Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/c1/c1_LIRGenerator.cpp
40930 views
1
/*
2
* Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_Compilation.hpp"
27
#include "c1/c1_Defs.hpp"
28
#include "c1/c1_FrameMap.hpp"
29
#include "c1/c1_Instruction.hpp"
30
#include "c1/c1_LIRAssembler.hpp"
31
#include "c1/c1_LIRGenerator.hpp"
32
#include "c1/c1_ValueStack.hpp"
33
#include "ci/ciArrayKlass.hpp"
34
#include "ci/ciInstance.hpp"
35
#include "ci/ciObjArray.hpp"
36
#include "ci/ciUtilities.hpp"
37
#include "gc/shared/barrierSet.hpp"
38
#include "gc/shared/c1/barrierSetC1.hpp"
39
#include "oops/klass.inline.hpp"
40
#include "runtime/sharedRuntime.hpp"
41
#include "runtime/stubRoutines.hpp"
42
#include "runtime/vm_version.hpp"
43
#include "utilities/bitMap.inline.hpp"
44
#include "utilities/macros.hpp"
45
#include "utilities/powerOfTwo.hpp"
46
47
#ifdef ASSERT
48
#define __ gen()->lir(__FILE__, __LINE__)->
49
#else
50
#define __ gen()->lir()->
51
#endif
52
53
#ifndef PATCHED_ADDR
54
#define PATCHED_ADDR (max_jint)
55
#endif
56
57
void PhiResolverState::reset() {
58
_virtual_operands.clear();
59
_other_operands.clear();
60
_vreg_table.clear();
61
}
62
63
64
//--------------------------------------------------------------
65
// PhiResolver
66
67
// Resolves cycles:
68
//
69
// r1 := r2 becomes temp := r1
70
// r2 := r1 r1 := r2
71
// r2 := temp
72
// and orders moves:
73
//
74
// r2 := r3 becomes r1 := r2
75
// r1 := r2 r2 := r3
76
77
PhiResolver::PhiResolver(LIRGenerator* gen)
78
: _gen(gen)
79
, _state(gen->resolver_state())
80
, _temp(LIR_OprFact::illegalOpr)
81
{
82
// reinitialize the shared state arrays
83
_state.reset();
84
}
85
86
87
void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
88
assert(src->is_valid(), "");
89
assert(dest->is_valid(), "");
90
__ move(src, dest);
91
}
92
93
94
void PhiResolver::move_temp_to(LIR_Opr dest) {
95
assert(_temp->is_valid(), "");
96
emit_move(_temp, dest);
97
NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
98
}
99
100
101
void PhiResolver::move_to_temp(LIR_Opr src) {
102
assert(_temp->is_illegal(), "");
103
_temp = _gen->new_register(src->type());
104
emit_move(src, _temp);
105
}
106
107
108
// Traverse assignment graph in depth first order and generate moves in post order
109
// ie. two assignments: b := c, a := b start with node c:
110
// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
111
// Generates moves in this order: move b to a and move c to b
112
// ie. cycle a := b, b := a start with node a
113
// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
114
// Generates moves in this order: move b to temp, move a to b, move temp to a
115
void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
116
if (!dest->visited()) {
117
dest->set_visited();
118
for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
119
move(dest, dest->destination_at(i));
120
}
121
} else if (!dest->start_node()) {
122
// cylce in graph detected
123
assert(_loop == NULL, "only one loop valid!");
124
_loop = dest;
125
move_to_temp(src->operand());
126
return;
127
} // else dest is a start node
128
129
if (!dest->assigned()) {
130
if (_loop == dest) {
131
move_temp_to(dest->operand());
132
dest->set_assigned();
133
} else if (src != NULL) {
134
emit_move(src->operand(), dest->operand());
135
dest->set_assigned();
136
}
137
}
138
}
139
140
141
PhiResolver::~PhiResolver() {
142
int i;
143
// resolve any cycles in moves from and to virtual registers
144
for (i = virtual_operands().length() - 1; i >= 0; i --) {
145
ResolveNode* node = virtual_operands().at(i);
146
if (!node->visited()) {
147
_loop = NULL;
148
move(NULL, node);
149
node->set_start_node();
150
assert(_temp->is_illegal(), "move_temp_to() call missing");
151
}
152
}
153
154
// generate move for move from non virtual register to abitrary destination
155
for (i = other_operands().length() - 1; i >= 0; i --) {
156
ResolveNode* node = other_operands().at(i);
157
for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
158
emit_move(node->operand(), node->destination_at(j)->operand());
159
}
160
}
161
}
162
163
164
ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
165
ResolveNode* node;
166
if (opr->is_virtual()) {
167
int vreg_num = opr->vreg_number();
168
node = vreg_table().at_grow(vreg_num, NULL);
169
assert(node == NULL || node->operand() == opr, "");
170
if (node == NULL) {
171
node = new ResolveNode(opr);
172
vreg_table().at_put(vreg_num, node);
173
}
174
// Make sure that all virtual operands show up in the list when
175
// they are used as the source of a move.
176
if (source && !virtual_operands().contains(node)) {
177
virtual_operands().append(node);
178
}
179
} else {
180
assert(source, "");
181
node = new ResolveNode(opr);
182
other_operands().append(node);
183
}
184
return node;
185
}
186
187
188
void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
189
assert(dest->is_virtual(), "");
190
// tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
191
assert(src->is_valid(), "");
192
assert(dest->is_valid(), "");
193
ResolveNode* source = source_node(src);
194
source->append(destination_node(dest));
195
}
196
197
198
//--------------------------------------------------------------
199
// LIRItem
200
201
void LIRItem::set_result(LIR_Opr opr) {
202
assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
203
value()->set_operand(opr);
204
205
if (opr->is_virtual()) {
206
_gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
207
}
208
209
_result = opr;
210
}
211
212
void LIRItem::load_item() {
213
if (result()->is_illegal()) {
214
// update the items result
215
_result = value()->operand();
216
}
217
if (!result()->is_register()) {
218
LIR_Opr reg = _gen->new_register(value()->type());
219
__ move(result(), reg);
220
if (result()->is_constant()) {
221
_result = reg;
222
} else {
223
set_result(reg);
224
}
225
}
226
}
227
228
229
void LIRItem::load_for_store(BasicType type) {
230
if (_gen->can_store_as_constant(value(), type)) {
231
_result = value()->operand();
232
if (!_result->is_constant()) {
233
_result = LIR_OprFact::value_type(value()->type());
234
}
235
} else if (type == T_BYTE || type == T_BOOLEAN) {
236
load_byte_item();
237
} else {
238
load_item();
239
}
240
}
241
242
void LIRItem::load_item_force(LIR_Opr reg) {
243
LIR_Opr r = result();
244
if (r != reg) {
245
#if !defined(ARM) && !defined(E500V2)
246
if (r->type() != reg->type()) {
247
// moves between different types need an intervening spill slot
248
r = _gen->force_to_spill(r, reg->type());
249
}
250
#endif
251
__ move(r, reg);
252
_result = reg;
253
}
254
}
255
256
ciObject* LIRItem::get_jobject_constant() const {
257
ObjectType* oc = type()->as_ObjectType();
258
if (oc) {
259
return oc->constant_value();
260
}
261
return NULL;
262
}
263
264
265
jint LIRItem::get_jint_constant() const {
266
assert(is_constant() && value() != NULL, "");
267
assert(type()->as_IntConstant() != NULL, "type check");
268
return type()->as_IntConstant()->value();
269
}
270
271
272
jint LIRItem::get_address_constant() const {
273
assert(is_constant() && value() != NULL, "");
274
assert(type()->as_AddressConstant() != NULL, "type check");
275
return type()->as_AddressConstant()->value();
276
}
277
278
279
jfloat LIRItem::get_jfloat_constant() const {
280
assert(is_constant() && value() != NULL, "");
281
assert(type()->as_FloatConstant() != NULL, "type check");
282
return type()->as_FloatConstant()->value();
283
}
284
285
286
jdouble LIRItem::get_jdouble_constant() const {
287
assert(is_constant() && value() != NULL, "");
288
assert(type()->as_DoubleConstant() != NULL, "type check");
289
return type()->as_DoubleConstant()->value();
290
}
291
292
293
jlong LIRItem::get_jlong_constant() const {
294
assert(is_constant() && value() != NULL, "");
295
assert(type()->as_LongConstant() != NULL, "type check");
296
return type()->as_LongConstant()->value();
297
}
298
299
300
301
//--------------------------------------------------------------
302
303
304
void LIRGenerator::block_do_prolog(BlockBegin* block) {
305
#ifndef PRODUCT
306
if (PrintIRWithLIR) {
307
block->print();
308
}
309
#endif
310
311
// set up the list of LIR instructions
312
assert(block->lir() == NULL, "LIR list already computed for this block");
313
_lir = new LIR_List(compilation(), block);
314
block->set_lir(_lir);
315
316
__ branch_destination(block->label());
317
318
if (LIRTraceExecution &&
319
Compilation::current()->hir()->start()->block_id() != block->block_id() &&
320
!block->is_set(BlockBegin::exception_entry_flag)) {
321
assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
322
trace_block_entry(block);
323
}
324
}
325
326
327
void LIRGenerator::block_do_epilog(BlockBegin* block) {
328
#ifndef PRODUCT
329
if (PrintIRWithLIR) {
330
tty->cr();
331
}
332
#endif
333
334
// LIR_Opr for unpinned constants shouldn't be referenced by other
335
// blocks so clear them out after processing the block.
336
for (int i = 0; i < _unpinned_constants.length(); i++) {
337
_unpinned_constants.at(i)->clear_operand();
338
}
339
_unpinned_constants.trunc_to(0);
340
341
// clear our any registers for other local constants
342
_constants.trunc_to(0);
343
_reg_for_constants.trunc_to(0);
344
}
345
346
347
void LIRGenerator::block_do(BlockBegin* block) {
348
CHECK_BAILOUT();
349
350
block_do_prolog(block);
351
set_block(block);
352
353
for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
354
if (instr->is_pinned()) do_root(instr);
355
}
356
357
set_block(NULL);
358
block_do_epilog(block);
359
}
360
361
362
//-------------------------LIRGenerator-----------------------------
363
364
// This is where the tree-walk starts; instr must be root;
365
void LIRGenerator::do_root(Value instr) {
366
CHECK_BAILOUT();
367
368
InstructionMark im(compilation(), instr);
369
370
assert(instr->is_pinned(), "use only with roots");
371
assert(instr->subst() == instr, "shouldn't have missed substitution");
372
373
instr->visit(this);
374
375
assert(!instr->has_uses() || instr->operand()->is_valid() ||
376
instr->as_Constant() != NULL || bailed_out(), "invalid item set");
377
}
378
379
380
// This is called for each node in tree; the walk stops if a root is reached
381
void LIRGenerator::walk(Value instr) {
382
InstructionMark im(compilation(), instr);
383
//stop walk when encounter a root
384
if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
385
assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
386
} else {
387
assert(instr->subst() == instr, "shouldn't have missed substitution");
388
instr->visit(this);
389
// assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
390
}
391
}
392
393
394
CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
395
assert(state != NULL, "state must be defined");
396
397
#ifndef PRODUCT
398
state->verify();
399
#endif
400
401
ValueStack* s = state;
402
for_each_state(s) {
403
if (s->kind() == ValueStack::EmptyExceptionState) {
404
assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
405
continue;
406
}
407
408
int index;
409
Value value;
410
for_each_stack_value(s, index, value) {
411
assert(value->subst() == value, "missed substitution");
412
if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
413
walk(value);
414
assert(value->operand()->is_valid(), "must be evaluated now");
415
}
416
}
417
418
int bci = s->bci();
419
IRScope* scope = s->scope();
420
ciMethod* method = scope->method();
421
422
MethodLivenessResult liveness = method->liveness_at_bci(bci);
423
if (bci == SynchronizationEntryBCI) {
424
if (x->as_ExceptionObject() || x->as_Throw()) {
425
// all locals are dead on exit from the synthetic unlocker
426
liveness.clear();
427
} else {
428
assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
429
}
430
}
431
if (!liveness.is_valid()) {
432
// Degenerate or breakpointed method.
433
bailout("Degenerate or breakpointed method");
434
} else {
435
assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
436
for_each_local_value(s, index, value) {
437
assert(value->subst() == value, "missed substition");
438
if (liveness.at(index) && !value->type()->is_illegal()) {
439
if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
440
walk(value);
441
assert(value->operand()->is_valid(), "must be evaluated now");
442
}
443
} else {
444
// NULL out this local so that linear scan can assume that all non-NULL values are live.
445
s->invalidate_local(index);
446
}
447
}
448
}
449
}
450
451
return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
452
}
453
454
455
CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
456
return state_for(x, x->exception_state());
457
}
458
459
460
void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
461
/* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
462
* is active and the class hasn't yet been resolved we need to emit a patch that resolves
463
* the class. */
464
if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
465
assert(info != NULL, "info must be set if class is not loaded");
466
__ klass2reg_patch(NULL, r, info);
467
} else {
468
// no patching needed
469
__ metadata2reg(obj->constant_encoding(), r);
470
}
471
}
472
473
474
void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
475
CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
476
CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
477
if (index->is_constant()) {
478
cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
479
index->as_jint(), null_check_info);
480
__ branch(lir_cond_belowEqual, stub); // forward branch
481
} else {
482
cmp_reg_mem(lir_cond_aboveEqual, index, array,
483
arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
484
__ branch(lir_cond_aboveEqual, stub); // forward branch
485
}
486
}
487
488
489
void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
490
CodeStub* stub = new RangeCheckStub(info, index);
491
if (index->is_constant()) {
492
cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
493
__ branch(lir_cond_belowEqual, stub); // forward branch
494
} else {
495
cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
496
java_nio_Buffer::limit_offset(), T_INT, info);
497
__ branch(lir_cond_aboveEqual, stub); // forward branch
498
}
499
__ move(index, result);
500
}
501
502
503
504
void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
505
LIR_Opr result_op = result;
506
LIR_Opr left_op = left;
507
LIR_Opr right_op = right;
508
509
if (TwoOperandLIRForm && left_op != result_op) {
510
assert(right_op != result_op, "malformed");
511
__ move(left_op, result_op);
512
left_op = result_op;
513
}
514
515
switch(code) {
516
case Bytecodes::_dadd:
517
case Bytecodes::_fadd:
518
case Bytecodes::_ladd:
519
case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
520
case Bytecodes::_fmul:
521
case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
522
523
case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break;
524
525
case Bytecodes::_imul:
526
{
527
bool did_strength_reduce = false;
528
529
if (right->is_constant()) {
530
jint c = right->as_jint();
531
if (c > 0 && is_power_of_2(c)) {
532
// do not need tmp here
533
__ shift_left(left_op, exact_log2(c), result_op);
534
did_strength_reduce = true;
535
} else {
536
did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
537
}
538
}
539
// we couldn't strength reduce so just emit the multiply
540
if (!did_strength_reduce) {
541
__ mul(left_op, right_op, result_op);
542
}
543
}
544
break;
545
546
case Bytecodes::_dsub:
547
case Bytecodes::_fsub:
548
case Bytecodes::_lsub:
549
case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
550
551
case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
552
// ldiv and lrem are implemented with a direct runtime call
553
554
case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
555
556
case Bytecodes::_drem:
557
case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
558
559
default: ShouldNotReachHere();
560
}
561
}
562
563
564
void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
565
arithmetic_op(code, result, left, right, tmp);
566
}
567
568
569
void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
570
arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
571
}
572
573
574
void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
575
arithmetic_op(code, result, left, right, tmp);
576
}
577
578
579
void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
580
581
if (TwoOperandLIRForm && value != result_op
582
// Only 32bit right shifts require two operand form on S390.
