Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/c1/c1_IR.cpp
40930 views
1
/*
2
* Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_Compilation.hpp"
27
#include "c1/c1_FrameMap.hpp"
28
#include "c1/c1_GraphBuilder.hpp"
29
#include "c1/c1_IR.hpp"
30
#include "c1/c1_InstructionPrinter.hpp"
31
#include "c1/c1_Optimizer.hpp"
32
#include "compiler/oopMap.hpp"
33
#include "memory/resourceArea.hpp"
34
#include "utilities/bitMap.inline.hpp"
35
36
37
// Implementation of XHandlers
38
//
39
// Note: This code could eventually go away if we are
40
// just using the ciExceptionHandlerStream.
41
42
XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
43
ciExceptionHandlerStream s(method);
44
while (!s.is_done()) {
45
_list.append(new XHandler(s.handler()));
46
s.next();
47
}
48
assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
49
}
50
51
// deep copy of all XHandler contained in list
52
XHandlers::XHandlers(XHandlers* other) :
53
_list(other->length())
54
{
55
for (int i = 0; i < other->length(); i++) {
56
_list.append(new XHandler(other->handler_at(i)));
57
}
58
}
59
60
// Returns whether a particular exception type can be caught. Also
61
// returns true if klass is unloaded or any exception handler
62
// classes are unloaded. type_is_exact indicates whether the throw
63
// is known to be exactly that class or it might throw a subtype.
64
bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
65
// the type is unknown so be conservative
66
if (!klass->is_loaded()) {
67
return true;
68
}
69
70
for (int i = 0; i < length(); i++) {
71
XHandler* handler = handler_at(i);
72
if (handler->is_catch_all()) {
73
// catch of ANY
74
return true;
75
}
76
ciInstanceKlass* handler_klass = handler->catch_klass();
77
// if it's unknown it might be catchable
78
if (!handler_klass->is_loaded()) {
79
return true;
80
}
81
// if the throw type is definitely a subtype of the catch type
82
// then it can be caught.
83
if (klass->is_subtype_of(handler_klass)) {
84
return true;
85
}
86
if (!type_is_exact) {
87
// If the type isn't exactly known then it can also be caught by
88
// catch statements where the inexact type is a subtype of the
89
// catch type.
90
// given: foo extends bar extends Exception
91
// throw bar can be caught by catch foo, catch bar, and catch
92
// Exception, however it can't be caught by any handlers without
93
// bar in its type hierarchy.
94
if (handler_klass->is_subtype_of(klass)) {
95
return true;
96
}
97
}
98
}
99
100
return false;
101
}
102
103
104
bool XHandlers::equals(XHandlers* others) const {
105
if (others == NULL) return false;
106
if (length() != others->length()) return false;
107
108
for (int i = 0; i < length(); i++) {
109
if (!handler_at(i)->equals(others->handler_at(i))) return false;
110
}
111
return true;
112
}
113
114
bool XHandler::equals(XHandler* other) const {
115
assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
116
117
if (entry_pco() != other->entry_pco()) return false;
118
if (scope_count() != other->scope_count()) return false;
119
if (_desc != other->_desc) return false;
120
121
assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
122
return true;
123
}
124
125
126
// Implementation of IRScope
127
BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
128
GraphBuilder gm(compilation, this);
129
NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
130
if (compilation->bailed_out()) return NULL;
131
return gm.start();
132
}
133
134
135
IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
136
: _compilation(compilation)
137
, _callees(2)
138
, _requires_phi_function(method->max_locals())
139
{
140
_caller = caller;
141
_level = caller == NULL ? 0 : caller->level() + 1;
142
_method = method;
143
_xhandlers = new XHandlers(method);
144
_number_of_locks = 0;
145
_monitor_pairing_ok = method->has_balanced_monitors();
146
_wrote_final = false;
147
_wrote_fields = false;
148
_wrote_volatile = false;
149
_start = NULL;
150
151
if (osr_bci != -1) {
152
// selective creation of phi functions is not possibel in osr-methods
153
_requires_phi_function.set_range(0, method->max_locals());
154
}
155
156
assert(method->holder()->is_loaded() , "method holder must be loaded");
157
158
// build graph if monitor pairing is ok
159
if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
160
}
161
162
163
int IRScope::max_stack() const {
164
int my_max = method()->max_stack();
165
int callee_max = 0;
166
for (int i = 0; i < number_of_callees(); i++) {
167
callee_max = MAX2(callee_max, callee_no(i)->max_stack());
168
}
169
return my_max + callee_max;
170
}
171
172
173
bool IRScopeDebugInfo::should_reexecute() {
174
ciMethod* cur_method = scope()->method();
175
int cur_bci = bci();
176
if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
177
Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
178
return Interpreter::bytecode_should_reexecute(code);
179
} else
180
return false;
181
}
182
183
184
// Implementation of CodeEmitInfo
185
186
// Stack must be NON-null
187
CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception)
188
: _scope_debug_info(NULL)
189
, _scope(stack->scope())
190
, _exception_handlers(exception_handlers)
191
, _oop_map(NULL)
192
, _stack(stack)
193
, _is_method_handle_invoke(false)
194
, _deoptimize_on_exception(deoptimize_on_exception) {
195
assert(_stack != NULL, "must be non null");
196
}
197
198
199
CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
200
: _scope_debug_info(NULL)
201
, _scope(info->_scope)
202
, _exception_handlers(NULL)
203
, _oop_map(NULL)
204
, _stack(stack == NULL ? info->_stack : stack)
205
, _is_method_handle_invoke(info->_is_method_handle_invoke)
206
, _deoptimize_on_exception(info->_deoptimize_on_exception) {
207
208
// deep copy of exception handlers
209
if (info->_exception_handlers != NULL) {
210
_exception_handlers = new XHandlers(info->_exception_handlers);
211
}
212
}
213
214
215
void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
216
// record the safepoint before recording the debug info for enclosing scopes
217
recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
218
_scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
219
recorder->end_safepoint(pc_offset);
220
}
221
222
223
void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
224
assert(_oop_map != NULL, "oop map must already exist");
225
assert(opr->is_single_cpu(), "should not call otherwise");
226
227
VMReg name = frame_map()->regname(opr);
228
_oop_map->set_oop(name);
229
}
230
231
// Mirror the stack size calculation in the deopt code
232
// How much stack space would we need at this point in the program in
233
// case of deoptimization?
