Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/c1/c1_Instruction.cpp
40930 views
1
/*
2
* Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_IR.hpp"
27
#include "c1/c1_Instruction.hpp"
28
#include "c1/c1_InstructionPrinter.hpp"
29
#include "c1/c1_ValueStack.hpp"
30
#include "ci/ciObjArrayKlass.hpp"
31
#include "ci/ciTypeArrayKlass.hpp"
32
#include "utilities/bitMap.inline.hpp"
33
34
35
// Implementation of Instruction
36
37
38
int Instruction::dominator_depth() {
39
int result = -1;
40
if (block()) {
41
result = block()->dominator_depth();
42
}
43
assert(result != -1 || this->as_Local(), "Only locals have dominator depth -1");
44
return result;
45
}
46
47
Instruction::Condition Instruction::mirror(Condition cond) {
48
switch (cond) {
49
case eql: return eql;
50
case neq: return neq;
51
case lss: return gtr;
52
case leq: return geq;
53
case gtr: return lss;
54
case geq: return leq;
55
case aeq: return beq;
56
case beq: return aeq;
57
}
58
ShouldNotReachHere();
59
return eql;
60
}
61
62
63
Instruction::Condition Instruction::negate(Condition cond) {
64
switch (cond) {
65
case eql: return neq;
66
case neq: return eql;
67
case lss: return geq;
68
case leq: return gtr;
69
case gtr: return leq;
70
case geq: return lss;
71
case aeq: assert(false, "Above equal cannot be negated");
72
case beq: assert(false, "Below equal cannot be negated");
73
}
74
ShouldNotReachHere();
75
return eql;
76
}
77
78
void Instruction::update_exception_state(ValueStack* state) {
79
if (state != NULL && (state->kind() == ValueStack::EmptyExceptionState || state->kind() == ValueStack::ExceptionState)) {
80
assert(state->kind() == ValueStack::EmptyExceptionState || Compilation::current()->env()->should_retain_local_variables(), "unexpected state kind");
81
_exception_state = state;
82
} else {
83
_exception_state = NULL;
84
}
85
}
86
87
// Prev without need to have BlockBegin
88
Instruction* Instruction::prev() {
89
Instruction* p = NULL;
90
Instruction* q = block();
91
while (q != this) {
92
assert(q != NULL, "this is not in the block's instruction list");
93
p = q; q = q->next();
94
}
95
return p;
96
}
97
98
99
void Instruction::state_values_do(ValueVisitor* f) {
100
if (state_before() != NULL) {
101
state_before()->values_do(f);
102
}
103
if (exception_state() != NULL){
104
exception_state()->values_do(f);
105
}
106
}
107
108
ciType* Instruction::exact_type() const {
109
ciType* t = declared_type();
110
if (t != NULL && t->is_klass()) {
111
return t->as_klass()->exact_klass();
112
}
113
return NULL;
114
}
115
116
117
#ifndef PRODUCT
118
void Instruction::check_state(ValueStack* state) {
119
if (state != NULL) {
120
state->verify();
121
}
122
}
123
124
125
void Instruction::print() {
126
InstructionPrinter ip;
127
print(ip);
128
}
129
130
131
void Instruction::print_line() {
132
InstructionPrinter ip;
133
ip.print_line(this);
134
}
135
136
137
void Instruction::print(InstructionPrinter& ip) {
138
ip.print_head();
139
ip.print_line(this);
140
tty->cr();
141
}
142
#endif // PRODUCT
143
144
145
// perform constant and interval tests on index value
146
bool AccessIndexed::compute_needs_range_check() {
147
if (length()) {
148
Constant* clength = length()->as_Constant();
149
Constant* cindex = index()->as_Constant();
150
if (clength && cindex) {
151
IntConstant* l = clength->type()->as_IntConstant();
152
IntConstant* i = cindex->type()->as_IntConstant();
153
if (l && i && i->value() < l->value() && i->value() >= 0) {
154
return false;
155
}
156
}
157
}
158
159
if (!this->check_flag(NeedsRangeCheckFlag)) {
160
return false;
161
}
162
163
return true;
164
}
165
166
167
ciType* Constant::exact_type() const {
168
if (type()->is_object() && type()->as_ObjectType()->is_loaded()) {
169
return type()->as_ObjectType()->exact_type();
170
}
171
return NULL;
172
}
173
174
ciType* LoadIndexed::exact_type() const {
175
ciType* array_type = array()->exact_type();
176
if (array_type != NULL) {
177
assert(array_type->is_array_klass(), "what else?");
178
ciArrayKlass* ak = (ciArrayKlass*)array_type;
179
180
if (ak->element_type()->is_instance_klass()) {