583
S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
584
assert(count != result_op, "malformed");
585
__ move(value, result_op);
586
value = result_op;
587
}
588
589
assert(count->is_constant() || count->is_register(), "must be");
590
switch(code) {
591
case Bytecodes::_ishl:
592
case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
593
case Bytecodes::_ishr:
594
case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
595
case Bytecodes::_iushr:
596
case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
597
default: ShouldNotReachHere();
598
}
599
}
600
601
602
void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
603
if (TwoOperandLIRForm && left_op != result_op) {
604
assert(right_op != result_op, "malformed");
605
__ move(left_op, result_op);
606
left_op = result_op;
607
}
608
609
switch(code) {
610
case Bytecodes::_iand:
611
case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
612
613
case Bytecodes::_ior:
614
case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
615
616
case Bytecodes::_ixor:
617
case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
618
619
default: ShouldNotReachHere();
620
}
621
}
622
623
624
void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
625
if (!GenerateSynchronizationCode) return;
626
// for slow path, use debug info for state after successful locking
627
CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
628
__ load_stack_address_monitor(monitor_no, lock);
629
// for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
630
__ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
631
}
632
633
634
void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
635
if (!GenerateSynchronizationCode) return;
636
// setup registers
637
LIR_Opr hdr = lock;
638
lock = new_hdr;
639
CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
640
__ load_stack_address_monitor(monitor_no, lock);
641
__ unlock_object(hdr, object, lock, scratch, slow_path);
642
}
643
644
#ifndef PRODUCT
645
void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
646
if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
647
tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
648
} else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
649
tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
650
}
651
}
652
#endif
653
654
void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
655
klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
656
// If klass is not loaded we do not know if the klass has finalizers:
657
if (UseFastNewInstance && klass->is_loaded()
658
&& !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
659
660
Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
661
662
CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
663
664
assert(klass->is_loaded(), "must be loaded");
665
// allocate space for instance
666
assert(klass->size_helper() >= 0, "illegal instance size");
667
const int instance_size = align_object_size(klass->size_helper());
668
__ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
669
oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
670
} else {
671
CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
672
__ branch(lir_cond_always, slow_path);
673
__ branch_destination(slow_path->continuation());
674
}
675
}
676
677
678
static bool is_constant_zero(Instruction* inst) {
679
IntConstant* c = inst->type()->as_IntConstant();
680
if (c) {
681
return (c->value() == 0);
682
}
683
return false;
684
}
685
686
687
static bool positive_constant(Instruction* inst) {
688
IntConstant* c = inst->type()->as_IntConstant();
689
if (c) {
690
return (c->value() >= 0);
691
}
692
return false;
693
}
694
695
696
static ciArrayKlass* as_array_klass(ciType* type) {
697
if (type != NULL && type->is_array_klass() && type->is_loaded()) {
698
return (ciArrayKlass*)type;
699
} else {
700
return NULL;
701
}
702
}
703
704
static ciType* phi_declared_type(Phi* phi) {
705
ciType* t = phi->operand_at(0)->declared_type();
706
if (t == NULL) {
707
return NULL;
708
}
709
for(int i = 1; i < phi->operand_count(); i++) {
710
if (t != phi->operand_at(i)->declared_type()) {
711
return NULL;
712
}
713
}
714
return t;
715
}
716
717
void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
718
Instruction* src = x->argument_at(0);
719
Instruction* src_pos = x->argument_at(1);
720
Instruction* dst = x->argument_at(2);
721
Instruction* dst_pos = x->argument_at(3);
722
Instruction* length = x->argument_at(4);
723
724
// first try to identify the likely type of the arrays involved
725
ciArrayKlass* expected_type = NULL;
726
bool is_exact = false, src_objarray = false, dst_objarray = false;
727
{
728
ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
729
ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
730
Phi* phi;
731
if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
732
src_declared_type = as_array_klass(phi_declared_type(phi));
733
}
734
ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
735
ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
736
if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
737
dst_declared_type = as_array_klass(phi_declared_type(phi));
738
}
739
740
if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
741
// the types exactly match so the type is fully known
742
is_exact = true;
743
expected_type = src_exact_type;
744
} else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
745
ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
746
ciArrayKlass* src_type = NULL;
747
if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
748
src_type = (ciArrayKlass*) src_exact_type;
749
} else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
750
src_type = (ciArrayKlass*) src_declared_type;
751
}
752
if (src_type != NULL) {
753
if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
754
is_exact = true;
755
expected_type = dst_type;
756
}
757
}
758
}
759
// at least pass along a good guess
760
if (expected_type == NULL) expected_type = dst_exact_type;
761
if (expected_type == NULL) expected_type = src_declared_type;
762
if (expected_type == NULL) expected_type = dst_declared_type;
763
764
src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
765
dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
766
}
767
768
// if a probable array type has been identified, figure out if any
769
// of the required checks for a fast case can be elided.
770
int flags = LIR_OpArrayCopy::all_flags;
771
772
if (!src_objarray)
773
flags &= ~LIR_OpArrayCopy::src_objarray;
774
if (!dst_objarray)
775
flags &= ~LIR_OpArrayCopy::dst_objarray;
776
777
if (!x->arg_needs_null_check(0))
778
flags &= ~LIR_OpArrayCopy::src_null_check;
779
if (!x->arg_needs_null_check(2))
780
flags &= ~LIR_OpArrayCopy::dst_null_check;
781
782
783
if (expected_type != NULL) {
784
Value length_limit = NULL;
785
786
IfOp* ifop = length->as_IfOp();
787
if (ifop != NULL) {
788
// look for expressions like min(v, a.length) which ends up as
789
// x > y ? y : x or x >= y ? y : x
790
if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
791
ifop->x() == ifop->fval() &&
792
ifop->y() == ifop->tval()) {
793
length_limit = ifop->y();
794
}
795
}
796
797
// try to skip null checks and range checks
798
NewArray* src_array = src->as_NewArray();
799
if (src_array != NULL) {
800
flags &= ~LIR_OpArrayCopy::src_null_check;
801
if (length_limit != NULL &&
802
src_array->length() == length_limit &&
803
is_constant_zero(src_pos)) {
804
flags &= ~LIR_OpArrayCopy::src_range_check;
805
}
806
}
807
808
NewArray* dst_array = dst->as_NewArray();
809
if (dst_array != NULL) {
810
flags &= ~LIR_OpArrayCopy::dst_null_check;
811
if (length_limit != NULL &&
812
dst_array->length() == length_limit &&
813
is_constant_zero(dst_pos)) {
814
flags &= ~LIR_OpArrayCopy::dst_range_check;
815
}
816
}
817
818
// check from incoming constant values
819
if (positive_constant(src_pos))
820
flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
821
if (positive_constant(dst_pos))
822
flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
823
if (positive_constant(length))
824
flags &= ~LIR_OpArrayCopy::length_positive_check;
825
826
// see if the range check can be elided, which might also imply
827
// that src or dst is non-null.
828
ArrayLength* al = length->as_ArrayLength();
829
if (al != NULL) {
830
if (al->array() == src) {
831
// it's the length of the source array
832
flags &= ~LIR_OpArrayCopy::length_positive_check;
833
flags &= ~LIR_OpArrayCopy::src_null_check;
834
if (is_constant_zero(src_pos))
835
flags &= ~LIR_OpArrayCopy::src_range_check;
836
}
837
if (al->array() == dst) {
838
// it's the length of the destination array
839
flags &= ~LIR_OpArrayCopy::length_positive_check;
840
flags &= ~LIR_OpArrayCopy::dst_null_check;
841
if (is_constant_zero(dst_pos))
842
flags &= ~LIR_OpArrayCopy::dst_range_check;
843
}
844
}
845
if (is_exact) {
846
flags &= ~LIR_OpArrayCopy::type_check;
847
}
848
}
849
850
IntConstant* src_int = src_pos->type()->as_IntConstant();
851
IntConstant* dst_int = dst_pos->type()->as_IntConstant();
852
if (src_int && dst_int) {
853
int s_offs = src_int->value();
854
int d_offs = dst_int->value();
855
if (src_int->value() >= dst_int->value()) {
856
flags &= ~LIR_OpArrayCopy::overlapping;
857
}
858
if (expected_type != NULL) {
859
BasicType t = expected_type->element_type()->basic_type();
860
int element_size = type2aelembytes(t);
861
if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
862
((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
863
flags &= ~LIR_OpArrayCopy::unaligned;
864
}
865
}
866
} else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
867
// src and dest positions are the same, or dst is zero so assume
868
// nonoverlapping copy.
869
flags &= ~LIR_OpArrayCopy::overlapping;
870
}
871
872
if (src == dst) {
873
// moving within a single array so no type checks are needed
874
if (flags & LIR_OpArrayCopy::type_check) {
875
flags &= ~LIR_OpArrayCopy::type_check;
876
}
877
}
878
*flagsp = flags;
879
*expected_typep = (ciArrayKlass*)expected_type;
880
}
881
882
883
LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
884
assert(opr->is_register(), "why spill if item is not register?");
885
886
if (strict_fp_requires_explicit_rounding) {
887
#ifdef IA32
888
if (UseSSE < 1 && opr->is_single_fpu()) {
889
LIR_Opr result = new_register(T_FLOAT);
890
set_vreg_flag(result, must_start_in_memory);
891
assert(opr->is_register(), "only a register can be spilled");
892
assert(opr->value_type()->is_float(), "rounding only for floats available");
893
__ roundfp(opr, LIR_OprFact::illegalOpr, result);
894
return result;
895
}
896
#else
897
Unimplemented();
898
#endif // IA32
899
}
900
return opr;
901
}
902
903
904
LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
905
assert(type2size[t] == type2size[value->type()],
906
"size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
907
if (!value->is_register()) {
908
// force into a register
909
LIR_Opr r = new_register(value->type());
910
__ move(value, r);
911
value = r;
912
}
913
914
// create a spill location
915
LIR_Opr tmp = new_register(t);
916
set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
917
918
// move from register to spill
919
__ move(value, tmp);
920
return tmp;
921
}
922
923
void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
924
if (if_instr->should_profile()) {
925
ciMethod* method = if_instr->profiled_method();
926
assert(method != NULL, "method should be set if branch is profiled");
927
ciMethodData* md = method->method_data_or_null();
928
assert(md != NULL, "Sanity");
929
ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
930
assert(data != NULL, "must have profiling data");
931
assert(data->is_BranchData(), "need BranchData for two-way branches");
932
int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
933
int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
934
if (if_instr->is_swapped()) {
935
int t = taken_count_offset;
936
taken_count_offset = not_taken_count_offset;
937
not_taken_count_offset = t;
938
}
939
940
LIR_Opr md_reg = new_register(T_METADATA);
941
__ metadata2reg(md->constant_encoding(), md_reg);
942
943
LIR_Opr data_offset_reg = new_pointer_register();
944
__ cmove(lir_cond(cond),
945
LIR_OprFact::intptrConst(taken_count_offset),
946
LIR_OprFact::intptrConst(not_taken_count_offset),
947
data_offset_reg, as_BasicType(if_instr->x()->type()));
948
949
// MDO cells are intptr_t, so the data_reg width is arch-dependent.
950
LIR_Opr data_reg = new_pointer_register();
951
LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
952
__ move(data_addr, data_reg);
953
// Use leal instead of add to avoid destroying condition codes on x86
954
LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
955
__ leal(LIR_OprFact::address(fake_incr_value), data_reg);
956
__ move(data_reg, data_addr);
957
}
958
}
959
960
// Phi technique:
961
// This is about passing live values from one basic block to the other.
962
// In code generated with Java it is rather rare that more than one
963
// value is on the stack from one basic block to the other.
964
// We optimize our technique for efficient passing of one value
965
// (of type long, int, double..) but it can be extended.
966
// When entering or leaving a basic block, all registers and all spill
967
// slots are release and empty. We use the released registers
968
// and spill slots to pass the live values from one block
969
// to the other. The topmost value, i.e., the value on TOS of expression
970
// stack is passed in registers. All other values are stored in spilling
971
// area. Every Phi has an index which designates its spill slot
972
// At exit of a basic block, we fill the register(s) and spill slots.
973
// At entry of a basic block, the block_prolog sets up the content of phi nodes
974
// and locks necessary registers and spilling slots.
975
976
977
// move current value to referenced phi function
978
void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
979
Phi* phi = sux_val->as_Phi();
980
// cur_val can be null without phi being null in conjunction with inlining
981
if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
982
Phi* cur_phi = cur_val->as_Phi();
983
if (cur_phi != NULL && cur_phi->is_illegal()) {
984
// Phi and local would need to get invalidated
985
// (which is unexpected for Linear Scan).
986
// But this case is very rare so we simply bail out.
987
bailout("propagation of illegal phi");
988
return;
989
}
990
LIR_Opr operand = cur_val->operand();
991
if (operand->is_illegal()) {
992
assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
993
"these can be produced lazily");
994
operand = operand_for_instruction(cur_val);
995
}
996
resolver->move(operand, operand_for_instruction(phi));
997
}
998
}
999
1000
1001
// Moves all stack values into their PHI position
1002
void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1003
BlockBegin* bb = block();
1004
if (bb->number_of_sux() == 1) {
1005
BlockBegin* sux = bb->sux_at(0);
1006
assert(sux->number_of_preds() > 0, "invalid CFG");
1007
1008
// a block with only one predecessor never has phi functions
1009
if (sux->number_of_preds() > 1) {
1010
PhiResolver resolver(this);
1011
1012
ValueStack* sux_state = sux->state();
1013
Value sux_value;
1014
int index;
1015
1016
assert(cur_state->scope() == sux_state->scope(), "not matching");
1017
assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1018
assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1019
1020
for_each_stack_value(sux_state, index, sux_value) {
1021
move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1022
}
1023
1024
for_each_local_value(sux_state, index, sux_value) {
1025
move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1026
}
1027
1028
assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1029
}
1030
}
1031
}
1032
1033
1034
LIR_Opr LIRGenerator::new_register(BasicType type) {
1035
int vreg_num = _virtual_register_number;
1036
// Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1037
// a few extra registers before we really run out which helps to avoid to trip over assertions.
