, Register b) { emit_int32(SLW_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
266
inline void Assembler::slw_( Register a, Register s, Register b) { emit_int32(SLW_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); }
267
inline void Assembler::srd( Register a, Register s, Register b) { emit_int32(SRD_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
268
inline void Assembler::srd_( Register a, Register s, Register b) { emit_int32(SRD_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); }
269
inline void Assembler::srw( Register a, Register s, Register b) { emit_int32(SRW_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
270
inline void Assembler::srw_( Register a, Register s, Register b) { emit_int32(SRW_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); }
271
inline void Assembler::srad( Register a, Register s, Register b) { emit_int32(SRAD_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
272
inline void Assembler::srad_( Register a, Register s, Register b) { emit_int32(SRAD_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); }
273
inline void Assembler::sraw( Register a, Register s, Register b) { emit_int32(SRAW_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
274
inline void Assembler::sraw_( Register a, Register s, Register b) { emit_int32(SRAW_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); }
275
inline void Assembler::sradi( Register a, Register s, int sh6) { emit_int32(SRADI_OPCODE | rta(a) | rs(s) | sh162030(sh6) | rc(0)); }
276
inline void Assembler::sradi_( Register a, Register s, int sh6) { emit_int32(SRADI_OPCODE | rta(a) | rs(s) | sh162030(sh6) | rc(1)); }
277
inline void Assembler::srawi( Register a, Register s, int sh5) { emit_int32(SRAWI_OPCODE | rta(a) | rs(s) | sh1620(sh5) | rc(0)); }
278
inline void Assembler::srawi_( Register a, Register s, int sh5) { emit_int32(SRAWI_OPCODE | rta(a) | rs(s) | sh1620(sh5) | rc(1)); }
279
280
// extended mnemonics for Shift Instructions
281
inline void Assembler::sldi( Register a, Register s, int sh6) { Assembler::rldicr(a, s, sh6, 63-sh6); }
282
inline void Assembler::sldi_( Register a, Register s, int sh6) { Assembler::rldicr_(a, s, sh6, 63-sh6); }
283
inline void Assembler::slwi( Register a, Register s, int sh5) { Assembler::rlwinm(a, s, sh5, 0, 31-sh5); }
284
inline void Assembler::slwi_( Register a, Register s, int sh5) { Assembler::rlwinm_(a, s, sh5, 0, 31-sh5); }
285
inline void Assembler::srdi( Register a, Register s, int sh6) { Assembler::rldicl(a, s, 64-sh6, sh6); }
286
inline void Assembler::srdi_( Register a, Register s, int sh6) { Assembler::rldicl_(a, s, 64-sh6, sh6); }
287
inline void Assembler::srwi( Register a, Register s, int sh5) { Assembler::rlwinm(a, s, 32-sh5, sh5, 31); }
288
inline void Assembler::srwi_( Register a, Register s, int sh5) { Assembler::rlwinm_(a, s, 32-sh5, sh5, 31); }
289
290
inline void Assembler::clrrdi( Register a, Register s, int ui6) { Assembler::rldicr(a, s, 0, 63-ui6); }
291
inline void Assembler::clrrdi_( Register a, Register s, int ui6) { Assembler::rldicr_(a, s, 0, 63-ui6); }
292
inline void Assembler::clrldi( Register a, Register s, int ui6) { Assembler::rldicl(a, s, 0, ui6); }
293
inline void Assembler::clrldi_( Register a, Register s, int ui6) { Assembler::rldicl_(a, s, 0, ui6); }
294
inline void Assembler::clrlsldi( Register a, Register s, int clrl6, int shl6) { Assembler::rldic( a, s, shl6, clrl6-shl6); }
295
inline void Assembler::clrlsldi_(Register a, Register s, int clrl6, int shl6) { Assembler::rldic_(a, s, shl6, clrl6-shl6); }
296
inline void Assembler::extrdi( Register a, Register s, int n, int b){ Assembler::rldicl(a, s, b+n, 64-n); }
297
// testbit with condition register.
298
inline void Assembler::testbitdi(ConditionRegister cr, Register a, Register s, int ui6) {
299
if (cr == CCR0) {
300
Assembler::rldicr_(a, s, 63-ui6, 0);
301
} else {
302
Assembler::rldicr(a, s, 63-ui6, 0);
303
Assembler::cmpdi(cr, a, 0);
304
}
305
}
306
307
// Byte reverse instructions (introduced with Power10)
308
inline void Assembler::brh(Register a, Register s) { emit_int32(BRH_OPCODE | rta(a) | rs(s)); }
309
inline void Assembler::brw(Register a, Register s) { emit_int32(BRW_OPCODE | rta(a) | rs(s)); }
310
inline void Assembler::brd(Register a, Register s) { emit_int32(BRD_OPCODE | rta(a) | rs(s)); }
311
312
// rotate instructions
313
inline void Assembler::rotldi( Register a, Register s, int n) { Assembler::rldicl(a, s, n, 0); }
314
inline void Assembler::rotrdi( Register a, Register s, int n) { Assembler::rldicl(a, s, 64-n, 0); }
315
inline void Assembler::rotlwi( Register a, Register s, int n) { Assembler::rlwinm(a, s, n, 0, 31); }
316
inline void Assembler::rotrwi( Register a, Register s, int n) { Assembler::rlwinm(a, s, 32-n, 0, 31); }
317
318
inline void Assembler::rldic( Register a, Register s, int sh6, int mb6) { emit_int32(RLDIC_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(0)); }
319
inline void Assembler::rldic_( Register a, Register s, int sh6, int mb6) { emit_int32(RLDIC_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(1)); }
320
inline void Assembler::rldicr( Register a, Register s, int sh6, int mb6) { emit_int32(RLDICR_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(0)); }
321
inline void Assembler::rldicr_( Register a, Register s, int sh6, int mb6) { emit_int32(RLDICR_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(1)); }
322
inline void Assembler::rldicl( Register a, Register s, int sh6, int me6) { emit_int32(RLDICL_OPCODE | rta(a) | rs(s) | sh162030(sh6) | me2126(me6) | rc(0)); }
323
inline void Assembler::rldicl_( Register a, Register s, int sh6, int me6) { emit_int32(RLDICL_OPCODE | rta(a) | rs(s) | sh162030(sh6) | me2126(me6) | rc(1)); }
324
inline void Assembler::rlwinm( Register a, Register s, int sh5, int mb5, int me5){ emit_int32(RLWINM_OPCODE | rta(a) | rs(s) | sh1620(sh5) | mb2125(mb5) | me2630(me5) | rc(0)); }
325
inline void Assembler::rlwinm_( Register a, Register s, int sh5, int mb5, int me5){ emit_int32(RLWINM_OPCODE | rta(a) | rs(s) | sh1620(sh5) | mb2125(mb5) | me2630(me5) | rc(1)); }
326
inline void Assembler::rldimi( Register a, Register s, int sh6, int mb6) { emit_int32(RLDIMI_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(0)); }
327
inline void Assembler::rlwimi( Register a, Register s, int sh5, int mb5, int me5){ emit_int32(RLWIMI_OPCODE | rta(a) | rs(s) | sh1620(sh5) | mb2125(mb5) | me2630(me5) | rc(0)); }
328
inline void Assembler::rldimi_( Register a, Register s, int sh6, int mb6) { emit_int32(RLDIMI_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(1)); }
329
inline void Assembler::insrdi( Register a, Register s, int n, int b) { Assembler::rldimi(a, s, 64-(b+n), b); }
330
inline void Assembler::insrwi( Register a, Register s, int n, int b) { Assembler::rlwimi(a, s, 32-(b+n), b, b+n-1); }
331
332
// PPC 1, section 3.3.2 Fixed-Point Load Instructions
333
inline void Assembler::lwzx( Register d, Register s1, Register s2) { emit_int32(LWZX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));}
334
inline void Assembler::lwz( Register d, int si16, Register s1) { emit_int32(LWZ_OPCODE | rt(d) | d1(si16) | ra0mem(s1));}
335
inline void Assembler::lwzu( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LWZU_OPCODE | rt(d) | d1(si16) | rta0mem(s1));}
336
337
inline void Assembler::lwax( Register d, Register s1, Register s2) { emit_int32(LWAX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));}
338
inline void Assembler::lwa( Register d, int si16, Register s1) { emit_int32(LWA_OPCODE | rt(d) | ds(si16) | ra0mem(s1));}
339
340
inline void Assembler::lwbrx( Register d, Register s1, Register s2) { emit_int32(LWBRX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));}
341
342
inline void Assembler::lhzx( Register d, Register s1, Register s2) { emit_int32(LHZX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));}
343
inline void Assembler::lhz( Register d, int si16, Register s1) { emit_int32(LHZ_OPCODE | rt(d) | d1(si16) | ra0mem(s1));}
344
inline void Assembler::lhzu( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LHZU_OPCODE | rt(d) | d1(si16) | rta0mem(s1));}
345
346
inline void Assembler::lhbrx( Register d, Register s1, Register s2) { emit_int32(LHBRX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));}
347
348
inline void Assembler::lhax( Register d, Register s1, Register s2) { emit_int32(LHAX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));}
349
inline void Assembler::lha( Register d, int si16, Register s1) { emit_int32(LHA_OPCODE | rt(d) | d1(si16) | ra0mem(s1));}
350
inline void Assembler::lhau( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LHAU_OPCODE | rt(d) | d1(si16) | rta0mem(s1));}
351
352
inline void Assembler::lbzx( Register d, Register s1, Register s2) { emit_int32(LBZX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));}
353
inline void Assembler::lbz( Register d, int si16, Register s1) { emit_int32(LBZ_OPCODE | rt(d) | d1(si16) | ra0mem(s1));}
354
inline void Assembler::lbzu( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LBZU_OPCODE | rt(d) | d1(si16) | rta0mem(s1));}
355
356
inline void Assembler::ld( Register d, int si16, Register s1) { emit_int32(LD_OPCODE | rt(d) | ds(si16) | ra0mem(s1));}
357
inline void Assembler::ldx( Register d, Register s1, Register s2) { emit_int32(LDX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));}
358
inline void Assembler::ldu( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LDU_OPCODE | rt(d) | ds(si16) | rta0mem(s1));}
359
inline void Assembler::ldbrx( Register d, Register s1, Register s2) { emit_int32(LDBRX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));}
360
361
