Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/c1/c1_Runtime1.cpp
40931 views
1
/*
2
* Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "asm/codeBuffer.hpp"
27
#include "c1/c1_CodeStubs.hpp"
28
#include "c1/c1_Defs.hpp"
29
#include "c1/c1_FrameMap.hpp"
30
#include "c1/c1_LIRAssembler.hpp"
31
#include "c1/c1_MacroAssembler.hpp"
32
#include "c1/c1_Runtime1.hpp"
33
#include "classfile/javaClasses.inline.hpp"
34
#include "classfile/vmClasses.hpp"
35
#include "classfile/vmSymbols.hpp"
36
#include "code/codeBlob.hpp"
37
#include "code/compiledIC.hpp"
38
#include "code/pcDesc.hpp"
39
#include "code/scopeDesc.hpp"
40
#include "code/vtableStubs.hpp"
41
#include "compiler/compilationPolicy.hpp"
42
#include "compiler/disassembler.hpp"
43
#include "compiler/oopMap.hpp"
44
#include "gc/shared/barrierSet.hpp"
45
#include "gc/shared/c1/barrierSetC1.hpp"
46
#include "gc/shared/collectedHeap.hpp"
47
#include "interpreter/bytecode.hpp"
48
#include "interpreter/interpreter.hpp"
49
#include "jfr/support/jfrIntrinsics.hpp"
50
#include "logging/log.hpp"
51
#include "memory/allocation.inline.hpp"
52
#include "memory/oopFactory.hpp"
53
#include "memory/resourceArea.hpp"
54
#include "memory/universe.hpp"
55
#include "oops/access.inline.hpp"
56
#include "oops/klass.inline.hpp"
57
#include "oops/objArrayOop.inline.hpp"
58
#include "oops/objArrayKlass.hpp"
59
#include "oops/oop.inline.hpp"
60
#include "prims/jvmtiExport.hpp"
61
#include "runtime/atomic.hpp"
62
#include "runtime/biasedLocking.hpp"
63
#include "runtime/fieldDescriptor.inline.hpp"
64
#include "runtime/frame.inline.hpp"
65
#include "runtime/handles.inline.hpp"
66
#include "runtime/interfaceSupport.inline.hpp"
67
#include "runtime/javaCalls.hpp"
68
#include "runtime/sharedRuntime.hpp"
69
#include "runtime/stackWatermarkSet.hpp"
70
#include "runtime/stubRoutines.hpp"
71
#include "runtime/threadCritical.hpp"
72
#include "runtime/vframe.inline.hpp"
73
#include "runtime/vframeArray.hpp"
74
#include "runtime/vm_version.hpp"
75
#include "utilities/copy.hpp"
76
#include "utilities/events.hpp"
77
78
79
// Implementation of StubAssembler
80
81
StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
82
_name = name;
83
_must_gc_arguments = false;
84
_frame_size = no_frame_size;
85
_num_rt_args = 0;
86
_stub_id = stub_id;
87
}
88
89
90
void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
91
_name = name;
92
_must_gc_arguments = must_gc_arguments;
93
}
94
95
96
void StubAssembler::set_frame_size(int size) {
97
if (_frame_size == no_frame_size) {
98
_frame_size = size;
99
}
100
assert(_frame_size == size, "can't change the frame size");
101
}
102
103
104
void StubAssembler::set_num_rt_args(int args) {
105
if (_num_rt_args == 0) {
106
_num_rt_args = args;
107
}
108
assert(_num_rt_args == args, "can't change the number of args");
109
}
110
111
// Implementation of Runtime1
112
113
CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
114
const char *Runtime1::_blob_names[] = {
115
RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
116
};
117
118
#ifndef PRODUCT
119
// statistics
120
int Runtime1::_generic_arraycopystub_cnt = 0;
121
int Runtime1::_arraycopy_slowcase_cnt = 0;
122
int Runtime1::_arraycopy_checkcast_cnt = 0;
123
int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
124
int Runtime1::_new_type_array_slowcase_cnt = 0;
125
int Runtime1::_new_object_array_slowcase_cnt = 0;
126
int Runtime1::_new_instance_slowcase_cnt = 0;
127
int Runtime1::_new_multi_array_slowcase_cnt = 0;
128
int Runtime1::_monitorenter_slowcase_cnt = 0;
129
int Runtime1::_monitorexit_slowcase_cnt = 0;
130
int Runtime1::_patch_code_slowcase_cnt = 0;
131
int Runtime1::_throw_range_check_exception_count = 0;
132
int Runtime1::_throw_index_exception_count = 0;
133
int Runtime1::_throw_div0_exception_count = 0;
134
int Runtime1::_throw_null_pointer_exception_count = 0;
135
int Runtime1::_throw_class_cast_exception_count = 0;
136
int Runtime1::_throw_incompatible_class_change_error_count = 0;
137
int Runtime1::_throw_count = 0;
138
139
static int _byte_arraycopy_stub_cnt = 0;
140
static int _short_arraycopy_stub_cnt = 0;
141
static int _int_arraycopy_stub_cnt = 0;
142
static int _long_arraycopy_stub_cnt = 0;
143
static int _oop_arraycopy_stub_cnt = 0;
144
145
address Runtime1::arraycopy_count_address(BasicType type) {
146
switch (type) {
147
case T_BOOLEAN:
148
case T_BYTE: return (address)&_byte_arraycopy_stub_cnt;
149
case T_CHAR:
150
case T_SHORT: return (address)&_short_arraycopy_stub_cnt;
151
case T_FLOAT:
152
case T_INT: return (address)&_int_arraycopy_stub_cnt;
153
case T_DOUBLE:
154
case T_LONG: return (address)&_long_arraycopy_stub_cnt;
155
case T_ARRAY:
156
case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
157
default:
158
ShouldNotReachHere();
159
return NULL;
160
}
161
}
162
163
164
#endif
165
166
// Simple helper to see if the caller of a runtime stub which
167
// entered the VM has been deoptimized
168
169
static bool caller_is_deopted(JavaThread* current) {
170
RegisterMap reg_map(current, false);
171
frame runtime_frame = current->last_frame();
172
frame caller_frame = runtime_frame.sender(&reg_map);
173
assert(caller_frame.is_compiled_frame(), "must be compiled");
174
return caller_frame.is_deoptimized_frame();
175
}
176
177
// Stress deoptimization
178
static void deopt_caller(JavaThread* current) {
179
if (!caller_is_deopted(current)) {
180
RegisterMap reg_map(current, false);
181
frame runtime_frame = current->last_frame();
182
frame caller_frame = runtime_frame.sender(&reg_map);
183
Deoptimization::deoptimize_frame(current, caller_frame.id());
184
assert(caller_is_deopted(current), "Must be deoptimized");
185
}
186
}
187
188
class StubIDStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
189
private:
190
Runtime1::StubID _id;
191
public:
192
StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id) : _id(id) {}
193
virtual OopMapSet* generate_code(StubAssembler* sasm) {
194
return Runtime1::generate_code_for(_id, sasm);
195
}
196
};
197
198
CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, int stub_id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
199
ResourceMark rm;
200
// create code buffer for code storage
201
CodeBuffer code(buffer_blob);
202
203
OopMapSet* oop_maps;
204
int frame_size;
205
bool must_gc_arguments;
206
207
Compilation::setup_code_buffer(&code, 0);
208
209
// create assembler for code generation
210
StubAssembler* sasm = new StubAssembler(&code, name, stub_id);
211
// generate code for runtime stub
212
oop_maps = cl->generate_code(sasm);
213
assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
214
"if stub has an oop map it must have a valid frame size");
215
assert(!expect_oop_map || oop_maps != NULL, "must have an oopmap");
216
217
// align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
218
sasm->align(BytesPerWord);
219
// make sure all code is in code buffer
220
sasm->flush();
221
222
frame_size = sasm->frame_size();
223
must_gc_arguments = sasm->must_gc_arguments();
224
// create blob - distinguish a few special cases
225
CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
226
&code,
227
CodeOffsets::frame_never_safe,
228
frame_size,
229
oop_maps,
230
must_gc_arguments);
231
assert(blob != NULL, "blob must exist");
232
return blob;
233
}
234
235
void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
236
assert(0 <= id && id < number_of_ids, "illegal stub id");
237
bool expect_oop_map = true;
238
#ifdef ASSERT
239
// Make sure that stubs that need oopmaps have them
240
switch (id) {
241
// These stubs don't need to have an oopmap
242
case dtrace_object_alloc_id:
243
case slow_subtype_check_id:
244
case fpu2long_stub_id:
245
case unwind_exception_id:
246
case counter_overflow_id:
247
#if defined(PPC32)
248
case handle_exception_nofpu_id:
249
#endif
250
expect_oop_map = false;
251
break;
252
default:
253
break;
254
}
255
#endif
256
StubIDStubAssemblerCodeGenClosure cl(id);
257
CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
258
// install blob
259
_blobs[id] = blob;
260
}
261
262
void Runtime1::initialize(BufferBlob* blob) {
263
// platform-dependent initialization
264
initialize_pd();
265
// generate stubs
266
for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
267
// printing
268
#ifndef PRODUCT
269
if (PrintSimpleStubs) {
270
ResourceMark rm;
271
for (int id = 0; id < number_of_ids; id++) {
272
_blobs[id]->print();
273
if (_blobs[id]->oop_maps() != NULL) {
274
_blobs[id]->oop_maps()->print();
275
}
276
}
277
}
278
#endif
279
BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
280
bs->generate_c1_runtime_stubs(blob);
281
}
282
283
CodeBlob* Runtime1::blob_for(StubID id) {
284
assert(0 <= id && id < number_of_ids, "illegal stub id");
285
return _blobs[id];
286
}
287
288
289
const char* Runtime1::name_for(StubID id) {
290
assert(0 <= id && id < number_of_ids, "illegal stub id");
291
return _blob_names[id];
292
}
293
294
const char* Runtime1::name_for_address(address entry) {
295
for (int id = 0; id < number_of_ids; id++) {
296
if (entry == entry_for((StubID)id)) return name_for((StubID)id);
297
}
298
299
#define FUNCTION_CASE(a, f) \
300
if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f
301
302
FUNCTION_CASE(entry, os::javaTimeMillis);
303
FUNCTION_CASE(entry, os::javaTimeNanos);
304
FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
305
FUNCTION_CASE(entry, SharedRuntime::d2f);
306
FUNCTION_CASE(entry, SharedRuntime::d2i);
307
FUNCTION_CASE(entry, SharedRuntime::d2l);
308
FUNCTION_CASE(entry, SharedRuntime::dcos);
309
FUNCTION_CASE(entry, SharedRuntime::dexp);
310
FUNCTION_CASE(entry, SharedRuntime::dlog);
311
FUNCTION_CASE(entry, SharedRuntime::dlog10);
312
FUNCTION_CASE(entry, SharedRuntime::dpow);
313
FUNCTION_CASE(entry, SharedRuntime::drem);
314
FUNCTION_CASE(entry, SharedRuntime::dsin);
315
FUNCTION_CASE(entry, SharedRuntime::dtan);
316
FUNCTION_CASE(entry, SharedRuntime::f2i);
317
FUNCTION_CASE(entry, SharedRuntime::f2l);
318
FUNCTION_CASE(entry, SharedRuntime::frem);
319
FUNCTION_CASE(entry, SharedRuntime::l2d);
320
FUNCTION_CASE(entry, SharedRuntime::l2f);
321
FUNCTION_CASE(entry, SharedRuntime::ldiv);
322
FUNCTION_CASE(entry, SharedRuntime::lmul);
323
FUNCTION_CASE(entry, SharedRuntime::lrem);
324
FUNCTION_CASE(entry, SharedRuntime::lrem);
325
FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
326
FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
327
FUNCTION_CASE(entry, is_instance_of);
328
FUNCTION_CASE(entry, trace_block_entry);
329
#ifdef JFR_HAVE_INTRINSICS
330
FUNCTION_CASE(entry, JFR_TIME_FUNCTION);
331
#endif
332
FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
333
FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
334
FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
335
FUNCTION_CASE(entry, StubRoutines::dexp());
336
FUNCTION_CASE(entry, StubRoutines::dlog());
337
FUNCTION_CASE(entry, StubRoutines::dlog10());
338
FUNCTION_CASE(entry, StubRoutines::dpow());
339
FUNCTION_CASE(entry, StubRoutines::dsin());
340
FUNCTION_CASE(entry, StubRoutines::dcos());
341
FUNCTION_CASE(entry, StubRoutines::dtan());
342
343
#undef FUNCTION_CASE
344
345
// Soft float adds more runtime names.
346
return pd_name_for_address(entry);
347
}
348
349
350
JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass))
351
NOT_PRODUCT(_new_instance_slowcase_cnt++;)
352
353
assert(klass->is_klass(), "not a class");
354
Handle holder(current, klass->klass_holder()); // keep the klass alive
355
InstanceKlass* h = InstanceKlass::cast(klass);
356
h->check_valid_for_instantiation(true, CHECK);
357
// make sure klass is initialized
358
h->initialize(CHECK);
359
// allocate instance and return via TLS
360
oop obj = h->allocate_instance(CHECK);
361
current->set_vm_result(obj);
362
JRT_END
363
364
365
JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
366
NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
367
// Note: no handle for klass needed since they are not used
368
// anymore after new_typeArray() and no GC can happen before.
369
// (This may have to change if this code changes!)