1038
if (vreg_num + 20 >= LIR_OprDesc::vreg_max) {
1039
bailout("out of virtual registers in LIR generator");
1040
if (vreg_num + 2 >= LIR_OprDesc::vreg_max) {
1041
// Wrap it around and continue until bailout really happens to avoid hitting assertions.
1042
_virtual_register_number = LIR_OprDesc::vreg_base;
1043
vreg_num = LIR_OprDesc::vreg_base;
1044
}
1045
}
1046
_virtual_register_number += 1;
1047
LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1048
assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1049
return vreg;
1050
}
1051
1052
1053
// Try to lock using register in hint
1054
LIR_Opr LIRGenerator::rlock(Value instr) {
1055
return new_register(instr->type());
1056
}
1057
1058
1059
// does an rlock and sets result
1060
LIR_Opr LIRGenerator::rlock_result(Value x) {
1061
LIR_Opr reg = rlock(x);
1062
set_result(x, reg);
1063
return reg;
1064
}
1065
1066
1067
// does an rlock and sets result
1068
LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1069
LIR_Opr reg;
1070
switch (type) {
1071
case T_BYTE:
1072
case T_BOOLEAN:
1073
reg = rlock_byte(type);
1074
break;
1075
default:
1076
reg = rlock(x);
1077
break;
1078
}
1079
1080
set_result(x, reg);
1081
return reg;
1082
}
1083
1084
1085
//---------------------------------------------------------------------
1086
ciObject* LIRGenerator::get_jobject_constant(Value value) {
1087
ObjectType* oc = value->type()->as_ObjectType();
1088
if (oc) {
1089
return oc->constant_value();
1090
}
1091
return NULL;
1092
}
1093
1094
1095
void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1096
assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1097
assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1098
1099
// no moves are created for phi functions at the begin of exception
1100
// handlers, so assign operands manually here
1101
for_each_phi_fun(block(), phi,
1102
if (!phi->is_illegal()) { operand_for_instruction(phi); });
1103
1104
LIR_Opr thread_reg = getThreadPointer();
1105
__ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1106
exceptionOopOpr());
1107
__ move_wide(LIR_OprFact::oopConst(NULL),
1108
new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1109
__ move_wide(LIR_OprFact::oopConst(NULL),
1110
new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1111
1112
LIR_Opr result = new_register(T_OBJECT);
1113
__ move(exceptionOopOpr(), result);
1114
set_result(x, result);
1115
}
1116
1117
1118
//----------------------------------------------------------------------
1119
//----------------------------------------------------------------------
1120
//----------------------------------------------------------------------
1121
//----------------------------------------------------------------------
1122
// visitor functions
1123
//----------------------------------------------------------------------
1124
//----------------------------------------------------------------------
1125
//----------------------------------------------------------------------
1126
//----------------------------------------------------------------------
1127
1128
void LIRGenerator::do_Phi(Phi* x) {
1129
// phi functions are never visited directly
1130
ShouldNotReachHere();
1131
}
1132
1133
1134
// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1135
void LIRGenerator::do_Constant(Constant* x) {
1136
if (x->state_before() != NULL) {
1137
// Any constant with a ValueStack requires patching so emit the patch here
1138
LIR_Opr reg = rlock_result(x);
1139
CodeEmitInfo* info = state_for(x, x->state_before());
1140
__ oop2reg_patch(NULL, reg, info);
1141
} else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1142
if (!x->is_pinned()) {
1143
// unpinned constants are handled specially so that they can be
1144
// put into registers when they are used multiple times within a
1145
// block. After the block completes their operand will be
1146
// cleared so that other blocks can't refer to that register.
1147
set_result(x, load_constant(x));
1148
} else {
1149
LIR_Opr res = x->operand();
1150
if (!res->is_valid()) {
1151
res = LIR_OprFact::value_type(x->type());
1152
}
1153
if (res->is_constant()) {
1154
LIR_Opr reg = rlock_result(x);
1155
__ move(res, reg);
1156
} else {
1157
set_result(x, res);
1158
}
1159
}
1160
} else {
1161
set_result(x, LIR_OprFact::value_type(x->type()));
1162
}
1163
}
1164
1165
1166
void LIRGenerator::do_Local(Local* x) {
1167
// operand_for_instruction has the side effect of setting the result
1168
// so there's no need to do it here.
1169
operand_for_instruction(x);
1170
}
1171
1172
1173
void LIRGenerator::do_Return(Return* x) {
1174
if (compilation()->env()->dtrace_method_probes()) {
1175
BasicTypeList signature;
1176
signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
1177
signature.append(T_METADATA); // Method*
1178
LIR_OprList* args = new LIR_OprList();
1179
args->append(getThreadPointer());
1180
LIR_Opr meth = new_register(T_METADATA);
1181
__ metadata2reg(method()->constant_encoding(), meth);
1182
args->append(meth);
1183
call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1184
}
1185
1186
if (x->type()->is_void()) {
1187
__ return_op(LIR_OprFact::illegalOpr);
1188
} else {
1189
LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1190
LIRItem result(x->result(), this);
1191
1192
result.load_item_force(reg);
1193
__ return_op(result.result());
1194
}
1195
set_no_result(x);
1196
}
1197
1198
// Examble: ref.get()
1199
// Combination of LoadField and g1 pre-write barrier
1200
void LIRGenerator::do_Reference_get(Intrinsic* x) {
1201
1202
const int referent_offset = java_lang_ref_Reference::referent_offset();
1203
1204
assert(x->number_of_arguments() == 1, "wrong type");
1205
1206
LIRItem reference(x->argument_at(0), this);
1207
reference.load_item();
1208
1209
// need to perform the null check on the reference objecy
1210
CodeEmitInfo* info = NULL;
1211
if (x->needs_null_check()) {
1212
info = state_for(x);
1213
}
1214
1215
LIR_Opr result = rlock_result(x, T_OBJECT);
1216
access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1217
reference, LIR_OprFact::intConst(referent_offset), result);
1218
}
1219
1220
// Example: clazz.isInstance(object)
1221
void LIRGenerator::do_isInstance(Intrinsic* x) {
1222
assert(x->number_of_arguments() == 2, "wrong type");
1223
1224
// TODO could try to substitute this node with an equivalent InstanceOf
1225
// if clazz is known to be a constant Class. This will pick up newly found
1226
// constants after HIR construction. I'll leave this to a future change.
1227
1228
// as a first cut, make a simple leaf call to runtime to stay platform independent.
1229
// could follow the aastore example in a future change.
1230
1231
LIRItem clazz(x->argument_at(0), this);
1232
LIRItem object(x->argument_at(1), this);
1233
clazz.load_item();
1234
object.load_item();
1235
LIR_Opr result = rlock_result(x);
1236
1237
// need to perform null check on clazz
1238
if (x->needs_null_check()) {
1239
CodeEmitInfo* info = state_for(x);
1240
__ null_check(clazz.result(), info);
1241
}
1242
1243
LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1244
CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1245
x->type(),
1246
NULL); // NULL CodeEmitInfo results in a leaf call
1247
__ move(call_result, result);
1248
}
1249
1250
// Example: object.getClass ()
1251
void LIRGenerator::do_getClass(Intrinsic* x) {
1252
assert(x->number_of_arguments() == 1, "wrong type");
1253
1254
LIRItem rcvr(x->argument_at(0), this);
1255
rcvr.load_item();
1256
LIR_Opr temp = new_register(T_METADATA);
1257
LIR_Opr result = rlock_result(x);
1258
1259
// need to perform the null check on the rcvr
1260
CodeEmitInfo* info = NULL;
1261
if (x->needs_null_check()) {
1262
info = state_for(x);
1263
}
1264
1265
// FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1266
// meaning of these two is mixed up (see JDK-8026837).
1267
__ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1268
__ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1269
// mirror = ((OopHandle)mirror)->resolve();
1270
access_load(IN_NATIVE, T_OBJECT,
1271
LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1272
}
1273
1274
// java.lang.Class::isPrimitive()
1275
void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1276
assert(x->number_of_arguments() == 1, "wrong type");
1277
1278
LIRItem rcvr(x->argument_at(0), this);
1279
rcvr.load_item();
1280
LIR_Opr temp = new_register(T_METADATA);
1281
LIR_Opr result = rlock_result(x);
1282
1283
CodeEmitInfo* info = NULL;
1284
if (x->needs_null_check()) {
1285
info = state_for(x);
1286
}
1287
1288
__ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1289
__ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1290
__ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1291
}
1292
1293
// Example: Foo.class.getModifiers()
1294
void LIRGenerator::do_getModifiers(Intrinsic* x) {
1295
assert(x->number_of_arguments() == 1, "wrong type");
1296
1297
LIRItem receiver(x->argument_at(0), this);
1298
receiver.load_item();
1299
LIR_Opr result = rlock_result(x);
1300
1301
CodeEmitInfo* info = NULL;
1302
if (x->needs_null_check()) {
1303
info = state_for(x);
1304
}
1305
1306
LabelObj* L_not_prim = new LabelObj();
1307
LabelObj* L_done = new LabelObj();
1308
1309
LIR_Opr klass = new_register(T_METADATA);
1310
// Checking if it's a java mirror of primitive type
1311
__ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), klass, info);
1312
__ cmp(lir_cond_notEqual, klass, LIR_OprFact::metadataConst(0));
1313
__ branch(lir_cond_notEqual, L_not_prim->label());
1314
__ move(LIR_OprFact::intConst(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), result);
1315
__ branch(lir_cond_always, L_done->label());
1316
1317
__ branch_destination(L_not_prim->label());
1318
__ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1319
__ branch_destination(L_done->label());
1320
}
1321
1322
// Example: Thread.currentThread()
1323
void LIRGenerator::do_currentThread(Intrinsic* x) {
1324
assert(x->number_of_arguments() == 0, "wrong type");
1325
LIR_Opr temp = new_register(T_ADDRESS);
1326
LIR_Opr reg = rlock_result(x);
1327
__ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp);
1328
// threadObj = ((OopHandle)_threadObj)->resolve();
1329
access_load(IN_NATIVE, T_OBJECT,
1330
LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1331
}
1332
1333
void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1334
assert(x->number_of_arguments() == 3, "wrong type");
1335
LIR_Opr result_reg = rlock_result(x);
1336
1337
LIRItem value(x->argument_at(2), this);
1338
value.load_item();
1339
1340
LIR_Opr klass = new_register(T_METADATA);
1341
__ move(new LIR_Address(value.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, NULL);
1342
LIR_Opr layout = new_register(T_INT);
1343
__ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1344
1345
LabelObj* L_done = new LabelObj();
1346
LabelObj* L_array = new LabelObj();
1347
1348
__ cmp(lir_cond_lessEqual, layout, 0);
1349
__ branch(lir_cond_lessEqual, L_array->label());
1350
1351
// Instance case: the layout helper gives us instance size almost directly,
1352
// but we need to mask out the _lh_instance_slow_path_bit.
1353
__ convert(Bytecodes::_i2l, layout, result_reg);
1354
1355
assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1356
jlong mask = ~(jlong) right_n_bits(LogBytesPerLong);
1357
__ logical_and(result_reg, LIR_OprFact::longConst(mask), result_reg);
1358
1359
__ branch(lir_cond_always, L_done->label());
1360
1361
// Array case: size is round(header + element_size*arraylength).
1362
// Since arraylength is different for every array instance, we have to
1363
// compute the whole thing at runtime.
1364
1365
__ branch_destination(L_array->label());
1366
1367
int round_mask = MinObjAlignmentInBytes - 1;
1368
1369
// Figure out header sizes first.
1370
LIR_Opr hss = LIR_OprFact::intConst(Klass::_lh_header_size_shift);
1371
LIR_Opr hsm = LIR_OprFact::intConst(Klass::_lh_header_size_mask);
1372
1373
LIR_Opr header_size = new_register(T_INT);
1374
__ move(layout, header_size);
1375
LIR_Opr tmp = new_register(T_INT);
1376
__ unsigned_shift_right(header_size, hss, header_size, tmp);
1377
__ logical_and(header_size, hsm, header_size);
1378
__ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1379
1380
// Figure out the array length in bytes
1381
assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1382
LIR_Opr l2esm = LIR_OprFact::intConst(Klass::_lh_log2_element_size_mask);
1383
__ logical_and(layout, l2esm, layout);
1384
1385
LIR_Opr length_int = new_register(T_INT);
1386
__ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1387
1388
#ifdef _LP64
1389
LIR_Opr length = new_register(T_LONG);
1390
__ convert(Bytecodes::_i2l, length_int, length);
1391
#endif
1392
1393
// Shift-left awkwardness. Normally it is just:
1394
// __ shift_left(length, layout, length);
1395
// But C1 cannot perform shift_left with non-constant count, so we end up
1396
// doing the per-bit loop dance here. x86_32 also does not know how to shift
1397
// longs, so we have to act on ints.
1398
LabelObj* L_shift_loop = new LabelObj();
1399
LabelObj* L_shift_exit = new LabelObj();
1400
1401
__ branch_destination(L_shift_loop->label());
1402
__ cmp(lir_cond_equal, layout, 0);
1403
__ branch(lir_cond_equal, L_shift_exit->label());
1404
1405
#ifdef _LP64
1406
__ shift_left(length, 1, length);
1407
#else
1408
__ shift_left(length_int, 1, length_int);
1409
#endif
1410
1411
__ sub(layout, LIR_OprFact::intConst(1), layout);
1412
1413
__ branch(lir_cond_always, L_shift_loop->label());
1414
__ branch_destination(L_shift_exit->label());
1415
1416
// Mix all up, round, and push to the result.
1417
#ifdef _LP64
1418
LIR_Opr header_size_long = new_register(T_LONG);
1419
__ convert(Bytecodes::_i2l, header_size, header_size_long);
1420
__ add(length, header_size_long, length);
1421
if (round_mask != 0) {
1422
__ logical_and(length, LIR_OprFact::longConst(~round_mask), length);
1423
}
1424
__ move(length, result_reg);
1425
#else
1426
__ add(length_int, header_size, length_int);
1427
if (round_mask != 0) {
1428
__ logical_and(length_int, LIR_OprFact::intConst(~round_mask), length_int);
1429
}
1430
__ convert(Bytecodes::_i2l, length_int, result_reg);
1431
#endif
1432
1433
__ branch_destination(L_done->label());
1434
}
1435
1436
void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1437
assert(x->number_of_arguments() == 1, "wrong type");
1438
LIRItem receiver(x->argument_at(0), this);
1439
1440
receiver.load_item();
1441
BasicTypeList signature;
1442
signature.append(T_OBJECT); // receiver
1443
LIR_OprList* args = new LIR_OprList();
1444
args->append(receiver.result());
1445
CodeEmitInfo* info = state_for(x, x->state());
1446
call_runtime(&signature, args,
1447
CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1448
voidType, info);
1449
1450
set_no_result(x);
1451
}
1452
1453
1454
//------------------------local access--------------------------------------
1455
1456
LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1457
if (x->operand()->is_illegal()) {
1458
Constant* c = x->as_Constant();
1459
if (c != NULL) {
1460
x->set_operand(LIR_OprFact::value_type(c->type()));
1461
} else {
1462
assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1463
// allocate a virtual register for this local or phi
1464
x->set_operand(rlock(x));
1465
_instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1466
}
1467
}
1468
return x->operand();
1469
}
1470
1471
1472
Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1473
if (opr->is_virtual()) {
1474
return instruction_for_vreg(opr->vreg_number());
1475
}
1476
return NULL;
1477
}
1478
1479
1480
Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1481
if (reg_num < _instruction_for_operand.length()) {
1482
return _instruction_for_operand.at(reg_num);
1483
}
1484
return NULL;
1485
}
1486
1487
1488
void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1489
if (_vreg_flags.size_in_bits() == 0) {
1490
BitMap2D temp(100, num_vreg_flags);
1491
_vreg_flags = temp;
1492
}
1493
_vreg_flags.at_put_grow(vreg_num, f, true);
1494
}
1495
1496
bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1497
if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1498
return false;
1499
}
1500
return _vreg_flags.at(vreg_num, f);
1501
}
1502
1503
1504
// Block local constant handling. This code is useful for keeping
1505
// unpinned constants and constants which aren't exposed in the IR in
1506
// registers. Unpinned Constant instructions have their operands
1507
// cleared when the block is finished so that other blocks can't end
1508
// up referring to their registers.