inline void Assembler::ld_ptr(Register d, int b, Register s1) { ld(d, b, s1); }
362
inline void Assembler::ld_ptr(Register d, ByteSize b, Register s1) { ld(d, in_bytes(b), s1); }
363
364
// PPC 1, section 3.3.3 Fixed-Point Store Instructions
365
inline void Assembler::stwx( Register d, Register s1, Register s2) { emit_int32(STWX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));}
366
inline void Assembler::stw( Register d, int si16, Register s1) { emit_int32(STW_OPCODE | rs(d) | d1(si16) | ra0mem(s1));}
367
inline void Assembler::stwu( Register d, int si16, Register s1) { emit_int32(STWU_OPCODE | rs(d) | d1(si16) | rta0mem(s1));}
368
inline void Assembler::stwbrx( Register d, Register s1, Register s2) { emit_int32(STWBRX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));}
369
370
inline void Assembler::sthx( Register d, Register s1, Register s2) { emit_int32(STHX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));}
371
inline void Assembler::sth( Register d, int si16, Register s1) { emit_int32(STH_OPCODE | rs(d) | d1(si16) | ra0mem(s1));}
372
inline void Assembler::sthu( Register d, int si16, Register s1) { emit_int32(STHU_OPCODE | rs(d) | d1(si16) | rta0mem(s1));}
373
inline void Assembler::sthbrx( Register d, Register s1, Register s2) { emit_int32(STHBRX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));}
374
375
inline void Assembler::stbx( Register d, Register s1, Register s2) { emit_int32(STBX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));}
376
inline void Assembler::stb( Register d, int si16, Register s1) { emit_int32(STB_OPCODE | rs(d) | d1(si16) | ra0mem(s1));}
377
inline void Assembler::stbu( Register d, int si16, Register s1) { emit_int32(STBU_OPCODE | rs(d) | d1(si16) | rta0mem(s1));}
378
379
inline void Assembler::std( Register d, int si16, Register s1) { emit_int32(STD_OPCODE | rs(d) | ds(si16) | ra0mem(s1));}
380
inline void Assembler::stdx( Register d, Register s1, Register s2) { emit_int32(STDX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));}
381
inline void Assembler::stdu( Register d, int si16, Register s1) { emit_int32(STDU_OPCODE | rs(d) | ds(si16) | rta0mem(s1));}
382
inline void Assembler::stdux(Register s, Register a, Register b) { emit_int32(STDUX_OPCODE| rs(s) | rta0mem(a) | rb(b));}
383
inline void Assembler::stdbrx( Register d, Register s1, Register s2) { emit_int32(STDBRX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));}
384
385
inline void Assembler::st_ptr(Register d, int b, Register s1) { std(d, b, s1); }
386
inline void Assembler::st_ptr(Register d, ByteSize b, Register s1) { std(d, in_bytes(b), s1); }
387
388
// PPC 1, section 3.3.13 Move To/From System Register Instructions
389
inline void Assembler::mtlr( Register s1) { emit_int32(MTLR_OPCODE | rs(s1)); }
390
inline void Assembler::mflr( Register d ) { emit_int32(MFLR_OPCODE | rt(d)); }
391
inline void Assembler::mtctr(Register s1) { emit_int32(MTCTR_OPCODE | rs(s1)); }
392
inline void Assembler::mfctr(Register d ) { emit_int32(MFCTR_OPCODE | rt(d)); }
393
inline void Assembler::mtcrf(int afxm, Register s){ emit_int32(MTCRF_OPCODE | fxm(afxm) | rs(s)); }
394
inline void Assembler::mfcr( Register d ) { emit_int32(MFCR_OPCODE | rt(d)); }
395
inline void Assembler::mcrf( ConditionRegister crd, ConditionRegister cra)
396
{ emit_int32(MCRF_OPCODE | bf(crd) | bfa(cra)); }
397
inline void Assembler::mtcr( Register s) { Assembler::mtcrf(0xff, s); }
398
// Introduced in Power 9:
399
inline void Assembler::mcrxrx(ConditionRegister cra)
400
{ emit_int32(MCRXRX_OPCODE | bf(cra)); }
401
inline void Assembler::setb(Register d, ConditionRegister cra)
402
{ emit_int32(SETB_OPCODE | rt(d) | bfa(cra)); }
403
404
inline void Assembler::setbc(Register d, int biint)
405
{ emit_int32(SETBC_OPCODE | rt(d) | bi(biint)); }
406
inline void Assembler::setbc(Register d, ConditionRegister cr, Condition cc) {
407
setbc(d, bi0(cr, cc));
408
}
409
inline void Assembler::setnbc(Register d, int biint)
410
{ emit_int32(SETNBC_OPCODE | rt(d) | bi(biint)); }
411
inline void Assembler::setnbc(Register d, ConditionRegister cr, Condition cc) {
412
setnbc(d, bi0(cr, cc));
413
}
414
415
// Special purpose registers
416
// Exception Register
417
inline void Assembler::mtxer(Register s1) { emit_int32(MTXER_OPCODE | rs(s1)); }
418
inline void Assembler::mfxer(Register d ) { emit_int32(MFXER_OPCODE | rt(d)); }
419
// Vector Register Save Register
420
inline void Assembler::mtvrsave(Register s1) { emit_int32(MTVRSAVE_OPCODE | rs(s1)); }
421
inline void Assembler::mfvrsave(Register d ) { emit_int32(MFVRSAVE_OPCODE | rt(d)); }
422
// Timebase
423
inline void Assembler::mftb(Register d ) { emit_int32(MFTB_OPCODE | rt(d)); }
424
// Introduced with Power 8:
425
// Data Stream Control Register
426
inline void Assembler::mtdscr(Register s1) { emit_int32(MTDSCR_OPCODE | rs(s1)); }
427
inline void Assembler::mfdscr(Register d ) { emit_int32(MFDSCR_OPCODE | rt(d)); }
428
// Transactional Memory Registers
429
inline void Assembler::mftfhar(Register d ) { emit_int32(MFTFHAR_OPCODE | rt(d)); }
430
inline void Assembler::mftfiar(Register d ) { emit_int32(MFTFIAR_OPCODE | rt(d)); }
431
inline void Assembler::mftexasr(Register d ) { emit_int32(MFTEXASR_OPCODE | rt(d)); }
432
inline void Assembler::mftexasru(Register d ) { emit_int32(MFTEXASRU_OPCODE | rt(d)); }
433
434
// SAP JVM 2006-02-13 PPC branch instruction.
435
// PPC 1, section 2.4.1 Branch Instructions
436
inline void Assembler::b( address a, relocInfo::relocType rt) { emit_data(BXX_OPCODE| li(disp( intptr_t(a), intptr_t(pc()))) |aa(0)|lk(0), rt); }
437
inline void Assembler::b( Label& L) { b( target(L)); }
438
inline void Assembler::bl(address a, relocInfo::relocType rt) { emit_data(BXX_OPCODE| li(disp( intptr_t(a), intptr_t(pc()))) |aa(0)|lk(1), rt); }
439
inline void Assembler::bl(Label& L) { bl(target(L)); }
440
inline void Assembler::bc( int boint, int biint, address a, relocInfo::relocType rt) { emit_data(BCXX_OPCODE| bo(boint) | bi(biint) | bd(disp( intptr_t(a), intptr_t(pc()))) | aa(0) | lk(0), rt); }
441
inline void Assembler::bc( int boint, int biint, Label& L) { bc(boint, biint, target(L)); }
442
inline void Assembler::bcl(int boint, int biint, address a, relocInfo::relocType rt) { emit_data(BCXX_OPCODE| bo(boint) | bi(biint) | bd(disp( intptr_t(a), intptr_t(pc()))) | aa(0)|lk(1)); }
443
inline void Assembler::bcl(int boint, int biint, Label& L) { bcl(boint, biint, target(L)); }
444
445
inline void Assembler::bclr( int boint, int biint, int bhint, relocInfo::relocType rt) { emit_data(BCLR_OPCODE | bo(boint) | bi(biint) | bh(bhint) | aa(0) | lk(0), rt); }
446
inline void Assembler::bclrl( int boint, int biint, int bhint, relocInfo::relocType rt) { emit_data(BCLR_OPCODE | bo(boint) | bi(biint) | bh(bhint) | aa(0) | lk(1), rt); }
447
inline void Assembler::bcctr( int boint, int biint, int bhint, relocInfo::relocType rt) { emit_data(BCCTR_OPCODE| bo(boint) | bi(biint) | bh(bhint) | aa(0) | lk(0), rt); }
448
inline void Assembler::bcctrl(int boint, int biint, int bhint, relocInfo::relocType rt) { emit_data(BCCTR_OPCODE| bo(boint) | bi(biint) | bh(bhint) | aa(0) | lk(1), rt); }
449
450
// helper function for b
451
inline bool Assembler::is_within_range_of_b(address a, address pc) {
452
// Guard against illegal branch targets, e.g. -1 (see CompiledStaticCall and ad-file).
453
if ((((uint64_t)a) & 0x3) != 0) return false;
454
455
const int range = 1 << (29-6); // li field is from bit 6 to bit 29.
456
int value = disp(intptr_t(a), intptr_t(pc));
457
bool result = -range <= value && value < range-1;
458
#ifdef ASSERT
459
if (result) li(value); // Assert that value is in correct range.
460
#endif
461
return result;
462
}
463
464
// helper functions for bcxx.
465
inline bool Assembler::is_within_range_of_bcxx(address a, address pc) {
466
// Guard against illegal branch targets, e.g. -1 (see CompiledStaticCall and ad-file).
467
if ((((uint64_t)a) & 0x3) != 0) return false;
468
469
const int range = 1 << (29-16); // bd field is from bit 16 to bit 29.
470
int value = disp(intptr_t(a), intptr_t(pc));
471
bool result = -range <= value && value < range-1;
472
#ifdef ASSERT
473
if (result) bd(value); // Assert that value is in correct range.
474
#endif
475
return result;
476
}
477
478
// Get the destination of a bxx branch (b, bl, ba, bla).
479
address Assembler::bxx_destination(address baddr) { return bxx_destination(*(int*)baddr, baddr); }
480
address Assembler::bxx_destination(int instr, address pc) { return (address)bxx_destination_offset(instr, (intptr_t)pc); }
481
intptr_t Assembler::bxx_destination_offset(int instr, intptr_t bxx_pos) {
482
intptr_t displ = inv_li_field(instr);
483
return bxx_pos + displ;
484
}
485
486
// Extended mnemonics for Branch Instructions
487
inline void Assembler::blt(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs1, bi0(crx, less), L); }
488
inline void Assembler::bgt(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs1, bi0(crx, greater), L); }
489
inline void Assembler::beq(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs1, bi0(crx, equal), L); }
490
inline void Assembler::bso(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs1, bi0(crx, summary_overflow), L); }
491
inline void Assembler::bge(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs0, bi0(crx, less), L); }
492
inline void Assembler::ble(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs0, bi0(crx, greater), L); }
493
inline void Assembler::bne(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs0, bi0(crx, equal), L); }
494
inline void Assembler::bns(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs0, bi0(crx, summary_overflow), L); }
495
496
// Branch instructions with static prediction hints.