234
int CodeEmitInfo::interpreter_frame_size() const {
235
ValueStack* state = _stack;
236
int size = 0;
237
int callee_parameters = 0;
238
int callee_locals = 0;
239
int extra_args = state->scope()->method()->max_stack() - state->stack_size();
240
241
while (state != NULL) {
242
int locks = state->locks_size();
243
int temps = state->stack_size();
244
bool is_top_frame = (state == _stack);
245
ciMethod* method = state->scope()->method();
246
247
int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
248
temps + callee_parameters,
249
extra_args,
250
locks,
251
callee_parameters,
252
callee_locals,
253
is_top_frame);
254
size += frame_size;
255
256
callee_parameters = method->size_of_parameters();
257
callee_locals = method->max_locals();
258
extra_args = 0;
259
state = state->caller_state();
260
}
261
return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
262
}
263
264
// Implementation of IR
265
266
IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
267
_num_loops(0) {
268
// setup IR fields
269
_compilation = compilation;
270
_top_scope = new IRScope(compilation, NULL, -1, method, osr_bci, true);
271
_code = NULL;
272
}
273
274
275
void IR::optimize_blocks() {
276
Optimizer opt(this);
277
if (!compilation()->profile_branches()) {
278
if (DoCEE) {
279
opt.eliminate_conditional_expressions();
280
#ifndef PRODUCT
281
if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
282
if (PrintIR || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
283
#endif
284
}
285
if (EliminateBlocks) {
286
opt.eliminate_blocks();
287
#ifndef PRODUCT
288
if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
289
if (PrintIR || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
290
#endif
291
}
292
}
293
}
294
295
void IR::eliminate_null_checks() {
296
Optimizer opt(this);
297
if (EliminateNullChecks) {
298
opt.eliminate_null_checks();
299
#ifndef PRODUCT
300
if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
301
if (PrintIR || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
302
#endif
303
}
304
}
305
306
307
static int sort_pairs(BlockPair** a, BlockPair** b) {
308
if ((*a)->from() == (*b)->from()) {
309
return (*a)->to()->block_id() - (*b)->to()->block_id();
310
} else {
311
return (*a)->from()->block_id() - (*b)->from()->block_id();
312
}
313
}
314
315
316
class CriticalEdgeFinder: public BlockClosure {
317
BlockPairList blocks;
318
IR* _ir;
319
320
public:
321
CriticalEdgeFinder(IR* ir): _ir(ir) {}
322
void block_do(BlockBegin* bb) {
323
BlockEnd* be = bb->end();
324
int nos = be->number_of_sux();
325
if (nos >= 2) {
326
for (int i = 0; i < nos; i++) {
327
BlockBegin* sux = be->sux_at(i);
328
if (sux->number_of_preds() >= 2) {
329
blocks.append(new BlockPair(bb, sux));
330
}
331
}
332
}
333
}
334
335
void split_edges() {
336
BlockPair* last_pair = NULL;
337
blocks.sort(sort_pairs);
338
for (int i = 0; i < blocks.length(); i++) {
339
BlockPair* pair = blocks.at(i);
340
if (last_pair != NULL && pair->is_same(last_pair)) continue;
341
BlockBegin* from = pair->from();
342
BlockBegin* to = pair->to();
343
BlockBegin* split = from->insert_block_between(to);
344
#ifndef PRODUCT
345
if ((PrintIR || PrintIR1) && Verbose) {
346
tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
347
from->block_id(), to->block_id(), split->block_id());
348
}
349
#endif
350
last_pair = pair;
351
}
352
}
353
};
354
355
void IR::split_critical_edges() {
356
CriticalEdgeFinder cef(this);
357
358
iterate_preorder(&cef);
359
cef.split_edges();
360
}
361
362
363
class UseCountComputer: public ValueVisitor, BlockClosure {
364
private:
365
void visit(Value* n) {
366
// Local instructions and Phis for expression stack values at the
367
// start of basic blocks are not added to the instruction list
368
if (!(*n)->is_linked() && (*n)->can_be_linked()) {
369
assert(false, "a node was not appended to the graph");
370
Compilation::current()->bailout("a node was not appended to the graph");
371
}
372
// use n's input if not visited before
373
if (!(*n)->is_pinned() && !(*n)->has_uses()) {
374
// note: a) if the instruction is pinned, it will be handled by compute_use_count
375
// b) if the instruction has uses, it was touched before
376
// => in both cases we don't need to update n's values
377
uses_do(n);
378
}
379
// use n
380
(*n)->_use_count++;
381
}
382
383
Values* worklist;
384
int depth;
385
enum {
386
max_recurse_depth = 20
387
};
388
389
void uses_do(Value* n) {
390
depth++;
391
if (depth > max_recurse_depth) {
392
// don't allow the traversal to recurse too deeply
393
worklist->push(*n);
394
} else {
395
(*n)->input_values_do(this);
396
// special handling for some instructions
397
if ((*n)->as_BlockEnd() != NULL) {
398
// note on BlockEnd:
399
// must 'use' the stack only if the method doesn't
400
// terminate, however, in those cases stack is empty
401
(*n)->state_values_do(this);
402
}
403
}
404
depth--;
405
}
406
407
void block_do(BlockBegin* b) {
408
depth = 0;
409
// process all pinned nodes as the roots of expression trees
410
for (Instruction* n = b; n != NULL; n = n->next()) {
411
if (n->is_pinned()) uses_do(&n);
412
}
413
assert(depth == 0, "should have counted back down");
414
415
// now process any unpinned nodes which recursed too deeply
416
while (worklist->length() > 0) {
417
Value t = worklist->pop();
418
if (!t->is_pinned()) {
419
// compute the use count
420
uses_do(&t);
421
422
// pin the instruction so that LIRGenerator doesn't recurse
423
// too deeply during it's evaluation.
