Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/code/codeHeapState.cpp
40930 views
1
/*
2
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
3
* Copyright (c) 2018, 2019 SAP SE. All rights reserved.
4
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
*
6
* This code is free software; you can redistribute it and/or modify it
7
* under the terms of the GNU General Public License version 2 only, as
8
* published by the Free Software Foundation.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*
24
*/
25
26
#include "precompiled.hpp"
27
#include "code/codeHeapState.hpp"
28
#include "compiler/compileBroker.hpp"
29
#include "runtime/safepoint.hpp"
30
#include "runtime/sweeper.hpp"
31
#include "utilities/powerOfTwo.hpp"
32
33
// -------------------------
34
// | General Description |
35
// -------------------------
36
// The CodeHeap state analytics are divided in two parts.
37
// The first part examines the entire CodeHeap and aggregates all
38
// information that is believed useful/important.
39
//
40
// Aggregation condenses the information of a piece of the CodeHeap
41
// (4096 bytes by default) into an analysis granule. These granules
42
// contain enough detail to gain initial insight while keeping the
43
// internal structure sizes in check.
44
//
45
// The second part, which consists of several, independent steps,
46
// prints the previously collected information with emphasis on
47
// various aspects.
48
//
49
// The CodeHeap is a living thing. Therefore, protection against concurrent
50
// modification (by acquiring the CodeCache_lock) is necessary. It has
51
// to be provided by the caller of the analysis functions.
52
// If the CodeCache_lock is not held, the analysis functions may print
53
// less detailed information or may just do nothing. It is by intention
54
// that an unprotected invocation is not abnormally terminated.
55
//
56
// Data collection and printing is done on an "on request" basis.
57
// While no request is being processed, there is no impact on performance.
58
// The CodeHeap state analytics do have some memory footprint.
59
// The "aggregate" step allocates some data structures to hold the aggregated
60
// information for later output. These data structures live until they are
61
// explicitly discarded (function "discard") or until the VM terminates.
62
// There is one exception: the function "all" does not leave any data
63
// structures allocated.
64
//
65
// Requests for real-time, on-the-fly analysis can be issued via
66
// jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>]
67
//
68
// If you are (only) interested in how the CodeHeap looks like after running
69
// a sample workload, you can use the command line option
70
// -XX:+PrintCodeHeapAnalytics
71
// It will cause a full analysis to be written to tty. In addition, a full
72
// analysis will be written the first time a "CodeCache full" condition is
73
// detected.
74
//
75
// The command line option produces output identical to the jcmd function
76
// jcmd <pid> Compiler.CodeHeap_Analytics all 4096
77
// ---------------------------------------------------------------------------------
78
79
// With this declaration macro, it is possible to switch between
80
// - direct output into an argument-passed outputStream and
81
// - buffered output into a bufferedStream with subsequent flush
82
// of the filled buffer to the outputStream.
83
#define USE_BUFFEREDSTREAM
84
85
// There are instances when composing an output line or a small set of
86
// output lines out of many tty->print() calls creates significant overhead.
87
// Writing to a bufferedStream buffer first has a significant advantage:
88
// It uses noticeably less cpu cycles and reduces (when writing to a
89
// network file) the required bandwidth by at least a factor of ten. Observed on MacOS.
90
// That clearly makes up for the increased code complexity.
91
//
92
// Conversion of existing code is easy and straightforward, if the code already
93
// uses a parameterized output destination, e.g. "outputStream st".
94
// - rename the formal parameter to any other name, e.g. out_st.
95
// - at a suitable place in your code, insert
96
// BUFFEREDSTEAM_DECL(buf_st, out_st)
97
// This will provide all the declarations necessary. After that, all
98
// buf_st->print() (and the like) calls will be directed to a bufferedStream object.
99
// Once a block of output (a line or a small set of lines) is composed, insert
100
// BUFFEREDSTREAM_FLUSH(termstring)
101
// to flush the bufferedStream to the final destination out_st. termstring is just
102
// an arbitrary string (e.g. "\n") which is appended to the bufferedStream before
103
// being written to out_st. Be aware that the last character written MUST be a '\n'.
104
// Otherwise, buf_st->position() does not correspond to out_st->position() any longer.
105
// BUFFEREDSTREAM_FLUSH_LOCKED(termstring)
106
// does the same thing, protected by the ttyLocker lock.
107
// BUFFEREDSTREAM_FLUSH_IF(termstring, remSize)
108
// does a flush only if the remaining buffer space is less than remSize.
109
//
110
// To activate, #define USE_BUFFERED_STREAM before including this header.
111
// If not activated, output will directly go to the originally used outputStream
112
// with no additional overhead.
113
//
114
#if defined(USE_BUFFEREDSTREAM)
115
// All necessary declarations to print via a bufferedStream
116
// This macro must be placed before any other BUFFEREDSTREAM*
117
// macro in the function.
118
#define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa) \
119
ResourceMark _rm; \
120
/* _anyst name of the stream as used in the code */ \
121
/* _outst stream where final output will go to */ \
122
/* _capa allocated capacity of stream buffer */ \
123
size_t _nflush = 0; \
124
size_t _nforcedflush = 0; \
125
size_t _nsavedflush = 0; \
126
size_t _nlockedflush = 0; \
127
size_t _nflush_bytes = 0; \
128
size_t _capacity = _capa; \
129
bufferedStream _sstobj(_capa); \
130
bufferedStream* _sstbuf = &_sstobj; \
131
outputStream* _outbuf = _outst; \
132
bufferedStream* _anyst = &_sstobj; /* any stream. Use this to just print - no buffer flush. */
133
134
// Same as above, but with fixed buffer size.
135
#define BUFFEREDSTREAM_DECL(_anyst, _outst) \
136
BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K);
137
138
// Flush the buffer contents unconditionally.
139
// No action if the buffer is empty.
140
#define BUFFEREDSTREAM_FLUSH(_termString) \
141
if (((_termString) != NULL) && (strlen(_termString) > 0)){\
142
_sstbuf->print("%s", _termString); \
143
} \
144
if (_sstbuf != _outbuf) { \
145
if (_sstbuf->size() != 0) { \
146
_nforcedflush++; _nflush_bytes += _sstbuf->size(); \
147
_outbuf->print("%s", _sstbuf->as_string()); \
148
_sstbuf->reset(); \
149
} \
150
}
151
152
// Flush the buffer contents if the remaining capacity is
153
// less than the given threshold.
154
#define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize) \
155
if (((_termString) != NULL) && (strlen(_termString) > 0)){\
156
_sstbuf->print("%s", _termString); \
157
} \
158
if (_sstbuf != _outbuf) { \
159
if ((_capacity - _sstbuf->size()) < (size_t)(_remSize)){\
160
_nflush++; _nforcedflush--; \
161
BUFFEREDSTREAM_FLUSH("") \
162
} else { \
163
_nsavedflush++; \
164
} \
165
}
166
167
// Flush the buffer contents if the remaining capacity is less
168
// than the calculated threshold (256 bytes + capacity/16)
169
// That should suffice for all reasonably sized output lines.