497
inline void Assembler::blt_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsTaken, bi0(crx, less), L); }
498
inline void Assembler::bgt_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsTaken, bi0(crx, greater), L); }
499
inline void Assembler::beq_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsTaken, bi0(crx, equal), L); }
500
inline void Assembler::bso_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsTaken, bi0(crx, summary_overflow), L); }
501
inline void Assembler::bge_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsTaken, bi0(crx, less), L); }
502
inline void Assembler::ble_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsTaken, bi0(crx, greater), L); }
503
inline void Assembler::bne_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsTaken, bi0(crx, equal), L); }
504
inline void Assembler::bns_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsTaken, bi0(crx, summary_overflow), L); }
505
inline void Assembler::blt_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsNotTaken, bi0(crx, less), L); }
506
inline void Assembler::bgt_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsNotTaken, bi0(crx, greater), L); }
507
inline void Assembler::beq_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsNotTaken, bi0(crx, equal), L); }
508
inline void Assembler::bso_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsNotTaken, bi0(crx, summary_overflow), L); }
509
inline void Assembler::bge_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsNotTaken, bi0(crx, less), L); }
510
inline void Assembler::ble_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsNotTaken, bi0(crx, greater), L); }
511
inline void Assembler::bne_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsNotTaken, bi0(crx, equal), L); }
512
inline void Assembler::bns_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsNotTaken, bi0(crx, summary_overflow), L); }
513
514
// For use in conjunction with testbitdi:
515
inline void Assembler::btrue( ConditionRegister crx, Label& L) { Assembler::bne(crx, L); }
516
inline void Assembler::bfalse(ConditionRegister crx, Label& L) { Assembler::beq(crx, L); }
517
518
inline void Assembler::bltl(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs1, bi0(crx, less), L); }
519
inline void Assembler::bgtl(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs1, bi0(crx, greater), L); }
520
inline void Assembler::beql(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs1, bi0(crx, equal), L); }
521
inline void Assembler::bsol(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs1, bi0(crx, summary_overflow), L); }
522
inline void Assembler::bgel(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs0, bi0(crx, less), L); }
523
inline void Assembler::blel(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs0, bi0(crx, greater), L); }
524
inline void Assembler::bnel(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs0, bi0(crx, equal), L); }
525
inline void Assembler::bnsl(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs0, bi0(crx, summary_overflow), L); }
526
527
// Extended mnemonics for Branch Instructions via LR.
528
// We use `blr' for returns.
529
inline void Assembler::blr(relocInfo::relocType rt) { Assembler::bclr(bcondAlways, 0, bhintbhBCLRisReturn, rt); }
530
531
// Extended mnemonics for Branch Instructions with CTR.
532
// Bdnz means `decrement CTR and jump to L if CTR is not zero'.
533
inline void Assembler::bdnz(Label& L) { Assembler::bc(16, 0, L); }
534
// Decrement and branch if result is zero.
535
inline void Assembler::bdz(Label& L) { Assembler::bc(18, 0, L); }
536
// We use `bctr[l]' for jumps/calls in function descriptor glue
537
// code, e.g. for calls to runtime functions.
538
inline void Assembler::bctr( relocInfo::relocType rt) { Assembler::bcctr(bcondAlways, 0, bhintbhBCCTRisNotReturnButSame, rt); }
539
inline void Assembler::bctrl(relocInfo::relocType rt) { Assembler::bcctrl(bcondAlways, 0, bhintbhBCCTRisNotReturnButSame, rt); }
540
// Conditional jumps/branches via CTR.
541
inline void Assembler::beqctr( ConditionRegister crx, relocInfo::relocType rt) { Assembler::bcctr( bcondCRbiIs1, bi0(crx, equal), bhintbhBCCTRisNotReturnButSame, rt); }
542
inline void Assembler::beqctrl(ConditionRegister crx, relocInfo::relocType rt) { Assembler::bcctrl(bcondCRbiIs1, bi0(crx, equal), bhintbhBCCTRisNotReturnButSame, rt); }
543
inline void Assembler::bnectr( ConditionRegister crx, relocInfo::relocType rt) { Assembler::bcctr( bcondCRbiIs0, bi0(crx, equal), bhintbhBCCTRisNotReturnButSame, rt); }
544
inline void Assembler::bnectrl(ConditionRegister crx, relocInfo::relocType rt) { Assembler::bcctrl(bcondCRbiIs0, bi0(crx, equal), bhintbhBCCTRisNotReturnButSame, rt); }
545
546
// condition register logic instructions
547
inline void Assembler::crand( int d, int s1, int s2) { emit_int32(CRAND_OPCODE | bt(d) | ba(s1) | bb(s2)); }
548
inline void Assembler::crnand(int d, int s1, int s2) { emit_int32(CRNAND_OPCODE | bt(d) | ba(s1) | bb(s2)); }
549
inline void Assembler::cror( int d, int s1, int s2) { emit_int32(CROR_OPCODE | bt(d) | ba(s1) | bb(s2)); }
550
inline void Assembler::crxor( int d, int s1, int s2) { emit_int32(CRXOR_OPCODE | bt(d) | ba(s1) | bb(s2)); }
551
inline void Assembler::crnor( int d, int s1, int s2) { emit_int32(CRNOR_OPCODE | bt(d) | ba(s1) | bb(s2)); }
552
inline void Assembler::creqv( int d, int s1, int s2) { emit_int32(CREQV_OPCODE | bt(d) | ba(s1) | bb(s2)); }
553
inline void Assembler::crandc(int d, int s1, int s2) { emit_int32(CRANDC_OPCODE | bt(d) | ba(s1) | bb(s2)); }
554
inline void Assembler::crorc( int d, int s1, int s2) { emit_int32(CRORC_OPCODE | bt(d) | ba(s1) | bb(s2)); }
555
556
// More convenient version.
557
inline void Assembler::crand( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) {
558
int dst_bit = condition_register_bit(crdst, cdst),
559
src_bit = condition_register_bit(crsrc, csrc);
560
crand(dst_bit, src_bit, dst_bit);
561
}
562
inline void Assembler::crnand(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) {
563
int dst_bit = condition_register_bit(crdst, cdst),
564
src_bit = condition_register_bit(crsrc, csrc);
565
crnand(dst_bit, src_bit, dst_bit);
566
}
567
inline void Assembler::cror( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) {
568
int dst_bit = condition_register_bit(crdst, cdst),
569
src_bit = condition_register_bit(crsrc, csrc);
570
cror(dst_bit, src_bit, dst_bit);
571
}
572
inline void Assembler::crxor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) {
573
int dst_bit = condition_register_bit(crdst, cdst),
574
src_bit = condition_register_bit(crsrc, csrc);
575
crxor(dst_bit, src_bit, dst_bit);
576
}
577
inline void Assembler::crnor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) {
578
int dst_bit = condition_register_bit(crdst, cdst),
579
src_bit = condition_register_bit(crsrc, csrc);
580
crnor(dst_bit, src_bit, dst_bit);
581
}
582
inline void Assembler::creqv( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) {
583
int dst_bit = condition_register_bit(crdst, cdst),
584
src_bit = condition_register_bit(crsrc, csrc);
585
creqv(dst_bit, src_bit, dst_bit);
586
}
587
inline void Assembler::crandc(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) {
588
int dst_bit = condition_register_bit(crdst, cdst),
589
src_bit = condition_register_bit(crsrc, csrc);
590
crandc(dst_bit, src_bit, dst_bit);
591
}
592
inline void Assembler::crorc( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) {
593
int dst_bit = condition_register_bit(crdst, cdst),
594
src_bit = condition_register_bit(crsrc, csrc);
595
crorc(dst_bit, src_bit, dst_bit);
596
}
597
598
// Conditional move (>= Power7)
599
inline void Assembler::isel(Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b) {
600
if (b == noreg) {
601
b = d; // Can be omitted if old value should be kept in "else" case.
602
}
603
Register first = a;
604
Register second = b;
605
if (inv) {
606
first = b;
607
second = a; // exchange
608
}
609
assert(first != R0, "r0 not allowed");
610
isel(d, first, second, bi0(cr, cc));
611
}
612
inline void Assembler::isel_0(Register d, ConditionRegister cr, Condition cc, Register b) {
613
if (b == noreg) {
614
b = d; // Can be omitted if old value should be kept in "else" case.
615
}
616
isel(d, R0, b, bi0(cr, cc));
617
}
618
619
// PPC 2, section 3.2.1 Instruction Cache Instructions
620
inline void Assembler::icbi( Register s1, Register s2) { emit_int32( ICBI_OPCODE | ra0mem(s1) | rb(s2) ); }
621
// PPC 2, section 3.2.2 Data Cache Instructions
622
//inline void Assembler::dcba( Register s1, Register s2) { emit_int32( DCBA_OPCODE | ra0mem(s1) | rb(s2) ); }
623
inline void Assembler::dcbz( Register s1, Register s2) { emit_int32( DCBZ_OPCODE | ra0mem(s1) | rb(s2) ); }
624
inline void Assembler::dcbst( Register s1, Register s2) { emit_int32( DCBST_OPCODE | ra0mem(s1) | rb(s2) ); }
625
inline void Assembler::dcbf( Register s1, Register s2) { emit_int32( DCBF_OPCODE | ra0mem(s1) | rb(s2) ); }
626
// dcache read hint
627
inline void Assembler::dcbt( Register s1, Register s2) { emit_int32( DCBT_OPCODE | ra0mem(s1) | rb(s2) ); }
628
inline void Assembler::dcbtct( Register s1, Register s2, int ct) { emit_int32( DCBT_OPCODE | ra0mem(s1) | rb(s2) | thct(ct)); }
629
inline void Assembler::dcbtds( Register s1, Register s2, int ds) { emit_int32( DCBT_OPCODE | ra0mem(s1) | rb(s2) | thds(ds)); }
630
// dcache write hint
631
inline void Assembler::dcbtst( Register s1, Register s2) { emit_int32( DCBTST_OPCODE | ra0mem(s1) | rb(s2) ); }
632
inline void Assembler::dcbtstct(Register s1, Register s2, int ct) { emit_int32( DCBTST_OPCODE | ra0mem(s1) | rb(s2) | thct(ct)); }
633
634
// machine barrier instructions:
635
inline void Assembler::sync(int a) { emit_int32( SYNC_OPCODE | l910(a)); }
636
inline void Assembler::sync() { Assembler::sync(0); }
637
inline void Assembler::lwsync() { Assembler::sync(1); }
638
inline void Assembler::ptesync() { Assembler::sync(2); }
639
inline void Assembler::eieio() { emit_int32( EIEIO_OPCODE); }
640
inline void Assembler::isync() { emit_int32( ISYNC_OPCODE); }
641
inline void Assembler::elemental_membar(int e) { assert(0 < e && e < 16, "invalid encoding"); emit_int32( SYNC_OPCODE | e1215(e)); }
642
643
// Wait instructions for polling.
644
inline void Assembler::wait() { emit_int32( WAIT_OPCODE); }
645
inline void Assembler::waitrsv() { emit_int32( WAIT_OPCODE | 1<<(31-10)); } // WC=0b01 >=Power7
646
647
// atomics
648
// Use ra0mem to disallow R0 as base.