370
assert(klass->is_klass(), "not a class");
371
BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
372
oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
373
current->set_vm_result(obj);
374
// This is pretty rare but this runtime patch is stressful to deoptimization
375
// if we deoptimize here so force a deopt to stress the path.
376
if (DeoptimizeALot) {
377
deopt_caller(current);
378
}
379
380
JRT_END
381
382
383
JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
384
NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
385
386
// Note: no handle for klass needed since they are not used
387
// anymore after new_objArray() and no GC can happen before.
388
// (This may have to change if this code changes!)
389
assert(array_klass->is_klass(), "not a class");
390
Handle holder(current, array_klass->klass_holder()); // keep the klass alive
391
Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
392
objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
393
current->set_vm_result(obj);
394
// This is pretty rare but this runtime patch is stressful to deoptimization
395
// if we deoptimize here so force a deopt to stress the path.
396
if (DeoptimizeALot) {
397
deopt_caller(current);
398
}
399
JRT_END
400
401
402
JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
403
NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
404
405
assert(klass->is_klass(), "not a class");
406
assert(rank >= 1, "rank must be nonzero");
407
Handle holder(current, klass->klass_holder()); // keep the klass alive
408
oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
409
current->set_vm_result(obj);
410
JRT_END
411
412
413
JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, StubID id))
414
tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
415
JRT_END
416
417
418
JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
419
ResourceMark rm(current);
420
const char* klass_name = obj->klass()->external_name();
421
SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
422
JRT_END
423
424
425
// counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
426
// associated with the top activation record. The inlinee (that is possibly included in the enclosing
427
// method) method is passed as an argument. In order to do that it is embedded in the code as
428
// a constant.
429
static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
430
nmethod* osr_nm = NULL;
431
methodHandle method(current, m);
432
433
RegisterMap map(current, false);
434
frame fr = current->last_frame().sender(&map);
435
nmethod* nm = (nmethod*) fr.cb();
436
assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
437
methodHandle enclosing_method(current, nm->method());
438
439
CompLevel level = (CompLevel)nm->comp_level();
440
int bci = InvocationEntryBci;
441
if (branch_bci != InvocationEntryBci) {
442
// Compute destination bci
443
address pc = method()->code_base() + branch_bci;
444
Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
445
int offset = 0;
446
switch (branch) {
447
case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
448
case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
449
case Bytecodes::_if_icmple: case Bytecodes::_ifle:
450
case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
451
case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
452
case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
453
case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
454
offset = (int16_t)Bytes::get_Java_u2(pc + 1);
455
break;
456
case Bytecodes::_goto_w:
457
offset = Bytes::get_Java_u4(pc + 1);
458
break;
459
default: ;
460
}
461
bci = branch_bci + offset;
462
}
463
osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
464
return osr_nm;
465
}
466
467
JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
468
nmethod* osr_nm;
469
JRT_BLOCK
470
osr_nm = counter_overflow_helper(current, bci, method);
471
if (osr_nm != NULL) {
472
RegisterMap map(current, false);
473
frame fr = current->last_frame().sender(&map);
474
Deoptimization::deoptimize_frame(current, fr.id());
475
}
476
JRT_BLOCK_END
477
return NULL;
478
JRT_END
479
480
extern void vm_exit(int code);
481
482
// Enter this method from compiled code handler below. This is where we transition
483
// to VM mode. This is done as a helper routine so that the method called directly
484
// from compiled code does not have to transition to VM. This allows the entry
485
// method to see if the nmethod that we have just looked up a handler for has
486
// been deoptimized while we were in the vm. This simplifies the assembly code
487
// cpu directories.
488
//
489
// We are entering here from exception stub (via the entry method below)
490
// If there is a compiled exception handler in this method, we will continue there;
491
// otherwise we will unwind the stack and continue at the caller of top frame method
492
// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
493
// control the area where we can allow a safepoint. After we exit the safepoint area we can
494
// check to see if the handler we are going to return is now in a nmethod that has
495
// been deoptimized. If that is the case we return the deopt blob
496
// unpack_with_exception entry instead. This makes life for the exception blob easier
497
// because making that same check and diverting is painful from assembly language.
498
JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
499
// Reset method handle flag.
500
current->set_is_method_handle_return(false);
501
502
Handle exception(current, ex);
503
504
// This function is called when we are about to throw an exception. Therefore,
505
// we have to poll the stack watermark barrier to make sure that not yet safe
506
// stack frames are made safe before returning into them.
507
if (current->last_frame().cb() == Runtime1::blob_for(Runtime1::handle_exception_from_callee_id)) {
508
// The Runtime1::handle_exception_from_callee_id handler is invoked after the
509
// frame has been unwound. It instead builds its own stub frame, to call the
510
// runtime. But the throwing frame has already been unwound here.
511
StackWatermarkSet::after_unwind(current);
512
}
513
514
nm = CodeCache::find_nmethod(pc);
515
assert(nm != NULL, "this is not an nmethod");
516
// Adjust the pc as needed/
517
if (nm->is_deopt_pc(pc)) {
518
RegisterMap map(current, false);
519
frame exception_frame = current->last_frame().sender(&map);
520
// if the frame isn't deopted then pc must not correspond to the caller of last_frame
521
assert(exception_frame.is_deoptimized_frame(), "must be deopted");
522
pc = exception_frame.pc();
523
}
524
assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
525
// Check that exception is a subclass of Throwable
526
assert(exception->is_a(vmClasses::Throwable_klass()),
527
"Exception not subclass of Throwable");
528
529
// debugging support
530
// tracing
531
if (log_is_enabled(Info, exceptions)) {
532
ResourceMark rm;
533
stringStream tempst;
534
assert(nm->method() != NULL, "Unexpected NULL method()");
535
tempst.print("C1 compiled method <%s>\n"
536
" at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
537
nm->method()->print_value_string(), p2i(pc), p2i(current));
538
Exceptions::log_exception(exception, tempst.as_string());
539
}
540
// for AbortVMOnException flag
541
Exceptions::debug_check_abort(exception);
542
543
// Check the stack guard pages and reenable them if necessary and there is
544
// enough space on the stack to do so. Use fast exceptions only if the guard
545
// pages are enabled.
546
bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
547
548
if (JvmtiExport::can_post_on_exceptions()) {
549
// To ensure correct notification of exception catches and throws
550
// we have to deoptimize here. If we attempted to notify the
551
// catches and throws during this exception lookup it's possible
552
// we could deoptimize on the way out of the VM and end back in
553
// the interpreter at the throw site. This would result in double
554
// notifications since the interpreter would also notify about
555
// these same catches and throws as it unwound the frame.
556
557
RegisterMap reg_map(current);
558
frame stub_frame = current->last_frame();
559
frame caller_frame = stub_frame.sender(&reg_map);
560
561
// We don't really want to deoptimize the nmethod itself since we
562
// can actually continue in the exception handler ourselves but I
563
// don't see an easy way to have the desired effect.