424
t->pin();
425
}
426
}
427
assert(depth == 0, "should have counted back down");
428
}
429
430
UseCountComputer() {
431
worklist = new Values();
432
depth = 0;
433
}
434
435
public:
436
static void compute(BlockList* blocks) {
437
UseCountComputer ucc;
438
blocks->iterate_backward(&ucc);
439
}
440
};
441
442
443
// helper macro for short definition of trace-output inside code
444
#ifdef ASSERT
445
#define TRACE_LINEAR_SCAN(level, code) \
446
if (TraceLinearScanLevel >= level) { \
447
code; \
448
}
449
#else
450
#define TRACE_LINEAR_SCAN(level, code)
451
#endif
452
453
class ComputeLinearScanOrder : public StackObj {
454
private:
455
int _max_block_id; // the highest block_id of a block
456
int _num_blocks; // total number of blocks (smaller than _max_block_id)
457
int _num_loops; // total number of loops
458
bool _iterative_dominators;// method requires iterative computation of dominatiors
459
460
BlockList* _linear_scan_order; // the resulting list of blocks in correct order
461
462
ResourceBitMap _visited_blocks; // used for recursive processing of blocks
463
ResourceBitMap _active_blocks; // used for recursive processing of blocks
464
ResourceBitMap _dominator_blocks; // temproary BitMap used for computation of dominator
465
intArray _forward_branches; // number of incoming forward branches for each block
466
BlockList _loop_end_blocks; // list of all loop end blocks collected during count_edges
467
BitMap2D _loop_map; // two-dimensional bit set: a bit is set if a block is contained in a loop
468
BlockList _work_list; // temporary list (used in mark_loops and compute_order)
469
BlockList _loop_headers;
470
471
Compilation* _compilation;
472
473
// accessors for _visited_blocks and _active_blocks
474
void init_visited() { _active_blocks.clear(); _visited_blocks.clear(); }
475
bool is_visited(BlockBegin* b) const { return _visited_blocks.at(b->block_id()); }
476
bool is_active(BlockBegin* b) const { return _active_blocks.at(b->block_id()); }
477
void set_visited(BlockBegin* b) { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
478
void set_active(BlockBegin* b) { assert(!is_active(b), "already set"); _active_blocks.set_bit(b->block_id()); }
479
void clear_active(BlockBegin* b) { assert(is_active(b), "not already"); _active_blocks.clear_bit(b->block_id()); }
480
481
// accessors for _forward_branches
482
void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
483
int dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
484
485
// accessors for _loop_map
486
bool is_block_in_loop (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
487
void set_block_in_loop (int loop_idx, BlockBegin* b) { _loop_map.set_bit(loop_idx, b->block_id()); }
488
void clear_block_in_loop(int loop_idx, int block_id) { _loop_map.clear_bit(loop_idx, block_id); }
489
490
// count edges between blocks
491
void count_edges(BlockBegin* cur, BlockBegin* parent);
492
493
// loop detection
494
void mark_loops();
495
void clear_non_natural_loops(BlockBegin* start_block);
496
void assign_loop_depth(BlockBegin* start_block);
497
498
// computation of final block order
499
BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
500
void compute_dominator(BlockBegin* cur, BlockBegin* parent);
501
void compute_dominator_impl(BlockBegin* cur, BlockBegin* parent);
502
int compute_weight(BlockBegin* cur);
503
bool ready_for_processing(BlockBegin* cur);
504
void sort_into_work_list(BlockBegin* b);
505
void append_block(BlockBegin* cur);
506
void compute_order(BlockBegin* start_block);
507
508
// fixup of dominators for non-natural loops
509
bool compute_dominators_iter();
510
void compute_dominators();
511
512
// debug functions
513
DEBUG_ONLY(void print_blocks();)
514
DEBUG_ONLY(void verify();)
515
516
Compilation* compilation() const { return _compilation; }
517
public:
518
ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
519
520
// accessors for final result
521
BlockList* linear_scan_order() const { return _linear_scan_order; }
522
int num_loops() const { return _num_loops; }
523
};
524
525
526
ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
527
_max_block_id(BlockBegin::number_of_blocks()),
528
_num_blocks(0),
529
_num_loops(0),
530
_iterative_dominators(false),
531
_linear_scan_order(NULL), // initialized later with correct size
532
_visited_blocks(_max_block_id),
533
_active_blocks(_max_block_id),
534
_dominator_blocks(_max_block_id),
535
_forward_branches(_max_block_id, _max_block_id, 0),
536
_loop_end_blocks(8),
537
_loop_map(0), // initialized later with correct size
538
_work_list(8),
539
_compilation(c)
540
{
541
TRACE_LINEAR_SCAN(2, tty->print_cr("***** computing linear-scan block order"));
542
543
count_edges(start_block, NULL);
544
545
if (compilation()->is_profiling()) {
546
ciMethod *method = compilation()->method();
547
if (!method->is_accessor()) {
548