1509
1510
LIR_Opr LIRGenerator::load_constant(Constant* x) {
1511
assert(!x->is_pinned(), "only for unpinned constants");
1512
_unpinned_constants.append(x);
1513
return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1514
}
1515
1516
1517
LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1518
BasicType t = c->type();
1519
for (int i = 0; i < _constants.length(); i++) {
1520
LIR_Const* other = _constants.at(i);
1521
if (t == other->type()) {
1522
switch (t) {
1523
case T_INT:
1524
case T_FLOAT:
1525
if (c->as_jint_bits() != other->as_jint_bits()) continue;
1526
break;
1527
case T_LONG:
1528
case T_DOUBLE:
1529
if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1530
if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1531
break;
1532
case T_OBJECT:
1533
if (c->as_jobject() != other->as_jobject()) continue;
1534
break;
1535
default:
1536
break;
1537
}
1538
return _reg_for_constants.at(i);
1539
}
1540
}
1541
1542
LIR_Opr result = new_register(t);
1543
__ move((LIR_Opr)c, result);
1544
_constants.append(c);
1545
_reg_for_constants.append(result);
1546
return result;
1547
}
1548
1549
//------------------------field access--------------------------------------
1550
1551
void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1552
assert(x->number_of_arguments() == 4, "wrong type");
1553
LIRItem obj (x->argument_at(0), this); // object
1554
LIRItem offset(x->argument_at(1), this); // offset of field
1555
LIRItem cmp (x->argument_at(2), this); // value to compare with field
1556
LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1557
assert(obj.type()->tag() == objectTag, "invalid type");
1558
assert(cmp.type()->tag() == type->tag(), "invalid type");
1559
assert(val.type()->tag() == type->tag(), "invalid type");
1560
1561
LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1562
obj, offset, cmp, val);
1563
set_result(x, result);
1564
}
1565
1566
// Comment copied form templateTable_i486.cpp
1567
// ----------------------------------------------------------------------------
1568
// Volatile variables demand their effects be made known to all CPU's in
1569
// order. Store buffers on most chips allow reads & writes to reorder; the
1570
// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1571
// memory barrier (i.e., it's not sufficient that the interpreter does not
1572
// reorder volatile references, the hardware also must not reorder them).
1573
//
1574
// According to the new Java Memory Model (JMM):
1575
// (1) All volatiles are serialized wrt to each other.
1576
// ALSO reads & writes act as aquire & release, so:
1577
// (2) A read cannot let unrelated NON-volatile memory refs that happen after
1578
// the read float up to before the read. It's OK for non-volatile memory refs
1579
// that happen before the volatile read to float down below it.
1580
// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1581
// that happen BEFORE the write float down to after the write. It's OK for
1582
// non-volatile memory refs that happen after the volatile write to float up
1583
// before it.
1584
//
1585
// We only put in barriers around volatile refs (they are expensive), not
1586
// _between_ memory refs (that would require us to track the flavor of the
1587
// previous memory refs). Requirements (2) and (3) require some barriers
1588
// before volatile stores and after volatile loads. These nearly cover
1589
// requirement (1) but miss the volatile-store-volatile-load case. This final
1590
// case is placed after volatile-stores although it could just as well go
1591
// before volatile-loads.
1592
1593
1594
void LIRGenerator::do_StoreField(StoreField* x) {
1595
bool needs_patching = x->needs_patching();
1596
bool is_volatile = x->field()->is_volatile();
1597
BasicType field_type = x->field_type();
1598
1599
CodeEmitInfo* info = NULL;
1600
if (needs_patching) {
1601
assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1602
info = state_for(x, x->state_before());
1603
} else if (x->needs_null_check()) {
1604
NullCheck* nc = x->explicit_null_check();
1605
if (nc == NULL) {
1606
info = state_for(x);
1607
} else {
1608
info = state_for(nc);
1609
}
1610
}
1611
1612
LIRItem object(x->obj(), this);
1613
LIRItem value(x->value(), this);
1614
1615
object.load_item();
1616
1617
if (is_volatile || needs_patching) {
1618
// load item if field is volatile (fewer special cases for volatiles)
1619
// load item if field not initialized
1620
// load item if field not constant
1621
// because of code patching we cannot inline constants
1622
if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1623
value.load_byte_item();
1624
} else {
1625
value.load_item();
1626
}
1627
} else {
1628
value.load_for_store(field_type);
1629
}
1630
1631
set_no_result(x);
1632
1633
#ifndef PRODUCT
1634
if (PrintNotLoaded && needs_patching) {
1635
tty->print_cr(" ###class not loaded at store_%s bci %d",
1636
x->is_static() ? "static" : "field", x->printable_bci());
1637
}
1638
#endif
1639
1640
if (x->needs_null_check() &&
1641
(needs_patching ||
1642
MacroAssembler::needs_explicit_null_check(x->offset()))) {
1643
// Emit an explicit null check because the offset is too large.
1644
// If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1645
// NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1646
__ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1647
}
1648
1649
DecoratorSet decorators = IN_HEAP;
1650
if (is_volatile) {
1651
decorators |= MO_SEQ_CST;
1652
}
1653
if (needs_patching) {
1654
decorators |= C1_NEEDS_PATCHING;
1655
}
1656
1657
access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1658
value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1659
}
1660
1661
void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1662
assert(x->is_pinned(),"");
1663
bool needs_range_check = x->compute_needs_range_check();
1664
bool use_length = x->length() != NULL;
1665
bool obj_store = is_reference_type(x->elt_type());
1666
bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
1667
!get_jobject_constant(x->value())->is_null_object() ||
1668
x->should_profile());
1669
1670
LIRItem array(x->array(), this);
1671
LIRItem index(x->index(), this);
1672
LIRItem value(x->value(), this);
1673
LIRItem length(this);
1674
1675
array.load_item();
1676
index.load_nonconstant();
1677
1678
if (use_length && needs_range_check) {
1679
length.set_instruction(x->length());
1680
length.load_item();
1681
1682
}
1683
if (needs_store_check || x->check_boolean()) {
1684
value.load_item();
1685
} else {
1686
value.load_for_store(x->elt_type());
1687
}
1688
1689
set_no_result(x);
1690
1691
// the CodeEmitInfo must be duplicated for each different
1692
// LIR-instruction because spilling can occur anywhere between two
1693
// instructions and so the debug information must be different
1694
CodeEmitInfo* range_check_info = state_for(x);
1695
CodeEmitInfo* null_check_info = NULL;
1696
if (x->needs_null_check()) {
1697
null_check_info = new CodeEmitInfo(range_check_info);
1698
}
1699
1700
if (GenerateRangeChecks && needs_range_check) {
1701
if (use_length) {
1702
__ cmp(lir_cond_belowEqual, length.result(), index.result());
1703
__ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1704
} else {
1705
array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1706
// range_check also does the null check
1707
null_check_info = NULL;
1708
}
1709
}
1710
1711
if (GenerateArrayStoreCheck && needs_store_check) {
1712
CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1713
array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1714
}
1715
1716
DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1717
if (x->check_boolean()) {
1718
decorators |= C1_MASK_BOOLEAN;
1719
}
1720
1721
access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1722
NULL, null_check_info);
1723
}
1724
1725
void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1726
LIRItem& base, LIR_Opr offset, LIR_Opr result,
1727
CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1728
decorators |= ACCESS_READ;
1729
LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1730
if (access.is_raw()) {
1731
_barrier_set->BarrierSetC1::load_at(access, result);
1732
} else {
1733
_barrier_set->load_at(access, result);
1734
}
1735
}
1736
1737
void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1738
LIR_Opr addr, LIR_Opr result) {
1739
decorators |= ACCESS_READ;
1740
LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1741
access.set_resolved_addr(addr);
1742
if (access.is_raw()) {
1743
_barrier_set->BarrierSetC1::load(access, result);
1744
} else {
1745
_barrier_set->load(access, result);
1746
}
1747
}
1748
1749
void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1750
LIRItem& base, LIR_Opr offset, LIR_Opr value,
1751
CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1752
decorators |= ACCESS_WRITE;
1753
LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1754
if (access.is_raw()) {
1755
_barrier_set->BarrierSetC1::store_at(access, value);
1756
} else {
1757
_barrier_set->store_at(access, value);
1758
}
1759
}
1760
1761
LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1762
LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1763
decorators |= ACCESS_READ;
1764
decorators |= ACCESS_WRITE;
1765
// Atomic operations are SEQ_CST by default
1766
decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1767
LIRAccess access(this, decorators, base, offset, type);
1768
if (access.is_raw()) {
1769
return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1770
} else {
1771
return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1772
}
1773
}
1774
1775
LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1776
LIRItem& base, LIRItem& offset, LIRItem& value) {
1777
decorators |= ACCESS_READ;
1778
decorators |= ACCESS_WRITE;
1779
// Atomic operations are SEQ_CST by default
1780
decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1781
LIRAccess access(this, decorators, base, offset, type);
1782
if (access.is_raw()) {
1783
return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1784
} else {
1785
return _barrier_set->atomic_xchg_at(access, value);
1786
}
1787
}
1788
1789
LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1790
LIRItem& base, LIRItem& offset, LIRItem& value) {
1791
decorators |= ACCESS_READ;
1792
decorators |= ACCESS_WRITE;
1793
// Atomic operations are SEQ_CST by default
1794
decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1795
LIRAccess access(this, decorators, base, offset, type);
1796
if (access.is_raw()) {
1797
return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1798
} else {
1799
return _barrier_set->atomic_add_at(access, value);
1800
}
1801
}
1802
1803
void LIRGenerator::do_LoadField(LoadField* x) {
1804
bool needs_patching = x->needs_patching();
1805
bool is_volatile = x->field()->is_volatile();
1806
BasicType field_type = x->field_type();
1807
1808
CodeEmitInfo* info = NULL;
1809
if (needs_patching) {
1810
assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1811
info = state_for(x, x->state_before());
1812
} else if (x->needs_null_check()) {
1813
NullCheck* nc = x->explicit_null_check();
1814
if (nc == NULL) {
1815
info = state_for(x);
1816
} else {
1817
info = state_for(nc);
1818
}
1819
}
1820
1821
LIRItem object(x->obj(), this);
1822
1823
object.load_item();
1824
1825
#ifndef PRODUCT
1826
if (PrintNotLoaded && needs_patching) {
1827
tty->print_cr(" ###class not loaded at load_%s bci %d",
1828
x->is_static() ? "static" : "field", x->printable_bci());
1829
}
1830
#endif
1831
1832
bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1833
if (x->needs_null_check() &&
1834
(needs_patching ||
1835
MacroAssembler::needs_explicit_null_check(x->offset()) ||
1836
stress_deopt)) {
1837
LIR_Opr obj = object.result();
1838
if (stress_deopt) {
1839
obj = new_register(T_OBJECT);
1840
__ move(LIR_OprFact::oopConst(NULL), obj);
1841
}
1842
// Emit an explicit null check because the offset is too large.
1843
// If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1844
// NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1845
__ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1846
}
1847
1848
DecoratorSet decorators = IN_HEAP;
1849
if (is_volatile) {
1850
decorators |= MO_SEQ_CST;
1851
}
1852
if (needs_patching) {
1853
decorators |= C1_NEEDS_PATCHING;
1854
}
1855
1856
LIR_Opr result = rlock_result(x, field_type);
1857
access_load_at(decorators, field_type,
1858
object, LIR_OprFact::intConst(x->offset()), result,
1859
info ? new CodeEmitInfo(info) : NULL, info);
1860
}
1861
1862
1863
//------------------------java.nio.Buffer.checkIndex------------------------
1864
1865
// int java.nio.Buffer.checkIndex(int)
1866
void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1867
// NOTE: by the time we are in checkIndex() we are guaranteed that
1868
// the buffer is non-null (because checkIndex is package-private and
1869
// only called from within other methods in the buffer).