170
#define BUFFEREDSTREAM_FLUSH_AUTO(_termString) \
171
BUFFEREDSTREAM_FLUSH_IF(_termString, 256+(_capacity>>4))
172
173
#define BUFFEREDSTREAM_FLUSH_LOCKED(_termString) \
174
{ ttyLocker ttyl;/* keep this output block together */ \
175
_nlockedflush++; \
176
BUFFEREDSTREAM_FLUSH(_termString) \
177
}
178
179
// #define BUFFEREDSTREAM_FLUSH_STAT() \
180
// if (_sstbuf != _outbuf) { \
181
// _outbuf->print_cr("%ld flushes (buffer full), %ld forced, %ld locked, %ld bytes total, %ld flushes saved", _nflush, _nforcedflush, _nlockedflush, _nflush_bytes, _nsavedflush); \
182
// }
183
184
#define BUFFEREDSTREAM_FLUSH_STAT()
185
#else
186
#define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa) \
187
size_t _capacity = _capa; \
188
outputStream* _outbuf = _outst; \
189
outputStream* _anyst = _outst; /* any stream. Use this to just print - no buffer flush. */
190
191
#define BUFFEREDSTREAM_DECL(_anyst, _outst) \
192
BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K)
193
194
#define BUFFEREDSTREAM_FLUSH(_termString) \
195
if (((_termString) != NULL) && (strlen(_termString) > 0)){\
196
_outbuf->print("%s", _termString); \
197
}
198
199
#define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize) \
200
BUFFEREDSTREAM_FLUSH(_termString)
201
202
#define BUFFEREDSTREAM_FLUSH_AUTO(_termString) \
203
BUFFEREDSTREAM_FLUSH(_termString)
204
205
#define BUFFEREDSTREAM_FLUSH_LOCKED(_termString) \
206
BUFFEREDSTREAM_FLUSH(_termString)
207
208
#define BUFFEREDSTREAM_FLUSH_STAT()
209
#endif
210
#define HEX32_FORMAT "0x%x" // just a helper format string used below multiple times
211
212
const char blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' };
213
const char* blobTypeName[] = {"noType"
214
, "nMethod (under construction), cannot be observed"
215
, "nMethod (active)"
216
, "nMethod (inactive)"
217
, "nMethod (deopt)"
218
, "nMethod (zombie)"
219
, "nMethod (unloaded)"
220
, "runtime stub"
221
, "ricochet stub"
222
, "deopt stub"
223
, "uncommon trap stub"
224
, "exception stub"
225
, "safepoint stub"
226
, "adapter blob"
227
, "MH adapter blob"
228
, "buffer blob"
229
, "lastType"
230
};
231
const char* compTypeName[] = { "none", "c1", "c2", "jvmci" };
232
233
// Be prepared for ten different CodeHeap segments. Should be enough for a few years.
234
const unsigned int nSizeDistElements = 31; // logarithmic range growth, max size: 2**32
235
const unsigned int maxTopSizeBlocks = 100;
236
const unsigned int tsbStopper = 2 * maxTopSizeBlocks;
237
const unsigned int maxHeaps = 10;
238
static unsigned int nHeaps = 0;
239
static struct CodeHeapStat CodeHeapStatArray[maxHeaps];
240
241
// static struct StatElement *StatArray = NULL;
242
static StatElement* StatArray = NULL;
243
static int log2_seg_size = 0;
244
static size_t seg_size = 0;
245
static size_t alloc_granules = 0;
246
static size_t granule_size = 0;
247
static bool segment_granules = false;
248
static unsigned int nBlocks_t1 = 0; // counting "in_use" nmethods only.
249
static unsigned int nBlocks_t2 = 0; // counting "in_use" nmethods only.
250
static unsigned int nBlocks_alive = 0; // counting "not_used" and "not_entrant" nmethods only.
251
static unsigned int nBlocks_dead = 0; // counting "zombie" and "unloaded" methods only.
252
static unsigned int nBlocks_unloaded = 0; // counting "unloaded" nmethods only. This is a transient state.
253
static unsigned int nBlocks_stub = 0;
254
255
static struct FreeBlk* FreeArray = NULL;
256
static unsigned int alloc_freeBlocks = 0;
257
258
static struct TopSizeBlk* TopSizeArray = NULL;
259
static unsigned int alloc_topSizeBlocks = 0;
260
static unsigned int used_topSizeBlocks = 0;
261
262
static struct SizeDistributionElement* SizeDistributionArray = NULL;
263
264
// nMethod temperature (hotness) indicators.
265
static int avgTemp = 0;
266
static int maxTemp = 0;
267
static int minTemp = 0;
268
269
static unsigned int latest_compilation_id = 0;
270
static volatile bool initialization_complete = false;
271
272
const char* CodeHeapState::get_heapName(CodeHeap* heap) {
273
if (SegmentedCodeCache) {
274
return heap->name();
275
} else {
276
return "CodeHeap";
277
}
278
}
279
280
// returns the index for the heap being processed.
281
unsigned int CodeHeapState::findHeapIndex(outputStream* out, const char* heapName) {
282
if (heapName == NULL) {
283
return maxHeaps;
284
}
285
if (SegmentedCodeCache) {
286
// Search for a pre-existing entry. If found, return that index.
287
for (unsigned int i = 0; i < nHeaps; i++) {
288
if (CodeHeapStatArray[i].heapName != NULL && strcmp(heapName, CodeHeapStatArray[i].heapName) == 0) {
289
return i;
290
}
291
}
292
293
// check if there are more code heap segments than we can handle.
294
if (nHeaps == maxHeaps) {
295
out->print_cr("Too many heap segments for current limit(%d).", maxHeaps);
296
return maxHeaps;
297
}
298
299
// allocate new slot in StatArray.
300
CodeHeapStatArray[nHeaps].heapName = heapName;
301
return nHeaps++;
302
} else {
303
nHeaps = 1;
304
CodeHeapStatArray[0].heapName = heapName;
305
return 0; // This is the default index if CodeCache is not segmented.