ciMethodData* md = method->method_data_or_null();
549
assert(md != NULL, "Sanity");
550
md->set_compilation_stats(_num_loops, _num_blocks);
551
}
552
}
553
554
if (_num_loops > 0) {
555
mark_loops();
556
clear_non_natural_loops(start_block);
557
assign_loop_depth(start_block);
558
}
559
560
compute_order(start_block);
561
compute_dominators();
562
563
DEBUG_ONLY(print_blocks());
564
DEBUG_ONLY(verify());
565
}
566
567
568
// Traverse the CFG:
569
// * count total number of blocks
570
// * count all incoming edges and backward incoming edges
571
// * number loop header blocks
572
// * create a list with all loop end blocks
573
void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
574
TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
575
assert(cur->dominator() == NULL, "dominator already initialized");
576
577
if (is_active(cur)) {
578
TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
579
assert(is_visited(cur), "block must be visisted when block is active");
580
assert(parent != NULL, "must have parent");
581
582
cur->set(BlockBegin::backward_branch_target_flag);
583
584
// When a loop header is also the start of an exception handler, then the backward branch is
585
// an exception edge. Because such edges are usually critical edges which cannot be split, the
586
// loop must be excluded here from processing.
587
if (cur->is_set(BlockBegin::exception_entry_flag)) {
588
// Make sure that dominators are correct in this weird situation
589
_iterative_dominators = true;
590
return;
591
}
592
593
cur->set(BlockBegin::linear_scan_loop_header_flag);
594
parent->set(BlockBegin::linear_scan_loop_end_flag);
595
596
assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
597
"loop end blocks must have one successor (critical edges are split)");
598
599
_loop_end_blocks.append(parent);
600
return;
601
}
602
603
// increment number of incoming forward branches
604
inc_forward_branches(cur);
605
606
if (is_visited(cur)) {
607
TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
608
return;
609
}
610
611
_num_blocks++;
612
set_visited(cur);
613
set_active(cur);
614
615
// recursive call for all successors
616
int i;
617
for (i = cur->number_of_sux() - 1; i >= 0; i--) {
618
count_edges(cur->sux_at(i), cur);
619
}
620
for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
621
count_edges(cur->exception_handler_at(i), cur);
622
}
623
624
clear_active(cur);
625
626
// Each loop has a unique number.
627
// When multiple loops are nested, assign_loop_depth assumes that the
628
// innermost loop has the lowest number. This is guaranteed by setting
629
// the loop number after the recursive calls for the successors above
630
// have returned.
631
if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
632
assert(cur->loop_index() == -1, "cannot set loop-index twice");
633
TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
634
635
cur->set_loop_index(_num_loops);
636
_loop_headers.append(cur);
637
_num_loops++;
638
}
639
640
TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
641
}
642
643
644
void ComputeLinearScanOrder::mark_loops() {
645
TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
646
647
_loop_map = BitMap2D(_num_loops, _max_block_id);
648
649
for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
650
BlockBegin* loop_end = _loop_end_blocks.at(i);
651
BlockBegin* loop_start = loop_end->sux_at(0);
652
int loop_idx = loop_start->loop_index();
653
654
TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
655
assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
656
assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
657
assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
658
assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
659
assert(_work_list.is_empty(), "work list must be empty before processing");
660
661
// add the end-block of the loop to the working list
662
_work_list.push(loop_end);
663
set_block_in_loop(loop_idx, loop_end);
664
do {
665
BlockBegin* cur = _work_list.pop();
666
667
TRACE_LINEAR_SCAN(3, tty->print_cr(" processing B%d", cur->block_id()));
668
assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
669
670
// recursive processing of all predecessors ends when start block of loop is reached
671
if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
672
for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
673
BlockBegin* pred = cur->pred_at(j);
674
675
if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
676
// this predecessor has not been processed yet, so add it to work list
677
TRACE_LINEAR_SCAN(3, tty->print_cr(" pushing B%d", pred->block_id()));
678
_work_list.push(pred);
679
set_block_in_loop(loop_idx, pred);
680
}
681
}
682
}
683
} while (!_work_list.is_empty());
684
}
685
}
686
687
688
// check for non-natural loops (loops where the loop header does not dominate
689
// all other loop blocks = loops with mulitple entries).