181
ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type();
182
if (ik->is_loaded() && ik->is_final()) {
183
return ik;
184
}
185
}
186
}
187
return Instruction::exact_type();
188
}
189
190
191
ciType* LoadIndexed::declared_type() const {
192
ciType* array_type = array()->declared_type();
193
if (array_type == NULL || !array_type->is_loaded()) {
194
return NULL;
195
}
196
assert(array_type->is_array_klass(), "what else?");
197
ciArrayKlass* ak = (ciArrayKlass*)array_type;
198
return ak->element_type();
199
}
200
201
202
ciType* LoadField::declared_type() const {
203
return field()->type();
204
}
205
206
207
ciType* NewTypeArray::exact_type() const {
208
return ciTypeArrayKlass::make(elt_type());
209
}
210
211
ciType* NewObjectArray::exact_type() const {
212
return ciObjArrayKlass::make(klass());
213
}
214
215
ciType* NewArray::declared_type() const {
216
return exact_type();
217
}
218
219
ciType* NewInstance::exact_type() const {
220
return klass();
221
}
222
223
ciType* NewInstance::declared_type() const {
224
return exact_type();
225
}
226
227
ciType* CheckCast::declared_type() const {
228
return klass();
229
}
230
231
// Implementation of ArithmeticOp
232
233
bool ArithmeticOp::is_commutative() const {
234
switch (op()) {
235
case Bytecodes::_iadd: // fall through
236
case Bytecodes::_ladd: // fall through
237
case Bytecodes::_fadd: // fall through
238
case Bytecodes::_dadd: // fall through
239
case Bytecodes::_imul: // fall through
240
case Bytecodes::_lmul: // fall through
241
case Bytecodes::_fmul: // fall through
242
case Bytecodes::_dmul: return true;
243
default : return false;
244
}
245
}
246
247
248
bool ArithmeticOp::can_trap() const {
249
switch (op()) {
250
case Bytecodes::_idiv: // fall through
251
case Bytecodes::_ldiv: // fall through
252
case Bytecodes::_irem: // fall through
253
case Bytecodes::_lrem: return true;
254
default : return false;
255
}
256
}
257
258
259
// Implementation of LogicOp
260
261
bool LogicOp::is_commutative() const {
262
#ifdef ASSERT
263
switch (op()) {
264
case Bytecodes::_iand: // fall through
265
case Bytecodes::_land: // fall through
266
case Bytecodes::_ior : // fall through
267
case Bytecodes::_lor : // fall through
268
case Bytecodes::_ixor: // fall through
269
case Bytecodes::_lxor: break;
270
default : ShouldNotReachHere(); break;
271
}
272
#endif
273
// all LogicOps are commutative
274
return true;
275
}
276
277
278
// Implementation of IfOp
279
280
bool IfOp::is_commutative() const {
281
return cond() == eql || cond() == neq;
282
}
283
284
285
// Implementation of StateSplit
286
287
void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) {
288
NOT_PRODUCT(bool assigned = false;)
289
for (int i = 0; i < list.length(); i++) {
290
BlockBegin** b = list.adr_at(i);
291
if (*b == old_block) {
292
*b = new_block;
293
NOT_PRODUCT(assigned = true;)
294
}
295
}
296
assert(assigned == true, "should have assigned at least once");
297
}
298
299
300
IRScope* StateSplit::scope() const {
301
return _state->scope();
302
}
303
304
305
void StateSplit::state_values_do(ValueVisitor* f) {
306
Instruction::state_values_do(f);
307
if (state() != NULL) state()->values_do(f);
308
}
309
310
311
void BlockBegin::state_values_do(ValueVisitor* f) {
312
StateSplit::state_values_do(f);
313
314
if (is_set(BlockBegin::exception_entry_flag)) {
315
for (int i = 0; i < number_of_exception_states(); i++) {
316
exception_state_at(i)->values_do(f);
317
}
318
}
319
}
320
321
322
// Implementation of Invoke
323
324
325
Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
326
ciMethod* target, ValueStack* state_before)
327
: StateSplit(result_type, state_before)
328
, _code(code)
329
, _recv(recv)
330
, _args(args)
331
, _target(target)
332
{
333
set_flag(TargetIsLoadedFlag, target->is_loaded());
334
set_flag(TargetIsFinalFlag, target_is_loaded() && target->is_final_method());
335
336
assert(args != NULL, "args must exist");
337
#ifdef ASSERT
338
AssertValues assert_value;
339
values_do(&assert_value);
340
#endif
341
342
// provide an initial guess of signature size.
