Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/c1/c1_LinearScan.cpp
40931 views
1
/*
2
* Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_CFGPrinter.hpp"
27
#include "c1/c1_CodeStubs.hpp"
28
#include "c1/c1_Compilation.hpp"
29
#include "c1/c1_FrameMap.hpp"
30
#include "c1/c1_IR.hpp"
31
#include "c1/c1_LIRGenerator.hpp"
32
#include "c1/c1_LinearScan.hpp"
33
#include "c1/c1_ValueStack.hpp"
34
#include "code/vmreg.inline.hpp"
35
#include "runtime/timerTrace.hpp"
36
#include "utilities/bitMap.inline.hpp"
37
38
#ifndef PRODUCT
39
40
static LinearScanStatistic _stat_before_alloc;
41
static LinearScanStatistic _stat_after_asign;
42
static LinearScanStatistic _stat_final;
43
44
static LinearScanTimers _total_timer;
45
46
// helper macro for short definition of timer
47
#define TIME_LINEAR_SCAN(timer_name) TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
48
49
#else
50
#define TIME_LINEAR_SCAN(timer_name)
51
#endif
52
53
#ifdef ASSERT
54
55
// helper macro for short definition of trace-output inside code
56
#define TRACE_LINEAR_SCAN(level, code) \
57
if (TraceLinearScanLevel >= level) { \
58
code; \
59
}
60
#else
61
#define TRACE_LINEAR_SCAN(level, code)
62
#endif
63
64
// Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
65
#ifdef _LP64
66
static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2, 1, 2, 1, -1};
67
#else
68
static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
69
#endif
70
71
72
// Implementation of LinearScan
73
74
LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
75
: _compilation(ir->compilation())
76
, _ir(ir)
77
, _gen(gen)
78
, _frame_map(frame_map)
79
, _cached_blocks(*ir->linear_scan_order())
80
, _num_virtual_regs(gen->max_virtual_register_number())
81
, _has_fpu_registers(false)
82
, _num_calls(-1)
83
, _max_spills(0)
84
, _unused_spill_slot(-1)
85
, _intervals(0) // initialized later with correct length
86
, _new_intervals_from_allocation(NULL)
87
, _sorted_intervals(NULL)
88
, _needs_full_resort(false)
89
, _lir_ops(0) // initialized later with correct length
90
, _block_of_op(0) // initialized later with correct length
91
, _has_info(0)
92
, _has_call(0)
93
, _interval_in_loop(0) // initialized later with correct length
94
, _scope_value_cache(0) // initialized later with correct length
95
#ifdef IA32
96
, _fpu_stack_allocator(NULL)
97
#endif
98
{
99
assert(this->ir() != NULL, "check if valid");
100
assert(this->compilation() != NULL, "check if valid");
101
assert(this->gen() != NULL, "check if valid");
102
assert(this->frame_map() != NULL, "check if valid");
103
}
104
105
106
// ********** functions for converting LIR-Operands to register numbers
107
//
108
// Emulate a flat register file comprising physical integer registers,
109
// physical floating-point registers and virtual registers, in that order.
110
// Virtual registers already have appropriate numbers, since V0 is
111
// the number of physical registers.
112
// Returns -1 for hi word if opr is a single word operand.
113
//
114
// Note: the inverse operation (calculating an operand for register numbers)
115
// is done in calc_operand_for_interval()
116
117
int LinearScan::reg_num(LIR_Opr opr) {
118
assert(opr->is_register(), "should not call this otherwise");
119
120
if (opr->is_virtual_register()) {
121
assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
122
return opr->vreg_number();
123
} else if (opr->is_single_cpu()) {
124
return opr->cpu_regnr();
125
} else if (opr->is_double_cpu()) {
126
return opr->cpu_regnrLo();
127
#ifdef X86
128
} else if (opr->is_single_xmm()) {
129
return opr->fpu_regnr() + pd_first_xmm_reg;
130
} else if (opr->is_double_xmm()) {
131
return opr->fpu_regnrLo() + pd_first_xmm_reg;
132
#endif
133
} else if (opr->is_single_fpu()) {
134
return opr->fpu_regnr() + pd_first_fpu_reg;
135
} else if (opr->is_double_fpu()) {
136
return opr->fpu_regnrLo() + pd_first_fpu_reg;
137
} else {
138
ShouldNotReachHere();
139
return -1;
140
}
141
}
142
143
int LinearScan::reg_numHi(LIR_Opr opr) {
144
assert(opr->is_register(), "should not call this otherwise");
145
146
if (opr->is_virtual_register()) {
147
return -1;
148
} else if (opr->is_single_cpu()) {
149
return -1;
150
} else if (opr->is_double_cpu()) {
151
return opr->cpu_regnrHi();
152
#ifdef X86
153
} else if (opr->is_single_xmm()) {
154
return -1;
155
} else if (opr->is_double_xmm()) {
156
return -1;
157
#endif
158
} else if (opr->is_single_fpu()) {
159
return -1;
160
} else if (opr->is_double_fpu()) {
161
return opr->fpu_regnrHi() + pd_first_fpu_reg;
162
} else {
163
ShouldNotReachHere();
164
return -1;
165
}
166
}
167
168
169
// ********** functions for classification of intervals
170
171
bool LinearScan::is_precolored_interval(const Interval* i) {
172
return i->reg_num() < LinearScan::nof_regs;
173
}
174
175
bool LinearScan::is_virtual_interval(const Interval* i) {
176
return i->reg_num() >= LIR_OprDesc::vreg_base;
177
}
178
179
bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
180
return i->reg_num() < LinearScan::nof_cpu_regs;
181
}
182
183
bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
184
#if defined(__SOFTFP__) || defined(E500V2)
185
return i->reg_num() >= LIR_OprDesc::vreg_base;
186
#else
187
return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
188
#endif // __SOFTFP__ or E500V2
189
}
190
191
bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
192
return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
193
}
194
195
bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
196
#if defined(__SOFTFP__) || defined(E500V2)
197
return false;
198
#else
199
return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
200
#endif // __SOFTFP__ or E500V2
201
}
202
203
bool LinearScan::is_in_fpu_register(const Interval* i) {
204
// fixed intervals not needed for FPU stack allocation
205
return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
206
}
207
208
bool LinearScan::is_oop_interval(const Interval* i) {
209
// fixed intervals never contain oops
210
return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
211
}
212
213
214
// ********** General helper functions
215
216
// compute next unused stack index that can be used for spilling
217
int LinearScan::allocate_spill_slot(bool double_word) {
218
int spill_slot;
219
if (double_word) {
220
if ((_max_spills & 1) == 1) {
221
// alignment of double-word values
222
// the hole because of the alignment is filled with the next single-word value
223
assert(_unused_spill_slot == -1, "wasting a spill slot");
224
_unused_spill_slot = _max_spills;
225
_max_spills++;
226
}
227
spill_slot = _max_spills;
228
_max_spills += 2;
229
230
} else if (_unused_spill_slot != -1) {
231
// re-use hole that was the result of a previous double-word alignment
232
spill_slot = _unused_spill_slot;
233
_unused_spill_slot = -1;
234
235
} else {
236
spill_slot = _max_spills;
237
_max_spills++;
238
}
239
240
int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
241
242
// if too many slots used, bailout compilation.
243
if (result > 2000) {
244
bailout("too many stack slots used");
245
}
246
247
return result;
248
}
249
250
void LinearScan::assign_spill_slot(Interval* it) {
251
// assign the canonical spill slot of the parent (if a part of the interval
252
// is already spilled) or allocate a new spill slot
253
if (it->canonical_spill_slot() >= 0) {
254
it->assign_reg(it->canonical_spill_slot());
255
} else {
256
int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
257
it->set_canonical_spill_slot(spill);
258
it->assign_reg(spill);
259
}
260
}
261
262
void LinearScan::propagate_spill_slots() {
263
if (!frame_map()->finalize_frame(max_spills())) {
264
bailout("frame too large");
265
}
266
}
267
268
// create a new interval with a predefined reg_num
269
// (only used for parent intervals that are created during the building phase)
270
Interval* LinearScan::create_interval(int reg_num) {
271
assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
272
273
Interval* interval = new Interval(reg_num);
274
_intervals.at_put(reg_num, interval);
275
276
// assign register number for precolored intervals
277
if (reg_num < LIR_OprDesc::vreg_base) {
278
interval->assign_reg(reg_num);
279
}
280
return interval;
281
}
282
283
// assign a new reg_num to the interval and append it to the list of intervals
284
// (only used for child intervals that are created during register allocation)
285
void LinearScan::append_interval(Interval* it) {
286
it->set_reg_num(_intervals.length());
287
_intervals.append(it);
288
IntervalList* new_intervals = _new_intervals_from_allocation;
289
if (new_intervals == NULL) {
290
new_intervals = _new_intervals_from_allocation = new IntervalList();
291
}
292
new_intervals->append(it);
293
}
294
295
// copy the vreg-flags if an interval is split
296
void LinearScan::copy_register_flags(Interval* from, Interval* to) {
297
if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
298
gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
299
}
300
if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
301
gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
302
}
303
304
// Note: do not copy the must_start_in_memory flag because it is not necessary for child
305
// intervals (only the very beginning of the interval must be in memory)
306
}
307
308
309
// ********** spill move optimization
310
// eliminate moves from register to stack if stack slot is known to be correct
311
312
// called during building of intervals
313
void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
314
assert(interval->is_split_parent(), "can only be called for split parents");
315
316
switch (interval->spill_state()) {
317
case noDefinitionFound:
318
assert(interval->spill_definition_pos() == -1, "must no be set before");
319
interval->set_spill_definition_pos(def_pos);
320
interval->set_spill_state(oneDefinitionFound);
321
break;
322
323
case oneDefinitionFound:
324
assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
325
if (def_pos < interval->spill_definition_pos() - 2) {
326
// second definition found, so no spill optimization possible for this interval
327
interval->set_spill_state(noOptimization);
328
} else {
329
// two consecutive definitions (because of two-operand LIR form)
330
assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
331
}
332
break;
333
334
case noOptimization:
335
// nothing to do
336
break;
337
338
default:
339
assert(false, "other states not allowed at this time");
340
}
341
}
342
343
// called during register allocation
344
void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
345
switch (interval->spill_state()) {
346
case oneDefinitionFound: {
347
int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
348
int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
349
350
if (def_loop_depth < spill_loop_depth) {
351
// the loop depth of the spilling position is higher then the loop depth
352
// at the definition of the interval -> move write to memory out of loop
353
// by storing at definitin of the interval
354
interval->set_spill_state(storeAtDefinition);
355
} else {
356
// the interval is currently spilled only once, so for now there is no
357
// reason to store the interval at the definition
358
interval->set_spill_state(oneMoveInserted);
359
}
360
break;
361
}
362
363
case oneMoveInserted: {
364
// the interval is spilled more then once, so it is better to store it to
365
// memory at the definition
366
interval->set_spill_state(storeAtDefinition);
367
break;
368
}
369
370
case storeAtDefinition:
371
case startInMemory:
372
case noOptimization:
373
case noDefinitionFound:
374
// nothing to do
375
break;
376
377
default:
378
assert(false, "other states not allowed at this time");
379
}
380
}
381
382
383
bool LinearScan::must_store_at_definition(const Interval* i) {
384
return i->is_split_parent() && i->spill_state() == storeAtDefinition;
385
}
386
387
// called once before asignment of register numbers
388
void LinearScan::eliminate_spill_moves() {
389
TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
390
TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
391
392
// collect all intervals that must be stored after their definion.
393
// the list is sorted by Interval::spill_definition_pos
394
Interval* interval;
395
Interval* temp_list;
396
create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
397
398
#ifdef ASSERT
399
Interval* prev = NULL;
400
Interval* temp = interval;
401
while (temp != Interval::end()) {
402
assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
403
if (prev != NULL) {
404
assert(temp->from() >= prev->from(), "intervals not sorted");
405
assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
406
}
407
408
assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
409
assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
410
assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
411
412
TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
413
414
temp = temp->next();
415
}
416
#endif
417
418
LIR_InsertionBuffer insertion_buffer;
419
int num_blocks = block_count();
420
for (int i = 0; i < num_blocks; i++) {
421
BlockBegin* block = block_at(i);
422
LIR_OpList* instructions = block->lir()->instructions_list();
423
int num_inst = instructions->length();
424
bool has_new = false;
425
426
// iterate all instructions of the block. skip the first because it is always a label
427
for (int j = 1; j < num_inst; j++) {
428
LIR_Op* op = instructions->at(j);
429
int op_id = op->id();
430
431
if (op_id == -1) {
432
// remove move from register to stack if the stack slot is guaranteed to be correct.
433
// only moves that have been inserted by LinearScan can be removed.
434
assert(op->code() == lir_move, "only moves can have a op_id of -1");
435
assert(op->as_Op1() != NULL, "move must be LIR_Op1");
436
assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
437
438
LIR_Op1* op1 = (LIR_Op1*)op;
439
Interval* interval = interval_at(op1->result_opr()->vreg_number());
440
441
if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
442
// move target is a stack slot that is always correct, so eliminate instruction
443
TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
444
instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
445
}
446
447
} else {
448
// insert move from register to stack just after the beginning of the interval
449
assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
450
assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
451
452
while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
453
if (!has_new) {
454
// prepare insertion buffer (appended when all instructions of the block are processed)
455
insertion_buffer.init(block->lir());
456
has_new = true;
457
}
458
459
LIR_Opr from_opr = operand_for_interval(interval);
460
LIR_Opr to_opr = canonical_spill_opr(interval);
461
assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
462
assert(to_opr->is_stack(), "to operand must be a stack slot");
463
464
insertion_buffer.move(j, from_opr, to_opr);
465
TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
466
467
interval = interval->next();
468
}
469
}
470
} // end of instruction iteration
471
472
if (has_new) {
473
block->lir()->append(&insertion_buffer);
474
}
475
} // end of block iteration
476
477
assert(interval == Interval::end(), "missed an interval");
478
}
479
480
481
// ********** Phase 1: number all instructions in all blocks
482
// Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
483
484
void LinearScan::number_instructions() {
485
{
486
// dummy-timer to measure the cost of the timer itself
487
// (this time is then subtracted from all other timers to get the real value)
488
TIME_LINEAR_SCAN(timer_do_nothing);
489
}
490
TIME_LINEAR_SCAN(timer_number_instructions);
491
492
// Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
493
int num_blocks = block_count();
494
int num_instructions = 0;
495
int i;
496
for (i = 0; i < num_blocks; i++) {
497
num_instructions += block_at(i)->lir()->instructions_list()->length();
498
}
499
500
// initialize with correct length
501
_lir_ops = LIR_OpArray(num_instructions, num_instructions, NULL);
502
_block_of_op = BlockBeginArray(num_instructions, num_instructions, NULL);
503
504
int op_id = 0;
505
int idx = 0;
506
507
for (i = 0; i < num_blocks; i++) {
508
BlockBegin* block = block_at(i);
509
block->set_first_lir_instruction_id(op_id);
510
LIR_OpList* instructions = block->lir()->instructions_list();
511
512
int num_inst = instructions->length();
513
for (int j = 0; j < num_inst; j++) {
514
LIR_Op* op = instructions->at(j);
515
op->set_id(op_id);
516
517
_lir_ops.at_put(idx, op);
518
_block_of_op.at_put(idx, block);
519
assert(lir_op_with_id(op_id) == op, "must match");
520
521
idx++;
522
op_id += 2; // numbering of lir_ops by two
523
}
524
block->set_last_lir_instruction_id(op_id - 2);
525
}
526
assert(idx == num_instructions, "must match");
527
assert(idx * 2 == op_id, "must match");
528
529
_has_call.initialize(num_instructions);
530
_has_info.initialize(num_instructions);
531
}
532
533
534
// ********** Phase 2: compute local live sets separately for each block
535
// (sets live_gen and live_kill for each block)
536
537
void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
538
LIR_Opr opr = value->operand();
539
Constant* con = value->as_Constant();
540
541
// check some asumptions about debug information
542
assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
543
assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
544
assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
545
546
if ((con == NULL || con->is_pinned()) && opr->is_register()) {
547
assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
548
int reg = opr->vreg_number();
549
if (!live_kill.at(reg)) {
550
live_gen.set_bit(reg);
551
TRACE_LINEAR_SCAN(4, tty->print_cr(" Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
552
}
553
}
554
}
555
556
557
void LinearScan::compute_local_live_sets() {
558
TIME_LINEAR_SCAN(timer_compute_local_live_sets);
559
560
int num_blocks = block_count();
561
int live_size = live_set_size();
562
bool local_has_fpu_registers = false;
563
int local_num_calls = 0;
564
LIR_OpVisitState visitor;
565
566
BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
567
568
// iterate all blocks
569
for (int i = 0; i < num_blocks; i++) {
570
BlockBegin* block = block_at(i);
571
572
ResourceBitMap live_gen(live_size);
573
ResourceBitMap live_kill(live_size);
574
575
if (block->is_set(BlockBegin::exception_entry_flag)) {
576
// Phi functions at the begin of an exception handler are
577
// implicitly defined (= killed) at the beginning of the block.
578
for_each_phi_fun(block, phi,
579
if (!phi->is_illegal()) { live_kill.set_bit(phi->operand()->vreg_number()); }
580
);
581
}
582
583
LIR_OpList* instructions = block->lir()->instructions_list();
584
int num_inst = instructions->length();
585
586
// iterate all instructions of the block. skip the first because it is always a label
587
assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
588
for (int j = 1; j < num_inst; j++) {
589
LIR_Op* op = instructions->at(j);
590
591
// visit operation to collect all operands
592
visitor.visit(op);
593
594
if (visitor.has_call()) {
595
_has_call.set_bit(op->id() >> 1);
596
local_num_calls++;
597
}
598
if (visitor.info_count() > 0) {
599
_has_info.set_bit(op->id() >> 1);
600
}
601
602
// iterate input operands of instruction
603
int k, n, reg;
604
n = visitor.opr_count(LIR_OpVisitState::inputMode);
605
for (k = 0; k < n; k++) {
606
LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
607
assert(opr->is_register(), "visitor should only return register operands");
608
609
if (opr->is_virtual_register()) {
610
assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
611
reg = opr->vreg_number();
612
if (!live_kill.at(reg)) {
613
live_gen.set_bit(reg);
614
TRACE_LINEAR_SCAN(4, tty->print_cr(" Setting live_gen for register %d at instruction %d", reg, op->id()));
615
}
616
if (block->loop_index() >= 0) {
617
local_interval_in_loop.set_bit(reg, block->loop_index());
618
}
619
local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
620
}
621
622
#ifdef ASSERT
623
// fixed intervals are never live at block boundaries, so
624
// they need not be processed in live sets.
625
// this is checked by these assertions to be sure about it.
626
// the entry block may have incoming values in registers, which is ok.
627
if (!opr->is_virtual_register() && block != ir()->start()) {
628
reg = reg_num(opr);
629
if (is_processed_reg_num(reg)) {
630
assert(live_kill.at(reg), "using fixed register that is not defined in this block");
631
}
632
reg = reg_numHi(opr);
633
if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
634
assert(live_kill.at(reg), "using fixed register that is not defined in this block");
635
}
636
}
637
#endif
638
}
639
640
// Add uses of live locals from interpreter's point of view for proper debug information generation
641
n = visitor.info_count();
642
for (k = 0; k < n; k++) {
643
CodeEmitInfo* info = visitor.info_at(k);
644
ValueStack* stack = info->stack();
645
for_each_state_value(stack, value,
646
set_live_gen_kill(value, op, live_gen, live_kill)
647
);
648
}
649
650
// iterate temp operands of instruction
651
n = visitor.opr_count(LIR_OpVisitState::tempMode);
652
for (k = 0; k < n; k++) {
653
LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
654
assert(opr->is_register(), "visitor should only return register operands");
655
656
if (opr->is_virtual_register()) {
657
assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
658
reg = opr->vreg_number();
659
live_kill.set_bit(reg);
660
if (block->loop_index() >= 0) {
661
local_interval_in_loop.set_bit(reg, block->loop_index());
662
}
663
local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
664
}
665
666
#ifdef ASSERT
667
// fixed intervals are never live at block boundaries, so
668
// they need not be processed in live sets
669
// process them only in debug mode so that this can be checked
670
if (!opr->is_virtual_register()) {
671
reg = reg_num(opr);
672
if (is_processed_reg_num(reg)) {
673
live_kill.set_bit(reg_num(opr));
674
}
675
reg = reg_numHi(opr);
676
if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
677
live_kill.set_bit(reg);
678
}
679
}
680
#endif
681
}
682
683
// iterate output operands of instruction
684
n = visitor.opr_count(LIR_OpVisitState::outputMode);
685
for (k = 0; k < n; k++) {
686
LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
687
assert(opr->is_register(), "visitor should only return register operands");
688
689
if (opr->is_virtual_register()) {
690
assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
691
reg = opr->vreg_number();
692
live_kill.set_bit(reg);
693
if (block->loop_index() >= 0) {
694
local_interval_in_loop.set_bit(reg, block->loop_index());
695
}
696
local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
697
}
698
699
#ifdef ASSERT
700
// fixed intervals are never live at block boundaries, so
701
// they need not be processed in live sets
702
// process them only in debug mode so that this can be checked
703
if (!opr->is_virtual_register()) {
704
reg = reg_num(opr);
705
if (is_processed_reg_num(reg)) {
706
live_kill.set_bit(reg_num(opr));
707
}
708
reg = reg_numHi(opr);
709
if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
710
live_kill.set_bit(reg);
711
}
712
}
713
#endif
714
}
715
} // end of instruction iteration
716
717
block->set_live_gen (live_gen);
718
block->set_live_kill(live_kill);
719
block->set_live_in (ResourceBitMap(live_size));
720
block->set_live_out (ResourceBitMap(live_size));
721
722
TRACE_LINEAR_SCAN(4, tty->print("live_gen B%d ", block->block_id()); print_bitmap(block->live_gen()));
723
TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
724
} // end of block iteration
725
726
// propagate local calculated information into LinearScan object
727
_has_fpu_registers = local_has_fpu_registers;
728
compilation()->set_has_fpu_code(local_has_fpu_registers);
729
730
_num_calls = local_num_calls;
731
_interval_in_loop = local_interval_in_loop;
732
}
733
734
735
// ********** Phase 3: perform a backward dataflow analysis to compute global live sets
736
// (sets live_in and live_out for each block)
737
738
void LinearScan::compute_global_live_sets() {
739
TIME_LINEAR_SCAN(timer_compute_global_live_sets);
740
741
int num_blocks = block_count();
742
bool change_occurred;
743
bool change_occurred_in_block;
744
int iteration_count = 0;
745
ResourceBitMap live_out(live_set_size()); // scratch set for calculations
746
747
// Perform a backward dataflow analysis to compute live_out and live_in for each block.
748
// The loop is executed until a fixpoint is reached (no changes in an iteration)
749
// Exception handlers must be processed because not all live values are
750
// present in the state array, e.g. because of global value numbering
751
do {
752
change_occurred = false;
753
754
// iterate all blocks in reverse order
755
for (int i = num_blocks - 1; i >= 0; i--) {
756
BlockBegin* block = block_at(i);
757
758
change_occurred_in_block = false;
759
760
// live_out(block) is the union of live_in(sux), for successors sux of block
761
int n = block->number_of_sux();
762
int e = block->number_of_exception_handlers();
763
if (n + e > 0) {
764
// block has successors
765
if (n > 0) {
766
live_out.set_from(block->sux_at(0)->live_in());
767
for (int j = 1; j < n; j++) {
768
live_out.set_union(block->sux_at(j)->live_in());
769
}
770
} else {
771
live_out.clear();
772
}
773
for (int j = 0; j < e; j++) {
774
live_out.set_union(block->exception_handler_at(j)->live_in());
775
}
776
777
if (!block->live_out().is_same(live_out)) {
778
// A change occurred. Swap the old and new live out sets to avoid copying.
779
ResourceBitMap temp = block->live_out();
780
block->set_live_out(live_out);
781
live_out = temp;
782
783
change_occurred = true;
784
change_occurred_in_block = true;
785
}
786
}
787
788
if (iteration_count == 0 || change_occurred_in_block) {
789
// live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
790
// note: live_in has to be computed only in first iteration or if live_out has changed!
791
ResourceBitMap live_in = block->live_in();
792
live_in.set_from(block->live_out());
793
live_in.set_difference(block->live_kill());
794
live_in.set_union(block->live_gen());
795
}
796
797
#ifdef ASSERT
798
if (TraceLinearScanLevel >= 4) {
799
char c = ' ';
800
if (iteration_count == 0 || change_occurred_in_block) {
801
c = '*';
802
}
803
tty->print("(%d) live_in%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
804
tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
805
}
806
#endif
807
}
808
iteration_count++;
809
810
if (change_occurred && iteration_count > 50) {
811
BAILOUT("too many iterations in compute_global_live_sets");
812
}
813
} while (change_occurred);
814
815
816
#ifdef ASSERT
817
// check that fixed intervals are not live at block boundaries
818
// (live set must be empty at fixed intervals)
819
for (int i = 0; i < num_blocks; i++) {
820
BlockBegin* block = block_at(i);
821
for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
822
assert(block->live_in().at(j) == false, "live_in set of fixed register must be empty");
823
assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
824
assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
825
}
826
}
827
#endif
828
829
// check that the live_in set of the first block is empty
830
ResourceBitMap live_in_args(ir()->start()->live_in().size());
831
if (!ir()->start()->live_in().is_same(live_in_args)) {
832
#ifdef ASSERT
833
tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
834
tty->print_cr("affected registers:");
835
print_bitmap(ir()->start()->live_in());
836
837
// print some additional information to simplify debugging
838
for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
839
if (ir()->start()->live_in().at(i)) {
840
Instruction* instr = gen()->instruction_for_vreg(i);
841
tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
842
843
for (int j = 0; j < num_blocks; j++) {
844
BlockBegin* block = block_at(j);
845
if (block->live_gen().at(i)) {
846
tty->print_cr(" used in block B%d", block->block_id());
847
}
848
if (block->live_kill().at(i)) {
849
tty->print_cr(" defined in block B%d", block->block_id());
850
}
851
}
852
}
853
}
854
855
#endif
856
// when this fails, virtual registers are used before they are defined.