306
}
307
}
308
309
void CodeHeapState::get_HeapStatGlobals(outputStream* out, const char* heapName) {
310
unsigned int ix = findHeapIndex(out, heapName);
311
if (ix < maxHeaps) {
312
StatArray = CodeHeapStatArray[ix].StatArray;
313
seg_size = CodeHeapStatArray[ix].segment_size;
314
log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size);
315
alloc_granules = CodeHeapStatArray[ix].alloc_granules;
316
granule_size = CodeHeapStatArray[ix].granule_size;
317
segment_granules = CodeHeapStatArray[ix].segment_granules;
318
nBlocks_t1 = CodeHeapStatArray[ix].nBlocks_t1;
319
nBlocks_t2 = CodeHeapStatArray[ix].nBlocks_t2;
320
nBlocks_alive = CodeHeapStatArray[ix].nBlocks_alive;
321
nBlocks_dead = CodeHeapStatArray[ix].nBlocks_dead;
322
nBlocks_unloaded = CodeHeapStatArray[ix].nBlocks_unloaded;
323
nBlocks_stub = CodeHeapStatArray[ix].nBlocks_stub;
324
FreeArray = CodeHeapStatArray[ix].FreeArray;
325
alloc_freeBlocks = CodeHeapStatArray[ix].alloc_freeBlocks;
326
TopSizeArray = CodeHeapStatArray[ix].TopSizeArray;
327
alloc_topSizeBlocks = CodeHeapStatArray[ix].alloc_topSizeBlocks;
328
used_topSizeBlocks = CodeHeapStatArray[ix].used_topSizeBlocks;
329
SizeDistributionArray = CodeHeapStatArray[ix].SizeDistributionArray;
330
avgTemp = CodeHeapStatArray[ix].avgTemp;
331
maxTemp = CodeHeapStatArray[ix].maxTemp;
332
minTemp = CodeHeapStatArray[ix].minTemp;
333
} else {
334
StatArray = NULL;
335
seg_size = 0;
336
log2_seg_size = 0;
337
alloc_granules = 0;
338
granule_size = 0;
339
segment_granules = false;
340
nBlocks_t1 = 0;
341
nBlocks_t2 = 0;
342
nBlocks_alive = 0;
343
nBlocks_dead = 0;
344
nBlocks_unloaded = 0;
345
nBlocks_stub = 0;
346
FreeArray = NULL;
347
alloc_freeBlocks = 0;
348
TopSizeArray = NULL;
349
alloc_topSizeBlocks = 0;
350
used_topSizeBlocks = 0;
351
SizeDistributionArray = NULL;
352
avgTemp = 0;
353
maxTemp = 0;
354
minTemp = 0;
355
}
356
}
357
358
void CodeHeapState::set_HeapStatGlobals(outputStream* out, const char* heapName) {
359
unsigned int ix = findHeapIndex(out, heapName);
360
if (ix < maxHeaps) {
361
CodeHeapStatArray[ix].StatArray = StatArray;
362
CodeHeapStatArray[ix].segment_size = seg_size;
363
CodeHeapStatArray[ix].alloc_granules = alloc_granules;
364
CodeHeapStatArray[ix].granule_size = granule_size;
365
CodeHeapStatArray[ix].segment_granules = segment_granules;
366
CodeHeapStatArray[ix].nBlocks_t1 = nBlocks_t1;
367
CodeHeapStatArray[ix].nBlocks_t2 = nBlocks_t2;
368
CodeHeapStatArray[ix].nBlocks_alive = nBlocks_alive;
369
CodeHeapStatArray[ix].nBlocks_dead = nBlocks_dead;
370
CodeHeapStatArray[ix].nBlocks_unloaded = nBlocks_unloaded;
371
CodeHeapStatArray[ix].nBlocks_stub = nBlocks_stub;
372
CodeHeapStatArray[ix].FreeArray = FreeArray;
373
CodeHeapStatArray[ix].alloc_freeBlocks = alloc_freeBlocks;
374
CodeHeapStatArray[ix].TopSizeArray = TopSizeArray;
375
CodeHeapStatArray[ix].alloc_topSizeBlocks = alloc_topSizeBlocks;
376
CodeHeapStatArray[ix].used_topSizeBlocks = used_topSizeBlocks;
377
CodeHeapStatArray[ix].SizeDistributionArray = SizeDistributionArray;
378
CodeHeapStatArray[ix].avgTemp = avgTemp;
379
CodeHeapStatArray[ix].maxTemp = maxTemp;
380
CodeHeapStatArray[ix].minTemp = minTemp;
381
}
382
}
383
384
//---< get a new statistics array >---
385
void CodeHeapState::prepare_StatArray(outputStream* out, size_t nElem, size_t granularity, const char* heapName) {
386
if (StatArray == NULL) {
387
StatArray = new StatElement[nElem];
388
//---< reset some counts >---
389
alloc_granules = nElem;
390
granule_size = granularity;
391
}
392
393
if (StatArray == NULL) {
394
//---< just do nothing if allocation failed >---
395
out->print_cr("Statistics could not be collected for %s, probably out of memory.", heapName);
396
out->print_cr("Current granularity is " SIZE_FORMAT " bytes. Try a coarser granularity.", granularity);
397
alloc_granules = 0;
398
granule_size = 0;
399
} else {
400
//---< initialize statistics array >---
401
memset((void*)StatArray, 0, nElem*sizeof(StatElement));
402
}
403
}
404
405
//---< get a new free block array >---
406
void CodeHeapState::prepare_FreeArray(outputStream* out, unsigned int nElem, const char* heapName) {
407
if (FreeArray == NULL) {
408
FreeArray = new FreeBlk[nElem];
409
//---< reset some counts >---
410
alloc_freeBlocks = nElem;
411
}
412
413
if (FreeArray == NULL) {
414
//---< just do nothing if allocation failed >---
415
out->print_cr("Free space analysis cannot be done for %s, probably out of memory.", heapName);
416
alloc_freeBlocks = 0;
417
} else {
418
//---< initialize free block array >---
419
memset((void*)FreeArray, 0, alloc_freeBlocks*sizeof(FreeBlk));
420
}
421
}
422
423
//---< get a new TopSizeArray >---
424
void CodeHeapState::prepare_TopSizeArray(outputStream* out, unsigned int nElem, const char* heapName) {
425
if (TopSizeArray == NULL) {
426
TopSizeArray = new TopSizeBlk[nElem];
427
//---< reset some counts >---
428
alloc_topSizeBlocks = nElem;
429
used_topSizeBlocks = 0;
430
}
431
432
if (TopSizeArray == NULL) {
433
//---< just do nothing if allocation failed >---
434
out->print_cr("Top-%d list of largest CodeHeap blocks can not be collected for %s, probably out of memory.", nElem, heapName);
435
alloc_topSizeBlocks = 0;
436
} else {
437
//---< initialize TopSizeArray >---
438
memset((void*)TopSizeArray, 0, nElem*sizeof(TopSizeBlk));
439
used_topSizeBlocks = 0;
440
}
441
}
442
443
//---< get a new SizeDistributionArray >---
444
void CodeHeapState::prepare_SizeDistArray(outputStream* out, unsigned int nElem, const char* heapName) {
445
if (SizeDistributionArray == NULL) {
446
SizeDistributionArray = new SizeDistributionElement[nElem];
447
}
448
449
if (SizeDistributionArray == NULL) {
450
//---< just do nothing if allocation failed >---
451
out->print_cr("Size distribution can not be collected for %s, probably out of memory.", heapName);
452
} else {
453
//---< initialize SizeDistArray >---
454
memset((void*)SizeDistributionArray, 0, nElem*sizeof(SizeDistributionElement));
455
// Logarithmic range growth. First range starts at _segment_size.