1870
assert(x->number_of_arguments() == 2, "wrong type");
1871
LIRItem buf (x->argument_at(0), this);
1872
LIRItem index(x->argument_at(1), this);
1873
buf.load_item();
1874
index.load_item();
1875
1876
LIR_Opr result = rlock_result(x);
1877
if (GenerateRangeChecks) {
1878
CodeEmitInfo* info = state_for(x);
1879
CodeStub* stub = new RangeCheckStub(info, index.result());
1880
if (index.result()->is_constant()) {
1881
cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1882
__ branch(lir_cond_belowEqual, stub);
1883
} else {
1884
cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1885
java_nio_Buffer::limit_offset(), T_INT, info);
1886
__ branch(lir_cond_aboveEqual, stub);
1887
}
1888
__ move(index.result(), result);
1889
} else {
1890
// Just load the index into the result register
1891
__ move(index.result(), result);
1892
}
1893
}
1894
1895
1896
//------------------------array access--------------------------------------
1897
1898
1899
void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1900
LIRItem array(x->array(), this);
1901
array.load_item();
1902
LIR_Opr reg = rlock_result(x);
1903
1904
CodeEmitInfo* info = NULL;
1905
if (x->needs_null_check()) {
1906
NullCheck* nc = x->explicit_null_check();
1907
if (nc == NULL) {
1908
info = state_for(x);
1909
} else {
1910
info = state_for(nc);
1911
}
1912
if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1913
LIR_Opr obj = new_register(T_OBJECT);
1914
__ move(LIR_OprFact::oopConst(NULL), obj);
1915
__ null_check(obj, new CodeEmitInfo(info));
1916
}
1917
}
1918
__ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1919
}
1920
1921
1922
void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1923
bool use_length = x->length() != NULL;
1924
LIRItem array(x->array(), this);
1925
LIRItem index(x->index(), this);
1926
LIRItem length(this);
1927
bool needs_range_check = x->compute_needs_range_check();
1928
1929
if (use_length && needs_range_check) {
1930
length.set_instruction(x->length());
1931
length.load_item();
1932
}
1933
1934
array.load_item();
1935
if (index.is_constant() && can_inline_as_constant(x->index())) {
1936
// let it be a constant
1937
index.dont_load_item();
1938
} else {
1939
index.load_item();
1940
}
1941
1942
CodeEmitInfo* range_check_info = state_for(x);
1943
CodeEmitInfo* null_check_info = NULL;
1944
if (x->needs_null_check()) {
1945
NullCheck* nc = x->explicit_null_check();
1946
if (nc != NULL) {
1947
null_check_info = state_for(nc);
1948
} else {
1949
null_check_info = range_check_info;
1950
}
1951
if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1952
LIR_Opr obj = new_register(T_OBJECT);
1953
__ move(LIR_OprFact::oopConst(NULL), obj);
1954
__ null_check(obj, new CodeEmitInfo(null_check_info));
1955
}
1956
}
1957
1958
if (GenerateRangeChecks && needs_range_check) {
1959
if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1960
__ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1961
} else if (use_length) {
1962
// TODO: use a (modified) version of array_range_check that does not require a
1963
// constant length to be loaded to a register
1964
__ cmp(lir_cond_belowEqual, length.result(), index.result());
1965
__ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1966
} else {
1967
array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1968
// The range check performs the null check, so clear it out for the load
1969
null_check_info = NULL;
1970
}
1971
}
1972
1973
DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1974
1975
LIR_Opr result = rlock_result(x, x->elt_type());
1976
access_load_at(decorators, x->elt_type(),
1977
array, index.result(), result,
1978
NULL, null_check_info);
1979
}
1980
1981
1982
void LIRGenerator::do_NullCheck(NullCheck* x) {
1983
if (x->can_trap()) {
1984
LIRItem value(x->obj(), this);
1985
value.load_item();
1986
CodeEmitInfo* info = state_for(x);
1987
__ null_check(value.result(), info);
1988
}
1989
}
1990
1991
1992
void LIRGenerator::do_TypeCast(TypeCast* x) {
1993
LIRItem value(x->obj(), this);
1994
value.load_item();
1995
// the result is the same as from the node we are casting
1996
set_result(x, value.result());
1997
}
1998
1999
2000
void LIRGenerator::do_Throw(Throw* x) {
2001
LIRItem exception(x->exception(), this);
2002
exception.load_item();
2003
set_no_result(x);
2004
LIR_Opr exception_opr = exception.result();
2005
CodeEmitInfo* info = state_for(x, x->state());
2006
2007
#ifndef PRODUCT
2008
if (PrintC1Statistics) {
2009
increment_counter(Runtime1::throw_count_address(), T_INT);
2010
}
2011
#endif
2012
2013
// check if the instruction has an xhandler in any of the nested scopes
2014
bool unwind = false;
2015
if (info->exception_handlers()->length() == 0) {
2016
// this throw is not inside an xhandler
2017
unwind = true;
2018
} else {
2019
// get some idea of the throw type
2020
bool type_is_exact = true;
2021
ciType* throw_type = x->exception()->exact_type();
2022
if (throw_type == NULL) {
2023
type_is_exact = false;
2024
throw_type = x->exception()->declared_type();
2025
}
2026
if (throw_type != NULL && throw_type->is_instance_klass()) {
2027
ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2028
unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2029
}
2030
}
2031
2032
// do null check before moving exception oop into fixed register
2033
// to avoid a fixed interval with an oop during the null check.
2034
// Use a copy of the CodeEmitInfo because debug information is
2035
// different for null_check and throw.
2036
if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2037
// if the exception object wasn't created using new then it might be null.
2038
__ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2039
}
2040
2041
if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2042
// we need to go through the exception lookup path to get JVMTI
2043
// notification done
2044
unwind = false;
2045
}
2046
2047
// move exception oop into fixed register
2048
__ move(exception_opr, exceptionOopOpr());
2049
2050
if (unwind) {
2051
__ unwind_exception(exceptionOopOpr());
2052
} else {
2053
__ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2054
}
2055
}
2056
2057
2058
void LIRGenerator::do_RoundFP(RoundFP* x) {
2059
assert(strict_fp_requires_explicit_rounding, "not required");
2060
2061
LIRItem input(x->input(), this);
2062
input.load_item();
2063
LIR_Opr input_opr = input.result();
2064
assert(input_opr->is_register(), "why round if value is not in a register?");
2065
assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2066
if (input_opr->is_single_fpu()) {
2067
set_result(x, round_item(input_opr)); // This code path not currently taken
2068
} else {
2069
LIR_Opr result = new_register(T_DOUBLE);
2070
set_vreg_flag(result, must_start_in_memory);
2071
__ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2072
set_result(x, result);
2073
}
2074
}
2075
2076
// Here UnsafeGetRaw may have x->base() and x->index() be int or long
2077
// on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2078
void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2079
LIRItem base(x->base(), this);
2080
LIRItem idx(this);
2081
2082
base.load_item();
2083
if (x->has_index()) {
2084
idx.set_instruction(x->index());
2085
idx.load_nonconstant();
2086
}
2087
2088
LIR_Opr reg = rlock_result(x, x->basic_type());
2089
2090
int log2_scale = 0;
2091
if (x->has_index()) {
2092
log2_scale = x->log2_scale();
2093
}
2094
2095
assert(!x->has_index() || idx.value() == x->index(), "should match");
2096
2097
LIR_Opr base_op = base.result();
2098
LIR_Opr index_op = idx.result();
2099
#ifndef _LP64
2100
if (base_op->type() == T_LONG) {
2101
base_op = new_register(T_INT);
2102
__ convert(Bytecodes::_l2i, base.result(), base_op);
2103
}
2104
if (x->has_index()) {
2105
if (index_op->type() == T_LONG) {
2106
LIR_Opr long_index_op = index_op;
2107
if (index_op->is_constant()) {
2108
long_index_op = new_register(T_LONG);
2109
__ move(index_op, long_index_op);
2110
}
2111
index_op = new_register(T_INT);
2112
__ convert(Bytecodes::_l2i, long_index_op, index_op);
2113
} else {
2114
assert(x->index()->type()->tag() == intTag, "must be");
2115
}
2116
}
2117
// At this point base and index should be all ints.
2118
assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2119
assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2120
#else
2121
if (x->has_index()) {
2122
if (index_op->type() == T_INT) {
2123
if (!index_op->is_constant()) {
2124
index_op = new_register(T_LONG);
2125
__ convert(Bytecodes::_i2l, idx.result(), index_op);
2126
}
2127
} else {
2128
assert(index_op->type() == T_LONG, "must be");
2129
if (index_op->is_constant()) {
2130
index_op = new_register(T_LONG);
2131
__ move(idx.result(), index_op);
2132
}
2133
}
2134
}
2135
// At this point base is a long non-constant
2136
// Index is a long register or a int constant.
2137
// We allow the constant to stay an int because that would allow us a more compact encoding by
2138
// embedding an immediate offset in the address expression. If we have a long constant, we have to
2139
// move it into a register first.
2140
assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2141
assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2142
(index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2143
#endif
2144
2145
BasicType dst_type = x->basic_type();
2146
2147
LIR_Address* addr;
2148
if (index_op->is_constant()) {
2149
assert(log2_scale == 0, "must not have a scale");
2150
assert(index_op->type() == T_INT, "only int constants supported");
2151
addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2152
} else {
2153
#ifdef X86
2154
addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2155
#elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2156
addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2157
#else
2158
if (index_op->is_illegal() || log2_scale == 0) {
2159
addr = new LIR_Address(base_op, index_op, dst_type);
2160
} else {
2161
LIR_Opr tmp = new_pointer_register();
2162
__ shift_left(index_op, log2_scale, tmp);
2163
addr = new LIR_Address(base_op, tmp, dst_type);
2164
}
2165
#endif
2166
}
2167
2168
if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2169
__ unaligned_move(addr, reg);
2170
} else {
2171
if (dst_type == T_OBJECT && x->is_wide()) {
2172
__ move_wide(addr, reg);
2173
} else {
2174
__ move(addr, reg);
2175
}
2176
}
2177
}
2178
2179
2180
void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2181
int log2_scale = 0;
2182
BasicType type = x->basic_type();
2183
2184
if (x->has_index()) {
2185
log2_scale = x->log2_scale();
2186
}
2187
2188
LIRItem base(x->base(), this);
2189
LIRItem value(x->value(), this);
2190
LIRItem idx(this);
2191
2192
base.load_item();
2193
if (x->has_index()) {
2194
idx.set_instruction(x->index());
2195
idx.load_item();
2196
}
2197
2198
if (type == T_BYTE || type == T_BOOLEAN) {
2199
value.load_byte_item();
2200
} else {
2201
value.load_item();
2202
}
2203
2204
set_no_result(x);
2205
2206
LIR_Opr base_op = base.result();
2207
LIR_Opr index_op = idx.result();
2208
2209
#ifdef GENERATE_ADDRESS_IS_PREFERRED
2210
LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2211
#else
2212
#ifndef _LP64
2213
if (base_op->type() == T_LONG) {
2214
base_op = new_register(T_INT);
2215
__ convert(Bytecodes::_l2i, base.result(), base_op);
2216
}
2217
if (x->has_index()) {
2218
if (index_op->type() == T_LONG) {
2219
index_op = new_register(T_INT);
2220
__ convert(Bytecodes::_l2i, idx.result(), index_op);
2221
}
2222
}
2223
// At this point base and index should be all ints and not constants
2224
assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2225
assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2226
#else
2227
if (x->has_index()) {
2228
if (index_op->type() == T_INT) {
2229
index_op = new_register(T_LONG);
2230
__ convert(Bytecodes::_i2l, idx.result(), index_op);
2231
}
2232
}
2233
// At this point base and index are long and non-constant
2234
assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2235
assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2236
#endif
2237
2238
if (log2_scale != 0) {
2239
// temporary fix (platform dependent code without shift on Intel would be better)
2240
// TODO: ARM also allows embedded shift in the address
2241
LIR_Opr tmp = new_pointer_register();
2242
if (TwoOperandLIRForm) {
2243
__ move(index_op, tmp);
2244
index_op = tmp;
2245
}
2246
__ shift_left(index_op, log2_scale, tmp);
2247
if (!TwoOperandLIRForm) {
2248
index_op = tmp;
2249
}
2250
}
2251
2252
LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2253
#endif // !GENERATE_ADDRESS_IS_PREFERRED
2254
__ move(value.result(), addr);
2255
}
2256
2257
2258
void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2259
BasicType type = x->basic_type();
2260
LIRItem src(x->object(), this);
2261
LIRItem off(x->offset(), this);
2262
2263
off.load_item();
2264
src.load_item();
2265
2266
DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2267
2268
if (x->is_volatile()) {
2269
decorators |= MO_SEQ_CST;
2270
}
2271
if (type == T_BOOLEAN) {
2272
decorators |= C1_MASK_BOOLEAN;
2273
}
2274
if (is_reference_type(type)) {
2275
decorators |= ON_UNKNOWN_OOP_REF;
2276
}
2277
2278
LIR_Opr result = rlock_result(x, type);
2279
access_load_at(decorators, type,
2280
src, off.result(), result);
2281
}
2282
2283
2284
void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2285
BasicType type = x->basic_type();
2286
LIRItem src(x->object(), this);
2287
LIRItem off(x->offset(), this);
2288
LIRItem data(x->value(), this);
2289
2290
src.load_item();
2291
if (type == T_BOOLEAN || type == T_BYTE) {
2292
data.load_byte_item();
2293
} else {
2294
data.load_item();
2295
}
2296
off.load_item();
2297
2298
set_no_result(x);
2299
2300
DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2301
if (is_reference_type(type)) {
2302
decorators |= ON_UNKNOWN_OOP_REF;
2303
}
2304
if (x->is_volatile()) {
2305
decorators |= MO_SEQ_CST;
2306
}
2307
access_store_at(decorators, type, src, off.result(), data.result());
2308
}
2309
2310
void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2311
BasicType type = x->basic_type();
2312
LIRItem src(x->object(), this);
2313
LIRItem off(x->offset(), this);
2314
LIRItem value(x->value(), this);
2315
2316
DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2317
2318
if (is_reference_type(type)) {
2319
decorators |= ON_UNKNOWN_OOP_REF;
2320
}
2321
2322
LIR_Opr result;
2323
if (x->is_add()) {
2324
result = access_atomic_add_at(decorators, type, src, off, value);
2325
} else {
2326
result = access_atomic_xchg_at(decorators, type, src, off, value);
2327
}
2328
set_result(x, result);
2329
}
2330
2331
void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2332
int lng = x->length();
2333
2334
for (int i = 0; i < lng; i++) {
2335
C1SwitchRange* one_range = x->at(i);
2336
int low_key = one_range->low_key();
2337
int high_key = one_range->high_key();
2338
BlockBegin* dest = one_range->sux();
2339
if (low_key == high_key) {
2340
__ cmp(lir_cond_equal, value, low_key);
2341
__ branch(lir_cond_equal, dest);
2342
} else if (high_key - low_key == 1) {
2343
__ cmp(lir_cond_equal, value, low_key);
2344
__ branch(lir_cond_equal, dest);
2345
__ cmp(lir_cond_equal, value, high_key);
2346
__ branch(lir_cond_equal, dest);
2347
} else {
2348
LabelObj* L = new LabelObj();
2349
__ cmp(lir_cond_less, value, low_key);
2350
__ branch(lir_cond_less, L->label());
2351
__ cmp(lir_cond_lessEqual, value, high_key);
2352
__ branch(lir_cond_lessEqual, dest);
2353
__ branch_destination(L->label());
2354
}
2355
}
2356
__ jump(default_sux);
2357
}
2358
2359
2360
SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2361
SwitchRangeList* res = new SwitchRangeList();
2362
int len = x->length();
2363
if (len > 0) {
2364
BlockBegin* sux = x->sux_at(0);
2365
int key = x->lo_key();
2366
BlockBegin* default_sux = x->default_sux();
2367
C1SwitchRange* range = new C1SwitchRange(key, sux);
2368
for (int i = 0; i < len; i++, key++) {
2369
BlockBegin* new_sux = x->sux_at(i);
2370
if (sux == new_sux) {
2371
// still in same range
2372
range->set_high_key(key);
2373
} else {
2374
// skip tests which explicitly dispatch to the default
2375
if (sux != default_sux) {
2376
res->append(range);
2377
}
2378