690
// such loops are ignored
691
void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
692
for (int i = _num_loops - 1; i >= 0; i--) {
693
if (is_block_in_loop(i, start_block)) {
694
// loop i contains the entry block of the method
695
// -> this is not a natural loop, so ignore it
696
TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
697
698
BlockBegin *loop_header = _loop_headers.at(i);
699
assert(loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Must be loop header");
700
701
for (int j = 0; j < loop_header->number_of_preds(); j++) {
702
BlockBegin *pred = loop_header->pred_at(j);
703
pred->clear(BlockBegin::linear_scan_loop_end_flag);
704
}
705
706
loop_header->clear(BlockBegin::linear_scan_loop_header_flag);
707
708
for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
709
clear_block_in_loop(i, block_id);
710
}
711
_iterative_dominators = true;
712
}
713
}
714
}
715
716
void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
717
TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing loop-depth and weight"));
718
init_visited();
719
720
assert(_work_list.is_empty(), "work list must be empty before processing");
721
_work_list.append(start_block);
722
723
do {
724
BlockBegin* cur = _work_list.pop();
725
726
if (!is_visited(cur)) {
727
set_visited(cur);
728
TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
729
730
// compute loop-depth and loop-index for the block
731
assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
732
int i;
733
int loop_depth = 0;
734
int min_loop_idx = -1;
735
for (i = _num_loops - 1; i >= 0; i--) {
736
if (is_block_in_loop(i, cur)) {
737
loop_depth++;
738
min_loop_idx = i;
739
}
740
}
741
cur->set_loop_depth(loop_depth);
742
cur->set_loop_index(min_loop_idx);
743
744
// append all unvisited successors to work list
745
for (i = cur->number_of_sux() - 1; i >= 0; i--) {
746
_work_list.append(cur->sux_at(i));
747
}
748
for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
749
_work_list.append(cur->exception_handler_at(i));
750
}
751
}
752
} while (!_work_list.is_empty());
753
}
754
755
756
BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
757
assert(a != NULL && b != NULL, "must have input blocks");
758
759
_dominator_blocks.clear();
760
while (a != NULL) {
761
_dominator_blocks.set_bit(a->block_id());
762
assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
763
a = a->dominator();
764
}
765
while (b != NULL && !_dominator_blocks.at(b->block_id())) {
766
assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
767
b = b->dominator();
768
}
769
770
assert(b != NULL, "could not find dominator");
771
return b;
772
}
773
774
void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
775
init_visited();
776
compute_dominator_impl(cur, parent);
777
}
778
779
void ComputeLinearScanOrder::compute_dominator_impl(BlockBegin* cur, BlockBegin* parent) {
780
// Mark as visited to avoid recursive calls with same parent
781
set_visited(cur);
782
783
if (cur->dominator() == NULL) {
784
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
785
cur->set_dominator(parent);
786
787
} else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
788
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
789
// Does not hold for exception blocks
790
assert(cur->number_of_preds() > 1 || cur->is_set(BlockBegin::exception_entry_flag), "");
791
cur->set_dominator(common_dominator(cur->dominator(), parent));
792
}
793
794
// Additional edge to xhandler of all our successors
795
// range check elimination needs that the state at the end of a
796
// block be valid in every block it dominates so cur must dominate
797
// the exception handlers of its successors.
798
int num_cur_xhandler = cur->number_of_exception_handlers();
799
for (int j = 0; j < num_cur_xhandler; j++) {
800
BlockBegin* xhandler = cur->exception_handler_at(j);
801
if (!is_visited(xhandler)) {
802
compute_dominator_impl(xhandler, parent);
803
}
804
}
805
}
806
807
808
int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
809
BlockBegin* single_sux = NULL;
810
if (cur->number_of_sux() == 1) {
811
single_sux = cur->sux_at(0);
812
}
813
814
// limit loop-depth to 15 bit (only for security reason, it will never be so big)
815
int weight = (cur->loop_depth() & 0x7FFF) << 16;
816
817
// general macro for short definition of weight flags
818
// the first instance of INC_WEIGHT_IF has the highest priority
819
int cur_bit = 15;
820
#define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
821
822
// this is necessery for the (very rare) case that two successing blocks have
823
// the same loop depth, but a different loop index (can happen for endless loops
824
// with exception handlers)
825
INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
826
827
// loop end blocks (blocks that end with a backward branch) are added
828
// after all other blocks of the loop.
829
INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
830
831
// critical edge split blocks are prefered because than they have a bigger
832
// proability to be completely empty
833
INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
834
835
// exceptions should not be thrown in normal control flow, so these blocks
836
// are added as late as possible
837
INC_WEIGHT_IF(cur->end()->as_Throw() == NULL && (single_sux == NULL || single_sux->end()->as_Throw() == NULL));
838
INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
839
840
// exceptions handlers are added as late as possible
841
INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
842
843
// guarantee that weight is > 0
844
weight |= 1;
845
846
#undef INC_WEIGHT_IF
847
assert(cur_bit >= 0, "too many flags");
848
assert(weight > 0, "weight cannot become negative");
849
850
return weight;
851
}
852
853
bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
854
// Discount the edge just traveled.
855
// When the number drops to zero, all forward branches were processed
856
if (dec_forward_branches(cur) != 0) {
857
return false;
858
}
859
860
assert(_linear_scan_order->find(cur) == -1, "block already processed (block can be ready only once)");
861
assert(_work_list.find(cur) == -1, "block already in work-list (block can be ready only once)");
862
return true;
863
}
864
865
void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
866
assert(_work_list.find(cur) == -1, "block already in work list");
867
868
int cur_weight = compute_weight(cur);
869
870
// the linear_scan_number is used to cache the weight of a block
871
cur->set_linear_scan_number(cur_weight);
872
873
#ifndef PRODUCT
874
if (StressLinearScan) {
875
_work_list.insert_before(0, cur);
876
return;
877
}
878
#endif
879
880
_work_list.append(NULL); // provide space for new element
881
882
int insert_idx = _work_list.length() - 1;
883
while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
884
_work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
885
insert_idx--;
886
}
887
_work_list.at_put(insert_idx, cur);
888
889
TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
890
TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
891
892
#ifdef ASSERT
893
for (int i = 0; i < _work_list.length(); i++) {
894
assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
895
assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
896
}
897
#endif
898
}
899
900
void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
901
TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
902
assert(_linear_scan_order->find(cur) == -1, "cannot add the same block twice");
903
904
// currently, the linear scan order and code emit order are equal.