456
SizeDistributionArray[log2_seg_size-1].rangeEnd = 1U;
457
for (unsigned int i = log2_seg_size; i < nElem; i++) {
458
SizeDistributionArray[i].rangeStart = 1U << (i - log2_seg_size);
459
SizeDistributionArray[i].rangeEnd = 1U << ((i+1) - log2_seg_size);
460
}
461
}
462
}
463
464
//---< get a new SizeDistributionArray >---
465
void CodeHeapState::update_SizeDistArray(outputStream* out, unsigned int len) {
466
if (SizeDistributionArray != NULL) {
467
for (unsigned int i = log2_seg_size-1; i < nSizeDistElements; i++) {
468
if ((SizeDistributionArray[i].rangeStart <= len) && (len < SizeDistributionArray[i].rangeEnd)) {
469
SizeDistributionArray[i].lenSum += len;
470
SizeDistributionArray[i].count++;
471
break;
472
}
473
}
474
}
475
}
476
477
void CodeHeapState::discard_StatArray(outputStream* out) {
478
if (StatArray != NULL) {
479
delete StatArray;
480
StatArray = NULL;
481
alloc_granules = 0;
482
granule_size = 0;
483
}
484
}
485
486
void CodeHeapState::discard_FreeArray(outputStream* out) {
487
if (FreeArray != NULL) {
488
delete[] FreeArray;
489
FreeArray = NULL;
490
alloc_freeBlocks = 0;
491
}
492
}
493
494
void CodeHeapState::discard_TopSizeArray(outputStream* out) {
495
if (TopSizeArray != NULL) {
496
for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
497
if (TopSizeArray[i].blob_name != NULL) {
498
os::free((void*)TopSizeArray[i].blob_name);
499
}
500
}
501
delete[] TopSizeArray;
502
TopSizeArray = NULL;
503
alloc_topSizeBlocks = 0;
504
used_topSizeBlocks = 0;
505
}
506
}
507
508
void CodeHeapState::discard_SizeDistArray(outputStream* out) {
509
if (SizeDistributionArray != NULL) {
510
delete[] SizeDistributionArray;
511
SizeDistributionArray = NULL;
512
}
513
}
514
515
// Discard all allocated internal data structures.
516
// This should be done after an analysis session is completed.
517
void CodeHeapState::discard(outputStream* out, CodeHeap* heap) {
518
if (!initialization_complete) {
519
return;
520
}
521
522
if (nHeaps > 0) {
523
for (unsigned int ix = 0; ix < nHeaps; ix++) {
524
get_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
525
discard_StatArray(out);
526
discard_FreeArray(out);
527
discard_TopSizeArray(out);
528
discard_SizeDistArray(out);
529
set_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
530
CodeHeapStatArray[ix].heapName = NULL;
531
}
532
nHeaps = 0;
533
}
534
}
535
536
void CodeHeapState::aggregate(outputStream* out, CodeHeap* heap, size_t granularity) {
537
unsigned int nBlocks_free = 0;
538
unsigned int nBlocks_used = 0;
539
unsigned int nBlocks_zomb = 0;
540
unsigned int nBlocks_disconn = 0;
541
unsigned int nBlocks_notentr = 0;
542
543
//---< max & min of TopSizeArray >---
544
// it is sufficient to have these sizes as 32bit unsigned ints.
545
// The CodeHeap is limited in size to 4GB. Furthermore, the sizes
546
// are stored in _segment_size units, scaling them down by a factor of 64 (at least).
547
unsigned int currMax = 0;
548
unsigned int currMin = 0;
549
unsigned int currMin_ix = 0;
550
unsigned long total_iterations = 0;
551
552
bool done = false;
553
const int min_granules = 256;
554
const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M
555
// results in StatArray size of 24M (= max_granules * 48 Bytes per element)
556
// For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit.
557
const char* heapName = get_heapName(heap);
558
BUFFEREDSTREAM_DECL(ast, out)
559
560
if (!initialization_complete) {
561
memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray));
562
initialization_complete = true;
563
564
printBox(ast, '=', "C O D E H E A P A N A L Y S I S (general remarks)", NULL);
565
ast->print_cr(" The code heap analysis function provides deep insights into\n"
566
" the inner workings and the internal state of the Java VM's\n"
567
" code cache - the place where all the JVM generated machine\n"
568
" code is stored.\n"
569
" \n"
570
" This function is designed and provided for support engineers\n"
571
" to help them understand and solve issues in customer systems.\n"
572
" It is not intended for use and interpretation by other persons.\n"
573
" \n");
574
BUFFEREDSTREAM_FLUSH("")
575
}
576
get_HeapStatGlobals(out, heapName);
577
578
579
// Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
580
// all heap information is "constant" and can be safely extracted/calculated before we
581
// enter the while() loop. Actually, the loop will only be iterated once.
582
char* low_bound = heap->low_boundary();
583
size_t size = heap->capacity();
584
size_t res_size = heap->max_capacity();
585
seg_size = heap->segment_size();
586
log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size); // This is a global static value.
587
588
if (seg_size == 0) {
589
printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName);
590
BUFFEREDSTREAM_FLUSH("")
591
return;
592
}
593
594
if (!holding_required_locks()) {
595
printBox(ast, '-', "Must be at safepoint or hold Compile_lock and CodeCache_lock when calling aggregate function for ", heapName);
596
BUFFEREDSTREAM_FLUSH("")
597
return;
598
}
599
600
// Calculate granularity of analysis (and output).
601
// The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
602
// The CodeHeap can become fairly large, in particular in productive real-life systems.
603
//
604
// It is often neither feasible nor desirable to aggregate the data with the highest possible
605
// level of detail, i.e. inspecting and printing each segment on its own.
606
//
607
// The granularity parameter allows to specify the level of detail available in the analysis.
608
// It must be a positive multiple of the segment size and should be selected such that enough
609
// detail is provided while, at the same time, the printed output does not explode.
610
//
611
// By manipulating the granularity value, we enforce that at least min_granules units
612
// of analysis are available. We also enforce an upper limit of max_granules units to
613
// keep the amount of allocated storage in check.
614
//
615
// Finally, we adjust the granularity such that each granule covers at most 64k-1 segments.
616
// This is necessary to prevent an unsigned short overflow while accumulating space information.