range = new C1SwitchRange(key, new_sux);
2379
}
2380
sux = new_sux;
2381
}
2382
if (res->length() == 0 || res->last() != range) res->append(range);
2383
}
2384
return res;
2385
}
2386
2387
2388
// we expect the keys to be sorted by increasing value
2389
SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2390
SwitchRangeList* res = new SwitchRangeList();
2391
int len = x->length();
2392
if (len > 0) {
2393
BlockBegin* default_sux = x->default_sux();
2394
int key = x->key_at(0);
2395
BlockBegin* sux = x->sux_at(0);
2396
C1SwitchRange* range = new C1SwitchRange(key, sux);
2397
for (int i = 1; i < len; i++) {
2398
int new_key = x->key_at(i);
2399
BlockBegin* new_sux = x->sux_at(i);
2400
if (key+1 == new_key && sux == new_sux) {
2401
// still in same range
2402
range->set_high_key(new_key);
2403
} else {
2404
// skip tests which explicitly dispatch to the default
2405
if (range->sux() != default_sux) {
2406
res->append(range);
2407
}
2408
range = new C1SwitchRange(new_key, new_sux);
2409
}
2410
key = new_key;
2411
sux = new_sux;
2412
}
2413
if (res->length() == 0 || res->last() != range) res->append(range);
2414
}
2415
return res;
2416
}
2417
2418
2419
void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2420
LIRItem tag(x->tag(), this);
2421
tag.load_item();
2422
set_no_result(x);
2423
2424
if (x->is_safepoint()) {
2425
__ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2426
}
2427
2428
// move values into phi locations
2429
move_to_phi(x->state());
2430
2431
int lo_key = x->lo_key();
2432
int len = x->length();
2433
assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2434
LIR_Opr value = tag.result();
2435
2436
if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2437
ciMethod* method = x->state()->scope()->method();
2438
ciMethodData* md = method->method_data_or_null();
2439
assert(md != NULL, "Sanity");
2440
ciProfileData* data = md->bci_to_data(x->state()->bci());
2441
assert(data != NULL, "must have profiling data");
2442
assert(data->is_MultiBranchData(), "bad profile data?");
2443
int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2444
LIR_Opr md_reg = new_register(T_METADATA);
2445
__ metadata2reg(md->constant_encoding(), md_reg);
2446
LIR_Opr data_offset_reg = new_pointer_register();
2447
LIR_Opr tmp_reg = new_pointer_register();
2448
2449
__ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2450
for (int i = 0; i < len; i++) {
2451
int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2452
__ cmp(lir_cond_equal, value, i + lo_key);
2453
__ move(data_offset_reg, tmp_reg);
2454
__ cmove(lir_cond_equal,
2455
LIR_OprFact::intptrConst(count_offset),
2456
tmp_reg,
2457
data_offset_reg, T_INT);
2458
}
2459
2460
LIR_Opr data_reg = new_pointer_register();
2461
LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2462
__ move(data_addr, data_reg);
2463
__ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2464
__ move(data_reg, data_addr);
2465
}
2466
2467
if (UseTableRanges) {
2468
do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2469
} else {
2470
for (int i = 0; i < len; i++) {
2471
__ cmp(lir_cond_equal, value, i + lo_key);
2472
__ branch(lir_cond_equal, x->sux_at(i));
2473
}
2474
__ jump(x->default_sux());
2475
}
2476
}
2477
2478
2479
void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2480
LIRItem tag(x->tag(), this);
2481
tag.load_item();
2482
set_no_result(x);
2483
2484
if (x->is_safepoint()) {
2485
__ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2486
}
2487
2488
// move values into phi locations
2489
move_to_phi(x->state());
2490
2491
LIR_Opr value = tag.result();
2492
int len = x->length();
2493
2494
if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2495
ciMethod* method = x->state()->scope()->method();
2496
ciMethodData* md = method->method_data_or_null();
2497
assert(md != NULL, "Sanity");
2498
ciProfileData* data = md->bci_to_data(x->state()->bci());
2499
assert(data != NULL, "must have profiling data");
2500
assert(data->is_MultiBranchData(), "bad profile data?");
2501
int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2502
LIR_Opr md_reg = new_register(T_METADATA);
2503
__ metadata2reg(md->constant_encoding(), md_reg);
2504
LIR_Opr data_offset_reg = new_pointer_register();
2505
LIR_Opr tmp_reg = new_pointer_register();
2506
2507
__ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2508
for (int i = 0; i < len; i++) {
2509
int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2510
__ cmp(lir_cond_equal, value, x->key_at(i));
2511
__ move(data_offset_reg, tmp_reg);
2512
__ cmove(lir_cond_equal,
2513
LIR_OprFact::intptrConst(count_offset),
2514
tmp_reg,
2515
data_offset_reg, T_INT);
2516
}
2517
2518
LIR_Opr data_reg = new_pointer_register();
2519
LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2520
__ move(data_addr, data_reg);
2521
__ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2522
__ move(data_reg, data_addr);
2523
}
2524
2525
if (UseTableRanges) {
2526
do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2527
} else {
2528
int len = x->length();
2529
for (int i = 0; i < len; i++) {
2530
__ cmp(lir_cond_equal, value, x->key_at(i));
2531
__ branch(lir_cond_equal, x->sux_at(i));
2532
}
2533
__ jump(x->default_sux());
2534
}
2535
}
2536
2537
2538
void LIRGenerator::do_Goto(Goto* x) {
2539
set_no_result(x);
2540
2541
if (block()->next()->as_OsrEntry()) {
2542
// need to free up storage used for OSR entry point
2543
LIR_Opr osrBuffer = block()->next()->operand();
2544
BasicTypeList signature;
2545
signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2546
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2547
__ move(osrBuffer, cc->args()->at(0));
2548
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2549
getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2550
}
2551
2552
if (x->is_safepoint()) {
2553
ValueStack* state = x->state_before() ? x->state_before() : x->state();
2554
2555
// increment backedge counter if needed
2556
CodeEmitInfo* info = state_for(x, state);
2557
increment_backedge_counter(info, x->profiled_bci());
2558
CodeEmitInfo* safepoint_info = state_for(x, state);
2559
__ safepoint(safepoint_poll_register(), safepoint_info);
2560
}
2561
2562
// Gotos can be folded Ifs, handle this case.
2563
if (x->should_profile()) {
2564
ciMethod* method = x->profiled_method();
2565
assert(method != NULL, "method should be set if branch is profiled");
2566
ciMethodData* md = method->method_data_or_null();
2567
assert(md != NULL, "Sanity");
2568
ciProfileData* data = md->bci_to_data(x->profiled_bci());
2569
assert(data != NULL, "must have profiling data");
2570
int offset;
2571
if (x->direction() == Goto::taken) {
2572
assert(data->is_BranchData(), "need BranchData for two-way branches");
2573
offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2574
} else if (x->direction() == Goto::not_taken) {
2575
assert(data->is_BranchData(), "need BranchData for two-way branches");
2576
offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2577
} else {
2578
assert(data->is_JumpData(), "need JumpData for branches");
2579
offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2580
}
2581
LIR_Opr md_reg = new_register(T_METADATA);
2582
__ metadata2reg(md->constant_encoding(), md_reg);
2583
2584
increment_counter(new LIR_Address(md_reg, offset,
2585
NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2586
}
2587
2588
// emit phi-instruction move after safepoint since this simplifies
2589
// describing the state as the safepoint.
2590
move_to_phi(x->state());
2591
2592
__ jump(x->default_sux());
2593
}
2594
2595
/**
2596
* Emit profiling code if needed for arguments, parameters, return value types
2597
*
2598
* @param md MDO the code will update at runtime
2599
* @param md_base_offset common offset in the MDO for this profile and subsequent ones
2600
* @param md_offset offset in the MDO (on top of md_base_offset) for this profile
2601
* @param profiled_k current profile
2602
* @param obj IR node for the object to be profiled
2603
* @param mdp register to hold the pointer inside the MDO (md + md_base_offset).
2604
* Set once we find an update to make and use for next ones.
2605
* @param not_null true if we know obj cannot be null
2606
* @param signature_at_call_k signature at call for obj
2607
* @param callee_signature_k signature of callee for obj
2608
* at call and callee signatures differ at method handle call
2609
* @return the only klass we know will ever be seen at this profile point
2610
*/
2611
ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2612
Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2613
ciKlass* callee_signature_k) {
2614
ciKlass* result = NULL;
2615
bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2616
bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2617
// known not to be null or null bit already set and already set to
2618
// unknown: nothing we can do to improve profiling
2619
if (!do_null && !do_update) {
2620
return result;
2621
}
2622
2623
ciKlass* exact_klass = NULL;
2624
Compilation* comp = Compilation::current();
2625
if (do_update) {
2626
// try to find exact type, using CHA if possible, so that loading
2627
// the klass from the object can be avoided
2628
ciType* type = obj->exact_type();
2629
if (type == NULL) {
2630
type = obj->declared_type();
2631
type = comp->cha_exact_type(type);
2632
}
2633
assert(type == NULL || type->is_klass(), "type should be class");
2634
exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2635
2636
do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2637
}
2638
2639
if (!do_null && !do_update) {
2640
return result;
2641
}
2642
2643
ciKlass* exact_signature_k = NULL;
2644
if (do_update) {
2645
// Is the type from the signature exact (the only one possible)?
2646
exact_signature_k = signature_at_call_k->exact_klass();
2647
if (exact_signature_k == NULL) {
2648
exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2649
} else {
2650
result = exact_signature_k;
2651
// Known statically. No need to emit any code: prevent
2652
// LIR_Assembler::emit_profile_type() from emitting useless code
2653
profiled_k = ciTypeEntries::with_status(result, profiled_k);
2654
}
2655
// exact_klass and exact_signature_k can be both non NULL but
2656
// different if exact_klass is loaded after the ciObject for
2657
// exact_signature_k is created.
2658
if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2659
// sometimes the type of the signature is better than the best type
2660
// the compiler has
2661
exact_klass = exact_signature_k;
2662
}
2663
if (callee_signature_k != NULL &&
2664
callee_signature_k != signature_at_call_k) {
2665
ciKlass* improved_klass = callee_signature_k->exact_klass();
2666
if (improved_klass == NULL) {
2667
improved_klass = comp->cha_exact_type(callee_signature_k);
2668
}
2669
if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2670
exact_klass = exact_signature_k;
2671
}
2672
}
2673
do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2674
}
2675
2676
if (!do_null && !do_update) {
2677
return result;
2678
}
2679
2680
if (mdp == LIR_OprFact::illegalOpr) {
2681
mdp = new_register(T_METADATA);
2682
__ metadata2reg(md->constant_encoding(), mdp);
2683
if (md_base_offset != 0) {
2684
LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2685
mdp = new_pointer_register();
2686
__ leal(LIR_OprFact::address(base_type_address), mdp);
2687
}
2688
}
2689
LIRItem value(obj, this);
2690
value.load_item();
2691
__ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2692
value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2693
return result;
2694
}
2695
2696
// profile parameters on entry to the root of the compilation
2697
void LIRGenerator::profile_parameters(Base* x) {
2698
if (compilation()->profile_parameters()) {
2699
CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2700
ciMethodData* md = scope()->method()->method_data_or_null();
2701
assert(md != NULL, "Sanity");
2702
2703
if (md->parameters_type_data() != NULL) {
2704
ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2705
ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
2706
LIR_Opr mdp = LIR_OprFact::illegalOpr;
2707
for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2708
LIR_Opr src = args->at(i);
2709
assert(!src->is_illegal(), "check");
2710
BasicType t = src->type();
2711
if (is_reference_type(t)) {
2712
intptr_t profiled_k = parameters->type(j);
2713
Local* local = x->state()->local_at(java_index)->as_Local();
2714
ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2715
in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2716
profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2717
// If the profile is known statically set it once for all and do not emit any code
2718
if (exact != NULL) {
2719
md->set_parameter_type(j, exact);
2720
}
2721
j++;
2722
}
2723
java_index += type2size[t];
2724
}
2725
}
2726
}
2727
}
2728
2729
void LIRGenerator::do_Base(Base* x) {
2730
__ std_entry(LIR_OprFact::illegalOpr);
2731
// Emit moves from physical registers / stack slots to virtual registers
2732
CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2733
IRScope* irScope = compilation()->hir()->top_scope();
2734
int java_index = 0;
2735
for (int i = 0; i < args->length(); i++) {
2736
LIR_Opr src = args->at(i);
2737
assert(!src->is_illegal(), "check");
2738
BasicType t = src->type();
2739
2740
// Types which are smaller than int are passed as int, so
2741
// correct the type which passed.
2742
switch (t) {
2743
case T_BYTE:
2744
case T_BOOLEAN:
2745
case T_SHORT:
2746
case T_CHAR:
2747
t = T_INT;
2748
break;
2749
default:
2750
break;
2751
}
2752
2753
LIR_Opr dest = new_register(t);
2754
__ move(src, dest);
2755
2756
// Assign new location to Local instruction for this local
2757
Local* local = x->state()->local_at(java_index)->as_Local();
2758
assert(local != NULL, "Locals for incoming arguments must have been created");
2759
#ifndef __SOFTFP__
2760
// The java calling convention passes double as long and float as int.
2761
assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2762
#endif // __SOFTFP__
2763
local->set_operand(dest);
2764
_instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2765
java_index += type2size[t];
2766
}
2767
2768
if (compilation()->env()->dtrace_method_probes()) {
2769
BasicTypeList signature;
2770
signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
2771
signature.append(T_METADATA); // Method*
2772
LIR_OprList* args = new LIR_OprList();
2773
args->append(getThreadPointer());
2774
LIR_Opr meth = new_register(T_METADATA);
2775
__ metadata2reg(method()->constant_encoding(), meth);
2776
args->append(meth);
2777
call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2778
}
2779
2780
if (method()->is_synchronized()) {
2781
LIR_Opr obj;
2782
if (method()->is_static()) {
2783
obj = new_register(T_OBJECT);
2784
__ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2785
} else {
2786
Local* receiver = x->state()->local_at(0)->as_Local();
2787
assert(receiver != NULL, "must already exist");
2788
obj = receiver->operand();
2789
}
2790
assert(obj->is_valid(), "must be valid");
2791
2792
if (method()->is_synchronized() && GenerateSynchronizationCode) {
2793
LIR_Opr lock = syncLockOpr();
2794
__ load_stack_address_monitor(0, lock);
2795
2796
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2797
CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2798
2799
// receiver is guaranteed non-NULL so don't need CodeEmitInfo
2800
__ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2801
}
2802
}
2803
if (compilation()->age_code()) {
2804
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2805
decrement_age(info);
2806
}
2807
// increment invocation counters if needed
2808
if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2809
profile_parameters(x);
2810
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2811
increment_invocation_counter(info);
2812
}
2813
2814
// all blocks with a successor must end with an unconditional jump
2815
// to the successor even if they are consecutive
2816
__ jump(x->default_sux());
2817
}
2818
2819
2820
void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2821
// construct our frame and model the production of incoming pointer
2822
// to the OSR buffer.