857
assert(false, "live_in set of first block must be empty");
858
// bailout of if this occurs in product mode.
859
bailout("live_in set of first block not empty");
860
}
861
}
862
863
864
// ********** Phase 4: build intervals
865
// (fills the list _intervals)
866
867
void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
868
assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
869
LIR_Opr opr = value->operand();
870
Constant* con = value->as_Constant();
871
872
if ((con == NULL || con->is_pinned()) && opr->is_register()) {
873
assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
874
add_use(opr, from, to, use_kind);
875
}
876
}
877
878
879
void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
880
TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
881
assert(opr->is_register(), "should not be called otherwise");
882
883
if (opr->is_virtual_register()) {
884
assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
885
add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
886
887
} else {
888
int reg = reg_num(opr);
889
if (is_processed_reg_num(reg)) {
890
add_def(reg, def_pos, use_kind, opr->type_register());
891
}
892
reg = reg_numHi(opr);
893
if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
894
add_def(reg, def_pos, use_kind, opr->type_register());
895
}
896
}
897
}
898
899
void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
900
TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
901
assert(opr->is_register(), "should not be called otherwise");
902
903
if (opr->is_virtual_register()) {
904
assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
905
add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
906
907
} else {
908
int reg = reg_num(opr);
909
if (is_processed_reg_num(reg)) {
910
add_use(reg, from, to, use_kind, opr->type_register());
911
}
912
reg = reg_numHi(opr);
913
if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
914
add_use(reg, from, to, use_kind, opr->type_register());
915
}
916
}
917
}
918
919
void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
920
TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
921
assert(opr->is_register(), "should not be called otherwise");
922
923
if (opr->is_virtual_register()) {
924
assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
925
add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
926
927
} else {
928
int reg = reg_num(opr);
929
if (is_processed_reg_num(reg)) {
930
add_temp(reg, temp_pos, use_kind, opr->type_register());
931
}
932
reg = reg_numHi(opr);
933
if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
934
add_temp(reg, temp_pos, use_kind, opr->type_register());
935
}
936
}
937
}
938
939
940
void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
941
Interval* interval = interval_at(reg_num);
942
if (interval != NULL) {
943
assert(interval->reg_num() == reg_num, "wrong interval");
944
945
if (type != T_ILLEGAL) {
946
interval->set_type(type);
947
}
948
949
Range* r = interval->first();
950
if (r->from() <= def_pos) {
951
// Update the starting point (when a range is first created for a use, its
952
// start is the beginning of the current block until a def is encountered.)
953
r->set_from(def_pos);
954
interval->add_use_pos(def_pos, use_kind);
955
956
} else {
957
// Dead value - make vacuous interval
958
// also add use_kind for dead intervals
959
interval->add_range(def_pos, def_pos + 1);
960
interval->add_use_pos(def_pos, use_kind);
961
TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
962
}
963
964
} else {
965
// Dead value - make vacuous interval
966
// also add use_kind for dead intervals
967
interval = create_interval(reg_num);
968
if (type != T_ILLEGAL) {
969
interval->set_type(type);
970
}
971
972
interval->add_range(def_pos, def_pos + 1);
973
interval->add_use_pos(def_pos, use_kind);
974
TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
975
}
976
977
change_spill_definition_pos(interval, def_pos);
978
if (use_kind == noUse && interval->spill_state() <= startInMemory) {
979
// detection of method-parameters and roundfp-results
980
// TODO: move this directly to position where use-kind is computed
981
interval->set_spill_state(startInMemory);
982
}
983
}
984
985
void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
986
Interval* interval = interval_at(reg_num);
987
if (interval == NULL) {
988
interval = create_interval(reg_num);
989
}
990
assert(interval->reg_num() == reg_num, "wrong interval");
991
992
if (type != T_ILLEGAL) {
993
interval->set_type(type);
994
}
995
996
interval->add_range(from, to);
997
interval->add_use_pos(to, use_kind);
998
}
999
1000
void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
1001
Interval* interval = interval_at(reg_num);
1002
if (interval == NULL) {
1003
interval = create_interval(reg_num);
1004
}
1005
assert(interval->reg_num() == reg_num, "wrong interval");
1006
1007
if (type != T_ILLEGAL) {
1008
interval->set_type(type);
1009
}
1010
1011
interval->add_range(temp_pos, temp_pos + 1);
1012
interval->add_use_pos(temp_pos, use_kind);
1013
}
1014
1015
1016
// the results of this functions are used for optimizing spilling and reloading
1017
// if the functions return shouldHaveRegister and the interval is spilled,
1018
// it is not reloaded to a register.
1019
IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1020
if (op->code() == lir_move) {
1021
assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1022
LIR_Op1* move = (LIR_Op1*)op;
1023
LIR_Opr res = move->result_opr();
1024
bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1025
1026
if (result_in_memory) {
1027
// Begin of an interval with must_start_in_memory set.
1028
// This interval will always get a stack slot first, so return noUse.
1029
return noUse;
1030
1031
} else if (move->in_opr()->is_stack()) {
1032
// method argument (condition must be equal to handle_method_arguments)
1033
return noUse;
1034
1035
} else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1036
// Move from register to register
1037
if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1038
// special handling of phi-function moves inside osr-entry blocks
1039
// input operand must have a register instead of output operand (leads to better register allocation)
1040
return shouldHaveRegister;
1041
}
1042
}
1043
}
1044
1045
if (opr->is_virtual() &&
1046
gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1047
// result is a stack-slot, so prevent immediate reloading
1048
return noUse;
1049
}
1050
1051
// all other operands require a register
1052
return mustHaveRegister;
1053
}
1054
1055
IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1056
if (op->code() == lir_move) {
1057
assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1058
LIR_Op1* move = (LIR_Op1*)op;
1059
LIR_Opr res = move->result_opr();
1060
bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1061
1062
if (result_in_memory) {
1063
// Move to an interval with must_start_in_memory set.
1064
// To avoid moves from stack to stack (not allowed) force the input operand to a register
1065
return mustHaveRegister;
1066
1067
} else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1068
// Move from register to register
1069
if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1070
// special handling of phi-function moves inside osr-entry blocks
1071
// input operand must have a register instead of output operand (leads to better register allocation)
1072
return mustHaveRegister;
1073
}
1074
1075
// The input operand is not forced to a register (moves from stack to register are allowed),
1076
// but it is faster if the input operand is in a register
1077
return shouldHaveRegister;
1078
}
1079
}
1080
1081
1082
#if defined(X86) || defined(S390)
1083
if (op->code() == lir_cmove) {
1084
// conditional moves can handle stack operands
1085
assert(op->result_opr()->is_register(), "result must always be in a register");
1086
return shouldHaveRegister;
1087
}
1088
1089
// optimizations for second input operand of arithmehtic operations on Intel
1090
// this operand is allowed to be on the stack in some cases
1091
BasicType opr_type = opr->type_register();
1092
if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1093
if (IA32_ONLY( (UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2 ) NOT_IA32( true )) {
1094
// SSE float instruction (T_DOUBLE only supported with SSE2)
1095
switch (op->code()) {
1096
case lir_cmp:
1097
case lir_add:
1098
case lir_sub:
1099
case lir_mul:
1100
case lir_div:
1101
{
1102
assert(op->as_Op2() != NULL, "must be LIR_Op2");
1103
LIR_Op2* op2 = (LIR_Op2*)op;
1104
if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1105
assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1106
return shouldHaveRegister;
1107
}
1108
}
1109
default:
1110
break;
1111
}
1112
} else {
1113
// FPU stack float instruction
1114
switch (op->code()) {
1115
case lir_add:
1116
case lir_sub:
1117
case lir_mul:
1118
case lir_div:
1119
{
1120
assert(op->as_Op2() != NULL, "must be LIR_Op2");
1121
LIR_Op2* op2 = (LIR_Op2*)op;
1122
if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1123
assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1124
return shouldHaveRegister;
1125
}
1126
}
1127
default:
1128
break;
1129
}
1130
}
1131
// We want to sometimes use logical operations on pointers, in particular in GC barriers.
1132
// Since 64bit logical operations do not current support operands on stack, we have to make sure
1133
// T_OBJECT doesn't get spilled along with T_LONG.
1134
} else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) {
1135
// integer instruction (note: long operands must always be in register)
1136
switch (op->code()) {
1137
case lir_cmp:
1138
case lir_add:
1139
case lir_sub:
1140
case lir_logic_and:
1141
case lir_logic_or:
1142
case lir_logic_xor:
1143
{
1144
assert(op->as_Op2() != NULL, "must be LIR_Op2");
1145
LIR_Op2* op2 = (LIR_Op2*)op;
1146
if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1147
assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1148
return shouldHaveRegister;
1149
}
1150
}
1151
default:
1152
break;
1153
}
1154
}
1155
#endif // X86 || S390
1156
1157
// all other operands require a register
1158
return mustHaveRegister;
1159
}
1160
1161
1162
void LinearScan::handle_method_arguments(LIR_Op* op) {
1163
// special handling for method arguments (moves from stack to virtual register):
1164
// the interval gets no register assigned, but the stack slot.
1165
// it is split before the first use by the register allocator.
1166
1167
if (op->code() == lir_move) {
1168
assert(op->as_Op1() != NULL, "must be LIR_Op1");
1169
LIR_Op1* move = (LIR_Op1*)op;
1170
1171
if (move->in_opr()->is_stack()) {
1172
#ifdef ASSERT
1173
int arg_size = compilation()->method()->arg_size();
1174
LIR_Opr o = move->in_opr();
1175
if (o->is_single_stack()) {
1176
assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1177
} else if (o->is_double_stack()) {
1178
assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1179
} else {
1180
ShouldNotReachHere();
1181
}
1182
1183
assert(move->id() > 0, "invalid id");
1184
assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1185
assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1186
1187
TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1188
#endif
1189
1190
Interval* interval = interval_at(reg_num(move->result_opr()));
1191
1192
int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1193
interval->set_canonical_spill_slot(stack_slot);
1194
interval->assign_reg(stack_slot);
1195
}
1196
}
1197
}
1198
1199
void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1200
// special handling for doubleword move from memory to register:
1201
// in this case the registers of the input address and the result
1202
// registers must not overlap -> add a temp range for the input registers
1203
if (op->code() == lir_move) {
1204
assert(op->as_Op1() != NULL, "must be LIR_Op1");
1205
LIR_Op1* move = (LIR_Op1*)op;
1206
1207
if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1208
LIR_Address* address = move->in_opr()->as_address_ptr();
1209
if (address != NULL) {
1210
if (address->base()->is_valid()) {
1211
add_temp(address->base(), op->id(), noUse);
1212
}
1213
if (address->index()->is_valid()) {
1214
add_temp(address->index(), op->id(), noUse);
1215
}
1216
}
1217
}
1218
}
1219
}
1220
1221
void LinearScan::add_register_hints(LIR_Op* op) {
1222
switch (op->code()) {
1223
case lir_move: // fall through
1224
case lir_convert: {
1225
assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1226
LIR_Op1* move = (LIR_Op1*)op;
1227
1228
LIR_Opr move_from = move->in_opr();
1229
LIR_Opr move_to = move->result_opr();
1230
1231
if (move_to->is_register() && move_from->is_register()) {
1232
Interval* from = interval_at(reg_num(move_from));
1233
Interval* to = interval_at(reg_num(move_to));
1234
if (from != NULL && to != NULL) {
1235
to->set_register_hint(from);
1236
TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1237
}
1238
}
1239
break;
1240
}
1241
case lir_cmove: {
1242
assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1243
LIR_Op2* cmove = (LIR_Op2*)op;
1244
1245
LIR_Opr move_from = cmove->in_opr1();
1246
LIR_Opr move_to = cmove->result_opr();
1247
1248
if (move_to->is_register() && move_from->is_register()) {
1249
Interval* from = interval_at(reg_num(move_from));
1250
Interval* to = interval_at(reg_num(move_to));
1251
if (from != NULL && to != NULL) {
1252
to->set_register_hint(from);
1253
TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1254
}
1255
}
1256
break;
1257
}
1258
default:
1259
break;
1260
}
1261
}
1262
1263
1264
void LinearScan::build_intervals() {
1265
TIME_LINEAR_SCAN(timer_build_intervals);
1266
1267
// initialize interval list with expected number of intervals
1268
// (32 is added to have some space for split children without having to resize the list)
1269
_intervals = IntervalList(num_virtual_regs() + 32);
1270
// initialize all slots that are used by build_intervals
1271
_intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1272
1273
// create a list with all caller-save registers (cpu, fpu, xmm)
1274
// when an instruction is a call, a temp range is created for all these registers
1275
int num_caller_save_registers = 0;
1276
int caller_save_registers[LinearScan::nof_regs];
1277
1278
int i;
1279
for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
1280
LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1281
assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1282
assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1283
caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1284
}
1285
1286
// temp ranges for fpu registers are only created when the method has
1287
// virtual fpu operands. Otherwise no allocation for fpu registers is
1288
// performed and so the temp ranges would be useless
1289
if (has_fpu_registers()) {
1290
#ifdef X86
1291
if (UseSSE < 2) {
1292
#endif // X86
1293
for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1294
LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1295
assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1296
assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1297
caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1298
}
1299
#ifdef X86
1300
}
1301
#endif // X86
1302
1303
#ifdef X86
1304
if (UseSSE > 0) {
1305
int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms();
1306
for (i = 0; i < num_caller_save_xmm_regs; i ++) {
1307
LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1308
assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1309
assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1310
caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1311
}
1312
}
1313
#endif // X86
1314
}
1315
assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1316
1317
1318
LIR_OpVisitState visitor;
1319
1320
// iterate all blocks in reverse order
1321
for (i = block_count() - 1; i >= 0; i--) {
1322
BlockBegin* block = block_at(i);
1323
LIR_OpList* instructions = block->lir()->instructions_list();
1324
int block_from = block->first_lir_instruction_id();
1325
int block_to = block->last_lir_instruction_id();
1326
1327
assert(block_from == instructions->at(0)->id(), "must be");
1328
assert(block_to == instructions->at(instructions->length() - 1)->id(), "must be");
1329
1330
// Update intervals for registers live at the end of this block;
1331
ResourceBitMap live = block->live_out();
1332
int size = (int)live.size();
1333
for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1334
assert(live.at(number), "should not stop here otherwise");
1335
assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1336
TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1337
1338
add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1339
1340
// add special use positions for loop-end blocks when the
1341
// interval is used anywhere inside this loop. It's possible
1342
// that the block was part of a non-natural loop, so it might
1343
// have an invalid loop index.
1344
if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1345
block->loop_index() != -1 &&
1346
is_interval_in_loop(number, block->loop_index())) {
1347
interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1348
}
1349
}
1350
1351
// iterate all instructions of the block in reverse order.
1352
// skip the first instruction because it is always a label
1353
// definitions of intervals are processed before uses
1354
assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1355
for (int j = instructions->length() - 1; j >= 1; j--) {
1356
LIR_Op* op = instructions->at(j);
1357
int op_id = op->id();
1358
1359
// visit operation to collect all operands
1360
visitor.visit(op);
1361
1362
// add a temp range for each register if operation destroys caller-save registers
1363
if (visitor.has_call()) {
1364
for (int k = 0; k < num_caller_save_registers; k++) {
1365
add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1366
}
1367
TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1368
}
1369
1370
// Add any platform dependent temps
1371
pd_add_temps(op);
1372
1373
// visit definitions (output and temp operands)
1374
int k, n;
1375
n = visitor.opr_count(LIR_OpVisitState::outputMode);
1376
for (k = 0; k < n; k++) {
1377
LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1378
assert(opr->is_register(), "visitor should only return register operands");
1379
add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1380
}
1381
1382
n = visitor.opr_count(LIR_OpVisitState::tempMode);
1383
for (k = 0; k < n; k++) {
1384
LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1385
assert(opr->is_register(), "visitor should only return register operands");
1386
add_temp(opr, op_id, mustHaveRegister);
1387
}
1388
1389
// visit uses (input operands)
1390
n = visitor.opr_count(LIR_OpVisitState::inputMode);
1391
for (k = 0; k < n; k++) {
1392
LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1393
assert(opr->is_register(), "visitor should only return register operands");
1394
add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1395
}
1396
1397
// Add uses of live locals from interpreter's point of view for proper
1398
// debug information generation
1399
// Treat these operands as temp values (if the life range is extended
1400
// to a call site, the value would be in a register at the call otherwise)
1401
n = visitor.info_count();
1402
for (k = 0; k < n; k++) {
1403
CodeEmitInfo* info = visitor.info_at(k);
1404
ValueStack* stack = info->stack();
1405
for_each_state_value(stack, value,
1406
add_use(value, block_from, op_id + 1, noUse);
1407
);
1408
}
1409
1410
// special steps for some instructions (especially moves)
1411
handle_method_arguments(op);
1412
handle_doubleword_moves(op);
1413
add_register_hints(op);
1414
1415
} // end of instruction iteration
1416
} // end of block iteration
1417
1418
1419
// add the range [0, 1[ to all fixed intervals
1420
// -> the register allocator need not handle unhandled fixed intervals
1421
for (int n = 0; n < LinearScan::nof_regs; n++) {
1422
Interval* interval = interval_at(n);
1423
if (interval != NULL) {
1424
interval->add_range(0, 1);
1425
}
1426
}
1427
}
1428
1429
1430
// ********** Phase 5: actual register allocation
1431
1432
int LinearScan::interval_cmp(Interval** a, Interval** b) {
1433
if (*a != NULL) {
1434
if (*b != NULL) {
1435
return (*a)->from() - (*b)->from();
1436
} else {
1437
return -1;
1438
}
1439
} else {
1440
if (*b != NULL) {
1441
return 1;
1442
} else {
1443
return 0;
1444
}
1445
}
1446
}
1447
1448
#ifndef PRODUCT
1449
int interval_cmp(Interval* const& l, Interval* const& r) {
1450
return l->from() - r->from();
1451
}
1452
1453
bool find_interval(Interval* interval, IntervalArray* intervals) {
1454
bool found;
1455
int idx = intervals->find_sorted<Interval*, interval_cmp>(interval, found);
1456
1457
if (!found) {
1458
return false;
1459
}
1460
1461
int from = interval->from();
1462
1463
// The index we've found using binary search is pointing to an interval
1464
// that is defined in the same place as the interval we were looking for.
1465
// So now we have to look around that index and find exact interval.
1466
for (int i = idx; i >= 0; i--) {
1467
if (intervals->at(i) == interval) {
1468
return true;
1469
}
1470
if (intervals->at(i)->from() != from) {
1471
break;
1472
}
1473
}
1474
1475
for (int i = idx + 1; i < intervals->length(); i++) {
1476
if (intervals->at(i) == interval) {
1477
return true;
1478
}
1479
if (intervals->at(i)->from() != from) {
1480
break;
1481
}
1482
}
1483
1484
return false;
1485
}
1486
1487
bool LinearScan::is_sorted(IntervalArray* intervals) {
1488
int from = -1;
1489
int null_count = 0;
1490
1491
for (int i = 0; i < intervals->length(); i++) {
1492
Interval* it = intervals->at(i);
1493
if (it != NULL) {
1494
assert(from <= it->from(), "Intervals are unordered");
1495
from = it->from();
1496
} else {
1497
null_count++;
1498
}
1499
}
1500
1501
assert(null_count == 0, "Sorted intervals should not contain nulls");
1502
1503
null_count = 0;
1504
1505
for (int i = 0; i < interval_count(); i++) {
1506
Interval* interval = interval_at(i);
1507
if (interval != NULL) {
1508
assert(find_interval(interval, intervals), "Lists do not contain same intervals");
1509
} else {
1510
null_count++;
1511
}
1512
}
1513
1514
assert(interval_count() - null_count == intervals->length(),
1515
"Sorted list should contain the same amount of non-NULL intervals as unsorted list");
1516
1517
return true;
1518
}
1519
#endif
1520
1521
void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1522
if (*prev != NULL) {
1523
(*prev)->set_next(interval);
1524
} else {
1525
*first = interval;
1526
}
1527
*prev = interval;
1528
}
1529
1530
void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1531
assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1532
1533
*list1 = *list2 = Interval::end();
1534
1535
Interval* list1_prev = NULL;
1536
Interval* list2_prev = NULL;
1537
Interval* v;
1538
1539
const int n = _sorted_intervals->length();
1540
for (int i = 0; i < n; i++) {
1541
v = _sorted_intervals->at(i);
1542
if (v == NULL) continue;
1543
1544
if (is_list1(v)) {
1545
add_to_list(list1, &list1_prev, v);
1546
} else if (is_list2 == NULL || is_list2(v)) {
1547
add_to_list(list2, &list2_prev, v);
1548
}
1549
}
1550
1551
if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1552
if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1553
1554
assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1555
assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1556
}
1557
1558
1559
void LinearScan::sort_intervals_before_allocation() {
1560
TIME_LINEAR_SCAN(timer_sort_intervals_before);
1561
1562
if (_needs_full_resort) {
1563
// There is no known reason why this should occur but just in case...
1564
assert(false, "should never occur");
1565
// Re-sort existing interval list because an Interval::from() has changed
1566
_sorted_intervals->sort(interval_cmp);
1567
_needs_full_resort = false;
1568
}
1569
1570
IntervalList* unsorted_list = &_intervals;
1571
int unsorted_len = unsorted_list->length();
1572
int sorted_len = 0;
1573
int unsorted_idx;
1574
int sorted_idx = 0;
1575
int sorted_from_max = -1;
1576
1577
// calc number of items for sorted list (sorted list must not contain NULL values)
1578
for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1579
if (unsorted_list->at(unsorted_idx) != NULL) {
1580
sorted_len++;
1581
}
1582
}
1583
IntervalArray* sorted_list = new IntervalArray(sorted_len, sorted_len, NULL);
1584
1585
// special sorting algorithm: the original interval-list is almost sorted,
1586
// only some intervals are swapped. So this is much faster than a complete QuickSort
1587
for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1588
Interval* cur_interval = unsorted_list->at(unsorted_idx);
1589
1590
if (cur_interval != NULL) {
1591
int cur_from = cur_interval->from();
1592
1593
if (sorted_from_max <= cur_from) {
1594
sorted_list->at_put(sorted_idx++, cur_interval);
1595
sorted_from_max = cur_interval->from();
1596
} else {
1597
// the asumption that the intervals are already sorted failed,
1598
// so this interval must be sorted in manually
1599
int j;
1600
for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1601
sorted_list->at_put(j + 1, sorted_list->at(j));
1602
}
1603
sorted_list->at_put(j + 1, cur_interval);
1604
sorted_idx++;
1605
}
1606
}
1607
}
1608
_sorted_intervals = sorted_list;
1609
assert(is_sorted(_sorted_intervals), "intervals unsorted");
1610
}
1611
1612
void LinearScan::sort_intervals_after_allocation() {
1613
TIME_LINEAR_SCAN(timer_sort_intervals_after);
1614
1615
if (_needs_full_resort) {
1616
// Re-sort existing interval list because an Interval::from() has changed
1617
_sorted_intervals->sort(interval_cmp);
1618
_needs_full_resort = false;
1619
}
1620
1621
IntervalArray* old_list = _sorted_intervals;
1622
IntervalList* new_list = _new_intervals_from_allocation;
1623
int old_len = old_list->length();
1624
int new_len = new_list == NULL ? 0 : new_list->length();
1625
1626
if (new_len == 0) {
1627
// no intervals have been added during allocation, so sorted list is already up to date
1628
assert(is_sorted(_sorted_intervals), "intervals unsorted");
1629
return;
1630
}
1631
1632
// conventional sort-algorithm for new intervals
1633
new_list->sort(interval_cmp);
1634
1635
// merge old and new list (both already sorted) into one combined list
1636
int combined_list_len = old_len + new_len;
1637
IntervalArray* combined_list = new IntervalArray(combined_list_len, combined_list_len, NULL);
1638
int old_idx = 0;
1639
int new_idx = 0;
1640
1641
while (old_idx + new_idx < old_len + new_len) {
1642
if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1643
combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1644
old_idx++;
1645
} else {
1646
combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1647
new_idx++;
1648
}
1649
}
1650
1651
_sorted_intervals = combined_list;
1652
assert(is_sorted(_sorted_intervals), "intervals unsorted");
1653
}
1654
1655
1656
void LinearScan::allocate_registers() {
1657
TIME_LINEAR_SCAN(timer_allocate_registers);
1658
1659
Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1660
Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1661
1662
// allocate cpu registers
1663
create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals,
1664
is_precolored_cpu_interval, is_virtual_cpu_interval);
1665
1666
// allocate fpu registers
1667
create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals,
1668
is_precolored_fpu_interval, is_virtual_fpu_interval);
1669
1670
// the fpu interval allocation cannot be moved down below with the fpu section as
1671
// the cpu_lsw.walk() changes interval positions.
1672
1673
LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1674
cpu_lsw.walk();
1675
cpu_lsw.finish_allocation();
1676
1677
if (has_fpu_registers()) {
1678
LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1679
fpu_lsw.walk();
1680
fpu_lsw.finish_allocation();
1681
}
1682
}
1683
1684
1685
// ********** Phase 6: resolve data flow
1686
// (insert moves at edges between blocks if intervals have been split)
1687
1688
// wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1689
// instead of returning NULL
1690
Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1691
Interval* result = interval->split_child_at_op_id(op_id, mode);
1692
if (result != NULL) {
1693
return result;
1694
}
1695
1696
assert(false, "must find an interval, but do a clean bailout in product mode");
1697
result = new Interval(LIR_OprDesc::vreg_base);
1698
result->assign_reg(0);
1699
result->set_type(T_INT);
1700
BAILOUT_("LinearScan: interval is NULL", result);
1701
}
1702
1703
1704
Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1705
assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1706
assert(interval_at(reg_num) != NULL, "no interval found");
1707
1708
return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1709
}
1710
1711
Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1712
assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1713
assert(interval_at(reg_num) != NULL, "no interval found");
1714
1715
return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1716
}
1717
1718
Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1719
assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1720
assert(interval_at(reg_num) != NULL, "no interval found");
1721
1722
return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1723
}
1724
1725
1726
void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1727
DEBUG_ONLY(move_resolver.check_empty());
1728
1729
const int size = live_set_size();
1730
const ResourceBitMap live_at_edge = to_block->live_in();
1731
1732
// visit all registers where the live_at_edge bit is set
1733
for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1734
assert(r < num_virtual_regs(), "live information set for not exisiting interval");
1735
assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1736
1737
Interval* from_interval = interval_at_block_end(from_block, r);
1738
Interval* to_interval = interval_at_block_begin(to_block, r);
1739
1740
if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1741
// need to insert move instruction
1742
move_resolver.add_mapping(from_interval, to_interval);
1743
}
1744
}
1745
}
1746
1747
1748
void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1749
if (from_block->number_of_sux() <= 1) {
1750
TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1751
1752
LIR_OpList* instructions = from_block->lir()->instructions_list();
1753
LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1754
if (branch != NULL) {
1755
// insert moves before branch
1756
assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1757
move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1758
} else {
1759
move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1760
}
1761
1762
} else {
1763
TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1764
#ifdef ASSERT
1765
assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1766
1767
// because the number of predecessor edges matches the number of
1768
// successor edges, blocks which are reached by switch statements
1769
// may have be more than one predecessor but it will be guaranteed
1770
// that all predecessors will be the same.