617
//
618
assert(granularity > 0, "granularity should be positive.");
619
620
if (granularity > size) {
621
granularity = size;
622
}
623
if (size/granularity < min_granules) {
624
granularity = size/min_granules; // at least min_granules granules
625
}
626
granularity = granularity & (~(seg_size - 1)); // must be multiple of seg_size
627
if (granularity < seg_size) {
628
granularity = seg_size; // must be at least seg_size
629
}
630
if (size/granularity > max_granules) {
631
granularity = size/max_granules; // at most max_granules granules
632
}
633
granularity = granularity & (~(seg_size - 1)); // must be multiple of seg_size
634
if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) {
635
granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size
636
}
637
segment_granules = granularity == seg_size;
638
size_t granules = (size + (granularity-1))/granularity;
639
640
printBox(ast, '=', "C O D E H E A P A N A L Y S I S (used blocks) for segment ", heapName);
641
ast->print_cr(" The aggregate step takes an aggregated snapshot of the CodeHeap.\n"
642
" Subsequent print functions create their output based on this snapshot.\n"
643
" The CodeHeap is a living thing, and every effort has been made for the\n"
644
" collected data to be consistent. Only the method names and signatures\n"
645
" are retrieved at print time. That may lead to rare cases where the\n"
646
" name of a method is no longer available, e.g. because it was unloaded.\n");
647
ast->print_cr(" CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied.",
648
size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size));
649
ast->print_cr(" CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", seg_size);
650
ast->print_cr(" CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes.", granules, granularity);
651
ast->print_cr(" Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K);
652
ast->print_cr(" The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules));
653
BUFFEREDSTREAM_FLUSH("\n")
654
655
656
while (!done) {
657
//---< reset counters with every aggregation >---
658
nBlocks_t1 = 0;
659
nBlocks_t2 = 0;
660
nBlocks_alive = 0;
661
nBlocks_dead = 0;
662
nBlocks_unloaded = 0;
663
nBlocks_stub = 0;
664
665
nBlocks_free = 0;
666
nBlocks_used = 0;
667
nBlocks_zomb = 0;
668
nBlocks_disconn = 0;
669
nBlocks_notentr = 0;
670
671
//---< discard old arrays if size does not match >---
672
if (granules != alloc_granules) {
673
discard_StatArray(out);
674
discard_TopSizeArray(out);
675
}
676
677
//---< allocate arrays if they don't yet exist, initialize >---
678
prepare_StatArray(out, granules, granularity, heapName);
679
if (StatArray == NULL) {
680
set_HeapStatGlobals(out, heapName);
681
return;
682
}
683
prepare_TopSizeArray(out, maxTopSizeBlocks, heapName);
684
prepare_SizeDistArray(out, nSizeDistElements, heapName);
685
686
latest_compilation_id = CompileBroker::get_compilation_id();
687
unsigned int highest_compilation_id = 0;
688
size_t usedSpace = 0;
689
size_t t1Space = 0;
690
size_t t2Space = 0;
691
size_t aliveSpace = 0;
692
size_t disconnSpace = 0;
693
size_t notentrSpace = 0;
694
size_t deadSpace = 0;
695
size_t unloadedSpace = 0;
696
size_t stubSpace = 0;
697
size_t freeSpace = 0;
698
size_t maxFreeSize = 0;
699
HeapBlock* maxFreeBlock = NULL;
700
bool insane = false;
701
702
int64_t hotnessAccumulator = 0;
703
unsigned int n_methods = 0;
704
avgTemp = 0;
705
minTemp = (int)(res_size > M ? (res_size/M)*2 : 1);
706
maxTemp = -minTemp;
707
708
for (HeapBlock *h = heap->first_block(); h != NULL && !insane; h = heap->next_block(h)) {
709
unsigned int hb_len = (unsigned int)h->length(); // despite being size_t, length can never overflow an unsigned int.
710
size_t hb_bytelen = ((size_t)hb_len)<<log2_seg_size;
711
unsigned int ix_beg = (unsigned int)(((char*)h-low_bound)/granule_size);
712
unsigned int ix_end = (unsigned int)(((char*)h-low_bound+(hb_bytelen-1))/granule_size);
713
unsigned int compile_id = 0;
714
CompLevel comp_lvl = CompLevel_none;
715
compType cType = noComp;
716
blobType cbType = noType;
717
718
//---< some sanity checks >---
719
// Do not assert here, just check, print error message and return.
720
// This is a diagnostic function. It is not supposed to tear down the VM.
721
if ((char*)h < low_bound) {
722
insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound);
723
}
724
if ((char*)h > (low_bound + res_size)) {
725
insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside reserved range (%p)", (char*)h, low_bound + res_size);
726
}
727
if ((char*)h > (low_bound + size)) {
728
insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside used range (%p)", (char*)h, low_bound + size);
729
}
730
if (ix_end >= granules) {
731
insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")", ix_end, granules);
732
}
733
if (size != heap->capacity()) {
734
insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)", size/(size_t)K, heap->capacity()/(size_t)K);
735
}
736
if (ix_beg > ix_end) {
737
insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg);
738
}
739
if (insane) {
740
BUFFEREDSTREAM_FLUSH("")
741
continue;
742
}
743
744
if (h->free()) {
745
nBlocks_free++;
746
freeSpace += hb_bytelen;
747
if (hb_bytelen > maxFreeSize) {
748
maxFreeSize = hb_bytelen;
749
maxFreeBlock = h;
750
}
751
} else {
752
update_SizeDistArray(out, hb_len);
753
nBlocks_used++;
754
usedSpace += hb_bytelen;
755
CodeBlob* cb = (CodeBlob*)heap->find_start(h);
756
cbType = get_cbType(cb); // Will check for cb == NULL and other safety things.
757
if (cbType != noType) {
758
const char* blob_name = os::strdup(cb->name());
759
unsigned int nm_size = 0;
760
int temperature = 0;
761
nmethod* nm = cb->as_nmethod_or_null();
762
if (nm != NULL) { // no is_readable check required, nm = (nmethod*)cb.
763
ResourceMark rm;
764
Method* method = nm->method();
765
if (nm->is_in_use()) {
766
blob_name = os::strdup(method->name_and_sig_as_C_string());
767
}
768
if (nm->is_not_entrant()) {
769
blob_name = os::strdup(method->name_and_sig_as_C_string());
770
}
771
772
nm_size = nm->total_size();
773
compile_id = nm->compile_id();
774
comp_lvl = (CompLevel)(nm->comp_level());
775
if (nm->is_compiled_by_c1()) {
776
cType = c1;
777
}
778
if (nm->is_compiled_by_c2()) {
779
cType = c2;
780
}
781
if (nm->is_compiled_by_jvmci()) {
782
cType = jvmci;
783
}
784
switch (cbType) {
785
case nMethod_inuse: { // only for executable methods!!!
786
// space for these cbs is accounted for later.
787
temperature = nm->hotness_counter();
788
hotnessAccumulator += temperature;
789
n_methods++;
790
maxTemp = (temperature > maxTemp) ? temperature : maxTemp;
791
minTemp = (temperature < minTemp) ? temperature : minTemp;
792
break;
793
}
794
case nMethod_notused:
795
nBlocks_alive++;
796
nBlocks_disconn++;
797
aliveSpace += hb_bytelen;
798
disconnSpace += hb_bytelen;
799
break;
800
case nMethod_notentrant: // equivalent to nMethod_alive
801
nBlocks_alive++;
802
nBlocks_notentr++;
803
aliveSpace += hb_bytelen;
804
notentrSpace += hb_bytelen;
805
break;
806
case nMethod_unloaded:
807
nBlocks_unloaded++;
808
unloadedSpace += hb_bytelen;
809
break;
810
case nMethod_dead:
811
nBlocks_dead++;
812
deadSpace += hb_bytelen;
813
break;
814
default:
815
break;
816
}
817
}
818
819
//------------------------------------------
820
//---< register block in TopSizeArray >---
821
//------------------------------------------
822
if (alloc_topSizeBlocks > 0) {
823
if (used_topSizeBlocks == 0) {
824
TopSizeArray[0].start = h;
825
TopSizeArray[0].blob_name = blob_name;
826
TopSizeArray[0].len = hb_len;
827
TopSizeArray[0].index = tsbStopper;
828
TopSizeArray[0].nm_size = nm_size;
829
TopSizeArray[0].temperature = temperature;
830
TopSizeArray[0].compiler = cType;
831
TopSizeArray[0].level = comp_lvl;
832
TopSizeArray[0].type = cbType;
833
currMax = hb_len;
834
currMin = hb_len;
835
currMin_ix = 0;
836
used_topSizeBlocks++;
837
blob_name = NULL; // indicate blob_name was consumed
838
// This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats):
839
} else if ((used_topSizeBlocks < alloc_topSizeBlocks) && (hb_len < currMin)) {
840
//---< all blocks in list are larger, but there is room left in array >---
841
TopSizeArray[currMin_ix].index = used_topSizeBlocks;
842
TopSizeArray[used_topSizeBlocks].start = h;
843
TopSizeArray[used_topSizeBlocks].blob_name = blob_name;
844
TopSizeArray[used_topSizeBlocks].len = hb_len;
845
TopSizeArray[used_topSizeBlocks].index = tsbStopper;
846
TopSizeArray[used_topSizeBlocks].nm_size = nm_size;
847
TopSizeArray[used_topSizeBlocks].temperature = temperature;
848
TopSizeArray[used_topSizeBlocks].compiler = cType;
849
TopSizeArray[used_topSizeBlocks].level = comp_lvl;
850
TopSizeArray[used_topSizeBlocks].type = cbType;
851
currMin = hb_len;
852
currMin_ix = used_topSizeBlocks;
853
used_topSizeBlocks++;
854
blob_name = NULL; // indicate blob_name was consumed
855
} else {
856
// This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats):
857
// We don't need to search the list if we know beforehand that the current block size is
858
// smaller than the currently recorded minimum and there is no free entry left in the list.