564
Deoptimization::deoptimize_frame(current, caller_frame.id());
565
assert(caller_is_deopted(current), "Must be deoptimized");
566
567
return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
568
}
569
570
// ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
571
if (guard_pages_enabled) {
572
address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
573
if (fast_continuation != NULL) {
574
// Set flag if return address is a method handle call site.
575
current->set_is_method_handle_return(nm->is_method_handle_return(pc));
576
return fast_continuation;
577
}
578
}
579
580
// If the stack guard pages are enabled, check whether there is a handler in
581
// the current method. Otherwise (guard pages disabled), force an unwind and
582
// skip the exception cache update (i.e., just leave continuation==NULL).
583
address continuation = NULL;
584
if (guard_pages_enabled) {
585
586
// New exception handling mechanism can support inlined methods
587
// with exception handlers since the mappings are from PC to PC
588
589
// Clear out the exception oop and pc since looking up an
590
// exception handler can cause class loading, which might throw an
591
// exception and those fields are expected to be clear during
592
// normal bytecode execution.
593
current->clear_exception_oop_and_pc();
594
595
bool recursive_exception = false;
596
continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
597
// If an exception was thrown during exception dispatch, the exception oop may have changed
598
current->set_exception_oop(exception());
599
current->set_exception_pc(pc);
600
601
// the exception cache is used only by non-implicit exceptions
602
// Update the exception cache only when there didn't happen
603
// another exception during the computation of the compiled
604
// exception handler. Checking for exception oop equality is not
605
// sufficient because some exceptions are pre-allocated and reused.
606
if (continuation != NULL && !recursive_exception) {
607
nm->add_handler_for_exception_and_pc(exception, pc, continuation);
608
}
609
}
610
611
current->set_vm_result(exception());
612
// Set flag if return address is a method handle call site.
613
current->set_is_method_handle_return(nm->is_method_handle_return(pc));
614
615
if (log_is_enabled(Info, exceptions)) {
616
ResourceMark rm;
617
log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
618
" for exception thrown at PC " PTR_FORMAT,
619
p2i(current), p2i(continuation), p2i(pc));
620
}
621
622
return continuation;
623
JRT_END
624
625
// Enter this method from compiled code only if there is a Java exception handler
626
// in the method handling the exception.
627
// We are entering here from exception stub. We don't do a normal VM transition here.
628
// We do it in a helper. This is so we can check to see if the nmethod we have just
629
// searched for an exception handler has been deoptimized in the meantime.
630
address Runtime1::exception_handler_for_pc(JavaThread* current) {
631
oop exception = current->exception_oop();
632
address pc = current->exception_pc();
633
// Still in Java mode
634
DEBUG_ONLY(NoHandleMark nhm);
635
nmethod* nm = NULL;
636
address continuation = NULL;
637
{
638
// Enter VM mode by calling the helper
639
ResetNoHandleMark rnhm;
640
continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
641
}
642
// Back in JAVA, use no oops DON'T safepoint
643
644
// Now check to see if the nmethod we were called from is now deoptimized.
645
// If so we must return to the deopt blob and deoptimize the nmethod
646
if (nm != NULL && caller_is_deopted(current)) {
647
continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
648
}
649
650
assert(continuation != NULL, "no handler found");
651
return continuation;
652
}
653
654
655
JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
656
NOT_PRODUCT(_throw_range_check_exception_count++;)
657
const int len = 35;
658
assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
659
char message[2 * jintAsStringSize + len];
660
sprintf(message, "Index %d out of bounds for length %d", index, a->length());
661
SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
662
JRT_END
663
664
665
JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
666
NOT_PRODUCT(_throw_index_exception_count++;)
667
char message[16];
668
sprintf(message, "%d", index);
669
SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
670
JRT_END
671
672
673
JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
674
NOT_PRODUCT(_throw_div0_exception_count++;)
675
SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
676
JRT_END
677
678
679
JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
680
NOT_PRODUCT(_throw_null_pointer_exception_count++;)
681
SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
682
JRT_END
683
684
685
JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
686
NOT_PRODUCT(_throw_class_cast_exception_count++;)
687
ResourceMark rm(current);
688
char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
689
SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
690
JRT_END
691
692
693
JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
694
NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
695
ResourceMark rm(current);
696
SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
697
JRT_END
698
699
700
JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
701
NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
702
if (!UseFastLocking) {
703
lock->set_obj(obj);
704
}
705
assert(obj == lock->obj(), "must match");
706
SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
707
JRT_END
708
709
710
JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
711
NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
712
assert(current->last_Java_sp(), "last_Java_sp must be set");
713
oop obj = lock->obj();
714
assert(oopDesc::is_oop(obj), "must be NULL or an object");
715
SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
716
JRT_END
717
718
// Cf. OptoRuntime::deoptimize_caller_frame
719
JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request))
720
// Called from within the owner thread, so no need for safepoint
721
RegisterMap reg_map(current, false);
722
frame stub_frame = current->last_frame();
723
assert(stub_frame.is_runtime_frame(), "Sanity check");
724
frame caller_frame = stub_frame.sender(&reg_map);
725
nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
726
assert(nm != NULL, "Sanity check");
727
methodHandle method(current, nm->method());
728
assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
729
Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
730
Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
731
732
if (action == Deoptimization::Action_make_not_entrant) {
733
if (nm->make_not_entrant()) {
734
if (reason == Deoptimization::Reason_tenured) {
735
MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
736
if (trap_mdo != NULL) {
737
trap_mdo->inc_tenure_traps();
738
}
739
}
740
}
741
}
742
743
// Deoptimize the caller frame.
744
Deoptimization::deoptimize_frame(current, caller_frame.id());
745
// Return to the now deoptimized frame.
746
JRT_END
747
748
749
#ifndef DEOPTIMIZE_WHEN_PATCHING
750
751
static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
752
Bytecode_field field_access(caller, bci);
753
// This can be static or non-static field access
754
Bytecodes::Code code = field_access.code();
755
756
// We must load class, initialize class and resolve the field
757
fieldDescriptor result; // initialize class if needed
758
constantPoolHandle constants(THREAD, caller->constants());
759
LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
760
return result.field_holder();
761
}
762
763
764
//
765
// This routine patches sites where a class wasn't loaded or
766
// initialized at the time the code was generated. It handles
767
// references to classes, fields and forcing of initialization. Most
768
// of the cases are straightforward and involving simply forcing
769
// resolution of a class, rewriting the instruction stream with the
770
// needed constant and replacing the call in this function with the
771
// patched code. The case for static field is more complicated since
772
// the thread which is in the process of initializing a class can
773
// access it's static fields but other threads can't so the code
774
// either has to deoptimize when this case is detected or execute a
775
// check that the current thread is the initializing thread. The
776
// current
777
//
778
// Patches basically look like this:
779
//
780
//
781
// patch_site: jmp patch stub ;; will be patched
782
// continue: ...