343
_signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0));
344
if (has_receiver()) {
345
_signature->append(as_BasicType(receiver()->type()));
346
}
347
for (int i = 0; i < number_of_arguments(); i++) {
348
ValueType* t = argument_at(i)->type();
349
BasicType bt = as_BasicType(t);
350
_signature->append(bt);
351
}
352
}
353
354
355
void Invoke::state_values_do(ValueVisitor* f) {
356
StateSplit::state_values_do(f);
357
if (state_before() != NULL) state_before()->values_do(f);
358
if (state() != NULL) state()->values_do(f);
359
}
360
361
ciType* Invoke::declared_type() const {
362
ciSignature* declared_signature = state()->scope()->method()->get_declared_signature_at_bci(state()->bci());
363
ciType *t = declared_signature->return_type();
364
assert(t->basic_type() != T_VOID, "need return value of void method?");
365
return t;
366
}
367
368
// Implementation of Contant
369
intx Constant::hash() const {
370
if (state_before() == NULL) {
371
switch (type()->tag()) {
372
case intTag:
373
return HASH2(name(), type()->as_IntConstant()->value());
374
case addressTag:
375
return HASH2(name(), type()->as_AddressConstant()->value());
376
case longTag:
377
{
378
jlong temp = type()->as_LongConstant()->value();
379
return HASH3(name(), high(temp), low(temp));
380
}
381
case floatTag:
382
return HASH2(name(), jint_cast(type()->as_FloatConstant()->value()));
383
case doubleTag:
384
{
385
jlong temp = jlong_cast(type()->as_DoubleConstant()->value());
386
return HASH3(name(), high(temp), low(temp));
387
}
388
case objectTag:
389
assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values");
390
return HASH2(name(), type()->as_ObjectType()->constant_value());
391
case metaDataTag:
392
assert(type()->as_MetadataType()->is_loaded(), "can't handle unloaded values");
393
return HASH2(name(), type()->as_MetadataType()->constant_value());
394
default:
395
ShouldNotReachHere();
396
}
397
}
398
return 0;
399
}
400
401
bool Constant::is_equal(Value v) const {
402
if (v->as_Constant() == NULL) return false;
403
404
switch (type()->tag()) {
405
case intTag:
406
{
407
IntConstant* t1 = type()->as_IntConstant();
408
IntConstant* t2 = v->type()->as_IntConstant();
409
return (t1 != NULL && t2 != NULL &&
410
t1->value() == t2->value());
411
}
412
case longTag:
413
{
414
LongConstant* t1 = type()->as_LongConstant();
415
LongConstant* t2 = v->type()->as_LongConstant();
416
return (t1 != NULL && t2 != NULL &&
417
t1->value() == t2->value());
418
}
419
case floatTag:
420
{
421
FloatConstant* t1 = type()->as_FloatConstant();
422
FloatConstant* t2 = v->type()->as_FloatConstant();
423
return (t1 != NULL && t2 != NULL &&
424
jint_cast(t1->value()) == jint_cast(t2->value()));
425
}
426
case doubleTag:
427
{
428
DoubleConstant* t1 = type()->as_DoubleConstant();
429
DoubleConstant* t2 = v->type()->as_DoubleConstant();
430
return (t1 != NULL && t2 != NULL &&
431
jlong_cast(t1->value()) == jlong_cast(t2->value()));
432
}
433
case objectTag:
434
{
435
ObjectType* t1 = type()->as_ObjectType();
436
ObjectType* t2 = v->type()->as_ObjectType();
437
return (t1 != NULL && t2 != NULL &&
438
t1->is_loaded() && t2->is_loaded() &&
439
t1->constant_value() == t2->constant_value());
440
}
441
case metaDataTag:
442
{
443
MetadataType* t1 = type()->as_MetadataType();
444