905
// therefore the linear_scan_number and the weight of a block must also
906
// be equal.
907
cur->set_linear_scan_number(_linear_scan_order->length());
908
_linear_scan_order->append(cur);
909
}
910
911
void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
912
TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing final block order"));
913
914
// the start block is always the first block in the linear scan order
915
_linear_scan_order = new BlockList(_num_blocks);
916
append_block(start_block);
917
918
assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
919
BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
920
BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
921
922
BlockBegin* sux_of_osr_entry = NULL;
923
if (osr_entry != NULL) {
924
// special handling for osr entry:
925
// ignore the edge between the osr entry and its successor for processing
926
// the osr entry block is added manually below
927
assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
928
assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
929
930
sux_of_osr_entry = osr_entry->sux_at(0);
931
dec_forward_branches(sux_of_osr_entry);
932
933
compute_dominator(osr_entry, start_block);
934
_iterative_dominators = true;
935
}
936
compute_dominator(std_entry, start_block);
937
938
// start processing with standard entry block
939
assert(_work_list.is_empty(), "list must be empty before processing");
940
941
if (ready_for_processing(std_entry)) {
942
sort_into_work_list(std_entry);
943
} else {
944
assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
945
}
946
947
do {
948
BlockBegin* cur = _work_list.pop();
949
950
if (cur == sux_of_osr_entry) {
951
// the osr entry block is ignored in normal processing, it is never added to the
952
// work list. Instead, it is added as late as possible manually here.
953
append_block(osr_entry);
954
compute_dominator(cur, osr_entry);
955
}
956
append_block(cur);
957
958
int i;
959
int num_sux = cur->number_of_sux();
960
// changed loop order to get "intuitive" order of if- and else-blocks
961
for (i = 0; i < num_sux; i++) {
962
BlockBegin* sux = cur->sux_at(i);
963
compute_dominator(sux, cur);
964
if (ready_for_processing(sux)) {
965
sort_into_work_list(sux);
966
}
967
}
968
num_sux = cur->number_of_exception_handlers();
969
for (i = 0; i < num_sux; i++) {
970
BlockBegin* sux = cur->exception_handler_at(i);
971
if (ready_for_processing(sux)) {
972
sort_into_work_list(sux);
973
}
974
}
975
} while (_work_list.length() > 0);
976
}
977
978
979
bool ComputeLinearScanOrder::compute_dominators_iter() {
980
bool changed = false;
981
int num_blocks = _linear_scan_order->length();
982
983
assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
984
assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
985
for (int i = 1; i < num_blocks; i++) {
986
BlockBegin* block = _linear_scan_order->at(i);
987
988
BlockBegin* dominator = block->pred_at(0);
989
int num_preds = block->number_of_preds();
990
991
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: Processing B%d", block->block_id()));
992
993
for (int j = 0; j < num_preds; j++) {
994
995
BlockBegin *pred = block->pred_at(j);
996
TRACE_LINEAR_SCAN(4, tty->print_cr(" DOM: Subrocessing B%d", pred->block_id()));
997
998
if (block->is_set(BlockBegin::exception_entry_flag)) {
999
dominator = common_dominator(dominator, pred);
1000
int num_pred_preds = pred->number_of_preds();
1001
for (int k = 0; k < num_pred_preds; k++) {
1002
dominator = common_dominator(dominator, pred->pred_at(k));
1003
}
1004
} else {
1005
dominator = common_dominator(dominator, pred);
1006
}
1007
}
1008
1009
if (dominator != block->dominator()) {
1010
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
1011
1012
block->set_dominator(dominator);
1013
changed = true;
1014
}
1015
}
1016
return changed;
1017
}
1018
1019
void ComputeLinearScanOrder::compute_dominators() {
1020
TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
1021
1022
// iterative computation of dominators is only required for methods with non-natural loops
1023
// and OSR-methods. For all other methods, the dominators computed when generating the
1024
// linear scan block order are correct.