783
// ...
784
// ...
785
// ...
786
//
787
// They have a stub which looks like this:
788
//
789
// ;; patch body
790
// movl <const>, reg (for class constants)
791
// <or> movl [reg1 + <const>], reg (for field offsets)
792
// <or> movl reg, [reg1 + <const>] (for field offsets)
793
// <being_init offset> <bytes to copy> <bytes to skip>
794
// patch_stub: call Runtime1::patch_code (through a runtime stub)
795
// jmp patch_site
796
//
797
//
798
// A normal patch is done by rewriting the patch body, usually a move,
799
// and then copying it into place over top of the jmp instruction
800
// being careful to flush caches and doing it in an MP-safe way. The
801
// constants following the patch body are used to find various pieces
802
// of the patch relative to the call site for Runtime1::patch_code.
803
// The case for getstatic and putstatic is more complicated because
804
// getstatic and putstatic have special semantics when executing while
805
// the class is being initialized. getstatic/putstatic on a class
806
// which is being_initialized may be executed by the initializing
807
// thread but other threads have to block when they execute it. This
808
// is accomplished in compiled code by executing a test of the current
809
// thread against the initializing thread of the class. It's emitted
810
// as boilerplate in their stub which allows the patched code to be
811
// executed before it's copied back into the main body of the nmethod.
812
//
813
// being_init: get_thread(<tmp reg>
814
// cmpl [reg1 + <init_thread_offset>], <tmp reg>
815
// jne patch_stub
816
// movl [reg1 + <const>], reg (for field offsets) <or>
817
// movl reg, [reg1 + <const>] (for field offsets)
818
// jmp continue
819
// <being_init offset> <bytes to copy> <bytes to skip>
820
// patch_stub: jmp Runtim1::patch_code (through a runtime stub)
821
// jmp patch_site
822
//
823
// If the class is being initialized the patch body is rewritten and
824
// the patch site is rewritten to jump to being_init, instead of
825
// patch_stub. Whenever this code is executed it checks the current
826
// thread against the intializing thread so other threads will enter
827
// the runtime and end up blocked waiting the class to finish
828
// initializing inside the calls to resolve_field below. The
829
// initializing class will continue on it's way. Once the class is
830
// fully_initialized, the intializing_thread of the class becomes
831
// NULL, so the next thread to execute this code will fail the test,
832
// call into patch_code and complete the patching process by copying
833
// the patch body back into the main part of the nmethod and resume
834
// executing.
835
836
// NB:
837
//
838
// Patchable instruction sequences inherently exhibit race conditions,
839
// where thread A is patching an instruction at the same time thread B
840
// is executing it. The algorithms we use ensure that any observation
841
// that B can make on any intermediate states during A's patching will
842
// always end up with a correct outcome. This is easiest if there are
843
// few or no intermediate states. (Some inline caches have two
844
// related instructions that must be patched in tandem. For those,
845
// intermediate states seem to be unavoidable, but we will get the
846
// right answer from all possible observation orders.)
847
//
848
// When patching the entry instruction at the head of a method, or a
849
// linkable call instruction inside of a method, we try very hard to
850
// use a patch sequence which executes as a single memory transaction.
851
// This means, in practice, that when thread A patches an instruction,
852
// it should patch a 32-bit or 64-bit word that somehow overlaps the
853
// instruction or is contained in it. We believe that memory hardware
854
// will never break up such a word write, if it is naturally aligned
855
// for the word being written. We also know that some CPUs work very
856
// hard to create atomic updates even of naturally unaligned words,
857
// but we don't want to bet the farm on this always working.
858
//
859
// Therefore, if there is any chance of a race condition, we try to
860
// patch only naturally aligned words, as single, full-word writes.
861
862
JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id ))
863
NOT_PRODUCT(_patch_code_slowcase_cnt++;)
864
865
ResourceMark rm(current);
866
RegisterMap reg_map(current, false);
867
frame runtime_frame = current->last_frame();
868
frame caller_frame = runtime_frame.sender(&reg_map);
869
870
// last java frame on stack
871
vframeStream vfst(current, true);
872
assert(!vfst.at_end(), "Java frame must exist");
873
874
methodHandle caller_method(current, vfst.method());
875
// Note that caller_method->code() may not be same as caller_code because of OSR's
876
// Note also that in the presence of inlining it is not guaranteed
877
// that caller_method() == caller_code->method()
878
879
int bci = vfst.bci();
880
Bytecodes::Code code = caller_method()->java_code_at(bci);
881
882
// this is used by assertions in the access_field_patching_id
883
BasicType patch_field_type = T_ILLEGAL;
884
bool deoptimize_for_volatile = false;
885
bool deoptimize_for_atomic = false;
886
int patch_field_offset = -1;
887
Klass* init_klass = NULL; // klass needed by load_klass_patching code
888
Klass* load_klass = NULL; // klass needed by load_klass_patching code
889
Handle mirror(current, NULL); // oop needed by load_mirror_patching code
890
Handle appendix(current, NULL); // oop needed by appendix_patching code
891
bool load_klass_or_mirror_patch_id =
892
(stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
893
894
if (stub_id == Runtime1::access_field_patching_id) {
895
896
Bytecode_field field_access(caller_method, bci);
897
fieldDescriptor result; // initialize class if needed
898
Bytecodes::Code code = field_access.code();
899
constantPoolHandle constants(current, caller_method->constants());
900
LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
901
patch_field_offset = result.offset();
902
903
// If we're patching a field which is volatile then at compile it
904
// must not have been know to be volatile, so the generated code
905
// isn't correct for a volatile reference. The nmethod has to be
906
// deoptimized so that the code can be regenerated correctly.
907
// This check is only needed for access_field_patching since this
908
// is the path for patching field offsets. load_klass is only
909
// used for patching references to oops which don't need special
910
// handling in the volatile case.
911
912
deoptimize_for_volatile = result.access_flags().is_volatile();
913
914
// If we are patching a field which should be atomic, then
915
// the generated code is not correct either, force deoptimizing.
916
// We need to only cover T_LONG and T_DOUBLE fields, as we can
917
// break access atomicity only for them.
918
919
// Strictly speaking, the deoptimization on 64-bit platforms
920
// is unnecessary, and T_LONG stores on 32-bit platforms need
921
// to be handled by special patching code when AlwaysAtomicAccesses
922
// becomes product feature. At this point, we are still going
923
// for the deoptimization for consistency against volatile
924
// accesses.