MetadataType* t2 = v->type()->as_MetadataType();
445
return (t1 != NULL && t2 != NULL &&
446
t1->is_loaded() && t2->is_loaded() &&
447
t1->constant_value() == t2->constant_value());
448
}
449
default:
450
return false;
451
}
452
}
453
454
Constant::CompareResult Constant::compare(Instruction::Condition cond, Value right) const {
455
Constant* rc = right->as_Constant();
456
// other is not a constant
457
if (rc == NULL) return not_comparable;
458
459
ValueType* lt = type();
460
ValueType* rt = rc->type();
461
// different types
462
if (lt->base() != rt->base()) return not_comparable;
463
switch (lt->tag()) {
464
case intTag: {
465
int x = lt->as_IntConstant()->value();
466
int y = rt->as_IntConstant()->value();
467
switch (cond) {
468
case If::eql: return x == y ? cond_true : cond_false;
469
case If::neq: return x != y ? cond_true : cond_false;
470
case If::lss: return x < y ? cond_true : cond_false;
471
case If::leq: return x <= y ? cond_true : cond_false;
472
case If::gtr: return x > y ? cond_true : cond_false;
473
case If::geq: return x >= y ? cond_true : cond_false;
474
default : break;
475
}
476
break;
477
}
478
case longTag: {
479
jlong x = lt->as_LongConstant()->value();
480
jlong y = rt->as_LongConstant()->value();
481
switch (cond) {
482
case If::eql: return x == y ? cond_true : cond_false;
483
case If::neq: return x != y ? cond_true : cond_false;
484
case If::lss: return x < y ? cond_true : cond_false;
485
case If::leq: return x <= y ? cond_true : cond_false;
486
case If::gtr: return x > y ? cond_true : cond_false;
487
case If::geq: return x >= y ? cond_true : cond_false;
488
default : break;
489
}
490
break;
491
}
492
case objectTag: {
493
ciObject* xvalue = lt->as_ObjectType()->constant_value();
494
ciObject* yvalue = rt->as_ObjectType()->constant_value();
495
assert(xvalue != NULL && yvalue != NULL, "not constants");
496
if (xvalue->is_loaded() && yvalue->is_loaded()) {
497
switch (cond) {
498
case If::eql: return xvalue == yvalue ? cond_true : cond_false;
499
case If::neq: return xvalue != yvalue ? cond_true : cond_false;
500
default : break;
501
}
502
}
503
break;
504
}
505
case metaDataTag: {
506
ciMetadata* xvalue = lt->as_MetadataType()->constant_value();
507
ciMetadata* yvalue = rt->as_MetadataType()->constant_value();
508
assert(xvalue != NULL && yvalue != NULL, "not constants");
509
if (xvalue->is_loaded() && yvalue->is_loaded()) {
510
switch (cond) {
511
case If::eql: return xvalue == yvalue ? cond_true : cond_false;
512
case If::neq: return xvalue != yvalue ? cond_true : cond_false;
513
default : break;
514
}
515
}
516
break;
517
}
518
default:
519
break;
520
}
521
return not_comparable;
522
}
523
524
525
// Implementation of BlockBegin
526
527
void BlockBegin::set_end(BlockEnd* end) {
528
assert(end != NULL, "should not reset block end to NULL");
529
if (end == _end) {
530
return;
531
}
532
clear_end();
533
534
// Set the new end
535
_end = end;
536
537
_successors.clear();
538
// Now reset successors list based on BlockEnd
539
for (int i = 0; i < end->number_of_sux(); i++) {
540
BlockBegin* sux = end->sux_at(i);
541
_successors.append(sux);
542
sux->_predecessors.append(this);
543
}
544
_end->set_begin(this);
545
}
546
547
548
void BlockBegin::clear_end() {
549
// Must make the predecessors/successors match up with the
550
// BlockEnd's notion.