649
inline void Assembler::lbarx_unchecked(Register d, Register a, Register b, int eh1) { emit_int32( LBARX_OPCODE | rt(d) | ra0mem(a) | rb(b) | eh(eh1)); }
650
inline void Assembler::lharx_unchecked(Register d, Register a, Register b, int eh1) { emit_int32( LHARX_OPCODE | rt(d) | ra0mem(a) | rb(b) | eh(eh1)); }
651
inline void Assembler::lwarx_unchecked(Register d, Register a, Register b, int eh1) { emit_int32( LWARX_OPCODE | rt(d) | ra0mem(a) | rb(b) | eh(eh1)); }
652
inline void Assembler::ldarx_unchecked(Register d, Register a, Register b, int eh1) { emit_int32( LDARX_OPCODE | rt(d) | ra0mem(a) | rb(b) | eh(eh1)); }
653
inline void Assembler::lqarx_unchecked(Register d, Register a, Register b, int eh1) { emit_int32( LQARX_OPCODE | rt(d) | ra0mem(a) | rb(b) | eh(eh1)); }
654
inline bool Assembler::lxarx_hint_exclusive_access() { return VM_Version::has_lxarxeh(); }
655
inline void Assembler::lbarx( Register d, Register a, Register b, bool hint_exclusive_access) { lbarx_unchecked(d, a, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); }
656
inline void Assembler::lharx( Register d, Register a, Register b, bool hint_exclusive_access) { lharx_unchecked(d, a, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); }
657
inline void Assembler::lwarx( Register d, Register a, Register b, bool hint_exclusive_access) { lwarx_unchecked(d, a, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); }
658
inline void Assembler::ldarx( Register d, Register a, Register b, bool hint_exclusive_access) { ldarx_unchecked(d, a, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); }
659
inline void Assembler::lqarx( Register d, Register a, Register b, bool hint_exclusive_access) { lqarx_unchecked(d, a, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); }
660
inline void Assembler::stbcx_(Register s, Register a, Register b) { emit_int32( STBCX_OPCODE | rs(s) | ra0mem(a) | rb(b) | rc(1)); }
661
inline void Assembler::sthcx_(Register s, Register a, Register b) { emit_int32( STHCX_OPCODE | rs(s) | ra0mem(a) | rb(b) | rc(1)); }
662
inline void Assembler::stwcx_(Register s, Register a, Register b) { emit_int32( STWCX_OPCODE | rs(s) | ra0mem(a) | rb(b) | rc(1)); }
663
inline void Assembler::stdcx_(Register s, Register a, Register b) { emit_int32( STDCX_OPCODE | rs(s) | ra0mem(a) | rb(b) | rc(1)); }
664
inline void Assembler::stqcx_(Register s, Register a, Register b) { emit_int32( STQCX_OPCODE | rs(s) | ra0mem(a) | rb(b) | rc(1)); }
665
666
// Instructions for adjusting thread priority
667
// for simultaneous multithreading (SMT) on >= POWER5.
668
inline void Assembler::smt_prio_very_low() { Assembler::or_unchecked(R31, R31, R31); }
669
inline void Assembler::smt_prio_low() { Assembler::or_unchecked(R1, R1, R1); }
670
inline void Assembler::smt_prio_medium_low() { Assembler::or_unchecked(R6, R6, R6); }
671
inline void Assembler::smt_prio_medium() { Assembler::or_unchecked(R2, R2, R2); }
672
inline void Assembler::smt_prio_medium_high() { Assembler::or_unchecked(R5, R5, R5); }
673
inline void Assembler::smt_prio_high() { Assembler::or_unchecked(R3, R3, R3); }
674
// >= Power7
675
inline void Assembler::smt_yield() { Assembler::or_unchecked(R27, R27, R27); } // never actually implemented
676
inline void Assembler::smt_mdoio() { Assembler::or_unchecked(R29, R29, R29); } // never actually implemetned
677
inline void Assembler::smt_mdoom() { Assembler::or_unchecked(R30, R30, R30); } // never actually implemented
678
// Power8
679
inline void Assembler::smt_miso() { Assembler::or_unchecked(R26, R26, R26); } // never actually implemented
680
681
inline void Assembler::twi_0(Register a) { twi_unchecked(0, a, 0);}
682
683
// trap instructions
684
inline void Assembler::tdi_unchecked(int tobits, Register a, int si16){ emit_int32( TDI_OPCODE | to(tobits) | ra(a) | si(si16)); }
685
inline void Assembler::twi_unchecked(int tobits, Register a, int si16){ emit_int32( TWI_OPCODE | to(tobits) | ra(a) | si(si16)); }
686
inline void Assembler::tdi(int tobits, Register a, int si16) { assert(UseSIGTRAP, "precondition"); tdi_unchecked(tobits, a, si16); }
687
inline void Assembler::twi(int tobits, Register a, int si16) { assert(UseSIGTRAP, "precondition"); twi_unchecked(tobits, a, si16); }
688
inline void Assembler::td( int tobits, Register a, Register b) { assert(UseSIGTRAP, "precondition"); emit_int32( TD_OPCODE | to(tobits) | ra(a) | rb(b)); }
689
inline void Assembler::tw( int tobits, Register a, Register b) { assert(UseSIGTRAP, "precondition"); emit_int32( TW_OPCODE | to(tobits) | ra(a) | rb(b)); }
690
691
// FLOATING POINT instructions ppc.
692
// PPC 1, section 4.6.2 Floating-Point Load Instructions
693
// Use ra0mem instead of ra in some instructions below.
694
inline void Assembler::lfs( FloatRegister d, int si16, Register a) { emit_int32( LFS_OPCODE | frt(d) | ra0mem(a) | simm(si16,16)); }
695
inline void Assembler::lfsu(FloatRegister d, int si16, Register a) { emit_int32( LFSU_OPCODE | frt(d) | ra(a) | simm(si16,16)); }
696
inline void Assembler::lfsx(FloatRegister d, Register a, Register b) { emit_int32( LFSX_OPCODE | frt(d) | ra0mem(a) | rb(b)); }
697
inline void Assembler::lfd( FloatRegister d, int si16, Register a) { emit_int32( LFD_OPCODE | frt(d) | ra0mem(a) | simm(si16,16)); }
698
inline void Assembler::lfdu(FloatRegister d, int si16, Register a) { emit_int32( LFDU_OPCODE | frt(d) | ra(a) | simm(si16,16)); }
699
inline void Assembler::lfdx(FloatRegister d, Register a, Register b) { emit_int32( LFDX_OPCODE | frt(d) | ra0mem(a) | rb(b)); }
700
701
// PPC 1, section 4.6.3 Floating-Point Store Instructions
702
// Use ra0mem instead of ra in some instructions below.
703
inline void Assembler::stfs( FloatRegister s, int si16, Register a) { emit_int32( STFS_OPCODE | frs(s) | ra0mem(a) | simm(si16,16)); }
704
inline void Assembler::stfsu(FloatRegister s, int si16, Register a) { emit_int32( STFSU_OPCODE | frs(s) | ra(a) | simm(si16,16)); }
705
inline void Assembler::stfsx(FloatRegister s, Register a, Register b){ emit_int32( STFSX_OPCODE | frs(s) | ra0mem(a) | rb(b)); }
706
inline void Assembler::stfd( FloatRegister s, int si16, Register a) { emit_int32( STFD_OPCODE | frs(s) | ra0mem(a) | simm(si16,16)); }
707
inline void Assembler::stfdu(FloatRegister s, int si16, Register a) { emit_int32( STFDU_OPCODE | frs(s) | ra(a) | simm(si16,16)); }
708
inline void Assembler::stfdx(FloatRegister s, Register a, Register b){ emit_int32( STFDX_OPCODE | frs(s) | ra0mem(a) | rb(b)); }
709
710
// PPC 1, section 4.6.4 Floating-Point Move Instructions
711
inline void Assembler::fmr( FloatRegister d, FloatRegister b) { emit_int32( FMR_OPCODE | frt(d) | frb(b) | rc(0)); }
712
inline void Assembler::fmr_(FloatRegister d, FloatRegister b) { emit_int32( FMR_OPCODE | frt(d) | frb(b) | rc(1)); }
713
714
inline void Assembler::frin( FloatRegister d, FloatRegister b) { emit_int32( FRIN_OPCODE | frt(d) | frb(b) | rc(0)); }
715
inline void Assembler::frip( FloatRegister d, FloatRegister b) { emit_int32( FRIP_OPCODE | frt(d) | frb(b) | rc(0)); }
716
inline void Assembler::frim( FloatRegister d, FloatRegister b) { emit_int32( FRIM_OPCODE | frt(d) | frb(b) | rc(0)); }
717
718
// These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
719
// on Power7. Do not use.
720
//inline void Assembler::mffgpr( FloatRegister d, Register b) { emit_int32( MFFGPR_OPCODE | frt(d) | rb(b) | rc(0)); }
721
//inline void Assembler::mftgpr( Register d, FloatRegister b) { emit_int32( MFTGPR_OPCODE | rt(d) | frb(b) | rc(0)); }
722
// add cmpb and popcntb to detect ppc power version.
723
inline void Assembler::cmpb( Register a, Register s, Register b) { guarantee(VM_Version::has_cmpb(), "opcode not supported on this hardware");
724
emit_int32( CMPB_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); }
725
inline void Assembler::popcntb(Register a, Register s) { guarantee(VM_Version::has_popcntb(), "opcode not supported on this hardware");
726
emit_int32( POPCNTB_OPCODE | rta(a) | rs(s)); };
727
inline void Assembler::popcntw(Register a, Register s) { guarantee(VM_Version::has_popcntw(), "opcode not supported on this hardware");
728
emit_int32( POPCNTW_OPCODE | rta(a) | rs(s)); };
729
inline void Assembler::popcntd(Register a, Register s) { emit_int32( POPCNTD_OPCODE | rta(a) | rs(s)); };
730
731
inline void Assembler::fneg( FloatRegister d, FloatRegister b) { emit_int32( FNEG_OPCODE | frt(d) | frb(b) | rc(0)); }
732
inline void Assembler::fneg_( FloatRegister d, FloatRegister b) { emit_int32( FNEG_OPCODE | frt(d) | frb(b) | rc(1)); }
733
inline void Assembler::fabs( FloatRegister d, FloatRegister b) { emit_int32( FABS_OPCODE | frt(d) | frb(b) | rc(0)); }
734
inline void Assembler::fabs_( FloatRegister d, FloatRegister b) { emit_int32( FABS_OPCODE | frt(d) | frb(b) | rc(1)); }
735
inline void Assembler::fnabs( FloatRegister d, FloatRegister b) { emit_int32( FNABS_OPCODE | frt(d) | frb(b) | rc(0)); }
736
inline void Assembler::fnabs_(FloatRegister d, FloatRegister b) { emit_int32( FNABS_OPCODE | frt(d) | frb(b) | rc(1)); }
737
738
// PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
739
inline void Assembler::fadd( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FADD_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); }
740
inline void Assembler::fadd_( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FADD_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); }
741
inline void Assembler::fadds( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FADDS_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); }
742
inline void Assembler::fadds_(FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FADDS_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); }
743
inline void Assembler::fsub( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FSUB_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); }
744
inline void Assembler::fsub_( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FSUB_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); }
745
inline void Assembler::fsubs( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FSUBS_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); }
746
inline void Assembler::fsubs_(FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FSUBS_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); }
747
inline void Assembler::fmul( FloatRegister d, FloatRegister a, FloatRegister c) { emit_int32( FMUL_OPCODE | frt(d) | fra(a) | frc(c) | rc(0)); }
748
inline void Assembler::fmul_( FloatRegister d, FloatRegister a, FloatRegister c) { emit_int32( FMUL_OPCODE | frt(d) | fra(a) | frc(c) | rc(1)); }
749
inline void Assembler::fmuls( FloatRegister d, FloatRegister a, FloatRegister c) { emit_int32( FMULS_OPCODE | frt(d) | fra(a) | frc(c) | rc(0)); }
750
inline void Assembler::fmuls_(FloatRegister d, FloatRegister a, FloatRegister c) { emit_int32( FMULS_OPCODE | frt(d) | fra(a) | frc(c) | rc(1)); }
751
inline void Assembler::fdiv( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FDIV_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); }
752
inline void Assembler::fdiv_( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FDIV_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); }
753
inline void Assembler::fdivs( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FDIVS_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); }
754
inline void Assembler::fdivs_(FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FDIVS_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); }
755
756
// Fused multiply-accumulate instructions.