925
926
patch_field_type = result.field_type();
927
deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
928
929
} else if (load_klass_or_mirror_patch_id) {
930
Klass* k = NULL;
931
switch (code) {
932
case Bytecodes::_putstatic:
933
case Bytecodes::_getstatic:
934
{ Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
935
init_klass = klass;
936
mirror = Handle(current, klass->java_mirror());
937
}
938
break;
939
case Bytecodes::_new:
940
{ Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
941
k = caller_method->constants()->klass_at(bnew.index(), CHECK);
942
}
943
break;
944
case Bytecodes::_multianewarray:
945
{ Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
946
k = caller_method->constants()->klass_at(mna.index(), CHECK);
947
}
948
break;
949
case Bytecodes::_instanceof:
950
{ Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
951
k = caller_method->constants()->klass_at(io.index(), CHECK);
952
}
953
break;
954
case Bytecodes::_checkcast:
955
{ Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
956
k = caller_method->constants()->klass_at(cc.index(), CHECK);
957
}
958
break;
959
case Bytecodes::_anewarray:
960
{ Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
961
Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
962
k = ek->array_klass(CHECK);
963
}
964
break;
965
case Bytecodes::_ldc:
966
case Bytecodes::_ldc_w:
967
{
968
Bytecode_loadconstant cc(caller_method, bci);
969
oop m = cc.resolve_constant(CHECK);
970
mirror = Handle(current, m);
971
}
972
break;
973
default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
974
}
975
load_klass = k;
976
} else if (stub_id == load_appendix_patching_id) {
977
Bytecode_invoke bytecode(caller_method, bci);
978
Bytecodes::Code bc = bytecode.invoke_code();
979
980
CallInfo info;
981
constantPoolHandle pool(current, caller_method->constants());
982
int index = bytecode.index();
983
LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
984
switch (bc) {
985
case Bytecodes::_invokehandle: {
986
int cache_index = ConstantPool::decode_cpcache_index(index, true);
987
assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
988
ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
989
cpce->set_method_handle(pool, info);
990
appendix = Handle(current, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
991
break;
992
}
993
case Bytecodes::_invokedynamic: {
994
ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
995
cpce->set_dynamic_call(pool, info);
996
appendix = Handle(current, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
997
break;
998
}
999
default: fatal("unexpected bytecode for load_appendix_patching_id");
1000
}
1001
} else {
1002
ShouldNotReachHere();
1003
}
1004
1005
if (deoptimize_for_volatile || deoptimize_for_atomic) {
1006
// At compile time we assumed the field wasn't volatile/atomic but after
1007
// loading it turns out it was volatile/atomic so we have to throw the
1008
// compiled code out and let it be regenerated.
1009
if (TracePatching) {
1010
if (deoptimize_for_volatile) {
1011
tty->print_cr("Deoptimizing for patching volatile field reference");
1012
}
1013
if (deoptimize_for_atomic) {
1014
tty->print_cr("Deoptimizing for patching atomic field reference");
1015
}
1016
}
1017
1018
// It's possible the nmethod was invalidated in the last
1019
// safepoint, but if it's still alive then make it not_entrant.
1020
nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1021
if (nm != NULL) {
1022
nm->make_not_entrant();
1023
}
1024
1025
Deoptimization::deoptimize_frame(current, caller_frame.id());
1026
1027
// Return to the now deoptimized frame.
1028
}
1029
1030
// Now copy code back
1031
1032
{
1033
MutexLocker ml_patch (current, Patching_lock, Mutex::_no_safepoint_check_flag);
1034
//
1035
// Deoptimization may have happened while we waited for the lock.
1036
// In that case we don't bother to do any patching we just return
1037
// and let the deopt happen
1038
if (!caller_is_deopted(current)) {
1039
NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1040
address instr_pc = jump->jump_destination();
1041
NativeInstruction* ni = nativeInstruction_at(instr_pc);
1042
if (ni->is_jump() ) {
1043
// the jump has not been patched yet
1044
// The jump destination is slow case and therefore not part of the stubs
1045
// (stubs are only for StaticCalls)
1046
1047
// format of buffer
1048
// ....
1049
// instr byte 0 <-- copy_buff
1050
// instr byte 1
1051
// ..
1052
// instr byte n-1
1053
// n
1054
// .... <-- call destination
1055
1056
address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1057
unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1058
unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1059
unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1060
address copy_buff = stub_location - *byte_skip - *byte_count;
1061
address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1062
if (TracePatching) {
1063
ttyLocker ttyl;
1064
tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci,
1065
p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1066
nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1067
assert(caller_code != NULL, "nmethod not found");
1068
1069
// NOTE we use pc() not original_pc() because we already know they are
1070
// identical otherwise we'd have never entered this block of code
1071
1072
const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1073
assert(map != NULL, "null check");
1074
map->print();
1075
tty->cr();
1076
1077
Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1078
}
1079
// depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1080
bool do_patch = true;
1081
if (stub_id == Runtime1::access_field_patching_id) {
1082
// The offset may not be correct if the class was not loaded at code generation time.
1083
// Set it now.
1084
NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1085
assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1086
assert(patch_field_offset >= 0, "illegal offset");
1087
n_move->add_offset_in_bytes(patch_field_offset);
1088
} else if (load_klass_or_mirror_patch_id) {
1089
// If a getstatic or putstatic is referencing a klass which
1090
// isn't fully initialized, the patch body isn't copied into
1091
// place until initialization is complete. In this case the
1092
// patch site is setup so that any threads besides the
1093
// initializing thread are forced to come into the VM and
1094
// block.
1095
do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1096
InstanceKlass::cast(init_klass)->is_initialized();
1097
NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1098
if (jump->jump_destination() == being_initialized_entry) {
1099
assert(do_patch == true, "initialization must be complete at this point");
1100
} else {
1101
// patch the instruction <move reg, klass>
1102
NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1103
1104
assert(n_copy->data() == 0 ||
1105
n_copy->data() == (intptr_t)Universe::non_oop_word(),
1106
"illegal init value");
1107
if (stub_id == Runtime1::load_klass_patching_id) {
1108
assert(load_klass != NULL, "klass not set");
1109
n_copy->set_data((intx) (load_klass));
1110
} else {
1111
assert(mirror() != NULL, "klass not set");
1112
// Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1113
n_copy->set_data(cast_from_oop<intx>(mirror()));
1114
}
1115
1116
if (TracePatching) {
1117
Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1118
}
1119
}
1120
} else if (stub_id == Runtime1::load_appendix_patching_id) {
1121
NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1122
assert(n_copy->data() == 0 ||
1123
n_copy->data() == (intptr_t)Universe::non_oop_word(),
1124
"illegal init value");
1125
n_copy->set_data(cast_from_oop<intx>(appendix()));
1126
1127
if (TracePatching) {
1128
Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1129
}
1130
} else {
1131
ShouldNotReachHere();
1132
}
1133
1134
#if defined(PPC32)
1135
if (load_klass_or_mirror_patch_id ||
1136
stub_id == Runtime1::load_appendix_patching_id) {
1137
// Update the location in the nmethod with the proper
1138
// metadata. When the code was generated, a NULL was stuffed
1139
// in the metadata table and that table needs to be update to
1140
// have the right value. On intel the value is kept
1141
// directly in the instruction instead of in the metadata
1142
// table, so set_data above effectively updated the value.