1771
for (int i = 0; i < to_block->number_of_preds(); i++) {
1772
assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1773
}
1774
#endif
1775
1776
move_resolver.set_insert_position(to_block->lir(), 0);
1777
}
1778
}
1779
1780
1781
// insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1782
void LinearScan::resolve_data_flow() {
1783
TIME_LINEAR_SCAN(timer_resolve_data_flow);
1784
1785
int num_blocks = block_count();
1786
MoveResolver move_resolver(this);
1787
ResourceBitMap block_completed(num_blocks);
1788
ResourceBitMap already_resolved(num_blocks);
1789
1790
int i;
1791
for (i = 0; i < num_blocks; i++) {
1792
BlockBegin* block = block_at(i);
1793
1794
// check if block has only one predecessor and only one successor
1795
if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1796
LIR_OpList* instructions = block->lir()->instructions_list();
1797
assert(instructions->at(0)->code() == lir_label, "block must start with label");
1798
assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1799
assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1800
1801
// check if block is empty (only label and branch)
1802
if (instructions->length() == 2) {
1803
BlockBegin* pred = block->pred_at(0);
1804
BlockBegin* sux = block->sux_at(0);
1805
1806
// prevent optimization of two consecutive blocks
1807
if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1808
TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1809
block_completed.set_bit(block->linear_scan_number());
1810
1811
// directly resolve between pred and sux (without looking at the empty block between)
1812
resolve_collect_mappings(pred, sux, move_resolver);
1813
if (move_resolver.has_mappings()) {
1814
move_resolver.set_insert_position(block->lir(), 0);
1815
move_resolver.resolve_and_append_moves();
1816
}
1817
}
1818
}
1819
}
1820
}
1821
1822
1823
for (i = 0; i < num_blocks; i++) {
1824
if (!block_completed.at(i)) {
1825
BlockBegin* from_block = block_at(i);
1826
already_resolved.set_from(block_completed);
1827
1828
int num_sux = from_block->number_of_sux();
1829
for (int s = 0; s < num_sux; s++) {
1830
BlockBegin* to_block = from_block->sux_at(s);
1831
1832
// check for duplicate edges between the same blocks (can happen with switch blocks)
1833
if (!already_resolved.at(to_block->linear_scan_number())) {
1834
TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1835
already_resolved.set_bit(to_block->linear_scan_number());
1836
1837
// collect all intervals that have been split between from_block and to_block
1838
resolve_collect_mappings(from_block, to_block, move_resolver);
1839
if (move_resolver.has_mappings()) {
1840
resolve_find_insert_pos(from_block, to_block, move_resolver);
1841
move_resolver.resolve_and_append_moves();
1842
}
1843
}
1844
}
1845
}
1846
}
1847
}
1848
1849
1850
void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1851
if (interval_at(reg_num) == NULL) {
1852
// if a phi function is never used, no interval is created -> ignore this
1853
return;
1854
}
1855
1856
Interval* interval = interval_at_block_begin(block, reg_num);
1857
int reg = interval->assigned_reg();
1858
int regHi = interval->assigned_regHi();
1859
1860
if ((reg < nof_regs && interval->always_in_memory()) ||
1861
(use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1862
// the interval is split to get a short range that is located on the stack
1863
// in the following two cases:
1864
// * the interval started in memory (e.g. method parameter), but is currently in a register
1865
// this is an optimization for exception handling that reduces the number of moves that
1866
// are necessary for resolving the states when an exception uses this exception handler
1867
// * the interval would be on the fpu stack at the begin of the exception handler
1868
// this is not allowed because of the complicated fpu stack handling on Intel
1869
1870
// range that will be spilled to memory
1871
int from_op_id = block->first_lir_instruction_id();
1872
int to_op_id = from_op_id + 1; // short live range of length 1
1873
assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1874
"no split allowed between exception entry and first instruction");
1875
1876
if (interval->from() != from_op_id) {
1877
// the part before from_op_id is unchanged
1878
interval = interval->split(from_op_id);
1879
interval->assign_reg(reg, regHi);
1880
append_interval(interval);
1881
} else {
1882
_needs_full_resort = true;
1883
}
1884
assert(interval->from() == from_op_id, "must be true now");
1885
1886
Interval* spilled_part = interval;
1887
if (interval->to() != to_op_id) {
1888
// the part after to_op_id is unchanged
1889
spilled_part = interval->split_from_start(to_op_id);
1890
append_interval(spilled_part);
1891
move_resolver.add_mapping(spilled_part, interval);
1892
}
1893
assign_spill_slot(spilled_part);
1894
1895
assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1896
}
1897
}
1898
1899
void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1900
assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1901
DEBUG_ONLY(move_resolver.check_empty());
1902
1903
// visit all registers where the live_in bit is set
1904
int size = live_set_size();
1905
for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1906
resolve_exception_entry(block, r, move_resolver);
1907
}
1908
1909
// the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1910
for_each_phi_fun(block, phi,
1911
if (!phi->is_illegal()) { resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver); }
1912
);
1913
1914
if (move_resolver.has_mappings()) {
1915
// insert moves after first instruction
1916
move_resolver.set_insert_position(block->lir(), 0);
1917
move_resolver.resolve_and_append_moves();
1918
}
1919
}
1920
1921
1922
void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1923
if (interval_at(reg_num) == NULL) {
1924
// if a phi function is never used, no interval is created -> ignore this
1925
return;
1926
}
1927
1928
// the computation of to_interval is equal to resolve_collect_mappings,
1929
// but from_interval is more complicated because of phi functions
1930
BlockBegin* to_block = handler->entry_block();
1931
Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1932
1933
if (phi != NULL) {
1934
// phi function of the exception entry block
1935
// no moves are created for this phi function in the LIR_Generator, so the
1936
// interval at the throwing instruction must be searched using the operands
1937
// of the phi function
1938
Value from_value = phi->operand_at(handler->phi_operand());
1939
1940
// with phi functions it can happen that the same from_value is used in
1941
// multiple mappings, so notify move-resolver that this is allowed
1942
move_resolver.set_multiple_reads_allowed();
1943
1944
Constant* con = from_value->as_Constant();
1945
if (con != NULL && (!con->is_pinned() || con->operand()->is_constant())) {
1946
// Need a mapping from constant to interval if unpinned (may have no register) or if the operand is a constant (no register).
1947
move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1948
} else {
1949
// search split child at the throwing op_id
1950
Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1951
move_resolver.add_mapping(from_interval, to_interval);
1952
}
1953
} else {
1954
// no phi function, so use reg_num also for from_interval
1955
// search split child at the throwing op_id
1956
Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1957
if (from_interval != to_interval) {
1958
// optimization to reduce number of moves: when to_interval is on stack and
1959
// the stack slot is known to be always correct, then no move is necessary
1960
if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1961
move_resolver.add_mapping(from_interval, to_interval);
1962
}
1963
}
1964
}
1965
}
1966
1967
void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1968
TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1969
1970
DEBUG_ONLY(move_resolver.check_empty());
1971
assert(handler->lir_op_id() == -1, "already processed this xhandler");
1972
DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1973
assert(handler->entry_code() == NULL, "code already present");
1974
1975
// visit all registers where the live_in bit is set
1976
BlockBegin* block = handler->entry_block();
1977
int size = live_set_size();
1978
for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1979
resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1980
}
1981
1982
// the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1983
for_each_phi_fun(block, phi,
1984
if (!phi->is_illegal()) { resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver); }
1985
);
1986
1987
if (move_resolver.has_mappings()) {
1988
LIR_List* entry_code = new LIR_List(compilation());
1989
move_resolver.set_insert_position(entry_code, 0);
1990
move_resolver.resolve_and_append_moves();
1991
1992
entry_code->jump(handler->entry_block());
1993
handler->set_entry_code(entry_code);
1994
}
1995
}
1996
1997
1998
void LinearScan::resolve_exception_handlers() {
1999
MoveResolver move_resolver(this);
2000
LIR_OpVisitState visitor;
2001
int num_blocks = block_count();
2002
2003
int i;
2004
for (i = 0; i < num_blocks; i++) {
2005
BlockBegin* block = block_at(i);
2006
if (block->is_set(BlockBegin::exception_entry_flag)) {
2007
resolve_exception_entry(block, move_resolver);
2008
}
2009
}
2010
2011
for (i = 0; i < num_blocks; i++) {
2012
BlockBegin* block = block_at(i);
2013
LIR_List* ops = block->lir();
2014
int num_ops = ops->length();
2015
2016
// iterate all instructions of the block. skip the first because it is always a label
2017
assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
2018
for (int j = 1; j < num_ops; j++) {
2019
LIR_Op* op = ops->at(j);
2020
int op_id = op->id();
2021
2022
if (op_id != -1 && has_info(op_id)) {
2023
// visit operation to collect all operands
2024
visitor.visit(op);
2025
assert(visitor.info_count() > 0, "should not visit otherwise");
2026
2027
XHandlers* xhandlers = visitor.all_xhandler();
2028
int n = xhandlers->length();
2029
for (int k = 0; k < n; k++) {
2030
resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
2031
}
2032
2033
#ifdef ASSERT
2034
} else {
2035
visitor.visit(op);
2036
assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2037
#endif
2038
}
2039
}
2040
}
2041
}
2042
2043
2044
// ********** Phase 7: assign register numbers back to LIR
2045
// (includes computation of debug information and oop maps)
2046
2047
VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
2048
VMReg reg = interval->cached_vm_reg();
2049
if (!reg->is_valid() ) {
2050
reg = vm_reg_for_operand(operand_for_interval(interval));
2051
interval->set_cached_vm_reg(reg);
2052
}
2053
assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2054
return reg;
2055
}
2056
2057
VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2058
assert(opr->is_oop(), "currently only implemented for oop operands");
2059
return frame_map()->regname(opr);
2060
}
2061
2062
2063
LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2064
LIR_Opr opr = interval->cached_opr();
2065
if (opr->is_illegal()) {
2066
opr = calc_operand_for_interval(interval);
2067
interval->set_cached_opr(opr);
2068
}
2069
2070
assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2071
return opr;
2072
}
2073
2074
LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2075
int assigned_reg = interval->assigned_reg();
2076
BasicType type = interval->type();
2077
2078
if (assigned_reg >= nof_regs) {
2079
// stack slot
2080
assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2081
return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2082
2083
} else {
2084
// register
2085
switch (type) {
2086
case T_OBJECT: {
2087
assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2088
assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2089
return LIR_OprFact::single_cpu_oop(assigned_reg);
2090
}
2091
2092
case T_ADDRESS: {
2093
assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2094
assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2095
return LIR_OprFact::single_cpu_address(assigned_reg);
2096
}
2097
2098
case T_METADATA: {
2099
assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2100
assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2101
return LIR_OprFact::single_cpu_metadata(assigned_reg);
2102
}
2103
2104
#ifdef __SOFTFP__
2105
case T_FLOAT: // fall through
2106
#endif // __SOFTFP__
2107
case T_INT: {
2108
assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2109
assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2110
return LIR_OprFact::single_cpu(assigned_reg);
2111
}
2112
2113
#ifdef __SOFTFP__
2114
case T_DOUBLE: // fall through
2115
#endif // __SOFTFP__
2116
case T_LONG: {
2117
int assigned_regHi = interval->assigned_regHi();
2118
assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2119
assert(num_physical_regs(T_LONG) == 1 ||
2120
(assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2121
2122
assert(assigned_reg != assigned_regHi, "invalid allocation");
2123
assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2124
"register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2125
assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2126
if (requires_adjacent_regs(T_LONG)) {
2127
assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2128
}
2129
2130
#ifdef _LP64
2131
return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2132
#else
2133
#if defined(PPC32)
2134
return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2135
#else
2136
return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2137
#endif // PPC32
2138
#endif // LP64
2139
}
2140
2141
#ifndef __SOFTFP__
2142
case T_FLOAT: {
2143
#ifdef X86
2144
if (UseSSE >= 1) {
2145
int last_xmm_reg = pd_last_xmm_reg;
2146
#ifdef _LP64
2147
if (UseAVX < 3) {
2148
last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
2149
}
2150
#endif // LP64
2151
assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register");
2152
assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2153
return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2154
}
2155
#endif // X86
2156
2157
assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2158
assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2159
return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2160
}
2161
2162
case T_DOUBLE: {
2163
#ifdef X86
2164
if (UseSSE >= 2) {
2165
int last_xmm_reg = pd_last_xmm_reg;
2166
#ifdef _LP64
2167
if (UseAVX < 3) {
2168
last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
2169
}
2170
#endif // LP64
2171
assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register");
2172
assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2173
return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2174
}
2175
#endif // X86
2176
2177
#if defined(ARM32)
2178
assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2179
assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2180
assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2181
LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2182
#else
2183
assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2184
assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2185
LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2186
#endif
2187
return result;
2188
}
2189
#endif // __SOFTFP__
2190
2191
default: {
2192
ShouldNotReachHere();
2193
return LIR_OprFact::illegalOpr;
2194
}
2195
}
2196
}
2197
}
2198
2199
LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2200
assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2201
return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2202
}
2203
2204
LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2205
assert(opr->is_virtual(), "should not call this otherwise");
2206
2207
Interval* interval = interval_at(opr->vreg_number());
2208
assert(interval != NULL, "interval must exist");
2209
2210
if (op_id != -1) {
2211
#ifdef ASSERT
2212
BlockBegin* block = block_of_op_with_id(op_id);
2213
if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2214
// check if spill moves could have been appended at the end of this block, but
2215
// before the branch instruction. So the split child information for this branch would
2216
// be incorrect.
2217
LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2218
if (branch != NULL) {
2219
if (block->live_out().at(opr->vreg_number())) {
2220
assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2221
assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2222
}
2223
}
2224
}
2225
#endif
2226
2227
// operands are not changed when an interval is split during allocation,
2228
// so search the right interval here
2229
interval = split_child_at_op_id(interval, op_id, mode);
2230
}
2231
2232
LIR_Opr res = operand_for_interval(interval);
2233
2234
#ifdef X86
2235
// new semantic for is_last_use: not only set on definite end of interval,
2236
// but also before hole
2237
// This may still miss some cases (e.g. for dead values), but it is not necessary that the
2238
// last use information is completely correct
2239
// information is only needed for fpu stack allocation
2240
if (res->is_fpu_register()) {
2241
if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2242
assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2243
res = res->make_last_use();
2244
}
2245
}
2246
#endif
2247
2248
assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2249
2250
return res;
2251
}
2252
2253
2254
#ifdef ASSERT
2255
// some methods used to check correctness of debug information
2256
2257
void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2258
if (values == NULL) {
2259
return;
2260
}
2261
2262
for (int i = 0; i < values->length(); i++) {
2263
ScopeValue* value = values->at(i);
2264
2265
if (value->is_location()) {
2266
Location location = ((LocationValue*)value)->location();
2267
assert(location.where() == Location::on_stack, "value is in register");
2268
}
2269
}
2270
}
2271
2272
void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2273
if (values == NULL) {
2274
return;
2275
}
2276
2277
for (int i = 0; i < values->length(); i++) {
2278
MonitorValue* value = values->at(i);
2279
2280
if (value->owner()->is_location()) {
2281
Location location = ((LocationValue*)value->owner())->location();
2282
assert(location.where() == Location::on_stack, "owner is in register");
2283
}
2284
assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2285
}
2286
}
2287
2288
void assert_equal(Location l1, Location l2) {
2289
assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2290
}
2291
2292
void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2293
if (v1->is_location()) {
2294
assert(v2->is_location(), "");
2295
assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2296
} else if (v1->is_constant_int()) {
2297
assert(v2->is_constant_int(), "");
2298
assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2299
} else if (v1->is_constant_double()) {
2300
assert(v2->is_constant_double(), "");
2301
assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2302
} else if (v1->is_constant_long()) {
2303
assert(v2->is_constant_long(), "");
2304
assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2305
} else if (v1->is_constant_oop()) {
2306
assert(v2->is_constant_oop(), "");
2307
assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2308
} else {
2309
ShouldNotReachHere();
2310
}
2311
}
2312
2313
void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2314
assert_equal(m1->owner(), m2->owner());
2315
assert_equal(m1->basic_lock(), m2->basic_lock());
2316
}
2317
2318
void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2319
assert(d1->scope() == d2->scope(), "not equal");
2320
assert(d1->bci() == d2->bci(), "not equal");
2321
2322
if (d1->locals() != NULL) {
2323
assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2324
assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2325
for (int i = 0; i < d1->locals()->length(); i++) {
2326
assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2327
}
2328
} else {
2329
assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2330
}
2331
2332
if (d1->expressions() != NULL) {
2333
assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2334
assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2335
for (int i = 0; i < d1->expressions()->length(); i++) {
2336
assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2337
}
2338
} else {
2339
assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2340
}
2341
2342
if (d1->monitors() != NULL) {
2343
assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2344
assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2345
for (int i = 0; i < d1->monitors()->length(); i++) {
2346
assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2347
}
2348
} else {
2349
assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2350
}
2351
2352
if (d1->caller() != NULL) {
2353
assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2354
assert_equal(d1->caller(), d2->caller());
2355
} else {
2356
assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2357
}
2358
}
2359
2360
void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2361
if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2362
Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2363
switch (code) {
2364
case Bytecodes::_ifnull : // fall through
2365
case Bytecodes::_ifnonnull : // fall through
2366
case Bytecodes::_ifeq : // fall through
2367
case Bytecodes::_ifne : // fall through
2368
case Bytecodes::_iflt : // fall through
2369
case Bytecodes::_ifge : // fall through
2370
case Bytecodes::_ifgt : // fall through
2371
case Bytecodes::_ifle : // fall through
2372
case Bytecodes::_if_icmpeq : // fall through
2373
case Bytecodes::_if_icmpne : // fall through
2374
case Bytecodes::_if_icmplt : // fall through
2375
case Bytecodes::_if_icmpge : // fall through
2376
case Bytecodes::_if_icmpgt : // fall through
2377
case Bytecodes::_if_icmple : // fall through
2378
case Bytecodes::_if_acmpeq : // fall through
2379
case Bytecodes::_if_acmpne :
2380
assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2381
break;
2382
default:
2383
break;
2384
}
2385
}
2386
}
2387
2388
#endif // ASSERT
2389
2390
2391
IntervalWalker* LinearScan::init_compute_oop_maps() {
2392
// setup lists of potential oops for walking
2393
Interval* oop_intervals;
2394
Interval* non_oop_intervals;
2395
2396
create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2397
2398
// intervals that have no oops inside need not to be processed
2399
// to ensure a walking until the last instruction id, add a dummy interval
2400
// with a high operation id
2401
non_oop_intervals = new Interval(any_reg);
2402
non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2403
2404
return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2405
}
2406
2407
2408
OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2409
TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2410
2411
// walk before the current operation -> intervals that start at
2412
// the operation (= output operands of the operation) are not
2413
// included in the oop map
2414
iw->walk_before(op->id());
2415
2416
int frame_size = frame_map()->framesize();
2417
int arg_count = frame_map()->oop_map_arg_count();
2418
OopMap* map = new OopMap(frame_size, arg_count);
2419
2420
// Iterate through active intervals
2421
for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2422
int assigned_reg = interval->assigned_reg();
2423
2424
assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2425
assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2426
assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2427
2428
// Check if this range covers the instruction. Intervals that
2429
// start or end at the current operation are not included in the
2430
// oop map, except in the case of patching moves. For patching
2431
// moves, any intervals which end at this instruction are included
2432
// in the oop map since we may safepoint while doing the patch
2433
// before we've consumed the inputs.
2434
if (op->is_patching() || op->id() < interval->current_to()) {
2435
2436
// caller-save registers must not be included into oop-maps at calls
2437
assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2438
2439
VMReg name = vm_reg_for_interval(interval);
2440
set_oop(map, name);
2441
2442
// Spill optimization: when the stack value is guaranteed to be always correct,
2443
// then it must be added to the oop map even if the interval is currently in a register
2444
if (interval->always_in_memory() &&
2445
op->id() > interval->spill_definition_pos() &&
2446
interval->assigned_reg() != interval->canonical_spill_slot()) {
2447
assert(interval->spill_definition_pos() > 0, "position not set correctly");
2448
assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2449
assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2450
2451
set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2452
}
2453
}
2454
}
2455
2456
// add oops from lock stack
2457
assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2458
int locks_count = info->stack()->total_locks_size();
2459
for (int i = 0; i < locks_count; i++) {
2460
set_oop(map, frame_map()->monitor_object_regname(i));
2461
}
2462
2463
return map;
2464
}
2465
2466
2467
void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2468
assert(visitor.info_count() > 0, "no oop map needed");
2469
2470
// compute oop_map only for first CodeEmitInfo
2471
// because it is (in most cases) equal for all other infos of the same operation
2472
CodeEmitInfo* first_info = visitor.info_at(0);
2473
OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2474
2475
for (int i = 0; i < visitor.info_count(); i++) {
2476
CodeEmitInfo* info = visitor.info_at(i);
2477
OopMap* oop_map = first_oop_map;
2478
2479
// compute worst case interpreter size in case of a deoptimization
2480
_compilation->update_interpreter_frame_size(info->interpreter_frame_size());
2481
2482
if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2483
// this info has a different number of locks then the precomputed oop map
2484
// (possible for lock and unlock instructions) -> compute oop map with
2485
// correct lock information
2486
oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2487
}
2488
2489
if (info->_oop_map == NULL) {
2490
info->_oop_map = oop_map;
2491
} else {
2492
// a CodeEmitInfo can not be shared between different LIR-instructions
2493
// because interval splitting can occur anywhere between two instructions
2494
// and so the oop maps must be different
2495
// -> check if the already set oop_map is exactly the one calculated for this operation
2496
assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2497
}
2498
}
2499
}
2500
2501
2502
// frequently used constants
2503
// Allocate them with new so they are never destroyed (otherwise, a
2504
// forced exit could destroy these objects while they are still in
2505
// use).
2506
ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
2507
ConstantIntValue* LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
2508
ConstantIntValue* LinearScan::_int_0_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue((jint)0);
2509
ConstantIntValue* LinearScan::_int_1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
2510
ConstantIntValue* LinearScan::_int_2_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
2511
LocationValue* _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
2512
2513
void LinearScan::init_compute_debug_info() {
2514
// cache for frequently used scope values
2515
// (cpu registers and stack slots)
2516
int cache_size = (LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2;
2517
_scope_value_cache = ScopeValueArray(cache_size, cache_size, NULL);
2518
}
2519
2520
MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2521
Location loc;
2522
if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2523
bailout("too large frame");
2524
}
2525
ScopeValue* object_scope_value = new LocationValue(loc);
2526
2527
if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2528
bailout("too large frame");
2529
}
2530
return new MonitorValue(object_scope_value, loc);
2531
}
2532
2533
LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2534
Location loc;
2535
if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2536
bailout("too large frame");
2537
}
2538
return new LocationValue(loc);
2539
}
2540
2541
2542
int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2543
assert(opr->is_constant(), "should not be called otherwise");
2544
2545
LIR_Const* c = opr->as_constant_ptr();
2546
BasicType t = c->type();
2547
switch (t) {
2548
case T_OBJECT: {
2549
jobject value = c->as_jobject();
2550
if (value == NULL) {
2551
scope_values->append(_oop_null_scope_value);
2552
} else {
2553
scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2554
}
2555
return 1;
2556
}
2557
2558
case T_INT: // fall through
2559
case T_FLOAT: {
2560
int value = c->as_jint_bits();
2561
switch (value) {
2562
case -1: scope_values->append(_int_m1_scope_value); break;
2563
case 0: scope_values->append(_int_0_scope_value); break;
2564
case 1: scope_values->append(_int_1_scope_value); break;
2565
case 2: scope_values->append(_int_2_scope_value); break;
2566
default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2567
}
2568
return 1;
2569
}
2570
2571
case T_LONG: // fall through
2572
case T_DOUBLE: {
2573
#ifdef _LP64
2574
scope_values->append(_int_0_scope_value);
2575
scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2576
#else
2577
if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2578
scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2579
scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2580
} else {
2581
scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2582
scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2583
}
2584
#endif
2585
return 2;
2586
}
2587
2588
case T_ADDRESS: {
2589
#ifdef _LP64
2590
scope_values->append(new ConstantLongValue(c->as_jint()));
2591
#else
2592
scope_values->append(new ConstantIntValue(c->as_jint()));
2593
#endif
2594
return 1;
2595
}
2596
2597
default:
2598
ShouldNotReachHere();
2599
return -1;
2600
}
2601
}
2602
2603
int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2604
if (opr->is_single_stack()) {
2605
int stack_idx = opr->single_stack_ix();
2606
bool is_oop = opr->is_oop_register();
2607
int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2608
2609
ScopeValue* sv = _scope_value_cache.at(cache_idx);
2610
if (sv == NULL) {
2611
Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2612
sv = location_for_name(stack_idx, loc_type);
2613
_scope_value_cache.at_put(cache_idx, sv);
2614
}
2615
2616
// check if cached value is correct
2617
DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2618
2619
scope_values->append(sv);
2620
return 1;
2621
2622
} else if (opr->is_single_cpu()) {
2623
bool is_oop = opr->is_oop_register();
2624
int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2625
Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2626
2627
ScopeValue* sv = _scope_value_cache.at(cache_idx);
2628
if (sv == NULL) {
2629
Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2630
VMReg rname = frame_map()->regname(opr);
2631
sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2632
_scope_value_cache.at_put(cache_idx, sv);
2633
}
2634
2635
// check if cached value is correct
2636
DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2637
2638
scope_values->append(sv);
2639
return 1;
2640
2641
#ifdef X86
2642
} else if (opr->is_single_xmm()) {
2643
VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2644
LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2645
2646
scope_values->append(sv);
2647
return 1;
2648
#endif
2649
2650
} else if (opr->is_single_fpu()) {
2651
#ifdef IA32
2652
// the exact location of fpu stack values is only known
2653
// during fpu stack allocation, so the stack allocator object
2654
// must be present
2655
assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2656
assert(_fpu_stack_allocator != NULL, "must be present");
2657
opr = _fpu_stack_allocator->to_fpu_stack(opr);
2658
#elif defined(AMD64)
2659
assert(false, "FPU not used on x86-64");
2660
#endif
2661
2662
Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2663
VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2664
#ifndef __SOFTFP__
2665
#ifndef VM_LITTLE_ENDIAN
2666
// On S390 a (single precision) float value occupies only the high
2667
// word of the full double register. So when the double register is
2668
// stored to memory (e.g. by the RegisterSaver), then the float value
2669
// is found at offset 0. I.e. the code below is not needed on S390.