2823
__ osr_entry(LIR_Assembler::osrBufferPointer());
2824
LIR_Opr result = rlock_result(x);
2825
__ move(LIR_Assembler::osrBufferPointer(), result);
2826
}
2827
2828
2829
void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2830
assert(args->length() == arg_list->length(),
2831
"args=%d, arg_list=%d", args->length(), arg_list->length());
2832
for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2833
LIRItem* param = args->at(i);
2834
LIR_Opr loc = arg_list->at(i);
2835
if (loc->is_register()) {
2836
param->load_item_force(loc);
2837
} else {
2838
LIR_Address* addr = loc->as_address_ptr();
2839
param->load_for_store(addr->type());
2840
if (addr->type() == T_OBJECT) {
2841
__ move_wide(param->result(), addr);
2842
} else
2843
if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2844
__ unaligned_move(param->result(), addr);
2845
} else {
2846
__ move(param->result(), addr);
2847
}
2848
}
2849
}
2850
2851
if (x->has_receiver()) {
2852
LIRItem* receiver = args->at(0);
2853
LIR_Opr loc = arg_list->at(0);
2854
if (loc->is_register()) {
2855
receiver->load_item_force(loc);
2856
} else {
2857
assert(loc->is_address(), "just checking");
2858
receiver->load_for_store(T_OBJECT);
2859
__ move_wide(receiver->result(), loc->as_address_ptr());
2860
}
2861
}
2862
}
2863
2864
2865
// Visits all arguments, returns appropriate items without loading them
2866
LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2867
LIRItemList* argument_items = new LIRItemList();
2868
if (x->has_receiver()) {
2869
LIRItem* receiver = new LIRItem(x->receiver(), this);
2870
argument_items->append(receiver);
2871
}
2872
for (int i = 0; i < x->number_of_arguments(); i++) {
2873
LIRItem* param = new LIRItem(x->argument_at(i), this);
2874
argument_items->append(param);
2875
}
2876
return argument_items;
2877
}
2878
2879
2880
// The invoke with receiver has following phases:
2881
// a) traverse and load/lock receiver;
2882
// b) traverse all arguments -> item-array (invoke_visit_argument)
2883
// c) push receiver on stack
2884
// d) load each of the items and push on stack
2885
// e) unlock receiver
2886
// f) move receiver into receiver-register %o0
2887
// g) lock result registers and emit call operation
2888
//
2889
// Before issuing a call, we must spill-save all values on stack
2890
// that are in caller-save register. "spill-save" moves those registers
2891
// either in a free callee-save register or spills them if no free
2892
// callee save register is available.
2893
//
2894
// The problem is where to invoke spill-save.
2895
// - if invoked between e) and f), we may lock callee save
2896
// register in "spill-save" that destroys the receiver register
2897
// before f) is executed
2898
// - if we rearrange f) to be earlier (by loading %o0) it
2899
// may destroy a value on the stack that is currently in %o0
2900
// and is waiting to be spilled
2901
// - if we keep the receiver locked while doing spill-save,
2902
// we cannot spill it as it is spill-locked
2903
//
2904
void LIRGenerator::do_Invoke(Invoke* x) {
2905
CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2906
2907
LIR_OprList* arg_list = cc->args();
2908
LIRItemList* args = invoke_visit_arguments(x);
2909
LIR_Opr receiver = LIR_OprFact::illegalOpr;
2910
2911
// setup result register
2912
LIR_Opr result_register = LIR_OprFact::illegalOpr;
2913
if (x->type() != voidType) {
2914
result_register = result_register_for(x->type());
2915
}
2916
2917
CodeEmitInfo* info = state_for(x, x->state());
2918
2919
invoke_load_arguments(x, args, arg_list);
2920
2921
if (x->has_receiver()) {
2922
args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2923
receiver = args->at(0)->result();
2924
}
2925
2926
// emit invoke code
2927
assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2928
2929
// JSR 292
2930
// Preserve the SP over MethodHandle call sites, if needed.
2931
ciMethod* target = x->target();
2932
bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2933
target->is_method_handle_intrinsic() ||
2934
target->is_compiled_lambda_form());
2935
if (is_method_handle_invoke) {
2936
info->set_is_method_handle_invoke(true);
2937
if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2938
__ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2939
}
2940
}
2941
2942
switch (x->code()) {
2943
case Bytecodes::_invokestatic:
2944
__ call_static(target, result_register,
2945
SharedRuntime::get_resolve_static_call_stub(),
2946
arg_list, info);
2947
break;
2948
case Bytecodes::_invokespecial:
2949
case Bytecodes::_invokevirtual:
2950
case Bytecodes::_invokeinterface:
2951
// for loaded and final (method or class) target we still produce an inline cache,
2952
// in order to be able to call mixed mode
2953
if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2954
__ call_opt_virtual(target, receiver, result_register,
2955
SharedRuntime::get_resolve_opt_virtual_call_stub(),
2956
arg_list, info);
2957
} else {
2958
__ call_icvirtual(target, receiver, result_register,
2959
SharedRuntime::get_resolve_virtual_call_stub(),
2960
arg_list, info);
2961
}
2962
break;
2963
case Bytecodes::_invokedynamic: {
2964
__ call_dynamic(target, receiver, result_register,
2965
SharedRuntime::get_resolve_static_call_stub(),
2966
arg_list, info);
2967
break;
2968
}
2969
default:
2970
fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2971
break;
2972
}
2973
2974
// JSR 292
2975
// Restore the SP after MethodHandle call sites, if needed.
2976
if (is_method_handle_invoke
2977
&& FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2978
__ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2979
}
2980
2981
if (result_register->is_valid()) {
2982
LIR_Opr result = rlock_result(x);
2983
__ move(result_register, result);
2984
}
2985
}
2986
2987
2988
void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2989
assert(x->number_of_arguments() == 1, "wrong type");
2990
LIRItem value (x->argument_at(0), this);
2991
LIR_Opr reg = rlock_result(x);
2992
value.load_item();
2993
LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2994
__ move(tmp, reg);
2995
}
2996
2997
2998
2999
// Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3000
void LIRGenerator::do_IfOp(IfOp* x) {
3001
#ifdef ASSERT
3002
{
3003
ValueTag xtag = x->x()->type()->tag();
3004
ValueTag ttag = x->tval()->type()->tag();
3005
assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3006
assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3007
assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3008
}
3009
#endif
3010
3011
LIRItem left(x->x(), this);
3012
LIRItem right(x->y(), this);
3013
left.load_item();
3014
if (can_inline_as_constant(right.value())) {
3015
right.dont_load_item();
3016
} else {
3017
right.load_item();
3018
}
3019
3020
LIRItem t_val(x->tval(), this);
3021
LIRItem f_val(x->fval(), this);
3022
t_val.dont_load_item();
3023
f_val.dont_load_item();
3024
LIR_Opr reg = rlock_result(x);
3025
3026
__ cmp(lir_cond(x->cond()), left.result(), right.result());
3027
__ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3028
}
3029
3030
#ifdef JFR_HAVE_INTRINSICS
3031
3032
void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3033
LabelObj* L_end = new LabelObj();
3034
3035
// FIXME T_ADDRESS should actually be T_METADATA but it can't because the
3036
// meaning of these two is mixed up (see JDK-8026837).
3037
LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3038
in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3039
T_ADDRESS);
3040
LIR_Opr result = rlock_result(x);
3041
__ move(LIR_OprFact::oopConst(NULL), result);
3042
LIR_Opr jobj = new_register(T_METADATA);
3043
__ move_wide(jobj_addr, jobj);
3044
__ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0));
3045
__ branch(lir_cond_equal, L_end->label());
3046
3047
access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3048
3049
__ branch_destination(L_end->label());
3050
}
3051
3052
#endif
3053
3054
3055
void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3056
assert(x->number_of_arguments() == 0, "wrong type");
3057
// Enforce computation of _reserved_argument_area_size which is required on some platforms.
3058
BasicTypeList signature;
3059
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3060
LIR_Opr reg = result_register_for(x->type());
3061
__ call_runtime_leaf(routine, getThreadTemp(),
3062
reg, new LIR_OprList());
3063
LIR_Opr result = rlock_result(x);
3064
__ move(reg, result);
3065
}
3066
3067
3068
3069
void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3070
switch (x->id()) {
3071
case vmIntrinsics::_intBitsToFloat :
3072
case vmIntrinsics::_doubleToRawLongBits :
3073
case vmIntrinsics::_longBitsToDouble :
3074
case vmIntrinsics::_floatToRawIntBits : {
3075
do_FPIntrinsics(x);
3076
break;
3077
}
3078
3079
#ifdef JFR_HAVE_INTRINSICS
3080
case vmIntrinsics::_getEventWriter:
3081
do_getEventWriter(x);
3082
break;
3083
case vmIntrinsics::_counterTime:
3084
do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3085
break;
3086
#endif
3087
3088
case vmIntrinsics::_currentTimeMillis:
3089
do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3090
break;
3091
3092
case vmIntrinsics::_nanoTime:
3093
do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3094
break;
3095
3096
case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
3097
case vmIntrinsics::_isInstance: do_isInstance(x); break;
3098
case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break;
3099
case vmIntrinsics::_getModifiers: do_getModifiers(x); break;
3100
case vmIntrinsics::_getClass: do_getClass(x); break;
3101
case vmIntrinsics::_currentThread: do_currentThread(x); break;
3102
case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break;
3103
3104
case vmIntrinsics::_dlog: // fall through
3105
case vmIntrinsics::_dlog10: // fall through
3106
case vmIntrinsics::_dabs: // fall through
3107
case vmIntrinsics::_dsqrt: // fall through
3108
case vmIntrinsics::_dtan: // fall through
3109
case vmIntrinsics::_dsin : // fall through
3110
case vmIntrinsics::_dcos : // fall through
3111
case vmIntrinsics::_dexp : // fall through
3112
case vmIntrinsics::_dpow : do_MathIntrinsic(x); break;
3113
case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
3114
3115
case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break;
3116
case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break;
3117
3118
// java.nio.Buffer.checkIndex
3119
case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break;
3120
3121
case vmIntrinsics::_compareAndSetReference:
3122
do_CompareAndSwap(x, objectType);
3123
break;
3124
case vmIntrinsics::_compareAndSetInt:
3125
do_CompareAndSwap(x, intType);
3126
break;
3127
case vmIntrinsics::_compareAndSetLong:
3128
do_CompareAndSwap(x, longType);
3129
break;
3130
3131
case vmIntrinsics::_loadFence :
3132
__ membar_acquire();
3133
break;
3134
case vmIntrinsics::_storeFence:
3135
__ membar_release();
3136
break;
3137
case vmIntrinsics::_fullFence :
3138
__ membar();
3139
break;
3140
case vmIntrinsics::_onSpinWait:
3141
__ on_spin_wait();
3142
break;
3143
case vmIntrinsics::_Reference_get:
3144
do_Reference_get(x);
3145
break;
3146
3147
case vmIntrinsics::_updateCRC32:
3148
case vmIntrinsics::_updateBytesCRC32:
3149
case vmIntrinsics::_updateByteBufferCRC32:
3150
do_update_CRC32(x);
3151
break;
3152
3153
case vmIntrinsics::_updateBytesCRC32C:
3154
case vmIntrinsics::_updateDirectByteBufferCRC32C:
3155
do_update_CRC32C(x);
3156
break;
3157
3158
case vmIntrinsics::_vectorizedMismatch:
3159
do_vectorizedMismatch(x);
3160
break;
3161
3162
case vmIntrinsics::_blackhole:
3163
do_blackhole(x);
3164
break;
3165
3166
default: ShouldNotReachHere(); break;
3167
}
3168
}
3169
3170
void LIRGenerator::profile_arguments(ProfileCall* x) {
3171
if (compilation()->profile_arguments()) {
3172
int bci = x->bci_of_invoke();
3173
ciMethodData* md = x->method()->method_data_or_null();
3174
assert(md != NULL, "Sanity");
3175
ciProfileData* data = md->bci_to_data(bci);
3176
if (data != NULL) {
3177
if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3178
(data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3179
ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3180
int base_offset = md->byte_offset_of_slot(data, extra);
3181
LIR_Opr mdp = LIR_OprFact::illegalOpr;
3182
ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3183
3184
Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3185
int start = 0;
3186
int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3187
if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3188
// first argument is not profiled at call (method handle invoke)
3189
assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3190
start = 1;
3191
}
3192
ciSignature* callee_signature = x->callee()->signature();
3193
// method handle call to virtual method
3194
bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3195
ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3196
3197
bool ignored_will_link;
3198
ciSignature* signature_at_call = NULL;
3199
x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3200
ciSignatureStream signature_at_call_stream(signature_at_call);
3201
3202
// if called through method handle invoke, some arguments may have been popped
3203
for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3204
int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3205
ciKlass* exact = profile_type(md, base_offset, off,
3206
args->type(i), x->profiled_arg_at(i+start), mdp,
3207
!x->arg_needs_null_check(i+start),
3208
signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3209
if (exact != NULL) {
3210
md->set_argument_type(bci, i, exact);
3211
}
3212
}
3213
} else {
3214
#ifdef ASSERT
3215
Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3216
int n = x->nb_profiled_args();
3217
assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3218
(x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3219
"only at JSR292 bytecodes");
3220
#endif
3221
}
3222
}
3223
}
3224
}
3225
3226
// profile parameters on entry to an inlined method
3227
void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3228
if (compilation()->profile_parameters() && x->inlined()) {
3229
ciMethodData* md = x->callee()->method_data_or_null();
3230
if (md != NULL) {
3231
ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3232
if (parameters_type_data != NULL) {
3233
ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
3234
LIR_Opr mdp = LIR_OprFact::illegalOpr;
3235
bool has_receiver = !x->callee()->is_static();
3236
ciSignature* sig = x->callee()->signature();
3237
ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3238
int i = 0; // to iterate on the Instructions
3239
Value arg = x->recv();
3240
bool not_null = false;
3241
int bci = x->bci_of_invoke();
3242
Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3243
// The first parameter is the receiver so that's what we start
3244
// with if it exists. One exception is method handle call to
3245
// virtual method: the receiver is in the args list
3246
if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3247
i = 1;
3248
arg = x->profiled_arg_at(0);
3249
not_null = !x->arg_needs_null_check(0);
3250
}
3251
int k = 0; // to iterate on the profile data
3252
for (;;) {
3253
intptr_t profiled_k = parameters->type(k);
3254
ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3255
in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3256
profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3257
// If the profile is known statically set it once for all and do not emit any code
3258
if (exact != NULL) {
3259
md->set_parameter_type(k, exact);
3260
}
3261
k++;
3262
if (k >= parameters_type_data->number_of_parameters()) {
3263
#ifdef ASSERT
3264
int extra = 0;
3265
if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3266
x->nb_profiled_args() >= TypeProfileParmsLimit &&
3267
x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3268
extra += 1;
3269
}
3270
assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3271
#endif
3272
break;
3273
}
3274
arg = x->profiled_arg_at(i);
3275
not_null = !x->arg_needs_null_check(i);
3276
i++;
3277
}
3278
}
3279
}
3280
}
3281
}
3282
3283
void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3284
// Need recv in a temporary register so it interferes with the other temporaries
3285
LIR_Opr recv = LIR_OprFact::illegalOpr;
3286
LIR_Opr mdo = new_register(T_METADATA);
3287
// tmp is used to hold the counters on SPARC
3288
LIR_Opr tmp = new_pointer_register();
3289
3290
if (x->nb_profiled_args() > 0) {
3291
profile_arguments(x);
3292
}
3293
3294
// profile parameters on inlined method entry including receiver
3295
if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3296
profile_parameters_at_call(x);
3297
}
3298
3299
if (x->recv() != NULL) {
3300
LIRItem value(x->recv(), this);
3301
value.load_item();
3302
recv = new_register(T_OBJECT);
3303
__ move(value.result(), recv);
3304
}
3305
__ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3306
}
3307
3308
void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3309
int bci = x->bci_of_invoke();
3310
ciMethodData* md = x->method()->method_data_or_null();
3311
assert(md != NULL, "Sanity");
3312
ciProfileData* data = md->bci_to_data(bci);
3313
if (data != NULL) {
3314
assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3315
ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3316
LIR_Opr mdp = LIR_OprFact::illegalOpr;
3317
3318
bool ignored_will_link;
3319
ciSignature* signature_at_call = NULL;
3320
x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3321
3322
// The offset within the MDO of the entry to update may be too large
3323
// to be used in load/store instructions on some platforms. So have
3324
// profile_type() compute the address of the profile in a register.