757
// WARNING: Use only when rounding between the 2 parts is not desired.
758
// Some floating point tck tests will fail if used incorrectly.
759
inline void Assembler::fmadd( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMADD_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); }
760
inline void Assembler::fmadd_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMADD_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); }
761
inline void Assembler::fmadds( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMADDS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); }
762
inline void Assembler::fmadds_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMADDS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); }
763
inline void Assembler::fmsub( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMSUB_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); }
764
inline void Assembler::fmsub_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMSUB_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); }
765
inline void Assembler::fmsubs( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMSUBS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); }
766
inline void Assembler::fmsubs_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMSUBS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); }
767
inline void Assembler::fnmadd( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMADD_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); }
768
inline void Assembler::fnmadd_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMADD_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); }
769
inline void Assembler::fnmadds( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMADDS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); }
770
inline void Assembler::fnmadds_(FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMADDS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); }
771
inline void Assembler::fnmsub( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMSUB_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); }
772
inline void Assembler::fnmsub_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMSUB_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); }
773
inline void Assembler::fnmsubs( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMSUBS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); }
774
inline void Assembler::fnmsubs_(FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMSUBS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); }
775
776
// PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
777
inline void Assembler::frsp( FloatRegister d, FloatRegister b) { emit_int32( FRSP_OPCODE | frt(d) | frb(b) | rc(0)); }
778
inline void Assembler::fctid( FloatRegister d, FloatRegister b) { emit_int32( FCTID_OPCODE | frt(d) | frb(b) | rc(0)); }
779
inline void Assembler::fctidz(FloatRegister d, FloatRegister b) { emit_int32( FCTIDZ_OPCODE | frt(d) | frb(b) | rc(0)); }
780
inline void Assembler::fctiw( FloatRegister d, FloatRegister b) { emit_int32( FCTIW_OPCODE | frt(d) | frb(b) | rc(0)); }
781
inline void Assembler::fctiwz(FloatRegister d, FloatRegister b) { emit_int32( FCTIWZ_OPCODE | frt(d) | frb(b) | rc(0)); }
782
inline void Assembler::fcfid( FloatRegister d, FloatRegister b) { emit_int32( FCFID_OPCODE | frt(d) | frb(b) | rc(0)); }
783
inline void Assembler::fcfids(FloatRegister d, FloatRegister b) { guarantee(VM_Version::has_fcfids(), "opcode not supported on this hardware");
784
emit_int32( FCFIDS_OPCODE | frt(d) | frb(b) | rc(0)); }
785
786
// PPC 1, section 4.6.7 Floating-Point Compare Instructions
787
inline void Assembler::fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b) { emit_int32( FCMPU_OPCODE | bf(crx) | fra(a) | frb(b)); }
788
789
// PPC 1, section 5.2.1 Floating-Point Arithmetic Instructions
790
inline void Assembler::fsqrt( FloatRegister d, FloatRegister b) { guarantee(VM_Version::has_fsqrt(), "opcode not supported on this hardware");
791
emit_int32( FSQRT_OPCODE | frt(d) | frb(b) | rc(0)); }
792
inline void Assembler::fsqrts(FloatRegister d, FloatRegister b) { guarantee(VM_Version::has_fsqrts(), "opcode not supported on this hardware");
793
emit_int32( FSQRTS_OPCODE | frt(d) | frb(b) | rc(0)); }
794
795
// Vector instructions for >= Power6.
796
inline void Assembler::lvebx( VectorRegister d, Register s1, Register s2) { emit_int32( LVEBX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); }
797
inline void Assembler::lvehx( VectorRegister d, Register s1, Register s2) { emit_int32( LVEHX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); }
798
inline void Assembler::lvewx( VectorRegister d, Register s1, Register s2) { emit_int32( LVEWX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); }
799
inline void Assembler::lvx( VectorRegister d, Register s1, Register s2) { emit_int32( LVX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); }
800
inline void Assembler::lvxl( VectorRegister d, Register s1, Register s2) { emit_int32( LVXL_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); }
801
inline void Assembler::stvebx(VectorRegister d, Register s1, Register s2) { emit_int32( STVEBX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); }
802
inline void Assembler::stvehx(VectorRegister d, Register s1, Register s2) { emit_int32( STVEHX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); }
803
inline void Assembler::stvewx(VectorRegister d, Register s1, Register s2) { emit_int32( STVEWX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); }
804
inline void Assembler::stvx( VectorRegister d, Register s1, Register s2) { emit_int32( STVX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); }
805
inline void Assembler::stvxl( VectorRegister d, Register s1, Register s2) { emit_int32( STVXL_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); }
806
inline void Assembler::lvsl( VectorRegister d, Register s1, Register s2) { emit_int32( LVSL_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); }
807
inline void Assembler::lvsr( VectorRegister d, Register s1, Register s2) { emit_int32( LVSR_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); }
808
809
// Vector-Scalar (VSX) instructions.
810
inline void Assembler::lxv( VectorSRegister d, int ui16, Register a) { assert(is_aligned(ui16, 16), "displacement must be a multiple of 16"); emit_int32( LXV_OPCODE | vsrt_dq(d) | ra0mem(a) | uimm(ui16, 16)); }
811
inline void Assembler::stxv( VectorSRegister d, int ui16, Register a) { assert(is_aligned(ui16, 16), "displacement must be a multiple of 16"); emit_int32( STXV_OPCODE | vsrs_dq(d) | ra0mem(a) | uimm(ui16, 16)); }
812
inline void Assembler::lxvl( VectorSRegister d, Register s1, Register b) { emit_int32( LXVL_OPCODE | vsrt(d) | ra0mem(s1) | rb(b)); }
813
inline void Assembler::stxvl( VectorSRegister d, Register s1, Register b) { emit_int32( STXVL_OPCODE | vsrt(d) | ra0mem(s1) | rb(b)); }
814
inline void Assembler::lxvd2x( VectorSRegister d, Register s1) { emit_int32( LXVD2X_OPCODE | vsrt(d) | ra(0) | rb(s1)); }
815
inline void Assembler::lxvd2x( VectorSRegister d, Register s1, Register s2) { emit_int32( LXVD2X_OPCODE | vsrt(d) | ra0mem(s1) | rb(s2)); }
816
inline void Assembler::stxvd2x( VectorSRegister d, Register s1) { emit_int32( STXVD2X_OPCODE | vsrs(d) | ra(0) | rb(s1)); }
817
inline void Assembler::stxvd2x( VectorSRegister d, Register s1, Register s2) { emit_int32( STXVD2X_OPCODE | vsrs(d) | ra0mem(s1) | rb(s2)); }
818
inline void Assembler::mtvsrd( VectorSRegister d, Register a) { emit_int32( MTVSRD_OPCODE | vsrt(d) | ra(a)); }
819
inline void Assembler::mtvsrdd( VectorSRegister d, Register a, Register b) { emit_int32( MTVSRDD_OPCODE | vsrt(d) | ra(a) | rb(b)); }
820
inline void Assembler::mfvsrd( Register d, VectorSRegister a) { emit_int32( MFVSRD_OPCODE | vsrs(a) | ra(d)); }
821
inline void Assembler::mtvsrwz( VectorSRegister d, Register a) { emit_int32( MTVSRWZ_OPCODE | vsrt(d) | ra(a)); }
822
inline void Assembler::mfvsrwz( Register d, VectorSRegister a) { emit_int32( MFVSRWZ_OPCODE | vsrs(a) | ra(d)); }
823
inline void Assembler::xxspltib(VectorSRegister d, int ui8) { emit_int32( XXSPLTIB_OPCODE | vsrt(d) | imm8(ui8)); }
824
inline void Assembler::xxspltw( VectorSRegister d, VectorSRegister b, int ui2) { emit_int32( XXSPLTW_OPCODE | vsrt(d) | vsrb(b) | xxsplt_uim(uimm(ui2,2))); }
825
inline void Assembler::xxland( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XXLAND_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
826
inline void Assembler::xxlor( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XXLOR_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
827
inline void Assembler::xxlxor( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XXLXOR_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
828
inline void Assembler::xxleqv( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XXLEQV_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
829
inline void Assembler::xxbrd( VectorSRegister d, VectorSRegister b) { emit_int32( XXBRD_OPCODE | vsrt(d) | vsrb(b) ); }
830
inline void Assembler::xxbrw( VectorSRegister d, VectorSRegister b) { emit_int32( XXBRW_OPCODE | vsrt(d) | vsrb(b) ); }
831
inline void Assembler::xvdivsp( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XVDIVSP_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
832
inline void Assembler::xvdivdp( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XVDIVDP_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
833
inline void Assembler::xvabssp( VectorSRegister d, VectorSRegister b) { emit_int32( XVABSSP_OPCODE | vsrt(d) | vsrb(b)); }
834
inline void Assembler::xvabsdp( VectorSRegister d, VectorSRegister b) { emit_int32( XVABSDP_OPCODE | vsrt(d) | vsrb(b)); }
835
inline void Assembler::xvnegsp( VectorSRegister d, VectorSRegister b) { emit_int32( XVNEGSP_OPCODE | vsrt(d) | vsrb(b)); }
836
inline void Assembler::xvnegdp( VectorSRegister d, VectorSRegister b) { emit_int32( XVNEGDP_OPCODE | vsrt(d) | vsrb(b)); }
837
inline void Assembler::xvsqrtsp(VectorSRegister d, VectorSRegister b) { emit_int32( XVSQRTSP_OPCODE| vsrt(d) | vsrb(b)); }
838
inline void Assembler::xvsqrtdp(VectorSRegister d, VectorSRegister b) { emit_int32( XVSQRTDP_OPCODE| vsrt(d) | vsrb(b)); }
839
inline void Assembler::xscvdpspn(VectorSRegister d, VectorSRegister b) { emit_int32( XSCVDPSPN_OPCODE | vsrt(d) | vsrb(b)); }
840
inline void Assembler::xvadddp( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XVADDDP_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
841
inline void Assembler::xvsubdp( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XVSUBDP_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
842
inline void Assembler::xvmulsp( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XVMULSP_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
843
inline void Assembler::xvmuldp( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XVMULDP_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
844
inline void Assembler::xvmaddasp( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XVMADDASP_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
845
inline void Assembler::xvmaddadp( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XVMADDADP_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
846
inline void Assembler::xvmsubasp( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XVMSUBASP_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
847
inline void Assembler::xvmsubadp( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XVMSUBADP_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
848
inline void Assembler::xvnmsubasp(VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XVNMSUBASP_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