1025
if (_iterative_dominators) {
1026
do {
1027
TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
1028
} while (compute_dominators_iter());
1029
}
1030
1031
// check that dominators are correct
1032
assert(!compute_dominators_iter(), "fix point not reached");
1033
1034
// Add Blocks to dominates-Array
1035
int num_blocks = _linear_scan_order->length();
1036
for (int i = 0; i < num_blocks; i++) {
1037
BlockBegin* block = _linear_scan_order->at(i);
1038
1039
BlockBegin *dom = block->dominator();
1040
if (dom) {
1041
assert(dom->dominator_depth() != -1, "Dominator must have been visited before");
1042
dom->dominates()->append(block);
1043
block->set_dominator_depth(dom->dominator_depth() + 1);
1044
} else {
1045
block->set_dominator_depth(0);
1046
}
1047
}
1048
}
1049
1050
1051
#ifdef ASSERT
1052
void ComputeLinearScanOrder::print_blocks() {
1053
if (TraceLinearScanLevel >= 2) {
1054
tty->print_cr("----- loop information:");
1055
for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1056
BlockBegin* cur = _linear_scan_order->at(block_idx);
1057
1058
tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
1059
for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1060
tty->print ("%d ", is_block_in_loop(loop_idx, cur));
1061
}
1062
tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
1063
}
1064
}
1065
1066
if (TraceLinearScanLevel >= 1) {
1067
tty->print_cr("----- linear-scan block order:");
1068
for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1069
BlockBegin* cur = _linear_scan_order->at(block_idx);
1070
tty->print("%4d: B%2d loop: %2d depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
1071
1072
tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " ");
1073
tty->print(cur->is_set(BlockBegin::critical_edge_split_flag) ? " ce" : " ");
1074
tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : " ");
1075
tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag) ? " le" : " ");
1076
1077
if (cur->dominator() != NULL) {
1078
tty->print(" dom: B%d ", cur->dominator()->block_id());
1079
} else {
1080
tty->print(" dom: NULL ");
1081
}
1082
1083
if (cur->number_of_preds() > 0) {
1084
tty->print(" preds: ");
1085
for (int j = 0; j < cur->number_of_preds(); j++) {
1086
BlockBegin* pred = cur->pred_at(j);
1087
tty->print("B%d ", pred->block_id());
1088
}
1089
}
1090
if (cur->number_of_sux() > 0) {
1091
tty->print(" sux: ");
1092
for (int j = 0; j < cur->number_of_sux(); j++) {
1093
BlockBegin* sux = cur->sux_at(j);
1094
tty->print("B%d ", sux->block_id());
1095
}
1096
}
1097
if (cur->number_of_exception_handlers() > 0) {
1098
tty->print(" ex: ");
1099
for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
1100
BlockBegin* ex = cur->exception_handler_at(j);
1101
tty->print("B%d ", ex->block_id());
1102
}
1103
}
1104
tty->cr();
1105
}
1106
}
1107
}
1108
1109
void ComputeLinearScanOrder::verify() {
1110
assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
1111
1112
if (StressLinearScan) {
1113
// blocks are scrambled when StressLinearScan is used
1114
return;
1115
}
1116
1117
// check that all successors of a block have a higher linear-scan-number
1118
// and that all predecessors of a block have a lower linear-scan-number
1119
// (only backward branches of loops are ignored)
1120
int i;
1121
for (i = 0; i < _linear_scan_order->length(); i++) {
1122
BlockBegin* cur = _linear_scan_order->at(i);
1123
1124
assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
1125
assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->find(cur), "incorrect linear_scan_number");
1126
1127
int j;
1128
for (j = cur->number_of_sux() - 1; j >= 0; j--) {
1129
BlockBegin* sux = cur->sux_at(j);
1130
1131
assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->find(sux), "incorrect linear_scan_number");
1132
if (!sux->is_set(BlockBegin::backward_branch_target_flag)) {
1133
assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
1134
}
1135
if (cur->loop_depth() == sux->loop_depth()) {
1136
assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1137
}
1138
}
1139
1140
for (j = cur->number_of_preds() - 1; j >= 0; j--) {
1141
BlockBegin* pred = cur->pred_at(j);
1142
1143
assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->find(pred), "incorrect linear_scan_number");
1144
if (!cur->is_set(BlockBegin::backward_branch_target_flag)) {
1145
assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
1146
}
1147
if (cur->loop_depth() == pred->loop_depth()) {
1148
assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1149
}
1150
1151
assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
1152
}
1153
1154
// check dominator
1155
if (i == 0) {
1156
assert(cur->dominator() == NULL, "first block has no dominator");
1157
} else {
1158
assert(cur->dominator() != NULL, "all but first block must have dominator");
1159
}
1160
// Assertion does not hold for exception handlers
1161
assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0) || cur->is_set(BlockBegin::exception_entry_flag), "Single predecessor must also be dominator");
1162
}
1163
1164
// check that all loops are continuous
1165
for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1166
int block_idx = 0;
1167
assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
1168
1169
// skip blocks before the loop
1170
while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1171
block_idx++;
1172
}
1173
// skip blocks of loop
1174
while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1175
block_idx++;
1176
}
1177
// after the first non-loop block, there must not be another loop-block
1178
while (block_idx < _num_blocks) {
1179
assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
1180
block_idx++;
1181
}
1182
}
1183
}
1184
#endif // ASSERT
1185
1186
1187
void IR::compute_code() {
1188
assert(is_valid(), "IR must be valid");
1189
1190
ComputeLinearScanOrder compute_order(compilation(), start());
1191
_num_loops = compute_order.num_loops();
1192
_code = compute_order.linear_scan_order();
1193
}
1194
1195
1196
void IR::compute_use_counts() {
1197
// make sure all values coming out of this block get evaluated.