551
if (_end != NULL) {
552
// disconnect from the old end
553
_end->set_begin(NULL);
554
555
// disconnect this block from it's current successors
556
for (int i = 0; i < _successors.length(); i++) {
557
_successors.at(i)->remove_predecessor(this);
558
}
559
_end = NULL;
560
}
561
}
562
563
564
void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) {
565
// disconnect any edges between from and to
566
#ifndef PRODUCT
567
if (PrintIR && Verbose) {
568
tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id());
569
}
570
#endif
571
for (int s = 0; s < from->number_of_sux();) {
572
BlockBegin* sux = from->sux_at(s);
573
if (sux == to) {
574
int index = sux->_predecessors.find(from);
575
if (index >= 0) {
576
sux->_predecessors.remove_at(index);
577
}
578
from->_successors.remove_at(s);
579
} else {
580
s++;
581
}
582
}
583
}
584
585
586
void BlockBegin::disconnect_from_graph() {
587
// disconnect this block from all other blocks
588
for (int p = 0; p < number_of_preds(); p++) {
589
pred_at(p)->remove_successor(this);
590
}
591
for (int s = 0; s < number_of_sux(); s++) {
592
sux_at(s)->remove_predecessor(this);
593
}
594
}
595
596
void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
597
// modify predecessors before substituting successors
598
for (int i = 0; i < number_of_sux(); i++) {
599
if (sux_at(i) == old_sux) {
600
// remove old predecessor before adding new predecessor
601
// otherwise there is a dead predecessor in the list
602
new_sux->remove_predecessor(old_sux);
603
new_sux->add_predecessor(this);
604
}
605
}
606
old_sux->remove_predecessor(this);
607
end()->substitute_sux(old_sux, new_sux);
608
}
609
610
611
612
// In general it is not possible to calculate a value for the field "depth_first_number"
613
// of the inserted block, without recomputing the values of the other blocks
614
// in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
615
BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
616
int bci = sux->bci();
617
// critical edge splitting may introduce a goto after a if and array
618
// bound check elimination may insert a predicate between the if and
619
// goto. The bci of the goto can't be the one of the if otherwise
620
// the state and bci are inconsistent and a deoptimization triggered
621
// by the predicate would lead to incorrect execution/a crash.
622
BlockBegin* new_sux = new BlockBegin(bci);
623
624
// mark this block (special treatment when block order is computed)
625
new_sux->set(critical_edge_split_flag);
626
627
// This goto is not a safepoint.
628
Goto* e = new Goto(sux, false);
629
new_sux->set_next(e, bci);
630
new_sux->set_end(e);
631
// setup states
632
ValueStack* s = end()->state();
633
new_sux->set_state(s->copy(s->kind(), bci));
634
e->set_state(s->copy(s->kind(), bci));
635
assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
636
assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
637
assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");
638
639
// link predecessor to new block
640
end()->substitute_sux(sux, new_sux);
641
642
// The ordering needs to be the same, so remove the link that the
643
// set_end call above added and substitute the new_sux for this
644
// block.
645
sux->remove_predecessor(new_sux);
646
647
// the successor could be the target of a switch so it might have
648
// multiple copies of this predecessor, so substitute the new_sux
649
// for the first and delete the rest.
650
bool assigned = false;
651
BlockList& list = sux->_predecessors;
652
for (int i = 0; i < list.length(); i++) {
653
BlockBegin** b = list.adr_at(i);
654
if (*b == this) {
655
if (assigned) {
656
list.remove_at(i);
657
// reprocess this index
658
i--;
659
} else {
660
assigned = true;
661
*b = new_sux;
662
}
663
// link the new block back to it's predecessors.