849
inline void Assembler::xvnmsubadp(VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XVNMSUBADP_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
850
inline void Assembler::xvrdpi( VectorSRegister d, VectorSRegister b) { emit_int32( XVRDPI_OPCODE | vsrt(d) | vsrb(b)); }
851
inline void Assembler::xvrdpim( VectorSRegister d, VectorSRegister b) { emit_int32( XVRDPIM_OPCODE | vsrt(d) | vsrb(b)); }
852
inline void Assembler::xvrdpip( VectorSRegister d, VectorSRegister b) { emit_int32( XVRDPIP_OPCODE | vsrt(d) | vsrb(b)); }
853
854
inline void Assembler::mtvrd( VectorRegister d, Register a) { emit_int32( MTVSRD_OPCODE | vsrt(d->to_vsr()) | ra(a)); }
855
inline void Assembler::mfvrd( Register a, VectorRegister d) { emit_int32( MFVSRD_OPCODE | vsrt(d->to_vsr()) | ra(a)); }
856
inline void Assembler::mtvrwz( VectorRegister d, Register a) { emit_int32( MTVSRWZ_OPCODE | vsrt(d->to_vsr()) | ra(a)); }
857
inline void Assembler::mfvrwz( Register a, VectorRegister d) { emit_int32( MFVSRWZ_OPCODE | vsrt(d->to_vsr()) | ra(a)); }
858
inline void Assembler::xxperm( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XXPERM_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
859
inline void Assembler::xxpermdi(VectorSRegister d, VectorSRegister a, VectorSRegister b, int dm) { emit_int32( XXPERMDI_OPCODE | vsrt(d) | vsra(a) | vsrb(b) | vsdm(dm)); }
860
inline void Assembler::xxmrghw( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XXMRGHW_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
861
inline void Assembler::xxmrglw( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XXMRGHW_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); }
862
inline void Assembler::xxsel( VectorSRegister d, VectorSRegister a, VectorSRegister b, VectorSRegister c) { emit_int32( XXSEL_OPCODE | vsrt(d) | vsra(a) | vsrb(b) | vsrc(c)); }
863
864
// VSX Extended Mnemonics
865
inline void Assembler::xxspltd( VectorSRegister d, VectorSRegister a, int x) { xxpermdi(d, a, a, x ? 3 : 0); }
866
inline void Assembler::xxmrghd( VectorSRegister d, VectorSRegister a, VectorSRegister b) { xxpermdi(d, a, b, 0); }
867
inline void Assembler::xxmrgld( VectorSRegister d, VectorSRegister a, VectorSRegister b) { xxpermdi(d, a, b, 3); }
868
inline void Assembler::xxswapd( VectorSRegister d, VectorSRegister a) { xxpermdi(d, a, a, 2); }
869
870
// Vector-Scalar (VSX) instructions.
871
inline void Assembler::mtfprd( FloatRegister d, Register a) { emit_int32( MTVSRD_OPCODE | frt(d) | ra(a)); }
872
inline void Assembler::mtfprwa( FloatRegister d, Register a) { emit_int32( MTVSRWA_OPCODE | frt(d) | ra(a)); }
873
inline void Assembler::mffprd( Register a, FloatRegister d) { emit_int32( MFVSRD_OPCODE | frt(d) | ra(a)); }
874
875
inline void Assembler::vpkpx( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKPX_OPCODE | vrt(d) | vra(a) | vrb(b)); }
876
inline void Assembler::vpkshss( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKSHSS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
877
inline void Assembler::vpkswss( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKSWSS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
878
inline void Assembler::vpkshus( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKSHUS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
879
inline void Assembler::vpkswus( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKSWUS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
880
inline void Assembler::vpkuhum( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKUHUM_OPCODE | vrt(d) | vra(a) | vrb(b)); }
881
inline void Assembler::vpkuwum( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKUWUM_OPCODE | vrt(d) | vra(a) | vrb(b)); }
882
inline void Assembler::vpkuhus( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKUHUS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
883
inline void Assembler::vpkuwus( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKUWUS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
884
inline void Assembler::vupkhpx( VectorRegister d, VectorRegister b) { emit_int32( VUPKHPX_OPCODE | vrt(d) | vrb(b)); }
885
inline void Assembler::vupkhsb( VectorRegister d, VectorRegister b) { emit_int32( VUPKHSB_OPCODE | vrt(d) | vrb(b)); }
886
inline void Assembler::vupkhsh( VectorRegister d, VectorRegister b) { emit_int32( VUPKHSH_OPCODE | vrt(d) | vrb(b)); }
887
inline void Assembler::vupklpx( VectorRegister d, VectorRegister b) { emit_int32( VUPKLPX_OPCODE | vrt(d) | vrb(b)); }
888
inline void Assembler::vupklsb( VectorRegister d, VectorRegister b) { emit_int32( VUPKLSB_OPCODE | vrt(d) | vrb(b)); }
889
inline void Assembler::vupklsh( VectorRegister d, VectorRegister b) { emit_int32( VUPKLSH_OPCODE | vrt(d) | vrb(b)); }
890
inline void Assembler::vmrghb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGHB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
891
inline void Assembler::vmrghw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGHW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
892
inline void Assembler::vmrghh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGHH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
893
inline void Assembler::vmrglb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGLB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
894
inline void Assembler::vmrglw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGLW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
895
inline void Assembler::vmrglh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGLH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
896
inline void Assembler::vsplt( VectorRegister d, int ui4, VectorRegister b) { emit_int32( VSPLT_OPCODE | vrt(d) | vsplt_uim(uimm(ui4,4)) | vrb(b)); }
897
inline void Assembler::vsplth( VectorRegister d, int ui3, VectorRegister b) { emit_int32( VSPLTH_OPCODE | vrt(d) | vsplt_uim(uimm(ui3,3)) | vrb(b)); }
898
inline void Assembler::vspltw( VectorRegister d, int ui2, VectorRegister b) { emit_int32( VSPLTW_OPCODE | vrt(d) | vsplt_uim(uimm(ui2,2)) | vrb(b)); }
899
inline void Assembler::vspltisb(VectorRegister d, int si5) { emit_int32( VSPLTISB_OPCODE| vrt(d) | vsplti_sim(simm(si5,5))); }
900
inline void Assembler::vspltish(VectorRegister d, int si5) { emit_int32( VSPLTISH_OPCODE| vrt(d) | vsplti_sim(simm(si5,5))); }
901
inline void Assembler::vspltisw(VectorRegister d, int si5) { emit_int32( VSPLTISW_OPCODE| vrt(d) | vsplti_sim(simm(si5,5))); }
902
inline void Assembler::vperm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c){ emit_int32( VPERM_OPCODE | vrt(d) | vra(a) | vrb(b) | vrc(c)); }
903
inline void Assembler::vpextd( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPEXTD_OPCODE| vrt(d) | vra(a) | vrb(b)); }
904
inline void Assembler::vsel( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c){ emit_int32( VSEL_OPCODE | vrt(d) | vra(a) | vrb(b) | vrc(c)); }
905
inline void Assembler::vsl( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSL_OPCODE | vrt(d) | vra(a) | vrb(b)); }
906
inline void Assembler::vsldoi( VectorRegister d, VectorRegister a, VectorRegister b, int ui4) { emit_int32( VSLDOI_OPCODE| vrt(d) | vra(a) | vrb(b) | vsldoi_shb(uimm(ui4,4))); }
907
inline void Assembler::vslo( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSLO_OPCODE | vrt(d) | vra(a) | vrb(b)); }
908
inline void Assembler::vsr( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSR_OPCODE | vrt(d) | vra(a) | vrb(b)); }
909
inline void Assembler::vsro( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRO_OPCODE | vrt(d) | vra(a) | vrb(b)); }
910
inline void Assembler::vaddcuw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDCUW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
911
inline void Assembler::vaddshs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDSHS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
912
inline void Assembler::vaddsbs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDSBS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
913
inline void Assembler::vaddsws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDSWS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
914
inline void Assembler::vaddubm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUBM_OPCODE | vrt(d) | vra(a) | vrb(b)); }
915
inline void Assembler::vadduwm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUWM_OPCODE | vrt(d) | vra(a) | vrb(b)); }
916
inline void Assembler::vadduhm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUHM_OPCODE | vrt(d) | vra(a) | vrb(b)); }
917
inline void Assembler::vaddudm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUDM_OPCODE | vrt(d) | vra(a) | vrb(b)); }
918
inline void Assembler::vaddubs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUBS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
919
inline void Assembler::vadduws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUWS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
920
inline void Assembler::vadduhs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUHS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
921
inline void Assembler::vaddfp( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDFP_OPCODE | vrt(d) | vra(a) | vrb(b)); }
922
inline void Assembler::vsubcuw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBCUW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
923
inline void Assembler::vsubshs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBSHS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
924
inline void Assembler::vsubsbs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBSBS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
925
inline void Assembler::vsubsws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBSWS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
926
inline void Assembler::vsububm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUBM_OPCODE | vrt(d) | vra(a) | vrb(b)); }
927
inline void Assembler::vsubuwm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUWM_OPCODE | vrt(d) | vra(a) | vrb(b)); }
928
inline void Assembler::vsubuhm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUHM_OPCODE | vrt(d) | vra(a) | vrb(b)); }
929
inline void Assembler::vsubudm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUDM_OPCODE | vrt(d) | vra(a) | vrb(b)); }
930
inline void Assembler::vsububs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUBS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
931
inline void Assembler::vsubuws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUWS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
932
inline void Assembler::vsubuhs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUHS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
933
inline void Assembler::vsubfp( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBFP_OPCODE | vrt(d) | vra(a) | vrb(b)); }
934
inline void Assembler::vmulesb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULESB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
935
inline void Assembler::vmuleub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULEUB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
936
inline void Assembler::vmulesh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULESH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
937
inline void Assembler::vmuleuh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULEUH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
938
inline void Assembler::vmulosb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULOSB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
939