2670
#ifndef S390
2671
if (! float_saved_as_double) {
2672
// On big endian system, we may have an issue if float registers use only
2673
// the low half of the (same) double registers.
2674
// Both the float and the double could have the same regnr but would correspond
2675
// to two different addresses once saved.
2676
2677
// get next safely (no assertion checks)
2678
VMReg next = VMRegImpl::as_VMReg(1+rname->value());
2679
if (next->is_reg() &&
2680
(next->as_FloatRegister() == rname->as_FloatRegister())) {
2681
// the back-end does use the same numbering for the double and the float
2682
rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
2683
}
2684
}
2685
#endif // !S390
2686
#endif
2687
#endif
2688
LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2689
2690
scope_values->append(sv);
2691
return 1;
2692
2693
} else {
2694
// double-size operands
2695
2696
ScopeValue* first;
2697
ScopeValue* second;
2698
2699
if (opr->is_double_stack()) {
2700
#ifdef _LP64
2701
Location loc1;
2702
Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2703
if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2704
bailout("too large frame");
2705
}
2706
2707
first = new LocationValue(loc1);
2708
second = _int_0_scope_value;
2709
#else
2710
Location loc1, loc2;
2711
if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2712
bailout("too large frame");
2713
}
2714
first = new LocationValue(loc1);
2715
second = new LocationValue(loc2);
2716
#endif // _LP64
2717
2718
} else if (opr->is_double_cpu()) {
2719
#ifdef _LP64
2720
VMReg rname_first = opr->as_register_lo()->as_VMReg();
2721
first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2722
second = _int_0_scope_value;
2723
#else
2724
VMReg rname_first = opr->as_register_lo()->as_VMReg();
2725
VMReg rname_second = opr->as_register_hi()->as_VMReg();
2726
2727
if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2728
// lo/hi and swapped relative to first and second, so swap them
2729
VMReg tmp = rname_first;
2730
rname_first = rname_second;
2731
rname_second = tmp;
2732
}
2733
2734
first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2735
second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2736
#endif //_LP64
2737
2738
2739
#ifdef X86
2740
} else if (opr->is_double_xmm()) {
2741
assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2742
VMReg rname_first = opr->as_xmm_double_reg()->as_VMReg();
2743
# ifdef _LP64
2744
first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2745
second = _int_0_scope_value;
2746
# else
2747
first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2748
// %%% This is probably a waste but we'll keep things as they were for now
2749
if (true) {
2750
VMReg rname_second = rname_first->next();
2751
second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2752
}
2753
# endif
2754
#endif
2755
2756
} else if (opr->is_double_fpu()) {
2757
// On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2758
// the double as float registers in the native ordering. On X86,
2759
// fpu_regnrLo is a FPU stack slot whose VMReg represents
2760
// the low-order word of the double and fpu_regnrLo + 1 is the
2761
// name for the other half. *first and *second must represent the
2762
// least and most significant words, respectively.
2763
2764
#ifdef IA32
2765
// the exact location of fpu stack values is only known
2766
// during fpu stack allocation, so the stack allocator object
2767
// must be present
2768
assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2769
assert(_fpu_stack_allocator != NULL, "must be present");
2770
opr = _fpu_stack_allocator->to_fpu_stack(opr);
2771
2772
assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
2773
#endif
2774
#ifdef AMD64
2775
assert(false, "FPU not used on x86-64");
2776
#endif
2777
#ifdef ARM32
2778
assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2779
#endif
2780
#ifdef PPC32
2781
assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2782
#endif
2783
2784
#ifdef VM_LITTLE_ENDIAN
2785
VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
2786
#else
2787
VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2788
#endif
2789
2790
#ifdef _LP64
2791
first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2792
second = _int_0_scope_value;
2793
#else
2794
first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2795
// %%% This is probably a waste but we'll keep things as they were for now
2796
if (true) {
2797
VMReg rname_second = rname_first->next();
2798
second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2799
}
2800
#endif
2801
2802
} else {
2803
ShouldNotReachHere();
2804
first = NULL;
2805
second = NULL;
2806
}
2807
2808
assert(first != NULL && second != NULL, "must be set");
2809
// The convention the interpreter uses is that the second local
2810
// holds the first raw word of the native double representation.
2811
// This is actually reasonable, since locals and stack arrays
2812
// grow downwards in all implementations.
2813
// (If, on some machine, the interpreter's Java locals or stack
2814
// were to grow upwards, the embedded doubles would be word-swapped.)
2815
scope_values->append(second);
2816
scope_values->append(first);
2817
return 2;
2818
}
2819
}
2820
2821
2822
int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2823
if (value != NULL) {
2824
LIR_Opr opr = value->operand();
2825
Constant* con = value->as_Constant();
2826
2827
assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2828
assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2829
2830
if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2831
// Unpinned constants may have a virtual operand for a part of the lifetime
2832
// or may be illegal when it was optimized away,
2833
// so always use a constant operand
2834
opr = LIR_OprFact::value_type(con->type());
2835
}
2836
assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2837
2838
if (opr->is_virtual()) {
2839
LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2840
2841
BlockBegin* block = block_of_op_with_id(op_id);
2842
if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2843
// generating debug information for the last instruction of a block.
2844
// if this instruction is a branch, spill moves are inserted before this branch
2845
// and so the wrong operand would be returned (spill moves at block boundaries are not
2846
// considered in the live ranges of intervals)
2847
// Solution: use the first op_id of the branch target block instead.
2848
if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2849
if (block->live_out().at(opr->vreg_number())) {
2850
op_id = block->sux_at(0)->first_lir_instruction_id();
2851
mode = LIR_OpVisitState::outputMode;
2852
}
2853
}
2854
}
2855
2856
// Get current location of operand
2857
// The operand must be live because debug information is considered when building the intervals
2858
// if the interval is not live, color_lir_opr will cause an assertion failure
2859
opr = color_lir_opr(opr, op_id, mode);
2860
assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2861
2862
// Append to ScopeValue array
2863
return append_scope_value_for_operand(opr, scope_values);
2864
2865
} else {
2866
assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2867
assert(opr->is_constant(), "operand must be constant");
2868
2869
return append_scope_value_for_constant(opr, scope_values);
2870
}
2871
} else {
2872
// append a dummy value because real value not needed
2873
scope_values->append(_illegal_value);
2874
return 1;
2875
}
2876
}
2877
2878
2879
IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2880
IRScopeDebugInfo* caller_debug_info = NULL;
2881
2882
ValueStack* caller_state = cur_state->caller_state();
2883
if (caller_state != NULL) {
2884
// process recursively to compute outermost scope first
2885
caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2886
}
2887
2888
// initialize these to null.
2889
// If we don't need deopt info or there are no locals, expressions or monitors,
2890
// then these get recorded as no information and avoids the allocation of 0 length arrays.
2891
GrowableArray<ScopeValue*>* locals = NULL;
2892
GrowableArray<ScopeValue*>* expressions = NULL;
2893
GrowableArray<MonitorValue*>* monitors = NULL;
2894
2895
// describe local variable values
2896
int nof_locals = cur_state->locals_size();
2897
if (nof_locals > 0) {
2898
locals = new GrowableArray<ScopeValue*>(nof_locals);
2899
2900
int pos = 0;
2901
while (pos < nof_locals) {
2902
assert(pos < cur_state->locals_size(), "why not?");
2903
2904
Value local = cur_state->local_at(pos);
2905
pos += append_scope_value(op_id, local, locals);
2906
2907
assert(locals->length() == pos, "must match");
2908
}
2909
assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2910
assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2911
} else if (cur_scope->method()->max_locals() > 0) {
2912
assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2913
nof_locals = cur_scope->method()->max_locals();
2914
locals = new GrowableArray<ScopeValue*>(nof_locals);
2915
for(int i = 0; i < nof_locals; i++) {
2916
locals->append(_illegal_value);
2917
}
2918
}
2919
2920
// describe expression stack
2921
int nof_stack = cur_state->stack_size();
2922
if (nof_stack > 0) {
2923
expressions = new GrowableArray<ScopeValue*>(nof_stack);
2924
2925
int pos = 0;
2926
while (pos < nof_stack) {
2927
Value expression = cur_state->stack_at_inc(pos);
2928
append_scope_value(op_id, expression, expressions);
2929
2930
assert(expressions->length() == pos, "must match");
2931
}
2932
assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2933
}
2934
2935
// describe monitors
2936
int nof_locks = cur_state->locks_size();
2937
if (nof_locks > 0) {
2938
int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2939
monitors = new GrowableArray<MonitorValue*>(nof_locks);
2940
for (int i = 0; i < nof_locks; i++) {
2941
monitors->append(location_for_monitor_index(lock_offset + i));
2942
}
2943
}
2944
2945
return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2946
}
2947
2948
2949
void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2950
TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2951
2952
IRScope* innermost_scope = info->scope();
2953
ValueStack* innermost_state = info->stack();
2954
2955
assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2956
2957
DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2958
2959
if (info->_scope_debug_info == NULL) {
2960
// compute debug information
2961
info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2962
} else {
2963
// debug information already set. Check that it is correct from the current point of view
2964
DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2965
}
2966
}
2967
2968
2969
void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2970
LIR_OpVisitState visitor;
2971
int num_inst = instructions->length();
2972
bool has_dead = false;
2973
2974
for (int j = 0; j < num_inst; j++) {
2975
LIR_Op* op = instructions->at(j);
2976
if (op == NULL) { // this can happen when spill-moves are removed in eliminate_spill_moves
2977
has_dead = true;
2978
continue;
2979
}
2980
int op_id = op->id();
2981
2982
// visit instruction to get list of operands
2983
visitor.visit(op);
2984
2985
// iterate all modes of the visitor and process all virtual operands
2986
for_each_visitor_mode(mode) {
2987
int n = visitor.opr_count(mode);
2988
for (int k = 0; k < n; k++) {
2989
LIR_Opr opr = visitor.opr_at(mode, k);
2990
if (opr->is_virtual_register()) {
2991
visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2992
}
2993
}
2994
}
2995
2996
if (visitor.info_count() > 0) {
2997
// exception handling
2998
if (compilation()->has_exception_handlers()) {
2999
XHandlers* xhandlers = visitor.all_xhandler();
3000
int n = xhandlers->length();
3001
for (int k = 0; k < n; k++) {
3002
XHandler* handler = xhandlers->handler_at(k);
3003
if (handler->entry_code() != NULL) {
3004
assign_reg_num(handler->entry_code()->instructions_list(), NULL);
3005
}
3006
}
3007
} else {
3008
assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
3009
}
3010
3011
// compute oop map
3012
assert(iw != NULL, "needed for compute_oop_map");
3013
compute_oop_map(iw, visitor, op);
3014
3015
// compute debug information
3016
if (!use_fpu_stack_allocation()) {
3017
// compute debug information if fpu stack allocation is not needed.
3018
// when fpu stack allocation is needed, the debug information can not
3019
// be computed here because the exact location of fpu operands is not known
3020
// -> debug information is created inside the fpu stack allocator
3021
int n = visitor.info_count();
3022
for (int k = 0; k < n; k++) {
3023
compute_debug_info(visitor.info_at(k), op_id);
3024
}
3025
}
3026
}
3027
3028
#ifdef ASSERT
3029
// make sure we haven't made the op invalid.
3030
op->verify();
3031
#endif
3032
3033
// remove useless moves
3034
if (op->code() == lir_move) {
3035
assert(op->as_Op1() != NULL, "move must be LIR_Op1");
3036
LIR_Op1* move = (LIR_Op1*)op;
3037
LIR_Opr src = move->in_opr();
3038
LIR_Opr dst = move->result_opr();
3039
if (dst == src ||
3040
(!dst->is_pointer() && !src->is_pointer() &&
3041
src->is_same_register(dst))) {
3042
instructions->at_put(j, NULL);
3043
has_dead = true;
3044
}
3045
}
3046
}
3047
3048
if (has_dead) {
3049
// iterate all instructions of the block and remove all null-values.
3050
int insert_point = 0;
3051
for (int j = 0; j < num_inst; j++) {
3052
LIR_Op* op = instructions->at(j);
3053
if (op != NULL) {
3054
if (insert_point != j) {
3055
instructions->at_put(insert_point, op);
3056
}
3057
insert_point++;
3058
}
3059
}
3060
instructions->trunc_to(insert_point);
3061
}
3062
}
3063
3064
void LinearScan::assign_reg_num() {
3065
TIME_LINEAR_SCAN(timer_assign_reg_num);
3066
3067
init_compute_debug_info();
3068
IntervalWalker* iw = init_compute_oop_maps();
3069
3070
int num_blocks = block_count();
3071
for (int i = 0; i < num_blocks; i++) {
3072
BlockBegin* block = block_at(i);
3073
assign_reg_num(block->lir()->instructions_list(), iw);
3074
}
3075
}
3076
3077
3078
void LinearScan::do_linear_scan() {
3079
NOT_PRODUCT(_total_timer.begin_method());
3080
3081
number_instructions();
3082
3083
NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
3084
3085
compute_local_live_sets();
3086
compute_global_live_sets();
3087
CHECK_BAILOUT();
3088
3089
build_intervals();
3090
CHECK_BAILOUT();
3091
sort_intervals_before_allocation();
3092
3093
NOT_PRODUCT(print_intervals("Before Register Allocation"));
3094
NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3095
3096
allocate_registers();
3097
CHECK_BAILOUT();
3098
3099
resolve_data_flow();
3100
if (compilation()->has_exception_handlers()) {
3101
resolve_exception_handlers();
3102
}
3103
// fill in number of spill slots into frame_map
3104
propagate_spill_slots();
3105
CHECK_BAILOUT();
3106
3107
NOT_PRODUCT(print_intervals("After Register Allocation"));
3108
NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3109
3110
sort_intervals_after_allocation();
3111
3112
DEBUG_ONLY(verify());
3113
3114
eliminate_spill_moves();
3115
assign_reg_num();
3116
CHECK_BAILOUT();
3117
3118
NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3119
NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3120
3121
{ TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3122
3123
if (use_fpu_stack_allocation()) {
3124
allocate_fpu_stack(); // Only has effect on Intel
3125
NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3126
}
3127
}
3128
3129
{ TIME_LINEAR_SCAN(timer_optimize_lir);
3130
3131
EdgeMoveOptimizer::optimize(ir()->code());
3132
ControlFlowOptimizer::optimize(ir()->code());
3133
// check that cfg is still correct after optimizations
3134
ir()->verify();
3135
}
3136
3137
NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3138
NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3139
NOT_PRODUCT(_total_timer.end_method(this));
3140
}
3141
3142
3143
// ********** Printing functions
3144
3145
#ifndef PRODUCT
3146
3147
void LinearScan::print_timers(double total) {
3148
_total_timer.print(total);
3149
}
3150
3151
void LinearScan::print_statistics() {
3152
_stat_before_alloc.print("before allocation");
3153
_stat_after_asign.print("after assignment of register");
3154
_stat_final.print("after optimization");
3155
}
3156
3157
void LinearScan::print_bitmap(BitMap& b) {
3158
for (unsigned int i = 0; i < b.size(); i++) {
3159
if (b.at(i)) tty->print("%d ", i);
3160
}
3161
tty->cr();
3162
}
3163
3164
void LinearScan::print_intervals(const char* label) {
3165
if (TraceLinearScanLevel >= 1) {
3166
int i;
3167
tty->cr();
3168
tty->print_cr("%s", label);
3169
3170
for (i = 0; i < interval_count(); i++) {
3171
Interval* interval = interval_at(i);
3172
if (interval != NULL) {
3173
interval->print();
3174
}
3175
}
3176
3177
tty->cr();
3178
tty->print_cr("--- Basic Blocks ---");
3179
for (i = 0; i < block_count(); i++) {
3180
BlockBegin* block = block_at(i);
3181
tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3182
}
3183
tty->cr();
3184
tty->cr();
3185
}
3186
3187
if (PrintCFGToFile) {
3188
CFGPrinter::print_intervals(&_intervals, label);
3189
}
3190
}
3191
3192
void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3193
if (TraceLinearScanLevel >= level) {
3194
tty->cr();
3195
tty->print_cr("%s", label);
3196
print_LIR(ir()->linear_scan_order());
3197
tty->cr();
3198
}
3199
3200
if (level == 1 && PrintCFGToFile) {
3201
CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3202
}
3203
}
3204
3205
void LinearScan::print_reg_num(outputStream* out, int reg_num) {
3206
if (reg_num == -1) {
3207
out->print("[ANY]");
3208
return;
3209
} else if (reg_num >= LIR_OprDesc::vreg_base) {
3210
out->print("[VREG %d]", reg_num);
3211
return;
3212
}
3213
3214
LIR_Opr opr = get_operand(reg_num);
3215
assert(opr->is_valid(), "unknown register");
3216
opr->print(out);
3217
}
3218
3219
LIR_Opr LinearScan::get_operand(int reg_num) {
3220
LIR_Opr opr = LIR_OprFact::illegal();
3221
3222
#ifdef X86
3223
int last_xmm_reg = pd_last_xmm_reg;
3224
#ifdef _LP64
3225
if (UseAVX < 3) {
3226
last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
3227
}
3228
#endif
3229
#endif
3230
if (reg_num >= pd_first_cpu_reg && reg_num <= pd_last_cpu_reg) {
3231
opr = LIR_OprFact::single_cpu(reg_num);
3232
} else if (reg_num >= pd_first_fpu_reg && reg_num <= pd_last_fpu_reg) {
3233
opr = LIR_OprFact::single_fpu(reg_num - pd_first_fpu_reg);
3234
#ifdef X86
3235
} else if (reg_num >= pd_first_xmm_reg && reg_num <= last_xmm_reg) {
3236
opr = LIR_OprFact::single_xmm(reg_num - pd_first_xmm_reg);
3237
#endif
3238
} else {
3239
// reg_num == -1 or a virtual register, return the illegal operand
3240
}
3241
return opr;
3242
}
3243
3244
Interval* LinearScan::find_interval_at(int reg_num) const {
3245
if (reg_num < 0 || reg_num >= _intervals.length()) {
3246
return NULL;
3247
}
3248
return interval_at(reg_num);
3249
}
3250
3251
#endif // PRODUCT
3252
3253
3254
// ********** verification functions for allocation
3255
// (check that all intervals have a correct register and that no registers are overwritten)
3256
#ifdef ASSERT
3257
3258
void LinearScan::verify() {
3259
TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3260
verify_intervals();
3261
3262
TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3263
verify_no_oops_in_fixed_intervals();
3264
3265
TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3266
verify_constants();
3267
3268
TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3269
verify_registers();
3270
3271
TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3272
}
3273
3274
void LinearScan::verify_intervals() {
3275
int len = interval_count();
3276
bool has_error = false;
3277
3278
for (int i = 0; i < len; i++) {
3279
Interval* i1 = interval_at(i);
3280
if (i1 == NULL) continue;
3281
3282
i1->check_split_children();
3283
3284
if (i1->reg_num() != i) {
3285
tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3286
has_error = true;
3287
}
3288
3289
if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3290
tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3291
has_error = true;
3292
}
3293
3294
if (i1->assigned_reg() == any_reg) {
3295
tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3296
has_error = true;
3297
}
3298
3299
if (i1->assigned_reg() == i1->assigned_regHi()) {
3300
tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3301
has_error = true;
3302
}
3303
3304
if (!is_processed_reg_num(i1->assigned_reg())) {
3305
tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3306
has_error = true;
3307
}
3308
3309
// special intervals that are created in MoveResolver
3310
// -> ignore them because the range information has no meaning there
3311
if (i1->from() == 1 && i1->to() == 2) continue;
3312
3313
if (i1->first() == Range::end()) {
3314
tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3315
has_error = true;
3316
}
3317
3318
for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3319
if (r->from() >= r->to()) {
3320
tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3321
has_error = true;
3322
}
3323
}
3324
3325
for (int j = i + 1; j < len; j++) {
3326
Interval* i2 = interval_at(j);
3327
if (i2 == NULL || (i2->from() == 1 && i2->to() == 2)) continue;
3328
3329
int r1 = i1->assigned_reg();
3330
int r1Hi = i1->assigned_regHi();
3331
int r2 = i2->assigned_reg();
3332
int r2Hi = i2->assigned_regHi();
3333
if ((r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi))) && i1->intersects(i2)) {
3334
tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3335
i1->print(); tty->cr();
3336
i2->print(); tty->cr();
3337
has_error = true;
3338
}
3339
}
3340
}
3341
3342
assert(has_error == false, "register allocation invalid");
3343
}
3344
3345
3346
void LinearScan::verify_no_oops_in_fixed_intervals() {
3347
Interval* fixed_intervals;
3348
Interval* other_intervals;
3349
create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3350
3351
// to ensure a walking until the last instruction id, add a dummy interval
3352
// with a high operation id
3353
other_intervals = new Interval(any_reg);
3354
other_intervals->add_range(max_jint - 2, max_jint - 1);
3355
IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3356
3357
LIR_OpVisitState visitor;
3358
for (int i = 0; i < block_count(); i++) {
3359
BlockBegin* block = block_at(i);
3360
3361
LIR_OpList* instructions = block->lir()->instructions_list();
3362
3363
for (int j = 0; j < instructions->length(); j++) {
3364
LIR_Op* op = instructions->at(j);
3365
int op_id = op->id();
3366
3367
visitor.visit(op);
3368
3369
if (visitor.info_count() > 0) {
3370
iw->walk_before(op->id());
3371
bool check_live = true;
3372
if (op->code() == lir_move) {
3373
LIR_Op1* move = (LIR_Op1*)op;
3374
check_live = (move->patch_code() == lir_patch_none);
3375
}
3376
LIR_OpBranch* branch = op->as_OpBranch();
3377
if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3378
// Don't bother checking the stub in this case since the
3379
// exception stub will never return to normal control flow.
3380
check_live = false;
3381
}
3382
3383
// Make sure none of the fixed registers is live across an
3384
// oopmap since we can't handle that correctly.
3385
if (check_live) {
3386
for (Interval* interval = iw->active_first(fixedKind);
3387
interval != Interval::end();
3388
interval = interval->next()) {
3389
if (interval->current_to() > op->id() + 1) {
3390
// This interval is live out of this op so make sure
3391
// that this interval represents some value that's
3392
// referenced by this op either as an input or output.