664
new_sux->add_predecessor(this);
665
}
666
}
667
assert(assigned == true, "should have assigned at least once");
668
return new_sux;
669
}
670
671
672
void BlockBegin::remove_successor(BlockBegin* pred) {
673
int idx;
674
while ((idx = _successors.find(pred)) >= 0) {
675
_successors.remove_at(idx);
676
}
677
}
678
679
680
void BlockBegin::add_predecessor(BlockBegin* pred) {
681
_predecessors.append(pred);
682
}
683
684
685
void BlockBegin::remove_predecessor(BlockBegin* pred) {
686
int idx;
687
while ((idx = _predecessors.find(pred)) >= 0) {
688
_predecessors.remove_at(idx);
689
}
690
}
691
692
693
void BlockBegin::add_exception_handler(BlockBegin* b) {
694
assert(b != NULL && (b->is_set(exception_entry_flag)), "exception handler must exist");
695
// add only if not in the list already
696
if (!_exception_handlers.contains(b)) _exception_handlers.append(b);
697
}
698
699
int BlockBegin::add_exception_state(ValueStack* state) {
700
assert(is_set(exception_entry_flag), "only for xhandlers");
701
if (_exception_states == NULL) {
702
_exception_states = new ValueStackStack(4);
703
}
704
_exception_states->append(state);
705
return _exception_states->length() - 1;
706
}
707
708
709
void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) {
710
if (!mark.at(block_id())) {
711
mark.at_put(block_id(), true);
712
closure->block_do(this);
713
BlockEnd* e = end(); // must do this after block_do because block_do may change it!
714
{ for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); }
715
{ for (int i = e->number_of_sux () - 1; i >= 0; i--) e->sux_at (i)->iterate_preorder(mark, closure); }
716
}
717
}
718
719
720
void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) {
721
if (!mark.at(block_id())) {
722
mark.at_put(block_id(), true);
723
BlockEnd* e = end();
724
{ for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); }
725
{ for (int i = e->number_of_sux () - 1; i >= 0; i--) e->sux_at (i)->iterate_postorder(mark, closure); }
726
closure->block_do(this);
727
}
728
}
729
730
731
void BlockBegin::iterate_preorder(BlockClosure* closure) {
732
int mark_len = number_of_blocks();
733
boolArray mark(mark_len, mark_len, false);
734
iterate_preorder(mark, closure);
735
}
736
737
738
void BlockBegin::iterate_postorder(BlockClosure* closure) {
739
int mark_len = number_of_blocks();
740
boolArray mark(mark_len, mark_len, false);
741
iterate_postorder(mark, closure);
742
}
743
744
745
void BlockBegin::block_values_do(ValueVisitor* f) {
746
for (Instruction* n = this; n != NULL; n = n->next()) n->values_do(f);
747
}
748
749
750
#ifndef PRODUCT
751
#define TRACE_PHI(code) if (PrintPhiFunctions) { code; }
752
#else
753
#define TRACE_PHI(coce)
754
#endif
755
756
757
bool BlockBegin::try_merge(ValueStack* new_state) {
758
TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id()));
759
760
// local variables used for state iteration
761
int index;
762
Value new_value, existing_value;
763
764
ValueStack* existing_state = state();
765
if (existing_state == NULL) {
766
TRACE_PHI(tty->print_cr("first call of try_merge for this block"));
767
768
if (is_set(BlockBegin::was_visited_flag)) {
769
// this actually happens for complicated jsr/ret structures
770
return false; // BAILOUT in caller
771
}
772
773
// copy state because it is altered
774
new_state = new_state->copy(ValueStack::BlockBeginState, bci());
775
776
// Use method liveness to invalidate dead locals
777
MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci());
778
if (liveness.is_valid()) {
779
assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness");
780
781
for_each_local_value(new_state, index, new_value) {
782
if (!liveness.at(index) || new_value->type()->is_illegal()) {
783
new_state->invalidate_local(index);
784
TRACE_PHI(tty->print_cr("invalidating dead local %d", index));
785
}
786
}
787
}
788
789
if (is_set(BlockBegin::parser_loop_header_flag)) {
790
TRACE_PHI(tty->print_cr("loop header block, initializing phi functions"));
791