859
if (!((used_topSizeBlocks == alloc_topSizeBlocks) && (hb_len <= currMin))) {
860
if (currMax < hb_len) {
861
currMax = hb_len;
862
}
863
unsigned int i;
864
unsigned int prev_i = tsbStopper;
865
unsigned int limit_i = 0;
866
for (i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
867
if (limit_i++ >= alloc_topSizeBlocks) {
868
insane = true; break; // emergency exit
869
}
870
if (i >= used_topSizeBlocks) {
871
insane = true; break; // emergency exit
872
}
873
total_iterations++;
874
if (TopSizeArray[i].len < hb_len) {
875
//---< We want to insert here, element <i> is smaller than the current one >---
876
if (used_topSizeBlocks < alloc_topSizeBlocks) { // still room for a new entry to insert
877
// old entry gets moved to the next free element of the array.
878
// That's necessary to keep the entry for the largest block at index 0.
879
// This move might cause the current minimum to be moved to another place
880
if (i == currMin_ix) {
881
assert(TopSizeArray[i].len == currMin, "sort error");
882
currMin_ix = used_topSizeBlocks;
883
}
884
memcpy((void*)&TopSizeArray[used_topSizeBlocks], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
885
TopSizeArray[i].start = h;
886
TopSizeArray[i].blob_name = blob_name;
887
TopSizeArray[i].len = hb_len;
888
TopSizeArray[i].index = used_topSizeBlocks;
889
TopSizeArray[i].nm_size = nm_size;
890
TopSizeArray[i].temperature = temperature;
891
TopSizeArray[i].compiler = cType;
892
TopSizeArray[i].level = comp_lvl;
893
TopSizeArray[i].type = cbType;
894
used_topSizeBlocks++;
895
blob_name = NULL; // indicate blob_name was consumed
896
} else { // no room for new entries, current block replaces entry for smallest block
897
//---< Find last entry (entry for smallest remembered block) >---
898
// We either want to insert right before the smallest entry, which is when <i>
899
// indexes the smallest entry. We then just overwrite the smallest entry.
900
// What's more likely:
901
// We want to insert somewhere in the list. The smallest entry (@<j>) then falls off the cliff.
902
// The element at the insert point <i> takes it's slot. The second-smallest entry now becomes smallest.
903
// Data of the current block is filled in at index <i>.
904
unsigned int j = i;
905
unsigned int prev_j = tsbStopper;
906
unsigned int limit_j = 0;
907
while (TopSizeArray[j].index != tsbStopper) {
908
if (limit_j++ >= alloc_topSizeBlocks) {
909
insane = true; break; // emergency exit
910
}
911
if (j >= used_topSizeBlocks) {
912
insane = true; break; // emergency exit
913
}
914
total_iterations++;
915
prev_j = j;
916
j = TopSizeArray[j].index;
917
}
918
if (!insane) {
919
if (TopSizeArray[j].blob_name != NULL) {
920
os::free((void*)TopSizeArray[j].blob_name);
921
}
922
if (prev_j == tsbStopper) {
923
//---< Above while loop did not iterate, we already are the min entry >---
924
//---< We have to just replace the smallest entry >---
925
currMin = hb_len;
926
currMin_ix = j;
927
TopSizeArray[j].start = h;
928
TopSizeArray[j].blob_name = blob_name;
929
TopSizeArray[j].len = hb_len;
930
TopSizeArray[j].index = tsbStopper; // already set!!
931
TopSizeArray[i].nm_size = nm_size;
932
TopSizeArray[i].temperature = temperature;
933
TopSizeArray[j].compiler = cType;
934
TopSizeArray[j].level = comp_lvl;
935
TopSizeArray[j].type = cbType;
936
} else {
937
//---< second-smallest entry is now smallest >---
938
TopSizeArray[prev_j].index = tsbStopper;
939
currMin = TopSizeArray[prev_j].len;
940
currMin_ix = prev_j;
941
//---< previously smallest entry gets overwritten >---
942
memcpy((void*)&TopSizeArray[j], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
943
TopSizeArray[i].start = h;
944
TopSizeArray[i].blob_name = blob_name;
945
TopSizeArray[i].len = hb_len;
946
TopSizeArray[i].index = j;
947
TopSizeArray[i].nm_size = nm_size;
948
TopSizeArray[i].temperature = temperature;
949
TopSizeArray[i].compiler = cType;
950
TopSizeArray[i].level = comp_lvl;
951
TopSizeArray[i].type = cbType;
952
}
953
blob_name = NULL; // indicate blob_name was consumed
954
} // insane
955
}
956
break;
957
}
958
prev_i = i;
959
}
960
if (insane) {
961
// Note: regular analysis could probably continue by resetting "insane" flag.