3393
bool ok = false;
3394
for_each_visitor_mode(mode) {
3395
int n = visitor.opr_count(mode);
3396
for (int k = 0; k < n; k++) {
3397
LIR_Opr opr = visitor.opr_at(mode, k);
3398
if (opr->is_fixed_cpu()) {
3399
if (interval_at(reg_num(opr)) == interval) {
3400
ok = true;
3401
break;
3402
}
3403
int hi = reg_numHi(opr);
3404
if (hi != -1 && interval_at(hi) == interval) {
3405
ok = true;
3406
break;
3407
}
3408
}
3409
}
3410
}
3411
assert(ok, "fixed intervals should never be live across an oopmap point");
3412
}
3413
}
3414
}
3415
}
3416
3417
// oop-maps at calls do not contain registers, so check is not needed
3418
if (!visitor.has_call()) {
3419
3420
for_each_visitor_mode(mode) {
3421
int n = visitor.opr_count(mode);
3422
for (int k = 0; k < n; k++) {
3423
LIR_Opr opr = visitor.opr_at(mode, k);
3424
3425
if (opr->is_fixed_cpu() && opr->is_oop()) {
3426
// operand is a non-virtual cpu register and contains an oop
3427
TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3428
3429
Interval* interval = interval_at(reg_num(opr));
3430
assert(interval != NULL, "no interval");
3431
3432
if (mode == LIR_OpVisitState::inputMode) {
3433
if (interval->to() >= op_id + 1) {
3434
assert(interval->to() < op_id + 2 ||
3435
interval->has_hole_between(op_id, op_id + 2),
3436
"oop input operand live after instruction");
3437
}
3438
} else if (mode == LIR_OpVisitState::outputMode) {
3439
if (interval->from() <= op_id - 1) {
3440
assert(interval->has_hole_between(op_id - 1, op_id),
3441
"oop input operand live after instruction");
3442
}
3443
}
3444
}
3445
}
3446
}
3447
}
3448
}
3449
}
3450
}
3451
3452
3453
void LinearScan::verify_constants() {
3454
int num_regs = num_virtual_regs();
3455
int size = live_set_size();
3456
int num_blocks = block_count();
3457
3458
for (int i = 0; i < num_blocks; i++) {
3459
BlockBegin* block = block_at(i);
3460
ResourceBitMap live_at_edge = block->live_in();
3461
3462
// visit all registers where the live_at_edge bit is set
3463
for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3464
TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3465
3466
Value value = gen()->instruction_for_vreg(r);
3467
3468
assert(value != NULL, "all intervals live across block boundaries must have Value");
3469
assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3470
assert(value->operand()->vreg_number() == r, "register number must match");
3471
// TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3472
}
3473
}
3474
}
3475
3476
3477
class RegisterVerifier: public StackObj {
3478
private:
3479
LinearScan* _allocator;
3480
BlockList _work_list; // all blocks that must be processed
3481
IntervalsList _saved_states; // saved information of previous check
3482
3483
// simplified access to methods of LinearScan
3484
Compilation* compilation() const { return _allocator->compilation(); }
3485
Interval* interval_at(int reg_num) const { return _allocator->interval_at(reg_num); }
3486
int reg_num(LIR_Opr opr) const { return _allocator->reg_num(opr); }
3487
3488
// currently, only registers are processed
3489
int state_size() { return LinearScan::nof_regs; }
3490
3491
// accessors
3492
IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3493
void set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3494
void add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3495
3496
// helper functions
3497
IntervalList* copy(IntervalList* input_state);
3498
void state_put(IntervalList* input_state, int reg, Interval* interval);
3499
bool check_state(IntervalList* input_state, int reg, Interval* interval);
3500
3501
void process_block(BlockBegin* block);
3502
void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3503
void process_successor(BlockBegin* block, IntervalList* input_state);
3504
void process_operations(LIR_List* ops, IntervalList* input_state);
3505
3506
public:
3507
RegisterVerifier(LinearScan* allocator)
3508
: _allocator(allocator)
3509
, _work_list(16)
3510
, _saved_states(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), NULL)
3511
{ }
3512
3513
void verify(BlockBegin* start);
3514
};
3515
3516
3517
// entry function from LinearScan that starts the verification
3518
void LinearScan::verify_registers() {
3519
RegisterVerifier verifier(this);
3520
verifier.verify(block_at(0));
3521
}
3522
3523
3524
void RegisterVerifier::verify(BlockBegin* start) {
3525
// setup input registers (method arguments) for first block
3526
int input_state_len = state_size();
3527
IntervalList* input_state = new IntervalList(input_state_len, input_state_len, NULL);
3528
CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3529
for (int n = 0; n < args->length(); n++) {
3530
LIR_Opr opr = args->at(n);
3531
if (opr->is_register()) {
3532
Interval* interval = interval_at(reg_num(opr));
3533
3534
if (interval->assigned_reg() < state_size()) {
3535
input_state->at_put(interval->assigned_reg(), interval);
3536
}
3537
if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3538
input_state->at_put(interval->assigned_regHi(), interval);
3539
}
3540
}
3541
}
3542
3543
set_state_for_block(start, input_state);
3544
add_to_work_list(start);
3545
3546
// main loop for verification
3547
do {
3548
BlockBegin* block = _work_list.at(0);
3549
_work_list.remove_at(0);
3550
3551
process_block(block);
3552
} while (!_work_list.is_empty());
3553
}
3554
3555
void RegisterVerifier::process_block(BlockBegin* block) {
3556
TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3557
3558
// must copy state because it is modified
3559
IntervalList* input_state = copy(state_for_block(block));
3560
3561
if (TraceLinearScanLevel >= 4) {
3562
tty->print_cr("Input-State of intervals:");
3563
tty->print(" ");
3564
for (int i = 0; i < state_size(); i++) {
3565
if (input_state->at(i) != NULL) {
3566
tty->print(" %4d", input_state->at(i)->reg_num());
3567
} else {
3568
tty->print(" __");
3569
}
3570
}
3571
tty->cr();
3572
tty->cr();
3573
}
3574
3575
// process all operations of the block
3576
process_operations(block->lir(), input_state);
3577
3578
// iterate all successors
3579
for (int i = 0; i < block->number_of_sux(); i++) {
3580
process_successor(block->sux_at(i), input_state);
3581
}
3582
}
3583
3584
void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3585
TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3586
3587
// must copy state because it is modified
3588
input_state = copy(input_state);
3589
3590
if (xhandler->entry_code() != NULL) {
3591
process_operations(xhandler->entry_code(), input_state);
3592
}
3593
process_successor(xhandler->entry_block(), input_state);
3594
}
3595
3596
void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3597
IntervalList* saved_state = state_for_block(block);
3598
3599
if (saved_state != NULL) {
3600
// this block was already processed before.
3601
// check if new input_state is consistent with saved_state
3602
3603
bool saved_state_correct = true;
3604
for (int i = 0; i < state_size(); i++) {
3605
if (input_state->at(i) != saved_state->at(i)) {
3606
// current input_state and previous saved_state assume a different
3607
// interval in this register -> assume that this register is invalid
3608
if (saved_state->at(i) != NULL) {
3609
// invalidate old calculation only if it assumed that
3610
// register was valid. when the register was already invalid,
3611
// then the old calculation was correct.
3612
saved_state_correct = false;
3613
saved_state->at_put(i, NULL);
3614
3615
TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3616
}
3617
}
3618
}
3619
3620
if (saved_state_correct) {
3621
// already processed block with correct input_state
3622
TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3623
} else {
3624
// must re-visit this block
3625
TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3626
add_to_work_list(block);
3627
}
3628
3629
} else {
3630
// block was not processed before, so set initial input_state
3631
TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3632
3633
set_state_for_block(block, copy(input_state));
3634
add_to_work_list(block);
3635
}
3636
}
3637
3638
3639
IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3640
IntervalList* copy_state = new IntervalList(input_state->length());
3641
copy_state->appendAll(input_state);
3642
return copy_state;
3643
}
3644
3645
void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3646
if (reg != LinearScan::any_reg && reg < state_size()) {
3647
if (interval != NULL) {
3648
TRACE_LINEAR_SCAN(4, tty->print_cr(" reg[%d] = %d", reg, interval->reg_num()));
3649
} else if (input_state->at(reg) != NULL) {
3650
TRACE_LINEAR_SCAN(4, tty->print_cr(" reg[%d] = NULL", reg));
3651
}
3652
3653
input_state->at_put(reg, interval);
3654
}
3655
}
3656
3657
bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3658
if (reg != LinearScan::any_reg && reg < state_size()) {
3659
if (input_state->at(reg) != interval) {
3660
tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3661
return true;
3662
}
3663
}
3664
return false;
3665
}
3666
3667
void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3668
// visit all instructions of the block
3669
LIR_OpVisitState visitor;
3670
bool has_error = false;
3671
3672
for (int i = 0; i < ops->length(); i++) {
3673
LIR_Op* op = ops->at(i);
3674
visitor.visit(op);
3675
3676
TRACE_LINEAR_SCAN(4, op->print_on(tty));
3677
3678
// check if input operands are correct
3679
int j;
3680
int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3681
for (j = 0; j < n; j++) {
3682
LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3683
if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3684
Interval* interval = interval_at(reg_num(opr));
3685
if (op->id() != -1) {
3686
interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3687
}
3688
3689
has_error |= check_state(input_state, interval->assigned_reg(), interval->split_parent());
3690
has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3691
3692
// When an operand is marked with is_last_use, then the fpu stack allocator
3693
// removes the register from the fpu stack -> the register contains no value
3694
if (opr->is_last_use()) {
3695
state_put(input_state, interval->assigned_reg(), NULL);
3696
state_put(input_state, interval->assigned_regHi(), NULL);
3697
}
3698
}
3699
}
3700
3701
// invalidate all caller save registers at calls
3702
if (visitor.has_call()) {
3703
for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
3704
state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3705
}
3706
for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3707
state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3708
}
3709
3710
#ifdef X86
3711
int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms();
3712
for (j = 0; j < num_caller_save_xmm_regs; j++) {
3713
state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3714
}
3715
#endif
3716
}
3717
3718
// process xhandler before output and temp operands
3719
XHandlers* xhandlers = visitor.all_xhandler();
3720
n = xhandlers->length();
3721
for (int k = 0; k < n; k++) {
3722
process_xhandler(xhandlers->handler_at(k), input_state);
3723
}
3724
3725
// set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3726
n = visitor.opr_count(LIR_OpVisitState::tempMode);
3727
for (j = 0; j < n; j++) {
3728
LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3729
if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3730
Interval* interval = interval_at(reg_num(opr));
3731
if (op->id() != -1) {
3732
interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3733
}
3734
3735
state_put(input_state, interval->assigned_reg(), interval->split_parent());
3736
state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3737
}
3738
}
3739
3740
// set output operands
3741
n = visitor.opr_count(LIR_OpVisitState::outputMode);
3742
for (j = 0; j < n; j++) {
3743
LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3744
if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3745
Interval* interval = interval_at(reg_num(opr));
3746
if (op->id() != -1) {
3747
interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3748
}
3749
3750
state_put(input_state, interval->assigned_reg(), interval->split_parent());
3751
state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3752
}
3753
}
3754
}
3755
assert(has_error == false, "Error in register allocation");
3756
}
3757
3758
#endif // ASSERT
3759
3760
3761
3762
// **** Implementation of MoveResolver ******************************
3763
3764
MoveResolver::MoveResolver(LinearScan* allocator) :
3765
_allocator(allocator),
3766
_insert_list(NULL),
3767
_insert_idx(-1),
3768
_insertion_buffer(),
3769
_mapping_from(8),
3770
_mapping_from_opr(8),
3771
_mapping_to(8),
3772
_multiple_reads_allowed(false)
3773
{
3774
for (int i = 0; i < LinearScan::nof_regs; i++) {
3775
_register_blocked[i] = 0;
3776
}
3777
DEBUG_ONLY(check_empty());
3778
}
3779
3780
3781
#ifdef ASSERT
3782
3783
void MoveResolver::check_empty() {
3784
assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3785
for (int i = 0; i < LinearScan::nof_regs; i++) {
3786
assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3787
}
3788
assert(_multiple_reads_allowed == false, "must have default value");
3789
}
3790
3791
void MoveResolver::verify_before_resolve() {
3792
assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3793
assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3794
assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3795
3796
int i, j;
3797
if (!_multiple_reads_allowed) {
3798
for (i = 0; i < _mapping_from.length(); i++) {
3799
for (j = i + 1; j < _mapping_from.length(); j++) {
3800
assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3801
}
3802
}
3803
}
3804
3805
for (i = 0; i < _mapping_to.length(); i++) {
3806
for (j = i + 1; j < _mapping_to.length(); j++) {
3807
assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3808
}
3809
}
3810
3811
3812
ResourceBitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3813
if (!_multiple_reads_allowed) {
3814
for (i = 0; i < _mapping_from.length(); i++) {
3815
Interval* it = _mapping_from.at(i);
3816
if (it != NULL) {
3817
assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3818
used_regs.set_bit(it->assigned_reg());
3819
3820
if (it->assigned_regHi() != LinearScan::any_reg) {
3821
assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3822
used_regs.set_bit(it->assigned_regHi());
3823
}
3824
}
3825
}
3826
}
3827
3828
used_regs.clear();
3829
for (i = 0; i < _mapping_to.length(); i++) {
3830
Interval* it = _mapping_to.at(i);
3831
assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3832
used_regs.set_bit(it->assigned_reg());
3833
3834
if (it->assigned_regHi() != LinearScan::any_reg) {
3835
assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3836
used_regs.set_bit(it->assigned_regHi());
3837
}
3838
}
3839
3840
used_regs.clear();
3841
for (i = 0; i < _mapping_from.length(); i++) {
3842
Interval* it = _mapping_from.at(i);
3843
if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3844
used_regs.set_bit(it->assigned_reg());
3845
}
3846
}
3847
for (i = 0; i < _mapping_to.length(); i++) {
3848
Interval* it = _mapping_to.at(i);
3849
assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3850
}
3851
}
3852
3853
#endif // ASSERT
3854
3855
3856
// mark assigned_reg and assigned_regHi of the interval as blocked
3857
void MoveResolver::block_registers(Interval* it) {
3858
int reg = it->assigned_reg();
3859
if (reg < LinearScan::nof_regs) {
3860
assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3861
set_register_blocked(reg, 1);
3862
}
3863
reg = it->assigned_regHi();
3864
if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3865
assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3866
set_register_blocked(reg, 1);
3867
}
3868
}
3869
3870
// mark assigned_reg and assigned_regHi of the interval as unblocked
3871
void MoveResolver::unblock_registers(Interval* it) {
3872
int reg = it->assigned_reg();
3873
if (reg < LinearScan::nof_regs) {
3874
assert(register_blocked(reg) > 0, "register already marked as unused");
3875
set_register_blocked(reg, -1);
3876
}
3877
reg = it->assigned_regHi();
3878
if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3879
assert(register_blocked(reg) > 0, "register already marked as unused");
3880
set_register_blocked(reg, -1);
3881
}
3882
}
3883
3884
// check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3885
bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3886
int from_reg = -1;
3887
int from_regHi = -1;
3888
if (from != NULL) {
3889
from_reg = from->assigned_reg();
3890
from_regHi = from->assigned_regHi();
3891
}
3892
3893
int reg = to->assigned_reg();
3894
if (reg < LinearScan::nof_regs) {
3895
if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3896
return false;
3897
}
3898
}
3899
reg = to->assigned_regHi();
3900
if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3901
if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3902
return false;
3903
}
3904
}
3905
3906
return true;
3907
}
3908
3909
3910
void MoveResolver::create_insertion_buffer(LIR_List* list) {
3911
assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3912
_insertion_buffer.init(list);
3913
}
3914
3915
void MoveResolver::append_insertion_buffer() {
3916
if (_insertion_buffer.initialized()) {
3917
_insertion_buffer.lir_list()->append(&_insertion_buffer);
3918
}
3919
assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3920
3921
_insert_list = NULL;
3922
_insert_idx = -1;
3923
}
3924
3925
void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3926
assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3927
assert(from_interval->type() == to_interval->type(), "move between different types");
3928
assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3929
assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3930
3931
LIR_Opr from_opr = get_virtual_register(from_interval);
3932
LIR_Opr to_opr = get_virtual_register(to_interval);
3933
3934
if (!_multiple_reads_allowed) {
3935
// the last_use flag is an optimization for FPU stack allocation. When the same
3936
// input interval is used in more than one move, then it is too difficult to determine
3937
// if this move is really the last use.
3938
from_opr = from_opr->make_last_use();
3939
}
3940
_insertion_buffer.move(_insert_idx, from_opr, to_opr);
3941
3942
TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3943
}
3944
3945
void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3946
assert(from_opr->type() == to_interval->type(), "move between different types");
3947
assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3948
assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3949
3950
LIR_Opr to_opr = get_virtual_register(to_interval);
3951
_insertion_buffer.move(_insert_idx, from_opr, to_opr);
3952
3953
TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3954
}
3955
3956
LIR_Opr MoveResolver::get_virtual_register(Interval* interval) {
3957
// Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
3958
// a few extra registers before we really run out which helps to avoid to trip over assertions.
3959
int reg_num = interval->reg_num();
3960
if (reg_num + 20 >= LIR_OprDesc::vreg_max) {
3961
_allocator->bailout("out of virtual registers in linear scan");
3962
if (reg_num + 2 >= LIR_OprDesc::vreg_max) {
3963
// Wrap it around and continue until bailout really happens to avoid hitting assertions.
3964
reg_num = LIR_OprDesc::vreg_base;
3965
}
3966
}
3967
LIR_Opr vreg = LIR_OprFact::virtual_register(reg_num, interval->type());
3968
assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
3969
return vreg;
3970
}
3971
3972
void MoveResolver::resolve_mappings() {
3973
TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3974
DEBUG_ONLY(verify_before_resolve());
3975
3976
// Block all registers that are used as input operands of a move.
3977
// When a register is blocked, no move to this register is emitted.
3978
// This is necessary for detecting cycles in moves.
3979
int i;
3980
for (i = _mapping_from.length() - 1; i >= 0; i--) {
3981
Interval* from_interval = _mapping_from.at(i);
3982
if (from_interval != NULL) {
3983
block_registers(from_interval);
3984
}
3985
}
3986
3987
int spill_candidate = -1;
3988
while (_mapping_from.length() > 0) {
3989
bool processed_interval = false;
3990
3991
for (i = _mapping_from.length() - 1; i >= 0; i--) {
3992
Interval* from_interval = _mapping_from.at(i);
3993
Interval* to_interval = _mapping_to.at(i);
3994
3995
if (save_to_process_move(from_interval, to_interval)) {
3996
// this inverval can be processed because target is free
3997
if (from_interval != NULL) {
3998
insert_move(from_interval, to_interval);
3999
unblock_registers(from_interval);
4000
} else {
4001
insert_move(_mapping_from_opr.at(i), to_interval);
4002
}
4003
_mapping_from.remove_at(i);
4004
_mapping_from_opr.remove_at(i);
4005
_mapping_to.remove_at(i);
4006
4007
processed_interval = true;
4008
} else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
4009
// this interval cannot be processed now because target is not free
4010
// it starts in a register, so it is a possible candidate for spilling
4011
spill_candidate = i;
4012
}
4013
}
4014
4015
if (!processed_interval) {
4016
// no move could be processed because there is a cycle in the move list
4017
// (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
4018
guarantee(spill_candidate != -1, "no interval in register for spilling found");
4019
4020
// create a new spill interval and assign a stack slot to it
4021
Interval* from_interval = _mapping_from.at(spill_candidate);
4022
Interval* spill_interval = new Interval(-1);
4023
spill_interval->set_type(from_interval->type());
4024
4025
// add a dummy range because real position is difficult to calculate
4026
// Note: this range is a special case when the integrity of the allocation is checked
4027
spill_interval->add_range(1, 2);
4028
4029
// do not allocate a new spill slot for temporary interval, but
4030
// use spill slot assigned to from_interval. Otherwise moves from
4031
// one stack slot to another can happen (not allowed by LIR_Assembler
4032
int spill_slot = from_interval->canonical_spill_slot();
4033
if (spill_slot < 0) {
4034
spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
4035
from_interval->set_canonical_spill_slot(spill_slot);
4036
}
4037
spill_interval->assign_reg(spill_slot);
4038
allocator()->append_interval(spill_interval);
4039
4040
TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
4041
4042
// insert a move from register to stack and update the mapping
4043
insert_move(from_interval, spill_interval);
4044
_mapping_from.at_put(spill_candidate, spill_interval);
4045
unblock_registers(from_interval);
4046
}
4047
}
4048
4049
// reset to default value
4050
_multiple_reads_allowed = false;
4051
4052
// check that all intervals have been processed
4053
DEBUG_ONLY(check_empty());
4054
}
4055
4056
4057
void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
4058
TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
4059
assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
4060
4061
create_insertion_buffer(insert_list);
4062
_insert_list = insert_list;
4063
_insert_idx = insert_idx;
4064
}
4065
4066
void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
4067
TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
4068
4069
if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
4070
// insert position changed -> resolve current mappings
4071
resolve_mappings();
4072
}
4073
4074
if (insert_list != _insert_list) {
4075
// block changed -> append insertion_buffer because it is
4076
// bound to a specific block and create a new insertion_buffer
4077
append_insertion_buffer();
4078
create_insertion_buffer(insert_list);
4079
}
4080
4081
_insert_list = insert_list;
4082
_insert_idx = insert_idx;
4083
}
4084
4085
void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
4086
TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
4087
4088
_mapping_from.append(from_interval);
4089
_mapping_from_opr.append(LIR_OprFact::illegalOpr);
4090
_mapping_to.append(to_interval);
4091
}
4092
4093
4094
void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
4095
TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
4096
assert(from_opr->is_constant(), "only for constants");
4097
4098
_mapping_from.append(NULL);
4099
_mapping_from_opr.append(from_opr);
4100
_mapping_to.append(to_interval);
4101
}
4102
4103
void MoveResolver::resolve_and_append_moves() {
4104
if (has_mappings()) {
4105
resolve_mappings();
4106
}
4107
append_insertion_buffer();
4108
}
4109
4110
4111
4112
// **** Implementation of Range *************************************
4113
4114
Range::Range(int from, int to, Range* next) :
4115
_from(from),
4116
_to(to),
4117
_next(next)
4118
{
4119
}
4120
4121
// initialize sentinel
4122
Range* Range::_end = NULL;
4123
void Range::initialize(Arena* arena) {
4124
_end = new (arena) Range(max_jint, max_jint, NULL);
4125
}
4126
4127
int Range::intersects_at(Range* r2) const {
4128
const Range* r1 = this;
4129
4130
assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
4131
assert(r1 != _end && r2 != _end, "empty ranges not allowed");
4132
4133
do {
4134
if (r1->from() < r2->from()) {
4135
if (r1->to() <= r2->from()) {
4136
r1 = r1->next(); if (r1 == _end) return -1;
4137
} else {
4138
return r2->from();
4139
}
4140
} else if (r2->from() < r1->from()) {
4141
if (r2->to() <= r1->from()) {
4142
r2 = r2->next(); if (r2 == _end) return -1;
4143
} else {
4144
return r1->from();
4145
}
4146
} else { // r1->from() == r2->from()
4147
if (r1->from() == r1->to()) {
4148
r1 = r1->next(); if (r1 == _end) return -1;
4149
} else if (r2->from() == r2->to()) {
4150
r2 = r2->next(); if (r2 == _end) return -1;
4151
} else {
4152
return r1->from();
4153
}
4154
}
4155
} while (true);
4156
}
4157
4158
#ifndef PRODUCT
4159
void Range::print(outputStream* out) const {
4160
out->print("[%d, %d[ ", _from, _to);
4161
}
4162
#endif
4163
4164
4165
4166
// **** Implementation of Interval **********************************
4167
4168
// initialize sentinel
4169
Interval* Interval::_end = NULL;
4170
void Interval::initialize(Arena* arena) {
4171
Range::initialize(arena);
4172
_end = new (arena) Interval(-1);
4173
}
4174
4175
Interval::Interval(int reg_num) :
4176
_reg_num(reg_num),
4177
_type(T_ILLEGAL),
4178
_first(Range::end()),
4179
_use_pos_and_kinds(12),
4180
_current(Range::end()),
4181
_next(_end),
4182
_state(invalidState),
4183
_assigned_reg(LinearScan::any_reg),
4184
_assigned_regHi(LinearScan::any_reg),
4185
_cached_to(-1),
4186
_cached_opr(LIR_OprFact::illegalOpr),
4187
_cached_vm_reg(VMRegImpl::Bad()),
4188
_split_children(NULL),
4189
_canonical_spill_slot(-1),
4190
_insert_move_when_activated(false),
4191
_spill_state(noDefinitionFound),
4192
_spill_definition_pos(-1),
4193
_register_hint(NULL)
4194
{
4195
_split_parent = this;
4196
_current_split_child = this;
4197
}
4198
4199
int Interval::calc_to() {
4200
assert(_first != Range::end(), "interval has no range");
4201
4202
Range* r = _first;
4203
while (r->next() != Range::end()) {
4204
r = r->next();
4205
}
4206
return r->to();
4207
}
4208
4209
4210
#ifdef ASSERT
4211
// consistency check of split-children
4212
void Interval::check_split_children() {
4213
if (_split_children != NULL && _split_children->length() > 0) {
4214
assert(is_split_parent(), "only split parents can have children");
4215
4216
for (int i = 0; i < _split_children->length(); i++) {
4217
Interval* i1 = _split_children->at(i);
4218
4219
assert(i1->split_parent() == this, "not a split child of this interval");
4220
assert(i1->type() == type(), "must be equal for all split children");
4221
assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4222
4223
for (int j = i + 1; j < _split_children->length(); j++) {
4224
Interval* i2 = _split_children->at(j);
4225
4226
assert(i1->reg_num() != i2->reg_num(), "same register number");
4227
4228
if (i1->from() < i2->from()) {
4229
assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4230
} else {
4231
assert(i2->from() < i1->from(), "intervals start at same op_id");
4232
assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4233
}
4234
}
4235
}
4236
}
4237
}
4238
#endif // ASSERT
4239
4240
Interval* Interval::register_hint(bool search_split_child) const {
4241
if (!search_split_child) {
4242
return _register_hint;
4243
}
4244
4245
if (_register_hint != NULL) {
4246
assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4247
4248
if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4249
return _register_hint;
4250
4251
} else if (_register_hint->_split_children != NULL && _register_hint->_split_children->length() > 0) {
4252
// search the first split child that has a register assigned
4253
int len = _register_hint->_split_children->length();
4254
for (int i = 0; i < len; i++) {
4255
Interval* cur = _register_hint->_split_children->at(i);
4256
4257
if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4258
return cur;
4259
}
4260
}
4261
}
4262
}
4263
4264
// no hint interval found that has a register assigned
4265
return NULL;
4266
}
4267
4268
4269
Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4270
assert(is_split_parent(), "can only be called for split parents");
4271
assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4272
4273
Interval* result;
4274
if (_split_children == NULL || _split_children->length() == 0) {
4275
result = this;
4276
} else {
4277
result = NULL;
4278
int len = _split_children->length();
4279
4280
// in outputMode, the end of the interval (op_id == cur->to()) is not valid
4281
int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4282
4283
int i;
4284
for (i = 0; i < len; i++) {
4285
Interval* cur = _split_children->at(i);
4286
if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4287
if (i > 0) {
4288
// exchange current split child to start of list (faster access for next call)
4289
_split_children->at_put(i, _split_children->at(0));
4290
_split_children->at_put(0, cur);
4291
}
4292
4293
// interval found
4294
result = cur;
4295
break;
4296
}
4297
}
4298
4299
#ifdef ASSERT
4300
for (i = 0; i < len; i++) {
4301
Interval* tmp = _split_children->at(i);
4302
if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4303
tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4304
result->print();
4305
tmp->print();
4306
assert(false, "two valid result intervals found");
4307
}
4308
}
4309
#endif
4310
}
4311
4312
assert(result != NULL, "no matching interval found");
4313
assert(result->covers(op_id, mode), "op_id not covered by interval");
4314
4315
return result;
4316
}
4317
4318
4319
// returns the last split child that ends before the given op_id
4320
Interval* Interval::split_child_before_op_id(int op_id) {
4321
assert(op_id >= 0, "invalid op_id");
4322
4323
Interval* parent = split_parent();
4324
Interval* result = NULL;
4325
4326
assert(parent->_split_children != NULL, "no split children available");
4327
int len = parent->_split_children->length();
4328
assert(len > 0, "no split children available");
4329
4330
for (int i = len - 1; i >= 0; i--) {
4331
Interval* cur = parent->_split_children->at(i);
4332
if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4333
result = cur;
4334
}
4335
}
4336
4337
assert(result != NULL, "no split child found");
4338
return result;
4339
}
4340
4341
4342
// Note: use positions are sorted descending -> first use has highest index
4343
int Interval::first_usage(IntervalUseKind min_use_kind) const {
4344
assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4345
4346
for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4347
if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4348
return _use_pos_and_kinds.at(i);
4349
}
4350
}
4351
return max_jint;
4352
}
4353
4354
int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4355
assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4356
4357
for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4358
if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4359
return _use_pos_and_kinds.at(i);
4360
}
4361
}
4362
return max_jint;
4363
}
4364
4365
int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4366
assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4367
4368
for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4369
if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4370
return _use_pos_and_kinds.at(i);
4371
}
4372
}
4373
return max_jint;
4374
}
4375
4376
int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4377
assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4378
4379
int prev = 0;
4380
for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4381
if (_use_pos_and_kinds.at(i) > from) {
4382
return prev;
4383
}
4384
if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4385
prev = _use_pos_and_kinds.at(i);
4386
}
4387
}
4388
return prev;
4389
}
4390
4391
void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4392
assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4393
4394
// do not add use positions for precolored intervals because
4395
// they are never used
4396
if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4397
#ifdef ASSERT
4398
assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4399
for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4400
assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4401
assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4402
if (i > 0) {
4403
assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4404
}
4405
}
4406
#endif
4407
4408
// Note: add_use is called in descending order, so list gets sorted
4409
// automatically by just appending new use positions
4410
int len = _use_pos_and_kinds.length();
4411
if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4412
_use_pos_and_kinds.append(pos);
4413
_use_pos_and_kinds.append(use_kind);
4414
} else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4415
assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4416
_use_pos_and_kinds.at_put(len - 1, use_kind);
4417
}
4418
}
4419
}
4420
4421
void Interval::add_range(int from, int to) {
4422
assert(from < to, "invalid range");
4423
assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4424
assert(from <= first()->to(), "not inserting at begin of interval");
4425
4426
if (first()->from() <= to) {
4427
// join intersecting ranges
4428
first()->set_from(MIN2(from, first()->from()));
4429
first()->set_to (MAX2(to, first()->to()));
4430
} else {
4431
// insert new range
4432
_first = new Range(from, to, first());
4433
}
4434
}
4435
4436
Interval* Interval::new_split_child() {
4437
// allocate new interval
4438
Interval* result = new Interval(-1);
4439
result->set_type(type());
4440
4441
Interval* parent = split_parent();
4442
result->_split_parent = parent;
4443
result->set_register_hint(parent);
4444
4445
// insert new interval in children-list of parent
4446
if (parent->_split_children == NULL) {
4447
assert(is_split_parent(), "list must be initialized at first split");
4448
4449
parent->_split_children = new IntervalList(4);
4450
parent->_split_children->append(this);
4451
}
4452
parent->_split_children->append(result);
4453
4454
return result;
4455
}
4456
4457
// split this interval at the specified position and return
4458
// the remainder as a new interval.