1143
nmethod* nm = CodeCache::find_nmethod(instr_pc);
1144
assert(nm != NULL, "invalid nmethod_pc");
1145
RelocIterator mds(nm, copy_buff, copy_buff + 1);
1146
bool found = false;
1147
while (mds.next() && !found) {
1148
if (mds.type() == relocInfo::oop_type) {
1149
assert(stub_id == Runtime1::load_mirror_patching_id ||
1150
stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1151
oop_Relocation* r = mds.oop_reloc();
1152
oop* oop_adr = r->oop_addr();
1153
*oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1154
r->fix_oop_relocation();
1155
found = true;
1156
} else if (mds.type() == relocInfo::metadata_type) {
1157
assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1158
metadata_Relocation* r = mds.metadata_reloc();
1159
Metadata** metadata_adr = r->metadata_addr();
1160
*metadata_adr = load_klass;
1161
r->fix_metadata_relocation();
1162
found = true;
1163
}
1164
}
1165
assert(found, "the metadata must exist!");
1166
}
1167
#endif
1168
if (do_patch) {
1169
// replace instructions
1170
// first replace the tail, then the call
1171
#ifdef ARM
1172
if((load_klass_or_mirror_patch_id ||
1173
stub_id == Runtime1::load_appendix_patching_id) &&
1174
nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1175
nmethod* nm = CodeCache::find_nmethod(instr_pc);
1176
address addr = NULL;
1177
assert(nm != NULL, "invalid nmethod_pc");
1178
RelocIterator mds(nm, copy_buff, copy_buff + 1);
1179
while (mds.next()) {
1180
if (mds.type() == relocInfo::oop_type) {
1181
assert(stub_id == Runtime1::load_mirror_patching_id ||
1182
stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1183
oop_Relocation* r = mds.oop_reloc();
1184
addr = (address)r->oop_addr();
1185
break;
1186
} else if (mds.type() == relocInfo::metadata_type) {
1187
assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1188
metadata_Relocation* r = mds.metadata_reloc();
1189
addr = (address)r->metadata_addr();
1190
break;
1191
}
1192
}
1193
assert(addr != NULL, "metadata relocation must exist");
1194
copy_buff -= *byte_count;
1195
NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1196
n_copy2->set_pc_relative_offset(addr, instr_pc);
1197
}
1198
#endif
1199
1200
for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1201
address ptr = copy_buff + i;
1202
int a_byte = (*ptr) & 0xFF;
1203
address dst = instr_pc + i;
1204
*(unsigned char*)dst = (unsigned char) a_byte;
1205
}
1206
ICache::invalidate_range(instr_pc, *byte_count);
1207
NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1208
1209
if (load_klass_or_mirror_patch_id ||
1210
stub_id == Runtime1::load_appendix_patching_id) {
1211
relocInfo::relocType rtype =
1212
(stub_id == Runtime1::load_klass_patching_id) ?
1213
relocInfo::metadata_type :
1214
relocInfo::oop_type;
1215
// update relocInfo to metadata
1216
nmethod* nm = CodeCache::find_nmethod(instr_pc);
1217
assert(nm != NULL, "invalid nmethod_pc");
1218
1219
// The old patch site is now a move instruction so update
1220
// the reloc info so that it will get updated during
1221
// future GCs.
1222
RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1223
relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1224
relocInfo::none, rtype);
1225
#ifdef PPC32
1226
{ address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1227
RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1228
relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1229
relocInfo::none, rtype);
1230
}
1231
#endif
1232
}
1233
1234
} else {
1235
ICache::invalidate_range(copy_buff, *byte_count);
1236
NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1237
}
1238
}
1239
}
1240
}
1241
1242
// If we are patching in a non-perm oop, make sure the nmethod
1243
// is on the right list.
1244
{
1245
MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1246
nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1247
guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1248
1249
// Since we've patched some oops in the nmethod,
1250
// (re)register it with the heap.
1251
Universe::heap()->register_nmethod(nm);
1252
}
1253
JRT_END
1254
1255
#else // DEOPTIMIZE_WHEN_PATCHING
1256
1257
void Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id) {
1258
NOT_PRODUCT(_patch_code_slowcase_cnt++);
1259
1260
// Enable WXWrite: the function is called by c1 stub as a runtime function
1261
// (see another implementation above).
1262
MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1263
1264
if (TracePatching) {
1265
tty->print_cr("Deoptimizing because patch is needed");
1266
}
1267
1268
RegisterMap reg_map(current, false);
1269
1270
frame runtime_frame = current->last_frame();
1271
frame caller_frame = runtime_frame.sender(&reg_map);
1272
assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1273
1274
// Make sure the nmethod is invalidated, i.e. made not entrant.
1275
nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1276
if (nm != NULL) {
1277
nm->make_not_entrant();
1278
}
1279
1280
Deoptimization::deoptimize_frame(current, caller_frame.id());
1281
// Return to the now deoptimized frame.
1282
postcond(caller_is_deopted(current));
1283
}
1284
1285
#endif // DEOPTIMIZE_WHEN_PATCHING
1286
1287
// Entry point for compiled code. We want to patch a nmethod.
1288
// We don't do a normal VM transition here because we want to
1289
// know after the patching is complete and any safepoint(s) are taken
1290
// if the calling nmethod was deoptimized. We do this by calling a
1291
// helper method which does the normal VM transition and when it
1292
// completes we can check for deoptimization. This simplifies the
1293
// assembly code in the cpu directories.
1294
//
1295
int Runtime1::move_klass_patching(JavaThread* current) {
1296
//
1297
// NOTE: we are still in Java
1298
//
1299
debug_only(NoHandleMark nhm;)
1300
{
1301
// Enter VM mode
1302
ResetNoHandleMark rnhm;
1303
patch_code(current, load_klass_patching_id);
1304
}
1305
// Back in JAVA, use no oops DON'T safepoint
1306
1307
// Return true if calling code is deoptimized
1308
1309
return caller_is_deopted(current);
1310
}
1311
1312
int Runtime1::move_mirror_patching(JavaThread* current) {
1313
//
1314
// NOTE: we are still in Java
1315
//
1316
debug_only(NoHandleMark nhm;)
1317
{
1318
// Enter VM mode
1319
ResetNoHandleMark rnhm;
1320
patch_code(current, load_mirror_patching_id);
1321
}
1322
// Back in JAVA, use no oops DON'T safepoint
1323
1324
// Return true if calling code is deoptimized
1325
1326
return caller_is_deopted(current);
1327
}
1328
1329
int Runtime1::move_appendix_patching(JavaThread* current) {
1330
//
1331
// NOTE: we are still in Java
1332
//
1333
debug_only(NoHandleMark nhm;)
1334
{
1335
// Enter VM mode
1336
ResetNoHandleMark rnhm;
1337
patch_code(current, load_appendix_patching_id);
1338
}
1339
// Back in JAVA, use no oops DON'T safepoint
1340
1341
// Return true if calling code is deoptimized
1342
1343
return caller_is_deopted(current);
1344
}
1345
1346
// Entry point for compiled code. We want to patch a nmethod.