3325
ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3326
ret->type(), x->ret(), mdp,
3327
!x->needs_null_check(),
3328
signature_at_call->return_type()->as_klass(),
3329
x->callee()->signature()->return_type()->as_klass());
3330
if (exact != NULL) {
3331
md->set_return_type(bci, exact);
3332
}
3333
}
3334
}
3335
3336
void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3337
// We can safely ignore accessors here, since c2 will inline them anyway,
3338
// accessors are also always mature.
3339
if (!x->inlinee()->is_accessor()) {
3340
CodeEmitInfo* info = state_for(x, x->state(), true);
3341
// Notify the runtime very infrequently only to take care of counter overflows
3342
int freq_log = Tier23InlineeNotifyFreqLog;
3343
double scale;
3344
if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3345
freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3346
}
3347
increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3348
}
3349
}
3350
3351
void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3352
if (compilation()->count_backedges()) {
3353
#if defined(X86) && !defined(_LP64)
3354
// BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3355
LIR_Opr left_copy = new_register(left->type());
3356
__ move(left, left_copy);
3357
__ cmp(cond, left_copy, right);
3358
#else
3359
__ cmp(cond, left, right);
3360
#endif
3361
LIR_Opr step = new_register(T_INT);
3362
LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3363
LIR_Opr zero = LIR_OprFact::intConst(0);
3364
__ cmove(cond,
3365
(left_bci < bci) ? plus_one : zero,
3366
(right_bci < bci) ? plus_one : zero,
3367
step, left->type());
3368
increment_backedge_counter(info, step, bci);
3369
}
3370
}
3371
3372
3373
void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3374
int freq_log = 0;
3375
int level = compilation()->env()->comp_level();
3376
if (level == CompLevel_limited_profile) {
3377
freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3378
} else if (level == CompLevel_full_profile) {
3379
freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3380
} else {
3381
ShouldNotReachHere();
3382
}
3383
// Increment the appropriate invocation/backedge counter and notify the runtime.
3384
double scale;
3385
if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3386
freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3387
}
3388
increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3389
}
3390
3391
void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3392
ciMethod* method = info->scope()->method();
3393
MethodCounters* mc_adr = method->ensure_method_counters();
3394
if (mc_adr != NULL) {
3395
LIR_Opr mc = new_pointer_register();
3396
__ move(LIR_OprFact::intptrConst(mc_adr), mc);
3397
int offset = in_bytes(MethodCounters::nmethod_age_offset());
3398
LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3399
LIR_Opr result = new_register(T_INT);
3400
__ load(counter, result);
3401
__ sub(result, LIR_OprFact::intConst(1), result);
3402
__ store(result, counter);
3403
// DeoptimizeStub will reexecute from the current state in code info.
3404
CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3405
Deoptimization::Action_make_not_entrant);
3406
__ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3407
__ branch(lir_cond_lessEqual, deopt);
3408
}
3409
}
3410
3411
3412
void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3413
ciMethod *method, LIR_Opr step, int frequency,
3414
int bci, bool backedge, bool notify) {
3415
assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3416
int level = _compilation->env()->comp_level();
3417
assert(level > CompLevel_simple, "Shouldn't be here");
3418
3419
int offset = -1;
3420
LIR_Opr counter_holder = NULL;
3421
if (level == CompLevel_limited_profile) {
3422
MethodCounters* counters_adr = method->ensure_method_counters();
3423
if (counters_adr == NULL) {
3424
bailout("method counters allocation failed");
3425
return;
3426
}
3427
counter_holder = new_pointer_register();
3428
__ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3429
offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3430
MethodCounters::invocation_counter_offset());
3431
} else if (level == CompLevel_full_profile) {
3432
counter_holder = new_register(T_METADATA);
3433
offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3434
MethodData::invocation_counter_offset());
3435
ciMethodData* md = method->method_data_or_null();
3436
assert(md != NULL, "Sanity");
3437
__ metadata2reg(md->constant_encoding(), counter_holder);
3438
} else {
3439
ShouldNotReachHere();
3440
}
3441
LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3442
LIR_Opr result = new_register(T_INT);
3443
__ load(counter, result);
3444
__ add(result, step, result);
3445
__ store(result, counter);
3446
if (notify && (!backedge || UseOnStackReplacement)) {
3447
LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3448
// The bci for info can point to cmp for if's we want the if bci
3449
CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3450
int freq = frequency << InvocationCounter::count_shift;
3451
if (freq == 0) {
3452
if (!step->is_constant()) {
3453
__ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3454
__ branch(lir_cond_notEqual, overflow);
3455
} else {
3456
__ branch(lir_cond_always, overflow);
3457
}
3458
} else {
3459
LIR_Opr mask = load_immediate(freq, T_INT);
3460
if (!step->is_constant()) {
3461
// If step is 0, make sure the overflow check below always fails
3462
__ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3463
__ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3464
}
3465
__ logical_and(result, mask, result);
3466
__ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3467
__ branch(lir_cond_equal, overflow);
3468
}
3469
__ branch_destination(overflow->continuation());
3470
}
3471
}
3472
3473
void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3474
LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3475
BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3476
3477
if (x->pass_thread()) {
3478
signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
3479
args->append(getThreadPointer());
3480
}
3481
3482
for (int i = 0; i < x->number_of_arguments(); i++) {
3483
Value a = x->argument_at(i);
3484
LIRItem* item = new LIRItem(a, this);
3485
item->load_item();
3486
args->append(item->result());
3487
signature->append(as_BasicType(a->type()));
3488
}
3489
3490
LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3491
if (x->type() == voidType) {
3492
set_no_result(x);
3493
} else {
3494
__ move(result, rlock_result(x));
3495
}
3496
}
3497
3498
#ifdef ASSERT
3499
void LIRGenerator::do_Assert(Assert *x) {
3500
ValueTag tag = x->x()->type()->tag();
3501
If::Condition cond = x->cond();
3502
3503
LIRItem xitem(x->x(), this);
3504
LIRItem yitem(x->y(), this);
3505
LIRItem* xin = &xitem;
3506
LIRItem* yin = &yitem;
3507
3508
assert(tag == intTag, "Only integer assertions are valid!");
3509
3510
xin->load_item();
3511
yin->dont_load_item();
3512
3513
set_no_result(x);
3514
3515
LIR_Opr left = xin->result();
3516
LIR_Opr right = yin->result();
3517
3518
__ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3519
}
3520
#endif
3521
3522
void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3523
3524
3525
Instruction *a = x->x();
3526
Instruction *b = x->y();
3527
if (!a || StressRangeCheckElimination) {
3528
assert(!b || StressRangeCheckElimination, "B must also be null");
3529
3530
CodeEmitInfo *info = state_for(x, x->state());
3531
CodeStub* stub = new PredicateFailedStub(info);
3532
3533
__ jump(stub);
3534
} else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3535
int a_int = a->type()->as_IntConstant()->value();
3536
int b_int = b->type()->as_IntConstant()->value();
3537
3538
bool ok = false;
3539
3540
switch(x->cond()) {
3541
case Instruction::eql: ok = (a_int == b_int); break;
3542
case Instruction::neq: ok = (a_int != b_int); break;
3543
case Instruction::lss: ok = (a_int < b_int); break;
3544
case Instruction::leq: ok = (a_int <= b_int); break;
3545
case Instruction::gtr: ok = (a_int > b_int); break;
3546
case Instruction::geq: ok = (a_int >= b_int); break;
3547
case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3548
case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3549
default: ShouldNotReachHere();
3550
}
3551
3552
if (ok) {
3553
3554
CodeEmitInfo *info = state_for(x, x->state());
3555
CodeStub* stub = new PredicateFailedStub(info);
3556
3557
__ jump(stub);
3558
}
3559
} else {
3560
3561
ValueTag tag = x->x()->type()->tag();
3562
If::Condition cond = x->cond();
3563
LIRItem xitem(x->x(), this);
3564
LIRItem yitem(x->y(), this);
3565
LIRItem* xin = &xitem;
3566
LIRItem* yin = &yitem;
3567
3568
assert(tag == intTag, "Only integer deoptimizations are valid!");
3569
3570
xin->load_item();
3571
yin->dont_load_item();
3572
set_no_result(x);
3573
3574
LIR_Opr left = xin->result();
3575
LIR_Opr right = yin->result();
3576
3577
CodeEmitInfo *info = state_for(x, x->state());
3578
CodeStub* stub = new PredicateFailedStub(info);
3579
3580
__ cmp(lir_cond(cond), left, right);
3581
__ branch(lir_cond(cond), stub);
3582
}
3583
}
3584
3585
void LIRGenerator::do_blackhole(Intrinsic *x) {
3586
assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3587
for (int c = 0; c < x->number_of_arguments(); c++) {
3588
// Load the argument
3589
LIRItem vitem(x->argument_at(c), this);
3590
vitem.load_item();
3591
// ...and leave it unused.
3592
}
3593
}
3594
3595
LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3596
LIRItemList args(1);
3597
LIRItem value(arg1, this);
3598
args.append(&value);
3599
BasicTypeList signature;
3600
signature.append(as_BasicType(arg1->type()));
3601
3602
return call_runtime(&signature, &args, entry, result_type, info);
3603
}
3604
3605
3606
LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3607
LIRItemList args(2);
3608
LIRItem value1(arg1, this);
3609
LIRItem value2(arg2, this);
3610
args.append(&value1);
3611
args.append(&value2);
3612
BasicTypeList signature;
3613
signature.append(as_BasicType(arg1->type()));
3614
signature.append(as_BasicType(arg2->type()));
3615
3616
return call_runtime(&signature, &args, entry, result_type, info);
3617
}
3618
3619
3620
LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3621
address entry, ValueType* result_type, CodeEmitInfo* info) {
3622
// get a result register
3623
LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3624
LIR_Opr result = LIR_OprFact::illegalOpr;
3625
if (result_type->tag() != voidTag) {
3626
result = new_register(result_type);
3627
phys_reg = result_register_for(result_type);
3628
}
3629
3630
// move the arguments into the correct location
3631
CallingConvention* cc = frame_map()->c_calling_convention(signature);
3632
assert(cc->length() == args->length(), "argument mismatch");
3633
for (int i = 0; i < args->length(); i++) {
3634
LIR_Opr arg = args->at(i);
3635
LIR_Opr loc = cc->at(i);
3636
if (loc->is_register()) {
3637
__ move(arg, loc);
3638
} else {
3639
LIR_Address* addr = loc->as_address_ptr();
3640
// if (!can_store_as_constant(arg)) {
3641
// LIR_Opr tmp = new_register(arg->type());
3642
// __ move(arg, tmp);
3643
// arg = tmp;
3644
// }
3645
if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3646
__ unaligned_move(arg, addr);
3647
} else {
3648
__ move(arg, addr);
3649
}
3650
}
3651
}
3652
3653
if (info) {
3654
__ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3655
} else {
3656
__ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3657
}
3658
if (result->is_valid()) {
3659
__ move(phys_reg, result);
3660
}
3661
return result;
3662
}
3663
3664
3665
LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3666
address entry, ValueType* result_type, CodeEmitInfo* info) {
3667
// get a result register
3668
LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3669
LIR_Opr result = LIR_OprFact::illegalOpr;
3670
if (result_type->tag() != voidTag) {
3671
result = new_register(result_type);
3672
phys_reg = result_register_for(result_type);
3673
}
3674
3675
// move the arguments into the correct location
3676
CallingConvention* cc = frame_map()->c_calling_convention(signature);
3677
3678
assert(cc->length() == args->length(), "argument mismatch");
3679
for (int i = 0; i < args->length(); i++) {
3680
LIRItem* arg = args->at(i);
3681
LIR_Opr loc = cc->at(i);
3682
if (loc->is_register()) {
3683
arg->load_item_force(loc);
3684
} else {
3685
LIR_Address* addr = loc->as_address_ptr();
3686
arg->load_for_store(addr->type());
3687
if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3688
__ unaligned_move(arg->result(), addr);
3689
} else {
3690
__ move(arg->result(), addr);
3691
}
3692
}
3693
}
3694
3695
if (info) {
3696
__ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3697
} else {
3698
__ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3699
}
3700
if (result->is_valid()) {
3701
__ move(phys_reg, result);
3702
}
3703
return result;
3704
}
3705
3706
void LIRGenerator::do_MemBar(MemBar* x) {
3707
LIR_Code code = x->code();
3708
switch(code) {
3709
case lir_membar_acquire : __ membar_acquire(); break;
3710
case lir_membar_release : __ membar_release(); break;
3711
case lir_membar : __ membar(); break;
3712
case lir_membar_loadload : __ membar_loadload(); break;
3713
case lir_membar_storestore: __ membar_storestore(); break;
3714
case lir_membar_loadstore : __ membar_loadstore(); break;
3715
case lir_membar_storeload : __ membar_storeload(); break;
3716
default : ShouldNotReachHere(); break;
3717
}
3718
}
3719
3720
LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3721
LIR_Opr value_fixed = rlock_byte(T_BYTE);
3722
if (TwoOperandLIRForm) {
3723
__ move(value, value_fixed);
3724
__ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3725
} else {
3726
__ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3727
}
3728
LIR_Opr klass = new_register(T_METADATA);
3729
__ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3730
null_check_info = NULL;
3731
LIR_Opr layout = new_register(T_INT);
3732
__ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3733
int diffbit = Klass::layout_helper_boolean_diffbit();
3734
__ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3735
__ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3736
__ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3737
value = value_fixed;
3738
return value;
3739
}
3740
3741
LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3742
if (x->check_boolean()) {
3743
value = mask_boolean(array, value, null_check_info);
3744
}
3745
return value;
3746
}
3747
3748