4459
//
4460
// when an interval is split, a bi-directional link is established between the original interval
4461
// (the split parent) and the intervals that are split off this interval (the split children)
4462
// When a split child is split again, the new created interval is also a direct child
4463
// of the original parent (there is no tree of split children stored, but a flat list)
4464
// All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4465
//
4466
// Note: The new interval has no valid reg_num
4467
Interval* Interval::split(int split_pos) {
4468
assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4469
4470
// allocate new interval
4471
Interval* result = new_split_child();
4472
4473
// split the ranges
4474
Range* prev = NULL;
4475
Range* cur = _first;
4476
while (cur != Range::end() && cur->to() <= split_pos) {
4477
prev = cur;
4478
cur = cur->next();
4479
}
4480
assert(cur != Range::end(), "split interval after end of last range");
4481
4482
if (cur->from() < split_pos) {
4483
result->_first = new Range(split_pos, cur->to(), cur->next());
4484
cur->set_to(split_pos);
4485
cur->set_next(Range::end());
4486
4487
} else {
4488
assert(prev != NULL, "split before start of first range");
4489
result->_first = cur;
4490
prev->set_next(Range::end());
4491
}
4492
result->_current = result->_first;
4493
_cached_to = -1; // clear cached value
4494
4495
// split list of use positions
4496
int total_len = _use_pos_and_kinds.length();
4497
int start_idx = total_len - 2;
4498
while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4499
start_idx -= 2;
4500
}
4501
4502
intStack new_use_pos_and_kinds(total_len - start_idx);
4503
int i;
4504
for (i = start_idx + 2; i < total_len; i++) {
4505
new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4506
}
4507
4508
_use_pos_and_kinds.trunc_to(start_idx + 2);
4509
result->_use_pos_and_kinds = _use_pos_and_kinds;
4510
_use_pos_and_kinds = new_use_pos_and_kinds;
4511
4512
#ifdef ASSERT
4513
assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4514
assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4515
assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4516
4517
for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4518
assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4519
assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4520
}
4521
for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4522
assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4523
assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4524
}
4525
#endif
4526
4527
return result;
4528
}
4529
4530
// split this interval at the specified position and return
4531
// the head as a new interval (the original interval is the tail)
4532
//
4533
// Currently, only the first range can be split, and the new interval
4534
// must not have split positions
4535
Interval* Interval::split_from_start(int split_pos) {
4536
assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4537
assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4538
assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4539
assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4540
4541
// allocate new interval
4542
Interval* result = new_split_child();
4543
4544
// the new created interval has only one range (checked by assertion above),
4545
// so the splitting of the ranges is very simple
4546
result->add_range(_first->from(), split_pos);
4547
4548
if (split_pos == _first->to()) {
4549
assert(_first->next() != Range::end(), "must not be at end");
4550
_first = _first->next();
4551
} else {
4552
_first->set_from(split_pos);
4553
}
4554
4555
return result;
4556
}
4557
4558
4559
// returns true if the op_id is inside the interval
4560
bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4561
Range* cur = _first;
4562
4563
while (cur != Range::end() && cur->to() < op_id) {
4564
cur = cur->next();
4565
}
4566
if (cur != Range::end()) {
4567
assert(cur->to() != cur->next()->from(), "ranges not separated");
4568
4569
if (mode == LIR_OpVisitState::outputMode) {
4570
return cur->from() <= op_id && op_id < cur->to();
4571
} else {
4572
return cur->from() <= op_id && op_id <= cur->to();
4573
}
4574
}
4575
return false;
4576
}
4577
4578
// returns true if the interval has any hole between hole_from and hole_to
4579
// (even if the hole has only the length 1)
4580
bool Interval::has_hole_between(int hole_from, int hole_to) {
4581
assert(hole_from < hole_to, "check");
4582
assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4583
4584
Range* cur = _first;
4585
while (cur != Range::end()) {
4586
assert(cur->to() < cur->next()->from(), "no space between ranges");
4587
4588
// hole-range starts before this range -> hole
4589
if (hole_from < cur->from()) {
4590
return true;
4591
4592
// hole-range completely inside this range -> no hole
4593
} else if (hole_to <= cur->to()) {
4594
return false;
4595
4596
// overlapping of hole-range with this range -> hole
4597
} else if (hole_from <= cur->to()) {
4598
return true;
4599
}
4600
4601
cur = cur->next();
4602
}
4603
4604
return false;
4605
}
4606
4607
// Check if there is an intersection with any of the split children of 'interval'
4608
bool Interval::intersects_any_children_of(Interval* interval) const {
4609
if (interval->_split_children != NULL) {
4610
for (int i = 0; i < interval->_split_children->length(); i++) {
4611
if (intersects(interval->_split_children->at(i))) {
4612
return true;
4613
}
4614
}
4615
}
4616
return false;
4617
}
4618
4619
4620
#ifndef PRODUCT
4621
void Interval::print_on(outputStream* out, bool is_cfg_printer) const {
4622
const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4623
const char* UseKind2Name[] = { "N", "L", "S", "M" };
4624
4625
const char* type_name;
4626
if (reg_num() < LIR_OprDesc::vreg_base) {
4627
type_name = "fixed";
4628
} else {
4629
type_name = type2name(type());
4630
}
4631
out->print("%d %s ", reg_num(), type_name);
4632
4633
if (is_cfg_printer) {
4634
// Special version for compatibility with C1 Visualizer.
4635
LIR_Opr opr = LinearScan::get_operand(reg_num());
4636
if (opr->is_valid()) {
4637
out->print("\"");
4638
opr->print(out);
4639
out->print("\" ");
4640
}
4641
} else {
4642
// Improved output for normal debugging.
4643
if (reg_num() < LIR_OprDesc::vreg_base) {
4644
LinearScan::print_reg_num(out, assigned_reg());
4645
} else if (assigned_reg() != -1 && (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
4646
LinearScan::calc_operand_for_interval(this)->print(out);
4647
} else {
4648
// Virtual register that has no assigned register yet.
4649
out->print("[ANY]");
4650
}
4651
out->print(" ");
4652
}
4653
out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4654
4655
// print ranges
4656
Range* cur = _first;
4657
while (cur != Range::end()) {
4658
cur->print(out);
4659
cur = cur->next();
4660
assert(cur != NULL, "range list not closed with range sentinel");
4661
}
4662
4663
// print use positions
4664
int prev = 0;
4665
assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4666
for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4667
assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4668
assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4669
4670
out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4671
prev = _use_pos_and_kinds.at(i);
4672
}
4673
4674
out->print(" \"%s\"", SpillState2Name[spill_state()]);
4675
out->cr();
4676
}
4677
4678
void Interval::print_parent() const {
4679
if (_split_parent != this) {
4680
_split_parent->print_on(tty);
4681
} else {
4682
tty->print_cr("Parent: this");
4683
}
4684
}
4685
4686
void Interval::print_children() const {
4687
if (_split_children == NULL) {
4688
tty->print_cr("Children: []");
4689
} else {
4690
tty->print_cr("Children:");
4691
for (int i = 0; i < _split_children->length(); i++) {
4692
tty->print("%d: ", i);
4693
_split_children->at(i)->print_on(tty);
4694
}
4695
}
4696
}
4697
#endif // NOT PRODUCT
4698
4699
4700
4701
4702
// **** Implementation of IntervalWalker ****************************
4703
4704
IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4705
: _compilation(allocator->compilation())
4706
, _allocator(allocator)
4707
{
4708
_unhandled_first[fixedKind] = unhandled_fixed_first;
4709
_unhandled_first[anyKind] = unhandled_any_first;
4710
_active_first[fixedKind] = Interval::end();
4711
_inactive_first[fixedKind] = Interval::end();
4712
_active_first[anyKind] = Interval::end();
4713
_inactive_first[anyKind] = Interval::end();
4714
_current_position = -1;
4715
_current = NULL;
4716
next_interval();
4717
}
4718
4719
4720
// append interval in order of current range from()
4721
void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4722
Interval* prev = NULL;
4723
Interval* cur = *list;
4724
while (cur->current_from() < interval->current_from()) {
4725
prev = cur; cur = cur->next();
4726
}
4727
if (prev == NULL) {
4728
*list = interval;
4729
} else {
4730
prev->set_next(interval);
4731
}
4732
interval->set_next(cur);
4733
}
4734
4735
void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4736
assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4737
4738
Interval* prev = NULL;
4739
Interval* cur = *list;
4740
while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4741
prev = cur; cur = cur->next();
4742
}
4743
if (prev == NULL) {
4744
*list = interval;
4745
} else {
4746
prev->set_next(interval);
4747
}
4748
interval->set_next(cur);
4749
}
4750
4751
4752
inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4753
while (*list != Interval::end() && *list != i) {
4754
list = (*list)->next_addr();
4755
}
4756
if (*list != Interval::end()) {
4757
assert(*list == i, "check");
4758
*list = (*list)->next();
4759
return true;
4760
} else {
4761
return false;
4762
}
4763
}
4764
4765
void IntervalWalker::remove_from_list(Interval* i) {
4766
bool deleted;
4767
4768
if (i->state() == activeState) {
4769
deleted = remove_from_list(active_first_addr(anyKind), i);
4770
} else {
4771
assert(i->state() == inactiveState, "invalid state");
4772
deleted = remove_from_list(inactive_first_addr(anyKind), i);
4773
}
4774
4775
assert(deleted, "interval has not been found in list");
4776
}
4777
4778
4779
void IntervalWalker::walk_to(IntervalState state, int from) {
4780
assert (state == activeState || state == inactiveState, "wrong state");
4781
for_each_interval_kind(kind) {
4782
Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4783
Interval* next = *prev;
4784
while (next->current_from() <= from) {
4785
Interval* cur = next;
4786
next = cur->next();
4787
4788
bool range_has_changed = false;
4789
while (cur->current_to() <= from) {
4790
cur->next_range();
4791
range_has_changed = true;
4792
}
4793
4794
// also handle move from inactive list to active list
4795
range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4796
4797
if (range_has_changed) {
4798
// remove cur from list
4799
*prev = next;
4800
if (cur->current_at_end()) {
4801
// move to handled state (not maintained as a list)
4802
cur->set_state(handledState);
4803
DEBUG_ONLY(interval_moved(cur, kind, state, handledState);)
4804
} else if (cur->current_from() <= from){
4805
// sort into active list
4806
append_sorted(active_first_addr(kind), cur);
4807
cur->set_state(activeState);
4808
if (*prev == cur) {
4809
assert(state == activeState, "check");
4810
prev = cur->next_addr();
4811
}
4812
DEBUG_ONLY(interval_moved(cur, kind, state, activeState);)
4813
} else {
4814
// sort into inactive list
4815
append_sorted(inactive_first_addr(kind), cur);
4816
cur->set_state(inactiveState);
4817
if (*prev == cur) {
4818
assert(state == inactiveState, "check");
4819
prev = cur->next_addr();
4820
}
4821
DEBUG_ONLY(interval_moved(cur, kind, state, inactiveState);)
4822
}
4823
} else {
4824
prev = cur->next_addr();
4825
continue;
4826
}
4827
}
4828
}
4829
}
4830
4831
4832
void IntervalWalker::next_interval() {
4833
IntervalKind kind;
4834
Interval* any = _unhandled_first[anyKind];
4835
Interval* fixed = _unhandled_first[fixedKind];
4836
4837
if (any != Interval::end()) {
4838
// intervals may start at same position -> prefer fixed interval
4839
kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4840
4841
assert (kind == fixedKind && fixed->from() <= any->from() ||
4842
kind == anyKind && any->from() <= fixed->from(), "wrong interval!!!");
4843
assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4844
4845
} else if (fixed != Interval::end()) {
4846
kind = fixedKind;
4847
} else {
4848
_current = NULL; return;
4849
}
4850
_current_kind = kind;
4851
_current = _unhandled_first[kind];
4852
_unhandled_first[kind] = _current->next();
4853
_current->set_next(Interval::end());
4854
_current->rewind_range();
4855
}
4856
4857
4858
void IntervalWalker::walk_to(int lir_op_id) {
4859
assert(_current_position <= lir_op_id, "can not walk backwards");
4860
while (current() != NULL) {
4861
bool is_active = current()->from() <= lir_op_id;
4862
int id = is_active ? current()->from() : lir_op_id;
4863
4864
TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4865
4866
// set _current_position prior to call of walk_to
4867
_current_position = id;
4868
4869
// call walk_to even if _current_position == id
4870
walk_to(activeState, id);
4871
walk_to(inactiveState, id);
4872
4873
if (is_active) {
4874
current()->set_state(activeState);
4875
if (activate_current()) {
4876
append_sorted(active_first_addr(current_kind()), current());
4877
DEBUG_ONLY(interval_moved(current(), current_kind(), unhandledState, activeState);)
4878
}
4879
4880
next_interval();
4881
} else {
4882
return;
4883
}
4884
}
4885
}
4886
4887
#ifdef ASSERT
4888
void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4889
if (TraceLinearScanLevel >= 4) {
4890
#define print_state(state) \
4891
switch(state) {\
4892
case unhandledState: tty->print("unhandled"); break;\
4893
case activeState: tty->print("active"); break;\
4894
case inactiveState: tty->print("inactive"); break;\
4895
case handledState: tty->print("handled"); break;\
4896
default: ShouldNotReachHere(); \
4897
}
4898
4899
print_state(from); tty->print(" to "); print_state(to);
4900
tty->fill_to(23);
4901
interval->print();
4902
4903
#undef print_state
4904
}
4905
}
4906
#endif // ASSERT
4907
4908
// **** Implementation of LinearScanWalker **************************
4909
4910
LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4911
: IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4912
, _move_resolver(allocator)
4913
{
4914
for (int i = 0; i < LinearScan::nof_regs; i++) {
4915
_spill_intervals[i] = new IntervalList(2);
4916
}
4917
}
4918
4919
4920
inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4921
for (int i = _first_reg; i <= _last_reg; i++) {
4922
_use_pos[i] = max_jint;
4923
4924
if (!only_process_use_pos) {
4925
_block_pos[i] = max_jint;
4926
_spill_intervals[i]->clear();
4927
}
4928
}
4929
}
4930
4931
inline void LinearScanWalker::exclude_from_use(int reg) {
4932
assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4933
if (reg >= _first_reg && reg <= _last_reg) {
4934
_use_pos[reg] = 0;
4935
}
4936
}
4937
inline void LinearScanWalker::exclude_from_use(Interval* i) {
4938
assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4939
4940
exclude_from_use(i->assigned_reg());
4941
exclude_from_use(i->assigned_regHi());
4942
}
4943
4944
inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4945
assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4946
4947
if (reg >= _first_reg && reg <= _last_reg) {
4948
if (_use_pos[reg] > use_pos) {
4949
_use_pos[reg] = use_pos;
4950
}
4951
if (!only_process_use_pos) {
4952
_spill_intervals[reg]->append(i);
4953
}
4954
}
4955
}
4956
inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4957
assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4958
if (use_pos != -1) {
4959
set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4960
set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4961
}
4962
}
4963
4964
inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4965
if (reg >= _first_reg && reg <= _last_reg) {
4966
if (_block_pos[reg] > block_pos) {
4967
_block_pos[reg] = block_pos;
4968
}
4969
if (_use_pos[reg] > block_pos) {
4970
_use_pos[reg] = block_pos;
4971
}
4972
}
4973
}
4974
inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4975
assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4976
if (block_pos != -1) {
4977
set_block_pos(i->assigned_reg(), i, block_pos);
4978
set_block_pos(i->assigned_regHi(), i, block_pos);
4979
}
4980
}
4981
4982
4983
void LinearScanWalker::free_exclude_active_fixed() {
4984
Interval* list = active_first(fixedKind);
4985
while (list != Interval::end()) {
4986
assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4987
exclude_from_use(list);
4988
list = list->next();
4989
}
4990
}
4991
4992
void LinearScanWalker::free_exclude_active_any() {
4993
Interval* list = active_first(anyKind);
4994
while (list != Interval::end()) {
4995
exclude_from_use(list);
4996
list = list->next();
4997
}
4998
}
4999
5000
void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
5001
Interval* list = inactive_first(fixedKind);
5002
while (list != Interval::end()) {
5003
if (cur->to() <= list->current_from()) {
5004
assert(list->current_intersects_at(cur) == -1, "must not intersect");
5005
set_use_pos(list, list->current_from(), true);
5006
} else {
5007
set_use_pos(list, list->current_intersects_at(cur), true);
5008
}
5009
list = list->next();
5010
}
5011
}
5012
5013
void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
5014
Interval* list = inactive_first(anyKind);
5015
while (list != Interval::end()) {
5016
set_use_pos(list, list->current_intersects_at(cur), true);
5017
list = list->next();
5018
}
5019
}
5020
5021
void LinearScanWalker::spill_exclude_active_fixed() {
5022
Interval* list = active_first(fixedKind);
5023
while (list != Interval::end()) {
5024
exclude_from_use(list);
5025
list = list->next();
5026
}
5027
}
5028
5029
void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
5030
Interval* list = inactive_first(fixedKind);
5031
while (list != Interval::end()) {
5032
if (cur->to() > list->current_from()) {
5033
set_block_pos(list, list->current_intersects_at(cur));
5034
} else {
5035
assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
5036
}
5037
5038
list = list->next();
5039
}
5040
}
5041
5042
void LinearScanWalker::spill_collect_active_any() {
5043
Interval* list = active_first(anyKind);
5044
while (list != Interval::end()) {
5045
set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
5046
list = list->next();
5047
}
5048
}
5049
5050
void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
5051
Interval* list = inactive_first(anyKind);
5052
while (list != Interval::end()) {
5053
if (list->current_intersects(cur)) {
5054
set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
5055
}
5056
list = list->next();
5057
}
5058
}
5059
5060
5061
void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
5062
// output all moves here. When source and target are equal, the move is
5063
// optimized away later in assign_reg_nums
5064
5065
op_id = (op_id + 1) & ~1;
5066
BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
5067
assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
5068
5069
// calculate index of instruction inside instruction list of current block
5070
// the minimal index (for a block with no spill moves) can be calculated because the
5071
// numbering of instructions is known.
5072
// When the block already contains spill moves, the index must be increased until the
5073
// correct index is reached.
5074
LIR_OpList* list = op_block->lir()->instructions_list();
5075
int index = (op_id - list->at(0)->id()) / 2;
5076
assert(list->at(index)->id() <= op_id, "error in calculation");
5077
5078
while (list->at(index)->id() != op_id) {
5079
index++;
5080
assert(0 <= index && index < list->length(), "index out of bounds");
5081
}
5082
assert(1 <= index && index < list->length(), "index out of bounds");
5083
assert(list->at(index)->id() == op_id, "error in calculation");
5084
5085
// insert new instruction before instruction at position index
5086
_move_resolver.move_insert_position(op_block->lir(), index - 1);
5087
_move_resolver.add_mapping(src_it, dst_it);
5088
}
5089
5090
5091
int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
5092
int from_block_nr = min_block->linear_scan_number();
5093
int to_block_nr = max_block->linear_scan_number();
5094
5095
assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
5096
assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
5097
assert(from_block_nr < to_block_nr, "must cross block boundary");
5098
5099
// Try to split at end of max_block. If this would be after
5100
// max_split_pos, then use the begin of max_block
5101
int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
5102
if (optimal_split_pos > max_split_pos) {
5103
optimal_split_pos = max_block->first_lir_instruction_id();
5104
}
5105
5106
int min_loop_depth = max_block->loop_depth();
5107
for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
5108
BlockBegin* cur = block_at(i);
5109
5110
if (cur->loop_depth() < min_loop_depth) {
5111
// block with lower loop-depth found -> split at the end of this block
5112
min_loop_depth = cur->loop_depth();
5113
optimal_split_pos = cur->last_lir_instruction_id() + 2;
5114
}
5115
}
5116
assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
5117
5118
return optimal_split_pos;
5119
}
5120
5121
5122
int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
5123
int optimal_split_pos = -1;
5124
if (min_split_pos == max_split_pos) {
5125
// trivial case, no optimization of split position possible
5126
TRACE_LINEAR_SCAN(4, tty->print_cr(" min-pos and max-pos are equal, no optimization possible"));
5127
optimal_split_pos = min_split_pos;
5128
5129
} else {
5130
assert(min_split_pos < max_split_pos, "must be true then");
5131
assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
5132
5133
// reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5134
// beginning of a block, then min_split_pos is also a possible split position.
5135
// Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5136
BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5137
5138
// reason for using max_split_pos - 1: otherwise there would be an assertion failure
5139
// when an interval ends at the end of the last block of the method
5140
// (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5141
// block at this op_id)
5142
BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5143
5144
assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5145
if (min_block == max_block) {
5146
// split position cannot be moved to block boundary, so split as late as possible
5147
TRACE_LINEAR_SCAN(4, tty->print_cr(" cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5148
optimal_split_pos = max_split_pos;
5149
5150
} else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5151
// Do not move split position if the interval has a hole before max_split_pos.
5152
// Intervals resulting from Phi-Functions have more than one definition (marked
5153
// as mustHaveRegister) with a hole before each definition. When the register is needed
5154
// for the second definition, an earlier reloading is unnecessary.
5155
TRACE_LINEAR_SCAN(4, tty->print_cr(" interval has hole just before max_split_pos, so splitting at max_split_pos"));
5156
optimal_split_pos = max_split_pos;
5157
5158
} else {
5159
// seach optimal block boundary between min_split_pos and max_split_pos
5160
TRACE_LINEAR_SCAN(4, tty->print_cr(" moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5161
5162
if (do_loop_optimization) {
5163
// Loop optimization: if a loop-end marker is found between min- and max-position,
5164
// then split before this loop
5165
int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5166
TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization: loop end found at pos %d", loop_end_pos));
5167
5168
assert(loop_end_pos > min_split_pos, "invalid order");
5169
if (loop_end_pos < max_split_pos) {
5170
// loop-end marker found between min- and max-position
5171
// if it is not the end marker for the same loop as the min-position, then move
5172
// the max-position to this loop block.