1198
int num_blocks = _code->length();
1199
for (int i = 0; i < num_blocks; i++) {
1200
_code->at(i)->end()->state()->pin_stack_for_linear_scan();
1201
}
1202
1203
// compute use counts
1204
UseCountComputer::compute(_code);
1205
}
1206
1207
1208
void IR::iterate_preorder(BlockClosure* closure) {
1209
assert(is_valid(), "IR must be valid");
1210
start()->iterate_preorder(closure);
1211
}
1212
1213
1214
void IR::iterate_postorder(BlockClosure* closure) {
1215
assert(is_valid(), "IR must be valid");
1216
start()->iterate_postorder(closure);
1217
}
1218
1219
void IR::iterate_linear_scan_order(BlockClosure* closure) {
1220
linear_scan_order()->iterate_forward(closure);
1221
}
1222
1223
1224
#ifndef PRODUCT
1225
class BlockPrinter: public BlockClosure {
1226
private:
1227
InstructionPrinter* _ip;
1228
bool _cfg_only;
1229
bool _live_only;
1230
1231
public:
1232
BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
1233
_ip = ip;
1234
_cfg_only = cfg_only;
1235
_live_only = live_only;
1236
}
1237
1238
virtual void block_do(BlockBegin* block) {
1239
if (_cfg_only) {
1240
_ip->print_instr(block); tty->cr();
1241
} else {
1242
block->print_block(*_ip, _live_only);
1243
}
1244
}
1245
};
1246
1247
1248
void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
1249
ttyLocker ttyl;
1250
InstructionPrinter ip(!cfg_only);
1251
BlockPrinter bp(&ip, cfg_only, live_only);
1252
start->iterate_preorder(&bp);
1253
tty->cr();
1254
}
1255
1256
void IR::print(bool cfg_only, bool live_only) {
1257
if (is_valid()) {
1258
print(start(), cfg_only, live_only);
1259
} else {
1260
tty->print_cr("invalid IR");
1261
}
1262
}
1263
1264
1265
typedef GrowableArray<BlockList*> BlockListList;
1266
1267
class PredecessorValidator : public BlockClosure {
1268
private:
1269
BlockListList* _predecessors;
1270
BlockList* _blocks;
1271
1272
static int cmp(BlockBegin** a, BlockBegin** b) {
1273
return (*a)->block_id() - (*b)->block_id();
1274
}
1275
1276
public:
1277
PredecessorValidator(IR* hir) {
1278
ResourceMark rm;
1279
_predecessors = new BlockListList(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), NULL);
1280
_blocks = new BlockList();
1281
1282
int i;
1283
hir->start()->iterate_preorder(this);
1284
if (hir->code() != NULL) {
1285
assert(hir->code()->length() == _blocks->length(), "must match");
1286
for (i = 0; i < _blocks->length(); i++) {
1287
assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
1288
}
1289
}
1290
1291
for (i = 0; i < _blocks->length(); i++) {
1292
BlockBegin* block = _blocks->at(i);
1293
BlockList* preds = _predecessors->at(block->block_id());
1294
if (preds == NULL) {
1295
assert(block->number_of_preds() == 0, "should be the same");
1296
continue;
1297
}
1298
1299
// clone the pred list so we can mutate it
1300
BlockList* pred_copy = new BlockList();
1301
int j;
1302
for (j = 0; j < block->number_of_preds(); j++) {
1303
pred_copy->append(block->pred_at(j));
1304
}
1305
// sort them in the same order
1306
preds->sort(cmp);
1307
pred_copy->sort(cmp);
1308
int length = MIN2(preds->length(), block->number_of_preds());
1309
for (j = 0; j < block->number_of_preds(); j++) {
1310
assert(preds->at(j) == pred_copy->at(j), "must match");
1311
}
1312
1313
assert(preds->length() == block->number_of_preds(), "should be the same");
1314
}
1315
}
1316
1317
virtual void block_do(BlockBegin* block) {
1318
_blocks->append(block);
1319
BlockEnd* be = block->end();
1320
int n = be->number_of_sux();
1321
int i;
1322
for (i = 0; i < n; i++) {
1323
BlockBegin* sux = be->sux_at(i);
1324
assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
1325
1326
BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1327
if (preds == NULL) {
1328
preds = new BlockList();
1329
_predecessors->at_put(sux->block_id(), preds);
1330
}
1331
preds->append(block);
1332
}
1333
1334
n = block->number_of_exception_handlers();
1335
for (i = 0; i < n; i++) {
1336
BlockBegin* sux = block->exception_handler_at(i);
1337
assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
1338
1339
BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1340
if (preds == NULL) {
1341
preds = new BlockList();
1342
_predecessors->at_put(sux->block_id(), preds);
1343
}
1344
preds->append(block);
1345
}
1346
}
1347
};
1348
1349
class VerifyBlockBeginField : public BlockClosure {
1350
1351
public:
1352
1353
virtual void block_do(BlockBegin *block) {
1354
for ( Instruction *cur = block; cur != NULL; cur = cur->next()) {
1355
assert(cur->block() == block, "Block begin is not correct");
1356
}
1357
}
1358
};
1359
1360
void IR::verify() {
1361
#ifdef ASSERT
1362
PredecessorValidator pv(this);
1363
VerifyBlockBeginField verifier;
1364
this->iterate_postorder(&verifier);
1365
#endif
1366
}
1367
1368
#endif // PRODUCT
1369
1370
void SubstitutionResolver::visit(Value* v) {
1371
Value v0 = *v;
1372
if (v0) {
1373
Value vs = v0->subst();
1374
if (vs != v0) {
1375
*v = v0->subst();
1376
}
1377
}
1378
}
1379
1380
#ifdef ASSERT
1381
class SubstitutionChecker: public ValueVisitor {
1382
void visit(Value* v) {
1383
Value v0 = *v;
1384
if (v0) {
1385
Value vs = v0->subst();
1386
assert(vs == v0, "missed substitution");
1387
}
1388
}
1389
};
1390
#endif
1391
1392
1393
void SubstitutionResolver::block_do(BlockBegin* block) {
1394
Instruction* last = NULL;
1395
for (Instruction* n = block; n != NULL;) {
1396
n->values_do(this);
1397
// need to remove this instruction from the instruction stream
1398
if (n->subst() != n) {
1399
guarantee(last != NULL, "must have last");
1400
last->set_next(n->next());
1401
} else {
1402
last = n;
1403
}
1404
n = last->next();
1405
}
1406
1407
#ifdef ASSERT
1408
SubstitutionChecker check_substitute;
1409
if (block->state()) block->state()->values_do(&check_substitute);
1410
block->block_values_do(&check_substitute);
1411
if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
1412
#endif
1413
}
1414
1415