inline void Assembler::vmuloub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULOUB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
940
inline void Assembler::vmulosh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULOSH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
941
inline void Assembler::vmulosw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULOSW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
942
inline void Assembler::vmulouh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULOUH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
943
inline void Assembler::vmuluwm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULUWM_OPCODE | vrt(d) | vra(a) | vrb(b)); }
944
inline void Assembler::vmhaddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMHADDSHS_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); }
945
inline void Assembler::vmhraddshs(VectorRegister d,VectorRegister a,VectorRegister b, VectorRegister c) { emit_int32( VMHRADDSHS_OPCODE| vrt(d) | vra(a) | vrb(b)| vrc(c)); }
946
inline void Assembler::vmladduhm(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMLADDUHM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); }
947
inline void Assembler::vmsubuhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUBUHM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); }
948
inline void Assembler::vmsummbm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMMBM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); }
949
inline void Assembler::vmsumshm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMSHM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); }
950
inline void Assembler::vmsumshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMSHS_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); }
951
inline void Assembler::vmsumuhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMUHM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); }
952
inline void Assembler::vmsumuhs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMUHS_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); }
953
inline void Assembler::vmaddfp( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMADDFP_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); }
954
inline void Assembler::vsumsws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUMSWS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
955
inline void Assembler::vsum2sws(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUM2SWS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
956
inline void Assembler::vsum4sbs(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUM4SBS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
957
inline void Assembler::vsum4ubs(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUM4UBS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
958
inline void Assembler::vsum4shs(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUM4SHS_OPCODE | vrt(d) | vra(a) | vrb(b)); }
959
inline void Assembler::vavgsb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGSB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
960
inline void Assembler::vavgsw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGSW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
961
inline void Assembler::vavgsh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGSH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
962
inline void Assembler::vavgub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGUB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
963
inline void Assembler::vavguw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGUW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
964
inline void Assembler::vavguh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGUH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
965
inline void Assembler::vmaxsb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXSB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
966
inline void Assembler::vmaxsw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXSW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
967
inline void Assembler::vmaxsh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXSH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
968
inline void Assembler::vmaxub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXUB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
969
inline void Assembler::vmaxuw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXUW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
970
inline void Assembler::vmaxuh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXUH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
971
inline void Assembler::vminsb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINSB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
972
inline void Assembler::vminsw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINSW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
973
inline void Assembler::vminsh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINSH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
974
inline void Assembler::vminub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINUB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
975
inline void Assembler::vminuw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINUW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
976
inline void Assembler::vminuh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINUH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
977
inline void Assembler::vcmpequb(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); }
978
inline void Assembler::vcmpequh(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); }
979
inline void Assembler::vcmpequw(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); }
980
inline void Assembler::vcmpgtsh(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); }
981
inline void Assembler::vcmpgtsb(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); }
982
inline void Assembler::vcmpgtsw(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); }
983
inline void Assembler::vcmpgtub(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); }
984
inline void Assembler::vcmpgtuh(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); }
985
inline void Assembler::vcmpgtuw(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); }
986
inline void Assembler::vcmpequb_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); }
987
inline void Assembler::vcmpequh_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); }
988
inline void Assembler::vcmpequw_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); }
989
inline void Assembler::vcmpgtsh_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); }
990
inline void Assembler::vcmpgtsb_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); }
991
inline void Assembler::vcmpgtsw_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); }
992
inline void Assembler::vcmpgtub_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); }
993
inline void Assembler::vcmpgtuh_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); }
994
inline void Assembler::vcmpgtuw_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); }
995
inline void Assembler::vand( VectorRegister d, VectorRegister a, VectorRegister b) { guarantee(VM_Version::has_vand(), "opcode not supported on this hardware");
996
emit_int32( VAND_OPCODE | vrt(d) | vra(a) | vrb(b)); }
997
inline void Assembler::vandc( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VANDC_OPCODE | vrt(d) | vra(a) | vrb(b)); }
998
inline void Assembler::vnor( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VNOR_OPCODE | vrt(d) | vra(a) | vrb(b)); }
999
inline void Assembler::vor( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VOR_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1000
inline void Assembler::vmr( VectorRegister d, VectorRegister a) { emit_int32( VOR_OPCODE | vrt(d) | vra(a) | vrb(a)); }
1001
inline void Assembler::vxor( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VXOR_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1002
inline void Assembler::vrld( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLD_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1003
inline void Assembler::vrlb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1004
inline void Assembler::vrlw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1005
inline void Assembler::vrlh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1006
inline void Assembler::vslb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSLB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1007
inline void Assembler::vskw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSKW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1008
inline void Assembler::vslh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSLH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1009
inline void Assembler::vsrb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1010
inline void Assembler::vsrw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1011
inline void Assembler::vsrh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1012
inline void Assembler::vsrab( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRAB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1013
inline void Assembler::vsraw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRAW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1014
inline void Assembler::vsrah( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRAH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1015
inline void Assembler::vpopcntw(VectorRegister d, VectorRegister b) { emit_int32( VPOPCNTW_OPCODE | vrt(d) | vrb(b)); }
1016
inline void Assembler::mtvscr( VectorRegister b) { emit_int32( MTVSCR_OPCODE | vrb(b)); }
1017
inline void Assembler::mfvscr( VectorRegister d) { emit_int32( MFVSCR_OPCODE | vrt(d)); }
1018
1019
// AES (introduced with Power 8)
1020
inline void Assembler::vcipher( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCIPHER_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1021
inline void Assembler::vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCIPHERLAST_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1022
inline void Assembler::vncipher( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VNCIPHER_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1023
inline void Assembler::vncipherlast(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VNCIPHERLAST_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1024
inline void Assembler::vsbox( VectorRegister d, VectorRegister a) { emit_int32( VSBOX_OPCODE | vrt(d) | vra(a) ); }
1025
1026
// SHA (introduced with Power 8)
1027
inline void Assembler::vshasigmad(VectorRegister d, VectorRegister a, bool st, int six) { emit_int32( VSHASIGMAD_OPCODE | vrt(d) | vra(a) | vst(st) | vsix(six)); }
1028
inline void Assembler::vshasigmaw(VectorRegister d, VectorRegister a, bool st, int six) { emit_int32( VSHASIGMAW_OPCODE | vrt(d) | vra(a) | vst(st) | vsix(six)); }
1029
1030
// Vector Binary Polynomial Multiplication (introduced with Power 8)
1031
inline void Assembler::vpmsumb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPMSUMB_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1032
inline void Assembler::vpmsumd( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPMSUMD_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1033
inline void Assembler::vpmsumh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPMSUMH_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1034
inline void Assembler::vpmsumw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPMSUMW_OPCODE | vrt(d) | vra(a) | vrb(b)); }
1035