5173
// Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5174
// of the interval (normally, only mustHaveRegister causes a reloading)
5175
BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5176
5177
TRACE_LINEAR_SCAN(4, tty->print_cr(" interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5178
assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5179
5180
optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5181
if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5182
optimal_split_pos = -1;
5183
TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization not necessary"));
5184
} else {
5185
TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization successful"));
5186
}
5187
}
5188
}
5189
5190
if (optimal_split_pos == -1) {
5191
// not calculated by loop optimization
5192
optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5193
}
5194
}
5195
}
5196
TRACE_LINEAR_SCAN(4, tty->print_cr(" optimal split position: %d", optimal_split_pos));
5197
5198
return optimal_split_pos;
5199
}
5200
5201
5202
/*
5203
split an interval at the optimal position between min_split_pos and
5204
max_split_pos in two parts:
5205
1) the left part has already a location assigned
5206
2) the right part is sorted into to the unhandled-list
5207
*/
5208
void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5209
TRACE_LINEAR_SCAN(2, tty->print ("----- splitting interval: "); it->print());
5210
TRACE_LINEAR_SCAN(2, tty->print_cr(" between %d and %d", min_split_pos, max_split_pos));
5211
5212
assert(it->from() < min_split_pos, "cannot split at start of interval");
5213
assert(current_position() < min_split_pos, "cannot split before current position");
5214
assert(min_split_pos <= max_split_pos, "invalid order");
5215
assert(max_split_pos <= it->to(), "cannot split after end of interval");
5216
5217
int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5218
5219
assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5220
assert(optimal_split_pos <= it->to(), "cannot split after end of interval");
5221
assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5222
5223
if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5224
// the split position would be just before the end of the interval
5225
// -> no split at all necessary
5226
TRACE_LINEAR_SCAN(4, tty->print_cr(" no split necessary because optimal split position is at end of interval"));
5227
return;
5228
}
5229
5230
// must calculate this before the actual split is performed and before split position is moved to odd op_id
5231
bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5232
5233
if (!allocator()->is_block_begin(optimal_split_pos)) {
5234
// move position before actual instruction (odd op_id)
5235
optimal_split_pos = (optimal_split_pos - 1) | 1;
5236
}
5237
5238
TRACE_LINEAR_SCAN(4, tty->print_cr(" splitting at position %d", optimal_split_pos));
5239
assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5240
assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5241
5242
Interval* split_part = it->split(optimal_split_pos);
5243
5244
allocator()->append_interval(split_part);
5245
allocator()->copy_register_flags(it, split_part);
5246
split_part->set_insert_move_when_activated(move_necessary);
5247
append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5248
5249
TRACE_LINEAR_SCAN(2, tty->print_cr(" split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5250
TRACE_LINEAR_SCAN(2, tty->print (" "); it->print());
5251
TRACE_LINEAR_SCAN(2, tty->print (" "); split_part->print());
5252
}
5253
5254
/*
5255
split an interval at the optimal position between min_split_pos and
5256
max_split_pos in two parts:
5257
1) the left part has already a location assigned
5258
2) the right part is always on the stack and therefore ignored in further processing
5259
*/
5260
void LinearScanWalker::split_for_spilling(Interval* it) {
5261
// calculate allowed range of splitting position
5262
int max_split_pos = current_position();
5263
int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5264
5265
TRACE_LINEAR_SCAN(2, tty->print ("----- splitting and spilling interval: "); it->print());
5266
TRACE_LINEAR_SCAN(2, tty->print_cr(" between %d and %d", min_split_pos, max_split_pos));
5267
5268
assert(it->state() == activeState, "why spill interval that is not active?");
5269
assert(it->from() <= min_split_pos, "cannot split before start of interval");
5270
assert(min_split_pos <= max_split_pos, "invalid order");
5271
assert(max_split_pos < it->to(), "cannot split at end end of interval");
5272
assert(current_position() < it->to(), "interval must not end before current position");
5273
5274
if (min_split_pos == it->from()) {
5275
// the whole interval is never used, so spill it entirely to memory
5276
TRACE_LINEAR_SCAN(2, tty->print_cr(" spilling entire interval because split pos is at beginning of interval"));
5277
assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5278
5279
allocator()->assign_spill_slot(it);
5280
allocator()->change_spill_state(it, min_split_pos);
5281
5282
// Also kick parent intervals out of register to memory when they have no use
5283
// position. This avoids short interval in register surrounded by intervals in
5284
// memory -> avoid useless moves from memory to register and back
5285
Interval* parent = it;
5286
while (parent != NULL && parent->is_split_child()) {
5287
parent = parent->split_child_before_op_id(parent->from());
5288
5289
if (parent->assigned_reg() < LinearScan::nof_regs) {
5290
if (parent->first_usage(shouldHaveRegister) == max_jint) {
5291
// parent is never used, so kick it out of its assigned register
5292
TRACE_LINEAR_SCAN(4, tty->print_cr(" kicking out interval %d out of its register because it is never used", parent->reg_num()));
5293
allocator()->assign_spill_slot(parent);
5294
} else {
5295
// do not go further back because the register is actually used by the interval
5296
parent = NULL;
5297
}
5298
}
5299
}
5300
5301
} else {
5302
// search optimal split pos, split interval and spill only the right hand part
5303
int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5304
5305
assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5306
assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5307
assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5308
5309
if (!allocator()->is_block_begin(optimal_split_pos)) {
5310
// move position before actual instruction (odd op_id)
5311
optimal_split_pos = (optimal_split_pos - 1) | 1;
5312
}
5313
5314
TRACE_LINEAR_SCAN(4, tty->print_cr(" splitting at position %d", optimal_split_pos));
5315
assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5316
assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5317
5318
Interval* spilled_part = it->split(optimal_split_pos);
5319
allocator()->append_interval(spilled_part);
5320
allocator()->assign_spill_slot(spilled_part);
5321
allocator()->change_spill_state(spilled_part, optimal_split_pos);
5322
5323
if (!allocator()->is_block_begin(optimal_split_pos)) {
5324
TRACE_LINEAR_SCAN(4, tty->print_cr(" inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5325
insert_move(optimal_split_pos, it, spilled_part);
5326
}
5327
5328
// the current_split_child is needed later when moves are inserted for reloading
5329
assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5330
spilled_part->make_current_split_child();
5331
5332
TRACE_LINEAR_SCAN(2, tty->print_cr(" split interval in two parts"));
5333
TRACE_LINEAR_SCAN(2, tty->print (" "); it->print());
5334
TRACE_LINEAR_SCAN(2, tty->print (" "); spilled_part->print());
5335
}
5336
}
5337
5338
5339
void LinearScanWalker::split_stack_interval(Interval* it) {
5340
int min_split_pos = current_position() + 1;
5341
int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5342
5343
split_before_usage(it, min_split_pos, max_split_pos);
5344
}
5345
5346
void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5347
int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5348
int max_split_pos = register_available_until;
5349
5350
split_before_usage(it, min_split_pos, max_split_pos);
5351
}
5352
5353
void LinearScanWalker::split_and_spill_interval(Interval* it) {
5354
assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5355
5356
int current_pos = current_position();
5357
if (it->state() == inactiveState) {
5358
// the interval is currently inactive, so no spill slot is needed for now.
5359
// when the split part is activated, the interval has a new chance to get a register,
5360
// so in the best case no stack slot is necessary
5361
assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5362
split_before_usage(it, current_pos + 1, current_pos + 1);
5363
5364
} else {
5365
// search the position where the interval must have a register and split
5366
// at the optimal position before.
5367
// The new created part is added to the unhandled list and will get a register
5368
// when it is activated
5369
int min_split_pos = current_pos + 1;
5370
int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5371
5372
split_before_usage(it, min_split_pos, max_split_pos);
5373
5374
assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5375
split_for_spilling(it);
5376
}
5377
}
5378
5379
int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5380
int min_full_reg = any_reg;
5381
int max_partial_reg = any_reg;
5382
5383
for (int i = _first_reg; i <= _last_reg; i++) {
5384
if (i == ignore_reg) {
5385
// this register must be ignored
5386
5387
} else if (_use_pos[i] >= interval_to) {
5388
// this register is free for the full interval
5389
if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5390
min_full_reg = i;
5391
}
5392
} else if (_use_pos[i] > reg_needed_until) {
5393
// this register is at least free until reg_needed_until
5394
if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5395
max_partial_reg = i;
5396
}
5397
}
5398
}
5399
5400
if (min_full_reg != any_reg) {
5401
return min_full_reg;
5402
} else if (max_partial_reg != any_reg) {
5403
*need_split = true;
5404
return max_partial_reg;
5405
} else {
5406
return any_reg;
5407
}
5408
}
5409
5410
int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5411
assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5412
5413
int min_full_reg = any_reg;
5414
int max_partial_reg = any_reg;
5415
5416
for (int i = _first_reg; i < _last_reg; i+=2) {
5417
if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5418
// this register is free for the full interval
5419
if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5420
min_full_reg = i;
5421
}
5422
} else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5423
// this register is at least free until reg_needed_until
5424
if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5425
max_partial_reg = i;
5426
}
5427
}
5428
}
5429
5430
if (min_full_reg != any_reg) {
5431
return min_full_reg;
5432
} else if (max_partial_reg != any_reg) {
5433
*need_split = true;
5434
return max_partial_reg;
5435
} else {
5436
return any_reg;
5437
}
5438
}
5439
5440
bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5441
TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5442
5443
init_use_lists(true);
5444
free_exclude_active_fixed();
5445
free_exclude_active_any();
5446
free_collect_inactive_fixed(cur);
5447
free_collect_inactive_any(cur);
5448
assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5449
5450
// _use_pos contains the start of the next interval that has this register assigned
5451
// (either as a fixed register or a normal allocated register in the past)
5452
// only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5453
#ifdef ASSERT
5454
if (TraceLinearScanLevel >= 4) {
5455
tty->print_cr(" state of registers:");
5456
for (int i = _first_reg; i <= _last_reg; i++) {
5457
tty->print(" reg %d (", i);
5458
LinearScan::print_reg_num(i);
5459
tty->print_cr("): use_pos: %d", _use_pos[i]);
5460
}
5461
}
5462
#endif
5463
5464
int hint_reg, hint_regHi;
5465
Interval* register_hint = cur->register_hint();
5466
if (register_hint != NULL) {
5467
hint_reg = register_hint->assigned_reg();
5468
hint_regHi = register_hint->assigned_regHi();
5469
5470
if (_num_phys_regs == 2 && allocator()->is_precolored_cpu_interval(register_hint)) {
5471
assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5472
hint_regHi = hint_reg + 1; // connect e.g. eax-edx
5473
}
5474
#ifdef ASSERT
5475
if (TraceLinearScanLevel >= 4) {
5476
tty->print(" hint registers %d (", hint_reg);
5477
LinearScan::print_reg_num(hint_reg);
5478
tty->print("), %d (", hint_regHi);
5479
LinearScan::print_reg_num(hint_regHi);
5480
tty->print(") from interval ");
5481
register_hint->print();
5482
}
5483
#endif
5484
} else {
5485
hint_reg = any_reg;
5486
hint_regHi = any_reg;
5487
}
5488
assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5489
assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5490
5491
// the register must be free at least until this position
5492
int reg_needed_until = cur->from() + 1;
5493
int interval_to = cur->to();
5494
5495
bool need_split = false;
5496
int split_pos;
5497
int reg;
5498
int regHi = any_reg;
5499
5500
if (_adjacent_regs) {
5501
reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5502
regHi = reg + 1;
5503
if (reg == any_reg) {
5504
return false;
5505
}
5506
split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5507
5508
} else {
5509
reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5510
if (reg == any_reg) {
5511
return false;
5512
}
5513
split_pos = _use_pos[reg];
5514
5515
if (_num_phys_regs == 2) {
5516
regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5517
5518
if (_use_pos[reg] < interval_to && regHi == any_reg) {
5519
// do not split interval if only one register can be assigned until the split pos
5520
// (when one register is found for the whole interval, split&spill is only
5521
// performed for the hi register)
5522
return false;
5523
5524
} else if (regHi != any_reg) {
5525
split_pos = MIN2(split_pos, _use_pos[regHi]);
5526
5527
// sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5528
if (reg > regHi) {
5529
int temp = reg;
5530
reg = regHi;
5531
regHi = temp;
5532
}
5533
}
5534
}
5535
}
5536
5537
cur->assign_reg(reg, regHi);
5538
#ifdef ASSERT
5539
if (TraceLinearScanLevel >= 2) {
5540
tty->print(" selected registers %d (", reg);
5541
LinearScan::print_reg_num(reg);
5542
tty->print("), %d (", regHi);
5543
LinearScan::print_reg_num(regHi);
5544
tty->print_cr(")");
5545
}
5546
#endif
5547
assert(split_pos > 0, "invalid split_pos");
5548
if (need_split) {
5549
// register not available for full interval, so split it
5550
split_when_partial_register_available(cur, split_pos);
5551
}
5552
5553
// only return true if interval is completely assigned
5554
return _num_phys_regs == 1 || regHi != any_reg;
5555
}
5556
5557
5558
int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int ignore_reg, bool* need_split) {
5559
int max_reg = any_reg;
5560
5561
for (int i = _first_reg; i <= _last_reg; i++) {
5562
if (i == ignore_reg) {
5563
// this register must be ignored
5564
5565
} else if (_use_pos[i] > reg_needed_until) {
5566
if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5567
max_reg = i;
5568
}
5569
}
5570
}
5571
5572
if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5573
*need_split = true;
5574
}
5575
5576
return max_reg;
5577
}
5578
5579
int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, bool* need_split) {
5580
assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5581
5582
int max_reg = any_reg;
5583
5584
for (int i = _first_reg; i < _last_reg; i+=2) {
5585
if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5586
if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5587
max_reg = i;
5588
}
5589
}
5590
}
5591
5592
if (max_reg != any_reg &&
5593
(_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to)) {
5594
*need_split = true;
5595
}
5596
5597
return max_reg;
5598
}
5599
5600
void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5601
assert(reg != any_reg, "no register assigned");
5602
5603
for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5604
Interval* it = _spill_intervals[reg]->at(i);
5605
remove_from_list(it);
5606
split_and_spill_interval(it);
5607
}
5608
5609
if (regHi != any_reg) {
5610
IntervalList* processed = _spill_intervals[reg];
5611
for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5612
Interval* it = _spill_intervals[regHi]->at(i);
5613
if (processed->find(it) == -1) {
5614
remove_from_list(it);
5615
split_and_spill_interval(it);
5616
}
5617
}
5618
}
5619
}
5620
5621
5622
// Split an Interval and spill it to memory so that cur can be placed in a register
5623
void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5624
TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5625
5626
// collect current usage of registers
5627
init_use_lists(false);
5628
spill_exclude_active_fixed();
5629
assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5630
spill_block_inactive_fixed(cur);
5631
spill_collect_active_any();
5632
spill_collect_inactive_any(cur);
5633
5634
#ifdef ASSERT
5635
if (TraceLinearScanLevel >= 4) {
5636
tty->print_cr(" state of registers:");
5637
for (int i = _first_reg; i <= _last_reg; i++) {
5638
tty->print(" reg %d(", i);
5639
LinearScan::print_reg_num(i);
5640
tty->print("): use_pos: %d, block_pos: %d, intervals: ", _use_pos[i], _block_pos[i]);
5641
for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5642
tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5643
}
5644
tty->cr();
5645
}
5646
}
5647
#endif
5648
5649
// the register must be free at least until this position
5650
int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5651
int interval_to = cur->to();
5652
assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5653
5654
int split_pos = 0;
5655
int use_pos = 0;
5656
bool need_split = false;
5657
int reg, regHi;
5658
5659
if (_adjacent_regs) {
5660
reg = find_locked_double_reg(reg_needed_until, interval_to, &need_split);
5661
regHi = reg + 1;
5662
5663
if (reg != any_reg) {
5664
use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5665
split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5666
}
5667
} else {
5668
reg = find_locked_reg(reg_needed_until, interval_to, cur->assigned_reg(), &need_split);
5669
regHi = any_reg;
5670
5671
if (reg != any_reg) {
5672
use_pos = _use_pos[reg];
5673
split_pos = _block_pos[reg];
5674
5675
if (_num_phys_regs == 2) {
5676
if (cur->assigned_reg() != any_reg) {
5677
regHi = reg;
5678
reg = cur->assigned_reg();
5679
} else {
5680
regHi = find_locked_reg(reg_needed_until, interval_to, reg, &need_split);
5681
if (regHi != any_reg) {
5682
use_pos = MIN2(use_pos, _use_pos[regHi]);
5683
split_pos = MIN2(split_pos, _block_pos[regHi]);
5684
}
5685
}
5686
5687
if (regHi != any_reg && reg > regHi) {
5688
// sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5689
int temp = reg;
5690
reg = regHi;
5691
regHi = temp;
5692
}
5693
}
5694
}
5695
}
5696
5697
if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5698
// the first use of cur is later than the spilling position -> spill cur
5699
TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5700
5701
if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5702
assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5703
// assign a reasonable register and do a bailout in product mode to avoid errors
5704
allocator()->assign_spill_slot(cur);
5705
BAILOUT("LinearScan: no register found");
5706
}
5707
5708
split_and_spill_interval(cur);
5709
} else {
5710
#ifdef ASSERT
5711
if (TraceLinearScanLevel >= 4) {
5712
tty->print("decided to use register %d (", reg);
5713
LinearScan::print_reg_num(reg);
5714
tty->print("), %d (", regHi);
5715
LinearScan::print_reg_num(regHi);
5716
tty->print_cr(")");
5717
}
5718
#endif
5719
assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5720
assert(split_pos > 0, "invalid split_pos");
5721
assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5722
5723
cur->assign_reg(reg, regHi);
5724
if (need_split) {
5725
// register not available for full interval, so split it
5726
split_when_partial_register_available(cur, split_pos);
5727
}
5728
5729
// perform splitting and spilling for all affected intervalls
5730
split_and_spill_intersecting_intervals(reg, regHi);
5731
}
5732
}
5733
5734
bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5735
#ifdef X86
5736
// fast calculation of intervals that can never get a register because the
5737
// the next instruction is a call that blocks all registers
5738
// Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5739
5740
// check if this interval is the result of a split operation
5741
// (an interval got a register until this position)
5742
int pos = cur->from();
5743
if ((pos & 1) == 1) {
5744
// the current instruction is a call that blocks all registers
5745
if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5746
TRACE_LINEAR_SCAN(4, tty->print_cr(" free register cannot be available because all registers blocked by following call"));
5747
5748
// safety check that there is really no register available
5749
assert(alloc_free_reg(cur) == false, "found a register for this interval");
5750
return true;
5751
}
5752
5753
}
5754
#endif
5755
return false;
5756
}
5757
5758
void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5759
BasicType type = cur->type();
5760
_num_phys_regs = LinearScan::num_physical_regs(type);
5761
_adjacent_regs = LinearScan::requires_adjacent_regs(type);
5762
5763
if (pd_init_regs_for_alloc(cur)) {
5764
// the appropriate register range was selected.
5765
} else if (type == T_FLOAT || type == T_DOUBLE) {
5766
_first_reg = pd_first_fpu_reg;
5767
_last_reg = pd_last_fpu_reg;
5768
} else {
5769
_first_reg = pd_first_cpu_reg;
5770
_last_reg = FrameMap::last_cpu_reg();
5771
}
5772
5773
assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5774
assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5775
}
5776
5777
5778
bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5779
if (op->code() != lir_move) {
5780
return false;
5781
}
5782
assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5783
5784
LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5785
LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5786
return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5787
}
5788
5789
// optimization (especially for phi functions of nested loops):
5790
// assign same spill slot to non-intersecting intervals
5791
void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5792
if (cur->is_split_child()) {
5793
// optimization is only suitable for split parents
5794
return;
5795
}
5796
5797
Interval* register_hint = cur->register_hint(false);
5798
if (register_hint == NULL) {
5799
// cur is not the target of a move, otherwise register_hint would be set
5800
return;
5801
}
5802
assert(register_hint->is_split_parent(), "register hint must be split parent");
5803
5804
if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5805
// combining the stack slots for intervals where spill move optimization is applied
5806
// is not benefitial and would cause problems
5807
return;
5808
}
5809
5810
int begin_pos = cur->from();
5811
int end_pos = cur->to();
5812
if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5813
// safety check that lir_op_with_id is allowed
5814
return;
5815
}
5816
5817
if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5818
// cur and register_hint are not connected with two moves
5819
return;
5820
}
5821
5822
Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5823
Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5824
if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5825
// register_hint must be split, otherwise the re-writing of use positions does not work
5826
return;
5827
}
5828
5829
assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5830
assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5831
assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5832
assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5833
5834
if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5835
// register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5836
return;
5837
}
5838
assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5839
assert(!cur->intersects(register_hint), "cur should not intersect register_hint");
5840
5841
if (cur->intersects_any_children_of(register_hint)) {
5842
// Bail out if cur intersects any split children of register_hint, which have the same spill slot as their parent. An overlap of two intervals with
5843
// the same spill slot could result in a situation where both intervals are spilled at the same time to the same stack location which is not correct.
5844
return;
5845
}
5846
5847
// modify intervals such that cur gets the same stack slot as register_hint
5848
// delete use positions to prevent the intervals to get a register at beginning
5849
cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5850
cur->remove_first_use_pos();
5851
end_hint->remove_first_use_pos();
5852
}
5853
5854
5855
// allocate a physical register or memory location to an interval
5856
bool LinearScanWalker::activate_current() {
5857
Interval* cur = current();
5858
bool result = true;
5859
5860
TRACE_LINEAR_SCAN(2, tty->print ("+++++ activating interval "); cur->print());
5861
TRACE_LINEAR_SCAN(4, tty->print_cr(" split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5862
5863
if (cur->assigned_reg() >= LinearScan::nof_regs) {
5864
// activating an interval that has a stack slot assigned -> split it at first use position
5865
// used for method parameters
5866
TRACE_LINEAR_SCAN(4, tty->print_cr(" interval has spill slot assigned (method parameter) -> split it before first use"));
5867
5868
split_stack_interval(cur);
5869
result = false;
5870
5871
} else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5872
// activating an interval that must start in a stack slot, but may get a register later
5873
// used for lir_roundfp: rounding is done by store to stack and reload later
5874
TRACE_LINEAR_SCAN(4, tty->print_cr(" interval must start in stack slot -> split it before first use"));
5875
assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5876
5877
allocator()->assign_spill_slot(cur);
5878
split_stack_interval(cur);
5879
result = false;
5880
5881
} else if (cur->assigned_reg() == any_reg) {
5882
// interval has not assigned register -> normal allocation
5883
// (this is the normal case for most intervals)
5884
TRACE_LINEAR_SCAN(4, tty->print_cr(" normal allocation of register"));
5885
5886
// assign same spill slot to non-intersecting intervals
5887
combine_spilled_intervals(cur);
5888
5889
init_vars_for_alloc(cur);
5890
if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5891
// no empty register available.
5892
// split and spill another interval so that this interval gets a register
5893
alloc_locked_reg(cur);
5894
}
5895
5896
// spilled intervals need not be move to active-list
5897
if (cur->assigned_reg() >= LinearScan::nof_regs) {
5898
result = false;
5899
}
5900
}
5901
5902
// load spilled values that become active from stack slot to register
5903
if (cur->insert_move_when_activated()) {
5904
assert(cur->is_split_child(), "must be");
5905
assert(cur->current_split_child() != NULL, "must be");
5906
assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5907
TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5908
5909
insert_move(cur->from(), cur->current_split_child(), cur);
5910
}
5911
cur->make_current_split_child();
5912
5913
return result; // true = interval is moved to active list
5914
}
5915
5916
5917
// Implementation of EdgeMoveOptimizer
5918
5919
EdgeMoveOptimizer::EdgeMoveOptimizer() :
5920
_edge_instructions(4),
5921
_edge_instructions_idx(4)
5922
{
5923
}
5924
5925
void EdgeMoveOptimizer::optimize(BlockList* code) {
5926
EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5927
5928
// ignore the first block in the list (index 0 is not processed)
5929
for (int i = code->length() - 1; i >= 1; i--) {
5930
BlockBegin* block = code->at(i);
5931
5932
if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5933
optimizer.optimize_moves_at_block_end(block);
5934
}
5935
if (block->number_of_sux() == 2) {
5936
optimizer.optimize_moves_at_block_begin(block);
5937
}
5938
}
5939
}
5940
5941
5942
// clear all internal data structures
5943
void EdgeMoveOptimizer::init_instructions() {
5944
_edge_instructions.clear();
5945
_edge_instructions_idx.clear();
5946
}
5947
5948
// append a lir-instruction-list and the index of the current operation in to the list
5949
void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5950
_edge_instructions.append(instructions);
5951
_edge_instructions_idx.append(instructions_idx);
5952
}
5953
5954
// return the current operation of the given edge (predecessor or successor)
5955
LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5956
LIR_OpList* instructions = _edge_instructions.at(edge);
5957
int idx = _edge_instructions_idx.at(edge);
5958
5959
if (idx < instructions->length()) {
5960
return instructions->at(idx);
5961
} else {
5962
return NULL;
5963
}
5964
}
5965
5966
// removes the current operation of the given edge (predecessor or successor)
5967
void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5968
LIR_OpList* instructions = _edge_instructions.at(edge);
5969
int idx = _edge_instructions_idx.at(edge);
5970
instructions->remove_at(idx);
5971
5972
if (decrement_index) {
5973
_edge_instructions_idx.at_put(edge, idx - 1);
5974
}
5975
}
5976
5977
5978
bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5979
if (op1 == NULL || op2 == NULL) {
5980
// at least one block is already empty -> no optimization possible
5981
return true;
5982
}
5983
5984
if (op1->code() == lir_move && op2->code() == lir_move) {
5985
assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5986
assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5987
LIR_Op1* move1 = (LIR_Op1*)op1;
5988
LIR_Op1* move2 = (LIR_Op1*)op2;
5989
if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5990
// these moves are exactly equal and can be optimized
5991
return false;
5992
}
5993
5994
} else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5995
assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5996
assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5997
LIR_Op1* fxch1 = (LIR_Op1*)op1;
5998
LIR_Op1* fxch2 = (LIR_Op1*)op2;
5999
if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
6000
// equal FPU stack operations can be optimized
6001
return false;
6002
}
6003
6004
} else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
6005
// equal FPU stack operations can be optimized
6006
return false;
6007
}
6008
6009
// no optimization possible
6010
return true;
6011
}
6012
6013
void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
6014
TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
6015
6016
if (block->is_predecessor(block)) {
6017
// currently we can't handle this correctly.
6018
return;
6019
}
6020
6021
init_instructions();
6022
int num_preds = block->number_of_preds();
6023
assert(num_preds > 1, "do not call otherwise");
6024
assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6025
6026
// setup a list with the lir-instructions of all predecessors
6027
int i;
6028
for (i = 0; i < num_preds; i++) {
6029
BlockBegin* pred = block->pred_at(i);
6030
LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6031
6032
if (pred->number_of_sux() != 1) {
6033
// this can happen with switch-statements where multiple edges are between
6034
// the same blocks.