962
out->print_cr("Possible loop in TopSizeBlocks list detected. Analysis aborted.");
963
discard_TopSizeArray(out);
964
}
965
}
966
}
967
}
968
if (blob_name != NULL) {
969
os::free((void*)blob_name);
970
blob_name = NULL;
971
}
972
//----------------------------------------------
973
//---< END register block in TopSizeArray >---
974
//----------------------------------------------
975
} else {
976
nBlocks_zomb++;
977
}
978
979
if (ix_beg == ix_end) {
980
StatArray[ix_beg].type = cbType;
981
switch (cbType) {
982
case nMethod_inuse:
983
highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
984
if (comp_lvl < CompLevel_full_optimization) {
985
nBlocks_t1++;
986
t1Space += hb_bytelen;
987
StatArray[ix_beg].t1_count++;
988
StatArray[ix_beg].t1_space += (unsigned short)hb_len;
989
StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
990
} else {
991
nBlocks_t2++;
992
t2Space += hb_bytelen;
993
StatArray[ix_beg].t2_count++;
994
StatArray[ix_beg].t2_space += (unsigned short)hb_len;
995
StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
996
}
997
StatArray[ix_beg].level = comp_lvl;
998
StatArray[ix_beg].compiler = cType;
999
break;
1000
case nMethod_alive:
1001
StatArray[ix_beg].tx_count++;
1002
StatArray[ix_beg].tx_space += (unsigned short)hb_len;
1003
StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
1004
StatArray[ix_beg].level = comp_lvl;
1005
StatArray[ix_beg].compiler = cType;
1006
break;
1007
case nMethod_dead:
1008
case nMethod_unloaded:
1009
StatArray[ix_beg].dead_count++;
1010
StatArray[ix_beg].dead_space += (unsigned short)hb_len;
1011
break;
1012
default:
1013
// must be a stub, if it's not a dead or alive nMethod
1014
nBlocks_stub++;
1015
stubSpace += hb_bytelen;
1016
StatArray[ix_beg].stub_count++;
1017
StatArray[ix_beg].stub_space += (unsigned short)hb_len;
1018
break;
1019
}
1020
} else {
1021
unsigned int beg_space = (unsigned int)(granule_size - ((char*)h - low_bound - ix_beg*granule_size));
1022
unsigned int end_space = (unsigned int)(hb_bytelen - beg_space - (ix_end-ix_beg-1)*granule_size);
1023
beg_space = beg_space>>log2_seg_size; // store in units of _segment_size
1024
end_space = end_space>>log2_seg_size; // store in units of _segment_size
1025
StatArray[ix_beg].type = cbType;
1026
StatArray[ix_end].type = cbType;
1027
switch (cbType) {
1028
case nMethod_inuse:
1029
highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
1030
if (comp_lvl < CompLevel_full_optimization) {
1031
nBlocks_t1++;
1032
t1Space += hb_bytelen;
1033
StatArray[ix_beg].t1_count++;
1034
StatArray[ix_beg].t1_space += (unsigned short)beg_space;
1035
StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
1036
1037
StatArray[ix_end].t1_count++;
1038
StatArray[ix_end].t1_space += (unsigned short)end_space;
1039
StatArray[ix_end].t1_age = StatArray[ix_end].t1_age < compile_id ? compile_id : StatArray[ix_end].t1_age;
1040
} else {
1041
nBlocks_t2++;
1042
t2Space += hb_bytelen;
1043
StatArray[ix_beg].t2_count++;
1044
StatArray[ix_beg].t2_space += (unsigned short)beg_space;
1045
StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
1046
1047
StatArray[ix_end].t2_count++;
1048
StatArray[ix_end].t2_space += (unsigned short)end_space;
1049
StatArray[ix_end].t2_age = StatArray[ix_end].t2_age < compile_id ? compile_id : StatArray[ix_end].t2_age;
1050
}
1051
StatArray[ix_beg].level = comp_lvl;
1052
StatArray[ix_beg].compiler = cType;
1053
StatArray[ix_end].level = comp_lvl;
1054
StatArray[ix_end].compiler = cType;
1055
break;
1056
case nMethod_alive:
1057
StatArray[ix_beg].tx_count++;
1058
StatArray[ix_beg].tx_space += (unsigned short)beg_space;
1059
StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
1060
1061
StatArray[ix_end].tx_count++;
1062
StatArray[ix_end].tx_space += (unsigned short)end_space;
1063
StatArray[ix_end].tx_age = StatArray[ix_end].tx_age < compile_id ? compile_id : StatArray[ix_end].tx_age;
1064
1065
StatArray[ix_beg].level = comp_lvl;
1066
StatArray[ix_beg].compiler = cType;
1067
StatArray[ix_end].level = comp_lvl;
1068
StatArray[ix_end].compiler = cType;
1069
break;
1070
case nMethod_dead:
1071
case nMethod_unloaded:
1072
StatArray[ix_beg].dead_count++;
1073
StatArray[ix_beg].dead_space += (unsigned short)beg_space;
1074
StatArray[ix_end].dead_count++;
1075
StatArray[ix_end].dead_space += (unsigned short)end_space;
1076
break;
1077
default:
1078
// must be a stub, if it's not a dead or alive nMethod
1079
nBlocks_stub++;
1080
stubSpace += hb_bytelen;
1081
StatArray[ix_beg].stub_count++;
1082
StatArray[ix_beg].stub_space += (unsigned short)beg_space;
1083
StatArray[ix_end].stub_count++;
1084
StatArray[ix_end].stub_space += (unsigned short)end_space;
1085
break;
1086
}
1087
for (unsigned int ix = ix_beg+1; ix < ix_end; ix++) {
1088
StatArray[ix].type = cbType;
1089
switch (cbType) {
1090
case nMethod_inuse:
1091
if (comp_lvl < CompLevel_full_optimization) {
1092
StatArray[ix].t1_count++;
1093
StatArray[ix].t1_space += (unsigned short)(granule_size>>log2_seg_size);
1094
StatArray[ix].t1_age = StatArray[ix].t1_age < compile_id ? compile_id : StatArray[ix].t1_age;
1095
} else {
1096
StatArray[ix].t2_count++;
1097
StatArray[ix].t2_space += (unsigned short)(granule_size>>log2_seg_size);
1098
StatArray[ix].t2_age = StatArray[ix].t2_age < compile_id ? compile_id : StatArray[ix].t2_age;
1099
}
1100
StatArray[ix].level = comp_lvl;
1101
StatArray[ix].compiler = cType;
1102
break;
1103
case nMethod_alive:
1104
StatArray[ix].tx_count++;
1105
StatArray[ix].tx_space += (unsigned short)(granule_size>>log2_seg_size);
1106
StatArray[ix].tx_age = StatArray[ix].tx_age < compile_id ? compile_id : StatArray[ix].tx_age;
1107
StatArray[ix].level = comp_lvl;
1108
StatArray[ix].compiler = cType;
1109
break;
1110
case nMethod_dead:
1111
case nMethod_unloaded:
1112
StatArray[ix].dead_count++;
1113
StatArray[ix].dead_space += (unsigned short)(granule_size>>log2_seg_size);
1114
break;
1115
default:
1116
// must be a stub, if it's not a dead or alive nMethod
1117
StatArray[ix].stub_count++;
1118
StatArray[ix].stub_space += (unsigned short)(granule_size>>log2_seg_size);
1119
break;
1120
}
1121
}
1122
}
1123
}
1124
}
1125
done = true;
1126
1127
if (!insane) {
1128
// There is a risk for this block (because it contains many print statements) to get
1129
// interspersed with print data from other threads. We take this risk intentionally.
1130
// Getting stalled waiting for tty_lock while holding the CodeCache_lock is not desirable.