792
for_each_stack_value(new_state, index, new_value) {
793
new_state->setup_phi_for_stack(this, index);
794
TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index));
795
}
796
797
BitMap& requires_phi_function = new_state->scope()->requires_phi_function();
798
799
for_each_local_value(new_state, index, new_value) {
800
bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1));
801
if (requires_phi || !SelectivePhiFunctions) {
802
new_state->setup_phi_for_local(this, index);
803
TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index));
804
}
805
}
806
}
807
808
// initialize state of block
809
set_state(new_state);
810
811
} else if (existing_state->is_same(new_state)) {
812
TRACE_PHI(tty->print_cr("exisiting state found"));
813
814
assert(existing_state->scope() == new_state->scope(), "not matching");
815
assert(existing_state->locals_size() == new_state->locals_size(), "not matching");
816
assert(existing_state->stack_size() == new_state->stack_size(), "not matching");
817
818
if (is_set(BlockBegin::was_visited_flag)) {
819
TRACE_PHI(tty->print_cr("loop header block, phis must be present"));
820
821
if (!is_set(BlockBegin::parser_loop_header_flag)) {
822
// this actually happens for complicated jsr/ret structures
823
return false; // BAILOUT in caller
824
}
825
826
for_each_local_value(existing_state, index, existing_value) {
827
Value new_value = new_state->local_at(index);
828
if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
829
Phi* existing_phi = existing_value->as_Phi();
830
if (existing_phi == NULL) {
831
return false; // BAILOUT in caller
832
}
833
// Invalidate the phi function here. This case is very rare except for
834
// JVMTI capability "can_access_local_variables".
835
// In really rare cases we will bail out in LIRGenerator::move_to_phi.
836
existing_phi->make_illegal();
837
existing_state->invalidate_local(index);
838
TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
839
}
840
}
841
842
#ifdef ASSERT
843
// check that all necessary phi functions are present
844
for_each_stack_value(existing_state, index, existing_value) {
845
assert(existing_value->as_Phi() != NULL && existing_value->as_Phi()->block() == this, "phi function required");
846
}
847
for_each_local_value(existing_state, index, existing_value) {
848
assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != NULL && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required");
849
}
850
#endif
851
852
} else {
853
TRACE_PHI(tty->print_cr("creating phi functions on demand"));
854
855
// create necessary phi functions for stack
856
for_each_stack_value(existing_state, index, existing_value) {
857
Value new_value = new_state->stack_at(index);
858
Phi* existing_phi = existing_value->as_Phi();
859
860
if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
861
existing_state->setup_phi_for_stack(this, index);
862
TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index));
863
}
864
}
865
866
// create necessary phi functions for locals
867
for_each_local_value(existing_state, index, existing_value) {
868
Value new_value = new_state->local_at(index);
869
Phi* existing_phi = existing_value->as_Phi();
870
871
if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
872
existing_state->invalidate_local(index);
873
TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
874
} else if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
875
existing_state->setup_phi_for_local(this, index);
876
TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index));
877
}
878
}
879
}
880
881
assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal");
882
883
} else {
884
assert(false, "stack or locks not matching (invalid bytecodes)");
885
return false;
886
}
887
888
TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id()));
889
890
return true;
891
}
892
893
894
#ifndef PRODUCT
895
void BlockBegin::print_block() {
896
InstructionPrinter ip;
897
print_block(ip, false);
898
}
899
900
901