6035
return;
6036
}
6037
6038
assert(pred->number_of_sux() == 1, "can handle only one successor");
6039
assert(pred->sux_at(0) == block, "invalid control flow");
6040
assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
6041
assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6042
assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
6043
6044
if (pred_instructions->last()->info() != NULL) {
6045
// can not optimize instructions when debug info is needed
6046
return;
6047
}
6048
6049
// ignore the unconditional branch at the end of the block
6050
append_instructions(pred_instructions, pred_instructions->length() - 2);
6051
}
6052
6053
6054
// process lir-instructions while all predecessors end with the same instruction
6055
while (true) {
6056
LIR_Op* op = instruction_at(0);
6057
for (i = 1; i < num_preds; i++) {
6058
if (operations_different(op, instruction_at(i))) {
6059
// these instructions are different and cannot be optimized ->
6060
// no further optimization possible
6061
return;
6062
}
6063
}
6064
6065
TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
6066
6067
// insert the instruction at the beginning of the current block
6068
block->lir()->insert_before(1, op);
6069
6070
// delete the instruction at the end of all predecessors
6071
for (i = 0; i < num_preds; i++) {
6072
remove_cur_instruction(i, true);
6073
}
6074
}
6075
}
6076
6077
6078
void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
6079
TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
6080
6081
init_instructions();
6082
int num_sux = block->number_of_sux();
6083
6084
LIR_OpList* cur_instructions = block->lir()->instructions_list();
6085
6086
assert(num_sux == 2, "method should not be called otherwise");
6087
assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
6088
assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6089
assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
6090
6091
if (cur_instructions->last()->info() != NULL) {
6092
// can no optimize instructions when debug info is needed
6093
return;
6094
}
6095
6096
LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
6097
if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
6098
// not a valid case for optimization
6099
// currently, only blocks that end with two branches (conditional branch followed
6100
// by unconditional branch) are optimized
6101
return;
6102
}
6103
6104
// now it is guaranteed that the block ends with two branch instructions.
6105
// the instructions are inserted at the end of the block before these two branches
6106
int insert_idx = cur_instructions->length() - 2;
6107
6108
int i;
6109
#ifdef ASSERT
6110
for (i = insert_idx - 1; i >= 0; i--) {
6111
LIR_Op* op = cur_instructions->at(i);
6112
if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
6113
assert(false, "block with two successors can have only two branch instructions");
6114
}
6115
}
6116
#endif
6117
6118
// setup a list with the lir-instructions of all successors
6119
for (i = 0; i < num_sux; i++) {
6120
BlockBegin* sux = block->sux_at(i);
6121
LIR_OpList* sux_instructions = sux->lir()->instructions_list();
6122
6123
assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
6124
6125
if (sux->number_of_preds() != 1) {
6126
// this can happen with switch-statements where multiple edges are between
6127
// the same blocks.
6128
return;
6129
}
6130
assert(sux->pred_at(0) == block, "invalid control flow");
6131
assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6132
6133
// ignore the label at the beginning of the block
6134
append_instructions(sux_instructions, 1);
6135
}
6136
6137
// process lir-instructions while all successors begin with the same instruction
6138
while (true) {
6139
LIR_Op* op = instruction_at(0);
6140
for (i = 1; i < num_sux; i++) {
6141
if (operations_different(op, instruction_at(i))) {
6142
// these instructions are different and cannot be optimized ->
6143
// no further optimization possible
6144
return;
6145
}
6146
}
6147
6148
TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
6149
6150
// insert instruction at end of current block
6151
block->lir()->insert_before(insert_idx, op);
6152
insert_idx++;
6153
6154
// delete the instructions at the beginning of all successors
6155
for (i = 0; i < num_sux; i++) {
6156
remove_cur_instruction(i, false);
6157
}
6158
}
6159
}
6160
6161
6162
// Implementation of ControlFlowOptimizer
6163
6164
ControlFlowOptimizer::ControlFlowOptimizer() :
6165
_original_preds(4)
6166
{
6167
}
6168
6169
void ControlFlowOptimizer::optimize(BlockList* code) {
6170
ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6171
6172
// push the OSR entry block to the end so that we're not jumping over it.
6173
BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6174
if (osr_entry) {
6175
int index = osr_entry->linear_scan_number();
6176
assert(code->at(index) == osr_entry, "wrong index");
6177
code->remove_at(index);
6178
code->append(osr_entry);
6179
}
6180
6181
optimizer.reorder_short_loops(code);
6182
optimizer.delete_empty_blocks(code);
6183
optimizer.delete_unnecessary_jumps(code);
6184
optimizer.delete_jumps_to_return(code);
6185
}
6186
6187
void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6188
int i = header_idx + 1;
6189
int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6190
while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6191
i++;
6192
}
6193
6194
if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6195
int end_idx = i - 1;
6196
BlockBegin* end_block = code->at(end_idx);
6197
6198
if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6199
// short loop from header_idx to end_idx found -> reorder blocks such that
6200
// the header_block is the last block instead of the first block of the loop
6201
TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6202
end_idx - header_idx + 1,
6203
header_block->block_id(), end_block->block_id()));
6204
6205
for (int j = header_idx; j < end_idx; j++) {
6206
code->at_put(j, code->at(j + 1));
6207
}
6208
code->at_put(end_idx, header_block);
6209
6210
// correct the flags so that any loop alignment occurs in the right place.
6211
assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6212
code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6213
code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6214
}
6215
}
6216
}
6217
6218
void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6219
for (int i = code->length() - 1; i >= 0; i--) {
6220
BlockBegin* block = code->at(i);
6221
6222
if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6223
reorder_short_loop(code, block, i);
6224
}
6225
}
6226
6227
DEBUG_ONLY(verify(code));
6228
}
6229
6230
// only blocks with exactly one successor can be deleted. Such blocks
6231
// must always end with an unconditional branch to this successor
6232
bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6233
if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6234
return false;
6235
}
6236
6237
LIR_OpList* instructions = block->lir()->instructions_list();
6238
6239
assert(instructions->length() >= 2, "block must have label and branch");
6240
assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6241
assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6242
assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6243
assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6244
6245
// block must have exactly one successor
6246
6247
if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6248
return true;
6249
}
6250
return false;
6251
}
6252
6253
// substitute branch targets in all branch-instructions of this blocks
6254
void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6255
TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6256
6257
LIR_OpList* instructions = block->lir()->instructions_list();
6258
6259
assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6260
for (int i = instructions->length() - 1; i >= 1; i--) {
6261
LIR_Op* op = instructions->at(i);
6262
6263
if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6264
assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6265
LIR_OpBranch* branch = (LIR_OpBranch*)op;
6266
6267
if (branch->block() == target_from) {
6268
branch->change_block(target_to);
6269
}
6270
if (branch->ublock() == target_from) {
6271
branch->change_ublock(target_to);
6272
}
6273
}
6274
}
6275
}
6276
6277
void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6278
int old_pos = 0;
6279
int new_pos = 0;
6280
int num_blocks = code->length();
6281
6282
while (old_pos < num_blocks) {
6283
BlockBegin* block = code->at(old_pos);
6284
6285
if (can_delete_block(block)) {
6286
BlockBegin* new_target = block->sux_at(0);
6287
6288
// propagate backward branch target flag for correct code alignment
6289
if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6290
new_target->set(BlockBegin::backward_branch_target_flag);
6291
}
6292
6293
// collect a list with all predecessors that contains each predecessor only once
6294
// the predecessors of cur are changed during the substitution, so a copy of the
6295
// predecessor list is necessary
6296
int j;
6297
_original_preds.clear();
6298
for (j = block->number_of_preds() - 1; j >= 0; j--) {
6299
BlockBegin* pred = block->pred_at(j);
6300
if (_original_preds.find(pred) == -1) {
6301
_original_preds.append(pred);
6302
}
6303
}
6304
6305
for (j = _original_preds.length() - 1; j >= 0; j--) {
6306
BlockBegin* pred = _original_preds.at(j);
6307
substitute_branch_target(pred, block, new_target);
6308
pred->substitute_sux(block, new_target);
6309
}
6310
} else {
6311
// adjust position of this block in the block list if blocks before
6312
// have been deleted
6313
if (new_pos != old_pos) {
6314
code->at_put(new_pos, code->at(old_pos));
6315
}
6316
new_pos++;
6317
}
6318
old_pos++;
6319
}
6320
code->trunc_to(new_pos);
6321
6322
DEBUG_ONLY(verify(code));
6323
}
6324
6325
void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6326
// skip the last block because there a branch is always necessary
6327
for (int i = code->length() - 2; i >= 0; i--) {
6328
BlockBegin* block = code->at(i);
6329
LIR_OpList* instructions = block->lir()->instructions_list();
6330
6331
LIR_Op* last_op = instructions->last();
6332
if (last_op->code() == lir_branch) {
6333
assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6334
LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6335
6336
assert(last_branch->block() != NULL, "last branch must always have a block as target");
6337
assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6338
6339
if (last_branch->info() == NULL) {
6340
if (last_branch->block() == code->at(i + 1)) {
6341
6342
TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6343
6344
// delete last branch instruction
6345
instructions->trunc_to(instructions->length() - 1);
6346
6347
} else {
6348
LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6349
if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6350
assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6351
LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6352
6353
if (prev_branch->stub() == NULL) {
6354
6355
LIR_Op2* prev_cmp = NULL;
6356
// There might be a cmove inserted for profiling which depends on the same
6357
// compare. If we change the condition of the respective compare, we have
6358
// to take care of this cmove as well.
6359
LIR_Op2* prev_cmove = NULL;
6360
6361
for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6362
prev_op = instructions->at(j);
6363
// check for the cmove
6364
if (prev_op->code() == lir_cmove) {
6365
assert(prev_op->as_Op2() != NULL, "cmove must be of type LIR_Op2");
6366
prev_cmove = (LIR_Op2*)prev_op;
6367
assert(prev_branch->cond() == prev_cmove->condition(), "should be the same");
6368
}
6369
if (prev_op->code() == lir_cmp) {
6370
assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6371
prev_cmp = (LIR_Op2*)prev_op;
6372
assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6373
}
6374
}
6375
// Guarantee because it is dereferenced below.
6376
guarantee(prev_cmp != NULL, "should have found comp instruction for branch");
6377
if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6378
6379
TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6380
6381
// eliminate a conditional branch to the immediate successor
6382
prev_branch->change_block(last_branch->block());
6383
prev_branch->negate_cond();
6384
prev_cmp->set_condition(prev_branch->cond());
6385
instructions->trunc_to(instructions->length() - 1);
6386
// if we do change the condition, we have to change the cmove as well
6387
if (prev_cmove != NULL) {
6388
prev_cmove->set_condition(prev_branch->cond());
6389
LIR_Opr t = prev_cmove->in_opr1();
6390
prev_cmove->set_in_opr1(prev_cmove->in_opr2());
6391
prev_cmove->set_in_opr2(t);
6392
}
6393
}
6394
}
6395
}
6396
}
6397
}
6398
}
6399
}
6400
6401
DEBUG_ONLY(verify(code));
6402
}
6403
6404
void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6405
#ifdef ASSERT
6406
ResourceBitMap return_converted(BlockBegin::number_of_blocks());
6407
#endif
6408
6409
for (int i = code->length() - 1; i >= 0; i--) {
6410
BlockBegin* block = code->at(i);
6411
LIR_OpList* cur_instructions = block->lir()->instructions_list();
6412
LIR_Op* cur_last_op = cur_instructions->last();
6413
6414
assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6415
if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6416
// the block contains only a label and a return
6417
// if a predecessor ends with an unconditional jump to this block, then the jump
6418
// can be replaced with a return instruction
6419
//
6420
// Note: the original block with only a return statement cannot be deleted completely
6421
// because the predecessors might have other (conditional) jumps to this block
6422
// -> this may lead to unnecesary return instructions in the final code
6423
6424
assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6425
assert(block->number_of_sux() == 0 ||
6426
(return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6427
"blocks that end with return must not have successors");
6428
6429
assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6430
LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6431
6432
for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6433
BlockBegin* pred = block->pred_at(j);
6434
LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6435
LIR_Op* pred_last_op = pred_instructions->last();
6436
6437
if (pred_last_op->code() == lir_branch) {
6438
assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6439
LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6440
6441
if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6442
// replace the jump to a return with a direct return
6443
// Note: currently the edge between the blocks is not deleted
6444
pred_instructions->at_put(pred_instructions->length() - 1, new LIR_OpReturn(return_opr));
6445
#ifdef ASSERT
6446
return_converted.set_bit(pred->block_id());
6447
#endif
6448
}
6449
}
6450
}
6451
}
6452
}
6453
}
6454
6455
6456
#ifdef ASSERT
6457
void ControlFlowOptimizer::verify(BlockList* code) {
6458
for (int i = 0; i < code->length(); i++) {
6459
BlockBegin* block = code->at(i);
6460
LIR_OpList* instructions = block->lir()->instructions_list();
6461
6462
int j;
6463
for (j = 0; j < instructions->length(); j++) {
6464
LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6465
6466
if (op_branch != NULL) {
6467
assert(op_branch->block() == NULL || code->find(op_branch->block()) != -1, "branch target not valid");
6468
assert(op_branch->ublock() == NULL || code->find(op_branch->ublock()) != -1, "branch target not valid");
6469
}
6470
}
6471
6472
for (j = 0; j < block->number_of_sux() - 1; j++) {
6473
BlockBegin* sux = block->sux_at(j);
6474
assert(code->find(sux) != -1, "successor not valid");
6475
}
6476
6477
for (j = 0; j < block->number_of_preds() - 1; j++) {
6478
BlockBegin* pred = block->pred_at(j);
6479
assert(code->find(pred) != -1, "successor not valid");
6480
}
6481
}
6482
}
6483
#endif
6484
6485
6486
#ifndef PRODUCT
6487
6488
// Implementation of LinearStatistic
6489
6490
const char* LinearScanStatistic::counter_name(int counter_idx) {
6491
switch (counter_idx) {
6492
case counter_method: return "compiled methods";
6493
case counter_fpu_method: return "methods using fpu";
6494
case counter_loop_method: return "methods with loops";
6495
case counter_exception_method:return "methods with xhandler";
6496
6497
case counter_loop: return "loops";
6498
case counter_block: return "blocks";
6499
case counter_loop_block: return "blocks inside loop";
6500
case counter_exception_block: return "exception handler entries";
6501
case counter_interval: return "intervals";
6502
case counter_fixed_interval: return "fixed intervals";
6503
case counter_range: return "ranges";
6504
case counter_fixed_range: return "fixed ranges";
6505
case counter_use_pos: return "use positions";
6506
case counter_fixed_use_pos: return "fixed use positions";
6507
case counter_spill_slots: return "spill slots";
6508
6509
// counter for classes of lir instructions
6510
case counter_instruction: return "total instructions";
6511
case counter_label: return "labels";
6512
case counter_entry: return "method entries";
6513
case counter_return: return "method returns";
6514
case counter_call: return "method calls";
6515
case counter_move: return "moves";
6516
case counter_cmp: return "compare";
6517
case counter_cond_branch: return "conditional branches";
6518
case counter_uncond_branch: return "unconditional branches";
6519
case counter_stub_branch: return "branches to stub";
6520
case counter_alu: return "artithmetic + logic";
6521
case counter_alloc: return "allocations";
6522
case counter_sync: return "synchronisation";
6523
case counter_throw: return "throw";
6524
case counter_unwind: return "unwind";
6525
case counter_typecheck: return "type+null-checks";
6526
case counter_fpu_stack: return "fpu-stack";
6527
case counter_misc_inst: return "other instructions";
6528
case counter_other_inst: return "misc. instructions";
6529
6530
// counter for different types of moves
6531
case counter_move_total: return "total moves";
6532
case counter_move_reg_reg: return "register->register";
6533
case counter_move_reg_stack: return "register->stack";
6534
case counter_move_stack_reg: return "stack->register";
6535
case counter_move_stack_stack:return "stack->stack";
6536
case counter_move_reg_mem: return "register->memory";
6537
case counter_move_mem_reg: return "memory->register";
6538
case counter_move_const_any: return "constant->any";
6539
6540
case blank_line_1: return "";
6541
case blank_line_2: return "";
6542
6543
default: ShouldNotReachHere(); return "";
6544
}
6545
}
6546
6547
LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6548
if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6549
return counter_method;
6550
} else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6551
return counter_block;
6552
} else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6553
return counter_instruction;
6554
} else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6555
return counter_move_total;
6556
}
6557
return invalid_counter;
6558
}
6559
6560
LinearScanStatistic::LinearScanStatistic() {
6561
for (int i = 0; i < number_of_counters; i++) {
6562
_counters_sum[i] = 0;
6563
_counters_max[i] = -1;
6564
}
6565
6566
}
6567
6568
// add the method-local numbers to the total sum
6569
void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6570
for (int i = 0; i < number_of_counters; i++) {
6571
_counters_sum[i] += method_statistic._counters_sum[i];
6572
_counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6573
}
6574
}
6575
6576
void LinearScanStatistic::print(const char* title) {
6577
if (CountLinearScan || TraceLinearScanLevel > 0) {
6578
tty->cr();
6579
tty->print_cr("***** LinearScan statistic - %s *****", title);
6580
6581
for (int i = 0; i < number_of_counters; i++) {
6582
if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6583
tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6584
6585
LinearScanStatistic::Counter cntr = base_counter(i);
6586
if (cntr != invalid_counter) {
6587
tty->print(" (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[cntr]);
6588
} else {
6589
tty->print(" ");
6590
}
6591
6592
if (_counters_max[i] >= 0) {
6593
tty->print("%8d", _counters_max[i]);
6594
}
6595
}
6596
tty->cr();
6597
}
6598
}
6599
}
6600
6601
void LinearScanStatistic::collect(LinearScan* allocator) {
6602
inc_counter(counter_method);
6603
if (allocator->has_fpu_registers()) {
6604
inc_counter(counter_fpu_method);
6605
}
6606
if (allocator->num_loops() > 0) {
6607
inc_counter(counter_loop_method);
6608
}
6609
inc_counter(counter_loop, allocator->num_loops());
6610
inc_counter(counter_spill_slots, allocator->max_spills());
6611
6612
int i;
6613
for (i = 0; i < allocator->interval_count(); i++) {
6614
Interval* cur = allocator->interval_at(i);
6615
6616
if (cur != NULL) {
6617
inc_counter(counter_interval);
6618
inc_counter(counter_use_pos, cur->num_use_positions());
6619
if (LinearScan::is_precolored_interval(cur)) {
6620
inc_counter(counter_fixed_interval);
6621
inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6622
}
6623
6624
Range* range = cur->first();
6625
while (range != Range::end()) {
6626
inc_counter(counter_range);
6627
if (LinearScan::is_precolored_interval(cur)) {
6628
inc_counter(counter_fixed_range);
6629
}
6630
range = range->next();
6631
}
6632
}
6633
}
6634
6635
bool has_xhandlers = false;
6636
// Note: only count blocks that are in code-emit order
6637
for (i = 0; i < allocator->ir()->code()->length(); i++) {
6638
BlockBegin* cur = allocator->ir()->code()->at(i);
6639
6640
inc_counter(counter_block);
6641
if (cur->loop_depth() > 0) {
6642
inc_counter(counter_loop_block);
6643
}
6644
if (cur->is_set(BlockBegin::exception_entry_flag)) {
6645
inc_counter(counter_exception_block);
6646
has_xhandlers = true;
6647
}
6648
6649
LIR_OpList* instructions = cur->lir()->instructions_list();
6650
for (int j = 0; j < instructions->length(); j++) {
6651
LIR_Op* op = instructions->at(j);
6652
6653
inc_counter(counter_instruction);
6654
6655
switch (op->code()) {
6656
case lir_label: inc_counter(counter_label); break;
6657
case lir_std_entry:
6658
case lir_osr_entry: inc_counter(counter_entry); break;
6659
case lir_return: inc_counter(counter_return); break;
6660
6661
case lir_rtcall:
6662
case lir_static_call:
6663
case lir_optvirtual_call: inc_counter(counter_call); break;
6664
6665
case lir_move: {
6666
inc_counter(counter_move);
6667
inc_counter(counter_move_total);
6668
6669
LIR_Opr in = op->as_Op1()->in_opr();
6670
LIR_Opr res = op->as_Op1()->result_opr();
6671
if (in->is_register()) {
6672
if (res->is_register()) {
6673
inc_counter(counter_move_reg_reg);
6674
} else if (res->is_stack()) {
6675
inc_counter(counter_move_reg_stack);
6676
} else if (res->is_address()) {
6677
inc_counter(counter_move_reg_mem);
6678
} else {
6679
ShouldNotReachHere();
6680
}
6681
} else if (in->is_stack()) {
6682
if (res->is_register()) {
6683
inc_counter(counter_move_stack_reg);
6684
} else {
6685
inc_counter(counter_move_stack_stack);
6686
}
6687
} else if (in->is_address()) {
6688
assert(res->is_register(), "must be");
6689
inc_counter(counter_move_mem_reg);
6690
} else if (in->is_constant()) {
6691
inc_counter(counter_move_const_any);
6692
} else {
6693
ShouldNotReachHere();
6694
}
6695
break;
6696
}
6697
6698
case lir_cmp: inc_counter(counter_cmp); break;
6699
6700
case lir_branch:
6701
case lir_cond_float_branch: {
6702
LIR_OpBranch* branch = op->as_OpBranch();
6703
if (branch->block() == NULL) {
6704
inc_counter(counter_stub_branch);
6705
} else if (branch->cond() == lir_cond_always) {
6706
inc_counter(counter_uncond_branch);
6707
} else {
6708
inc_counter(counter_cond_branch);
6709
}
6710
break;
6711
}
6712
6713
case lir_neg:
6714
case lir_add:
6715
case lir_sub:
6716
case lir_mul:
6717
case lir_div:
6718
case lir_rem:
6719
case lir_sqrt:
6720
case lir_abs:
6721
case lir_log10:
6722
case lir_logic_and:
6723
case lir_logic_or:
6724
case lir_logic_xor:
6725
case lir_shl:
6726
case lir_shr:
6727
case lir_ushr: inc_counter(counter_alu); break;
6728
6729
case lir_alloc_object:
6730
case lir_alloc_array: inc_counter(counter_alloc); break;
6731
6732
case lir_monaddr:
6733
case lir_lock:
6734
case lir_unlock: inc_counter(counter_sync); break;
6735
6736
case lir_throw: inc_counter(counter_throw); break;
6737
6738
case lir_unwind: inc_counter(counter_unwind); break;
6739
6740
case lir_null_check:
6741
case lir_leal:
6742
case lir_instanceof:
6743
case lir_checkcast:
6744
case lir_store_check: inc_counter(counter_typecheck); break;
6745
6746
case lir_fpop_raw:
6747
case lir_fxch:
6748
case lir_fld: inc_counter(counter_fpu_stack); break;
6749
6750
case lir_nop:
6751
case lir_push:
6752
case lir_pop:
6753
case lir_convert:
6754
case lir_roundfp:
6755
case lir_cmove: inc_counter(counter_misc_inst); break;
6756
6757
default: inc_counter(counter_other_inst); break;
6758
}
6759
}
6760
}
6761
6762
if (has_xhandlers) {
6763
inc_counter(counter_exception_method);
6764
}
6765
}
6766
6767
void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6768
if (CountLinearScan || TraceLinearScanLevel > 0) {
6769
6770
LinearScanStatistic local_statistic = LinearScanStatistic();
6771
6772
local_statistic.collect(allocator);
6773
global_statistic.sum_up(local_statistic);
6774
6775
if (TraceLinearScanLevel > 2) {
6776
local_statistic.print("current local statistic");
6777
}
6778
}
6779
}
6780
6781
6782
// Implementation of LinearTimers
6783
6784
LinearScanTimers::LinearScanTimers() {
6785
for (int i = 0; i < number_of_timers; i++) {
6786
timer(i)->reset();
6787
}
6788
}
6789
6790
const char* LinearScanTimers::timer_name(int idx) {
6791
switch (idx) {
6792
case timer_do_nothing: return "Nothing (Time Check)";
6793
case timer_number_instructions: return "Number Instructions";
6794
case timer_compute_local_live_sets: return "Local Live Sets";
6795
case timer_compute_global_live_sets: return "Global Live Sets";
6796
case timer_build_intervals: return "Build Intervals";
6797
case timer_sort_intervals_before: return "Sort Intervals Before";
6798
case timer_allocate_registers: return "Allocate Registers";
6799
case timer_resolve_data_flow: return "Resolve Data Flow";
6800
case timer_sort_intervals_after: return "Sort Intervals After";
6801
case timer_eliminate_spill_moves: return "Spill optimization";
6802
case timer_assign_reg_num: return "Assign Reg Num";
6803
case timer_allocate_fpu_stack: return "Allocate FPU Stack";
6804
case timer_optimize_lir: return "Optimize LIR";
6805
default: ShouldNotReachHere(); return "";
6806
}
6807
}
6808
6809
void LinearScanTimers::begin_method() {
6810
if (TimeEachLinearScan) {
6811
// reset all timers to measure only current method
6812
for (int i = 0; i < number_of_timers; i++) {
6813
timer(i)->reset();
6814
}
6815
}
6816
}
6817
6818
void LinearScanTimers::end_method(LinearScan* allocator) {
6819
if (TimeEachLinearScan) {
6820
6821
double c = timer(timer_do_nothing)->seconds();
6822
double total = 0;
6823
for (int i = 1; i < number_of_timers; i++) {
6824
total += timer(i)->seconds() - c;
6825
}
6826
6827
if (total >= 0.0005) {
6828
// print all information in one line for automatic processing
6829
tty->print("@"); allocator->compilation()->method()->print_name();
6830
6831
tty->print("@ %d ", allocator->compilation()->method()->code_size());
6832
tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6833
tty->print("@ %d ", allocator->block_count());
6834
tty->print("@ %d ", allocator->num_virtual_regs());
6835
tty->print("@ %d ", allocator->interval_count());
6836
tty->print("@ %d ", allocator->_num_calls);
6837
tty->print("@ %d ", allocator->num_loops());
6838
6839
tty->print("@ %6.6f ", total);
6840
for (int i = 1; i < number_of_timers; i++) {
6841
tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6842
}
6843
tty->cr();
6844
}
6845
}
6846
}
6847
6848
void LinearScanTimers::print(double total_time) {
6849
if (TimeLinearScan) {
6850
// correction value: sum of dummy-timer that only measures the time that
6851
// is necesary to start and stop itself
6852
double c = timer(timer_do_nothing)->seconds();
6853
6854
for (int i = 0; i < number_of_timers; i++) {
6855
double t = timer(i)->seconds();
6856
tty->print_cr(" %25s: %6.3f s (%4.1f%%) corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6857
}
6858
}
6859
}
6860
6861
#endif // #ifndef PRODUCT
6862
6863