1036
// Vector Permute and Xor (introduced with Power 8)
1037
inline void Assembler::vpermxor( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VPERMXOR_OPCODE | vrt(d) | vra(a) | vrb(b) | vrc(c)); }
1038
1039
// Transactional Memory instructions (introduced with Power 8)
1040
inline void Assembler::tbegin_() { emit_int32( TBEGIN_OPCODE | rc(1)); }
1041
inline void Assembler::tbeginrot_() { emit_int32( TBEGIN_OPCODE | /*R=1*/ 1u << (31-10) | rc(1)); }
1042
inline void Assembler::tend_() { emit_int32( TEND_OPCODE | rc(1)); }
1043
inline void Assembler::tendall_() { emit_int32( TEND_OPCODE | /*A=1*/ 1u << (31-6) | rc(1)); }
1044
inline void Assembler::tabort_() { emit_int32( TABORT_OPCODE | rc(1)); }
1045
inline void Assembler::tabort_(Register a) { assert(a != R0, "r0 not allowed"); emit_int32( TABORT_OPCODE | ra(a) | rc(1)); }
1046
inline void Assembler::tabortwc_(int t, Register a, Register b) { emit_int32( TABORTWC_OPCODE | to(t) | ra(a) | rb(b) | rc(1)); }
1047
inline void Assembler::tabortwci_(int t, Register a, int si) { emit_int32( TABORTWCI_OPCODE | to(t) | ra(a) | sh1620(si) | rc(1)); }
1048
inline void Assembler::tabortdc_(int t, Register a, Register b) { emit_int32( TABORTDC_OPCODE | to(t) | ra(a) | rb(b) | rc(1)); }
1049
inline void Assembler::tabortdci_(int t, Register a, int si) { emit_int32( TABORTDCI_OPCODE | to(t) | ra(a) | sh1620(si) | rc(1)); }
1050
inline void Assembler::tsuspend_() { emit_int32( TSR_OPCODE | rc(1)); }
1051
inline void Assembler::tresume_() { emit_int32( TSR_OPCODE | /*L=1*/ 1u << (31-10) | rc(1)); }
1052
inline void Assembler::tcheck(int f) { emit_int32( TCHECK_OPCODE | bf(f)); }
1053
1054
// Deliver A Random Number (introduced with POWER9)
1055
inline void Assembler::darn(Register d, int l /* =1 */) { emit_int32( DARN_OPCODE | rt(d) | l14(l)); }
1056
1057
// ra0 version
1058
inline void Assembler::lwzx( Register d, Register s2) { emit_int32( LWZX_OPCODE | rt(d) | rb(s2));}
1059
inline void Assembler::lwz( Register d, int si16 ) { emit_int32( LWZ_OPCODE | rt(d) | d1(si16));}
1060
inline void Assembler::lwax( Register d, Register s2) { emit_int32( LWAX_OPCODE | rt(d) | rb(s2));}
1061
inline void Assembler::lwa( Register d, int si16 ) { emit_int32( LWA_OPCODE | rt(d) | ds(si16));}
1062
inline void Assembler::lwbrx(Register d, Register s2) { emit_int32( LWBRX_OPCODE| rt(d) | rb(s2));}
1063
inline void Assembler::lhzx( Register d, Register s2) { emit_int32( LHZX_OPCODE | rt(d) | rb(s2));}
1064
inline void Assembler::lhz( Register d, int si16 ) { emit_int32( LHZ_OPCODE | rt(d) | d1(si16));}
1065
inline void Assembler::lhax( Register d, Register s2) { emit_int32( LHAX_OPCODE | rt(d) | rb(s2));}
1066
inline void Assembler::lha( Register d, int si16 ) { emit_int32( LHA_OPCODE | rt(d) | d1(si16));}
1067
inline void Assembler::lhbrx(Register d, Register s2) { emit_int32( LHBRX_OPCODE| rt(d) | rb(s2));}
1068
inline void Assembler::lbzx( Register d, Register s2) { emit_int32( LBZX_OPCODE | rt(d) | rb(s2));}
1069
inline void Assembler::lbz( Register d, int si16 ) { emit_int32( LBZ_OPCODE | rt(d) | d1(si16));}
1070
inline void Assembler::ld( Register d, int si16 ) { emit_int32( LD_OPCODE | rt(d) | ds(si16));}
1071
inline void Assembler::ldx( Register d, Register s2) { emit_int32( LDX_OPCODE | rt(d) | rb(s2));}
1072
inline void Assembler::ldbrx(Register d, Register s2) { emit_int32( LDBRX_OPCODE| rt(d) | rb(s2));}
1073
inline void Assembler::stwx( Register d, Register s2) { emit_int32( STWX_OPCODE | rs(d) | rb(s2));}
1074
inline void Assembler::stw( Register d, int si16 ) { emit_int32( STW_OPCODE | rs(d) | d1(si16));}
1075
inline void Assembler::stwbrx(Register d, Register s2){ emit_int32(STWBRX_OPCODE| rs(d) | rb(s2));}
1076
inline void Assembler::sthx( Register d, Register s2) { emit_int32( STHX_OPCODE | rs(d) | rb(s2));}
1077
inline void Assembler::sth( Register d, int si16 ) { emit_int32( STH_OPCODE | rs(d) | d1(si16));}
1078
inline void Assembler::sthbrx(Register d, Register s2){ emit_int32(STHBRX_OPCODE| rs(d) | rb(s2));}
1079
inline void Assembler::stbx( Register d, Register s2) { emit_int32( STBX_OPCODE | rs(d) | rb(s2));}
1080
inline void Assembler::stb( Register d, int si16 ) { emit_int32( STB_OPCODE | rs(d) | d1(si16));}
1081
inline void Assembler::std( Register d, int si16 ) { emit_int32( STD_OPCODE | rs(d) | ds(si16));}
1082
inline void Assembler::stdx( Register d, Register s2) { emit_int32( STDX_OPCODE | rs(d) | rb(s2));}
1083
inline void Assembler::stdbrx(Register d, Register s2){ emit_int32(STDBRX_OPCODE| rs(d) | rb(s2));}
1084
1085
// ra0 version
1086
inline void Assembler::icbi( Register s2) { emit_int32( ICBI_OPCODE | rb(s2) ); }
1087
//inline void Assembler::dcba( Register s2) { emit_int32( DCBA_OPCODE | rb(s2) ); }
1088
inline void Assembler::dcbz( Register s2) { emit_int32( DCBZ_OPCODE | rb(s2) ); }
1089
inline void Assembler::dcbst( Register s2) { emit_int32( DCBST_OPCODE | rb(s2) ); }
1090
inline void Assembler::dcbf( Register s2) { emit_int32( DCBF_OPCODE | rb(s2) ); }
1091
inline void Assembler::dcbt( Register s2) { emit_int32( DCBT_OPCODE | rb(s2) ); }
1092
inline void Assembler::dcbtct( Register s2, int ct) { emit_int32( DCBT_OPCODE | rb(s2) | thct(ct)); }
1093
inline void Assembler::dcbtds( Register s2, int ds) { emit_int32( DCBT_OPCODE | rb(s2) | thds(ds)); }
1094
inline void Assembler::dcbtst( Register s2) { emit_int32( DCBTST_OPCODE | rb(s2) ); }
1095
inline void Assembler::dcbtstct(Register s2, int ct) { emit_int32( DCBTST_OPCODE | rb(s2) | thct(ct)); }
1096
1097
// ra0 version
1098
inline void Assembler::lbarx_unchecked(Register d, Register b, int eh1) { emit_int32( LBARX_OPCODE | rt(d) | rb(b) | eh(eh1)); }
1099
inline void Assembler::lharx_unchecked(Register d, Register b, int eh1) { emit_int32( LHARX_OPCODE | rt(d) | rb(b) | eh(eh1)); }
1100
inline void Assembler::lwarx_unchecked(Register d, Register b, int eh1) { emit_int32( LWARX_OPCODE | rt(d) | rb(b) | eh(eh1)); }
1101
inline void Assembler::ldarx_unchecked(Register d, Register b, int eh1) { emit_int32( LDARX_OPCODE | rt(d) | rb(b) | eh(eh1)); }
1102
inline void Assembler::lqarx_unchecked(Register d, Register b, int eh1) { emit_int32( LQARX_OPCODE | rt(d) | rb(b) | eh(eh1)); }
1103
inline void Assembler::lbarx( Register d, Register b, bool hint_exclusive_access){ lbarx_unchecked(d, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); }
1104
inline void Assembler::lharx( Register d, Register b, bool hint_exclusive_access){ lharx_unchecked(d, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); }
1105
inline void Assembler::lwarx( Register d, Register b, bool hint_exclusive_access){ lwarx_unchecked(d, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); }
1106
inline void Assembler::ldarx( Register d, Register b, bool hint_exclusive_access){ ldarx_unchecked(d, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); }
1107
inline void Assembler::lqarx( Register d, Register b, bool hint_exclusive_access){ lqarx_unchecked(d, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); }
1108
inline void Assembler::stbcx_(Register s, Register b) { emit_int32( STBCX_OPCODE | rs(s) | rb(b) | rc(1)); }
1109
inline void Assembler::sthcx_(Register s, Register b) { emit_int32( STHCX_OPCODE | rs(s) | rb(b) | rc(1)); }
1110
inline void Assembler::stwcx_(Register s, Register b) { emit_int32( STWCX_OPCODE | rs(s) | rb(b) | rc(1)); }
1111
inline void Assembler::stdcx_(Register s, Register b) { emit_int32( STDCX_OPCODE | rs(s) | rb(b) | rc(1)); }
1112
inline void Assembler::stqcx_(Register s, Register b) { emit_int32( STQCX_OPCODE | rs(s) | rb(b) | rc(1)); }
1113
1114
// ra0 version
1115
inline void Assembler::lfs( FloatRegister d, int si16) { emit_int32( LFS_OPCODE | frt(d) | simm(si16,16)); }
1116
inline void Assembler::lfsx(FloatRegister d, Register b) { emit_int32( LFSX_OPCODE | frt(d) | rb(b)); }
1117
inline void Assembler::lfd( FloatRegister d, int si16) { emit_int32( LFD_OPCODE | frt(d) | simm(si16,16)); }
1118
inline void Assembler::lfdx(FloatRegister d, Register b) { emit_int32( LFDX_OPCODE | frt(d) | rb(b)); }
1119
1120
// ra0 version
1121
inline void Assembler::stfs( FloatRegister s, int si16) { emit_int32( STFS_OPCODE | frs(s) | simm(si16, 16)); }
1122
inline void Assembler::stfsx(FloatRegister s, Register b) { emit_int32( STFSX_OPCODE | frs(s) | rb(b)); }
1123
inline void Assembler::stfd( FloatRegister s, int si16) { emit_int32( STFD_OPCODE | frs(s) | simm(si16, 16)); }
1124
inline void Assembler::stfdx(FloatRegister s, Register b) { emit_int32( STFDX_OPCODE | frs(s) | rb(b)); }
1125
1126
// ra0 version
1127
inline void Assembler::lvebx( VectorRegister d, Register s2) { emit_int32( LVEBX_OPCODE | vrt(d) | rb(s2)); }
1128
inline void Assembler::lvehx( VectorRegister d, Register s2) { emit_int32( LVEHX_OPCODE | vrt(d) | rb(s2)); }
1129
inline void Assembler::lvewx( VectorRegister d, Register s2) { emit_int32( LVEWX_OPCODE | vrt(d) | rb(s2)); }
1130
inline void Assembler::lvx( VectorRegister d, Register s2) { emit_int32( LVX_OPCODE | vrt(d) | rb(s2)); }
1131
inline void Assembler::lvxl( VectorRegister d, Register s2) { emit_int32( LVXL_OPCODE | vrt(d) | rb(s2)); }
1132
inline void Assembler::stvebx(VectorRegister d, Register s2) { emit_int32( STVEBX_OPCODE | vrt(d) | rb(s2)); }
1133
inline void Assembler::stvehx(VectorRegister d, Register s2) { emit_int32( STVEHX_OPCODE | vrt(d) | rb(s2)); }
1134
inline void Assembler::stvewx(VectorRegister d, Register s2) { emit_int32( STVEWX_OPCODE | vrt(d) | rb(s2)); }
1135
inline void Assembler::stvx( VectorRegister d, Register s2) { emit_int32( STVX_OPCODE | vrt(d) | rb(s2)); }
1136
inline void Assembler::stvxl( VectorRegister d, Register s2) { emit_int32( STVXL_OPCODE | vrt(d) | rb(s2)); }
1137
inline void Assembler::lvsl( VectorRegister d, Register s2) { emit_int32( LVSL_OPCODE | vrt(d) | rb(s2)); }
1138
inline void Assembler::lvsr( VectorRegister d, Register s2) { emit_int32( LVSR_OPCODE | vrt(d) | rb(s2)); }
1139
1140
inline void Assembler::load_perm(VectorRegister perm, Register addr) {
1141
#if defined(VM_LITTLE_ENDIAN)
1142
lvsr(perm, addr);
1143
#else
1144
lvsl(perm, addr);
1145
#endif
1146
}
1147
1148
inline void Assembler::vec_perm(VectorRegister first_dest, VectorRegister second, VectorRegister perm) {
1149
#if defined(VM_LITTLE_ENDIAN)
1150
vperm(first_dest, second, first_dest, perm);
1151
#else
1152
vperm(first_dest, first_dest, second, perm);
1153
#endif
1154
}
1155
1156
inline void Assembler::vec_perm(VectorRegister dest, VectorRegister first, VectorRegister second, VectorRegister perm) {
1157
#if defined(VM_LITTLE_ENDIAN)
1158
vperm(dest, second, first, perm);
1159
#else
1160
vperm(dest, first, second, perm);
1161
#endif
1162
}
1163
1164
inline void Assembler::load_const(Register d, void* x, Register tmp) {
1165
load_const(d, (long)x, tmp);
1166
}
1167
1168
// Load a 64 bit constant encoded by a `Label'. This works for bound
1169
// labels as well as unbound ones. For unbound labels, the code will
1170
// be patched as soon as the label gets bound.
1171
inline void Assembler::load_const(Register d, Label& L, Register tmp) {
1172
load_const(d, target(L), tmp);
1173
}
1174
1175
// Load a 64 bit constant encoded by an AddressLiteral. patchable.
1176
inline void Assembler::load_const(Register d, AddressLiteral& a, Register tmp) {
1177
// First relocate (we don't change the offset in the RelocationHolder,
1178
// just pass a.rspec()), then delegate to load_const(Register, long).
1179
relocate(a.rspec());
1180
load_const(d, (long)a.value(), tmp);
1181
}
1182
1183
inline void Assembler::load_const32(Register d, int i) {
1184
lis(d, i >> 16);
1185
ori(d, d, i & 0xFFFF);
1186
}
1187
1188
#endif // CPU_PPC_ASSEMBLER_PPC_INLINE_HPP
1189
1190