void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) {
902
ip.print_instr(this); tty->cr();
903
ip.print_stack(this->state()); tty->cr();
904
ip.print_inline_level(this);
905
ip.print_head();
906
for (Instruction* n = next(); n != NULL; n = n->next()) {
907
if (!live_only || n->is_pinned() || n->use_count() > 0) {
908
ip.print_line(n);
909
}
910
}
911
tty->cr();
912
}
913
#endif // PRODUCT
914
915
916
// Implementation of BlockList
917
918
void BlockList::iterate_forward (BlockClosure* closure) {
919
const int l = length();
920
for (int i = 0; i < l; i++) closure->block_do(at(i));
921
}
922
923
924
void BlockList::iterate_backward(BlockClosure* closure) {
925
for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i));
926
}
927
928
929
void BlockList::blocks_do(void f(BlockBegin*)) {
930
for (int i = length() - 1; i >= 0; i--) f(at(i));
931
}
932
933
934
void BlockList::values_do(ValueVisitor* f) {
935
for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f);
936
}
937
938
939
#ifndef PRODUCT
940
void BlockList::print(bool cfg_only, bool live_only) {
941
InstructionPrinter ip;
942
for (int i = 0; i < length(); i++) {
943
BlockBegin* block = at(i);
944
if (cfg_only) {
945
ip.print_instr(block); tty->cr();
946
} else {
947
block->print_block(ip, live_only);
948
}
949
}
950
}
951
#endif // PRODUCT
952
953
954
// Implementation of BlockEnd
955
956
void BlockEnd::set_begin(BlockBegin* begin) {
957
BlockList* sux = NULL;
958
if (begin != NULL) {
959
sux = begin->successors();
960
} else if (this->begin() != NULL) {
961
// copy our sux list
962
BlockList* sux = new BlockList(this->begin()->number_of_sux());
963
for (int i = 0; i < this->begin()->number_of_sux(); i++) {
964
sux->append(this->begin()->sux_at(i));
965
}
966
}
967
_sux = sux;
968
}
969
970
971
void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
972
substitute(*_sux, old_sux, new_sux);
973
}
974
975
976
// Implementation of Phi
977
978
// Normal phi functions take their operands from the last instruction of the
979
// predecessor. Special handling is needed for xhanlder entries because there
980
// the state of arbitrary instructions are needed.
981
982
Value Phi::operand_at(int i) const {
983
ValueStack* state;
984
if (_block->is_set(BlockBegin::exception_entry_flag)) {
985
state = _block->exception_state_at(i);
986
} else {
987
state = _block->pred_at(i)->end()->state();
988
}
989
assert(state != NULL, "");
990
991
if (is_local()) {
992
return state->local_at(local_index());
993
} else {
994
return state->stack_at(stack_index());
995
}
996
}
997
998
999
int Phi::operand_count() const {
1000
if (_block->is_set(BlockBegin::exception_entry_flag)) {
1001
return _block->number_of_exception_states();
1002
} else {
1003
return _block->number_of_preds();
1004
}
1005
}
1006
1007
#ifdef ASSERT
1008
// Constructor of Assert
1009
Assert::Assert(Value x, Condition cond, bool unordered_is_true, Value y) : Instruction(illegalType)
1010
, _x(x)
1011
, _cond(cond)
1012
, _y(y)
1013
{
1014
set_flag(UnorderedIsTrueFlag, unordered_is_true);
1015
assert(x->type()->tag() == y->type()->tag(), "types must match");
1016
pin();
1017
1018
stringStream strStream;
1019
Compilation::current()->method()->print_name(&strStream);
1020
1021
stringStream strStream1;
1022
InstructionPrinter ip1(1, &strStream1);
1023
ip1.print_instr(x);
1024
1025
stringStream strStream2;
1026
InstructionPrinter ip2(1, &strStream2);
1027
ip2.print_instr(y);
1028
1029
stringStream ss;
1030
ss.print("Assertion %s %s %s in method %s", strStream1.as_string(), ip2.cond_name(cond), strStream2.as_string(), strStream.as_string());
1031
1032
_message = ss.as_string();
1033
}
1034
#endif
1035
1036
void RangeCheckPredicate::check_state() {
1037
assert(state()->kind() != ValueStack::EmptyExceptionState && state()->kind() != ValueStack::ExceptionState, "will deopt with empty state");
1038
}
1039
1040
void ProfileInvoke::state_values_do(ValueVisitor* f) {
1041
if (state() != NULL) state()->values_do(f);
1042
}
1043
1044