1347
// We don't do a normal VM transition here because we want to
1348
// know after the patching is complete and any safepoint(s) are taken
1349
// if the calling nmethod was deoptimized. We do this by calling a
1350
// helper method which does the normal VM transition and when it
1351
// completes we can check for deoptimization. This simplifies the
1352
// assembly code in the cpu directories.
1353
//
1354
int Runtime1::access_field_patching(JavaThread* current) {
1355
//
1356
// NOTE: we are still in Java
1357
//
1358
// Handles created in this function will be deleted by the
1359
// HandleMarkCleaner in the transition to the VM.
1360
NoHandleMark nhm;
1361
{
1362
// Enter VM mode
1363
ResetNoHandleMark rnhm;
1364
patch_code(current, access_field_patching_id);
1365
}
1366
// Back in JAVA, use no oops DON'T safepoint
1367
1368
// Return true if calling code is deoptimized
1369
1370
return caller_is_deopted(current);
1371
}
1372
1373
1374
JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1375
// for now we just print out the block id
1376
tty->print("%d ", block_id);
1377
JRT_END
1378
1379
1380
JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1381
// had to return int instead of bool, otherwise there may be a mismatch
1382
// between the C calling convention and the Java one.
1383
// e.g., on x86, GCC may clear only %al when returning a bool false, but
1384
// JVM takes the whole %eax as the return value, which may misinterpret
1385
// the return value as a boolean true.
1386
1387
assert(mirror != NULL, "should null-check on mirror before calling");
1388
Klass* k = java_lang_Class::as_Klass(mirror);
1389
return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1390
JRT_END
1391
1392
JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current))
1393
ResourceMark rm;
1394
1395
RegisterMap reg_map(current, false);
1396
frame runtime_frame = current->last_frame();
1397
frame caller_frame = runtime_frame.sender(&reg_map);
1398
1399
nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1400
assert (nm != NULL, "no more nmethod?");
1401
nm->make_not_entrant();
1402
1403
methodHandle m(current, nm->method());
1404
MethodData* mdo = m->method_data();
1405
1406
if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1407
// Build an MDO. Ignore errors like OutOfMemory;
1408
// that simply means we won't have an MDO to update.
1409
Method::build_interpreter_method_data(m, THREAD);
1410
if (HAS_PENDING_EXCEPTION) {
1411
// Only metaspace OOM is expected. No Java code executed.
1412
assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1413
CLEAR_PENDING_EXCEPTION;
1414
}
1415
mdo = m->method_data();
1416
}
1417
1418
if (mdo != NULL) {
1419
mdo->inc_trap_count(Deoptimization::Reason_none);
1420
}
1421
1422
if (TracePredicateFailedTraps) {
1423
stringStream ss1, ss2;
1424
vframeStream vfst(current);
1425
Method* inlinee = vfst.method();
1426
inlinee->print_short_name(&ss1);
1427
m->print_short_name(&ss2);
1428
tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1429
}
1430
1431
1432
Deoptimization::deoptimize_frame(current, caller_frame.id());
1433
1434
JRT_END
1435
1436
#ifndef PRODUCT
1437
void Runtime1::print_statistics() {
1438
tty->print_cr("C1 Runtime statistics:");
1439
tty->print_cr(" _resolve_invoke_virtual_cnt: %d", SharedRuntime::_resolve_virtual_ctr);
1440
tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1441
tty->print_cr(" _resolve_invoke_static_cnt: %d", SharedRuntime::_resolve_static_ctr);
1442
tty->print_cr(" _handle_wrong_method_cnt: %d", SharedRuntime::_wrong_method_ctr);
1443
tty->print_cr(" _ic_miss_cnt: %d", SharedRuntime::_ic_miss_ctr);
1444
tty->print_cr(" _generic_arraycopystub_cnt: %d", _generic_arraycopystub_cnt);
1445
tty->print_cr(" _byte_arraycopy_cnt: %d", _byte_arraycopy_stub_cnt);
1446
tty->print_cr(" _short_arraycopy_cnt: %d", _short_arraycopy_stub_cnt);
1447
tty->print_cr(" _int_arraycopy_cnt: %d", _int_arraycopy_stub_cnt);
1448
tty->print_cr(" _long_arraycopy_cnt: %d", _long_arraycopy_stub_cnt);
1449
tty->print_cr(" _oop_arraycopy_cnt: %d", _oop_arraycopy_stub_cnt);
1450
tty->print_cr(" _arraycopy_slowcase_cnt: %d", _arraycopy_slowcase_cnt);
1451
tty->print_cr(" _arraycopy_checkcast_cnt: %d", _arraycopy_checkcast_cnt);
1452
tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1453
1454
tty->print_cr(" _new_type_array_slowcase_cnt: %d", _new_type_array_slowcase_cnt);
1455
tty->print_cr(" _new_object_array_slowcase_cnt: %d", _new_object_array_slowcase_cnt);
1456
tty->print_cr(" _new_instance_slowcase_cnt: %d", _new_instance_slowcase_cnt);
1457
tty->print_cr(" _new_multi_array_slowcase_cnt: %d", _new_multi_array_slowcase_cnt);
1458
tty->print_cr(" _monitorenter_slowcase_cnt: %d", _monitorenter_slowcase_cnt);
1459
tty->print_cr(" _monitorexit_slowcase_cnt: %d", _monitorexit_slowcase_cnt);
1460
tty->print_cr(" _patch_code_slowcase_cnt: %d", _patch_code_slowcase_cnt);
1461
1462
tty->print_cr(" _throw_range_check_exception_count: %d:", _throw_range_check_exception_count);
1463
tty->print_cr(" _throw_index_exception_count: %d:", _throw_index_exception_count);
1464
tty->print_cr(" _throw_div0_exception_count: %d:", _throw_div0_exception_count);
1465
tty->print_cr(" _throw_null_pointer_exception_count: %d:", _throw_null_pointer_exception_count);
1466
tty->print_cr(" _throw_class_cast_exception_count: %d:", _throw_class_cast_exception_count);
1467
tty->print_cr(" _throw_incompatible_class_change_error_count: %d:", _throw_incompatible_class_change_error_count);
1468
tty->print_cr(" _throw_count: %d:", _throw_count);
1469
1470
SharedRuntime::print_ic_miss_histogram();
1471
tty->cr();
1472
}
1473
#endif // PRODUCT
1474
1475