1131
printBox(ast, '-', "Global CodeHeap statistics for segment ", heapName);
1132
ast->print_cr("freeSpace = " SIZE_FORMAT_W(8) "k, nBlocks_free = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", freeSpace/(size_t)K, nBlocks_free, (100.0*freeSpace)/size, (100.0*freeSpace)/res_size);
1133
ast->print_cr("usedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_used = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", usedSpace/(size_t)K, nBlocks_used, (100.0*usedSpace)/size, (100.0*usedSpace)/res_size);
1134
ast->print_cr(" Tier1 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t1 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t1Space/(size_t)K, nBlocks_t1, (100.0*t1Space)/size, (100.0*t1Space)/res_size);
1135
ast->print_cr(" Tier2 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t2 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t2Space/(size_t)K, nBlocks_t2, (100.0*t2Space)/size, (100.0*t2Space)/res_size);
1136
ast->print_cr(" Alive Space = " SIZE_FORMAT_W(8) "k, nBlocks_alive = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", aliveSpace/(size_t)K, nBlocks_alive, (100.0*aliveSpace)/size, (100.0*aliveSpace)/res_size);
1137
ast->print_cr(" disconnected = " SIZE_FORMAT_W(8) "k, nBlocks_disconn = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", disconnSpace/(size_t)K, nBlocks_disconn, (100.0*disconnSpace)/size, (100.0*disconnSpace)/res_size);
1138
ast->print_cr(" not entrant = " SIZE_FORMAT_W(8) "k, nBlocks_notentr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", notentrSpace/(size_t)K, nBlocks_notentr, (100.0*notentrSpace)/size, (100.0*notentrSpace)/res_size);
1139
ast->print_cr(" unloadedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", unloadedSpace/(size_t)K, nBlocks_unloaded, (100.0*unloadedSpace)/size, (100.0*unloadedSpace)/res_size);
1140
ast->print_cr(" deadSpace = " SIZE_FORMAT_W(8) "k, nBlocks_dead = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", deadSpace/(size_t)K, nBlocks_dead, (100.0*deadSpace)/size, (100.0*deadSpace)/res_size);
1141
ast->print_cr(" stubSpace = " SIZE_FORMAT_W(8) "k, nBlocks_stub = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", stubSpace/(size_t)K, nBlocks_stub, (100.0*stubSpace)/size, (100.0*stubSpace)/res_size);
1142
ast->print_cr("ZombieBlocks = %8d. These are HeapBlocks which could not be identified as CodeBlobs.", nBlocks_zomb);
1143
ast->cr();
1144
ast->print_cr("Segment start = " INTPTR_FORMAT ", used space = " SIZE_FORMAT_W(8)"k", p2i(low_bound), size/K);
1145
ast->print_cr("Segment end (used) = " INTPTR_FORMAT ", remaining space = " SIZE_FORMAT_W(8)"k", p2i(low_bound) + size, (res_size - size)/K);
1146
ast->print_cr("Segment end (reserved) = " INTPTR_FORMAT ", reserved space = " SIZE_FORMAT_W(8)"k", p2i(low_bound) + res_size, res_size/K);
1147
ast->cr();
1148
ast->print_cr("latest allocated compilation id = %d", latest_compilation_id);
1149
ast->print_cr("highest observed compilation id = %d", highest_compilation_id);
1150
ast->print_cr("Building TopSizeList iterations = %ld", total_iterations);
1151
ast->cr();
1152
1153
int reset_val = NMethodSweeper::hotness_counter_reset_val();
1154
double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size;
1155
printBox(ast, '-', "Method hotness information at time of this analysis", NULL);
1156
ast->print_cr("Highest possible method temperature: %12d", reset_val);
1157
ast->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity);
1158
if (n_methods > 0) {
1159
avgTemp = hotnessAccumulator/n_methods;
1160
ast->print_cr("min. hotness = %6d", minTemp);
1161
ast->print_cr("avg. hotness = %6d", avgTemp);
1162
ast->print_cr("max. hotness = %6d", maxTemp);
1163
} else {
1164
avgTemp = 0;
1165
ast->print_cr("No hotness data available");
1166
}
1167
BUFFEREDSTREAM_FLUSH("\n")
1168
1169
// This loop is intentionally printing directly to "out".
1170
// It should not print anything, anyway.
1171
out->print("Verifying collected data...");
1172
size_t granule_segs = granule_size>>log2_seg_size;
1173
for (unsigned int ix = 0; ix < granules; ix++) {
1174
if (StatArray[ix].t1_count > granule_segs) {
1175
out->print_cr("t1_count[%d] = %d", ix, StatArray[ix].t1_count);
1176
}
1177
if (StatArray[ix].t2_count > granule_segs) {
1178
out->print_cr("t2_count[%d] = %d", ix, StatArray[ix].t2_count);
1179
}
1180
if (StatArray[ix].tx_count > granule_segs) {
1181
out->print_cr("tx_count[%d] = %d", ix, StatArray[ix].tx_count);
1182
}
1183
if (StatArray[ix].stub_count > granule_segs) {
1184
out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count);
1185
}
1186
if (StatArray[ix].dead_count > granule_segs) {
1187
out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count);
1188
}
1189
if (StatArray[ix].t1_space > granule_segs) {
1190
out->print_cr("t1_space[%d] = %d", ix, StatArray[ix].t1_space);
1191
}
1192
if (StatArray[ix].t2_space > granule_segs) {
1193
out->print_cr("t2_space[%d] = %d", ix, StatArray[ix].t2_space);
1194
}
1195
if (StatArray[ix].tx_space > granule_segs) {
1196
out->print_cr("tx_space[%d] = %d", ix, StatArray[ix].tx_space);
1197
}
1198
if (StatArray[ix].stub_space > granule_segs) {
1199
out->print_cr("stub_space[%d] = %d", ix, StatArray[ix].stub_space);
1200
}
1201
if (StatArray[ix].dead_space > granule_segs) {
1202
out->print_cr("dead_space[%d] = %d", ix, StatArray[ix].dead_space);
1203
}
1204
// this cast is awful! I need it because NT/Intel reports a signed/unsigned mismatch.
1205
if ((size_t)(StatArray[ix].t1_count+StatArray[ix].t2_count+StatArray[ix].tx_count+StatArray[ix].stub_count+StatArray[ix].dead_count) > granule_segs) {
1206
out->print_cr("t1_count[%d] = %d, t2_count[%d] = %d, tx_count[%d] = %d, stub_count[%d] = %d", ix, StatArray[ix].t1_count, ix, StatArray[ix].t2_count, ix, StatArray[ix].tx_count, ix, StatArray[ix].stub_count);
1207
}
1208
if ((size_t)(StatArray[ix].t1_space+StatArray[ix].t2_space+StatArray[ix].tx_space+StatArray[ix].stub_space+StatArray[ix].dead_space) > granule_segs) {
1209
out->print_cr("t1_space[%d] = %d, t2_space[%d] = %d, tx_space[%d] = %d, stub_space[%d] = %d", ix, StatArray[ix].t1_space, ix, StatArray[ix].t2_space, ix, StatArray[ix].tx_space, ix, StatArray[ix].stub_space);
1210
}
1211
}
1212
1213
// This loop is intentionally printing directly to "out".
1214
// It should not print anything, anyway.
1215
if (used_topSizeBlocks > 0) {
1216
unsigned int j = 0;
1217
if (TopSizeArray[0].len != currMax) {
1218
out->print_cr("currMax(%d) differs from TopSizeArray[0].len(%d)", currMax, TopSizeArray[0].len);
1219
}
1220
for (unsigned int i = 0; (TopSizeArray[i].index != tsbStopper) && (j++ < alloc_topSizeBlocks); i = TopSizeArray[i].index) {
1221
if (TopSizeArray[i].len < TopSizeArray[TopSizeArray[i].index].len) {
1222
out->print_cr("sort error at index %d: %d !>= %d", i, TopSizeArray[i].len, TopSizeArray[TopSizeArray[i].index].len);
1223
}
1224
}
1225
if (j >= alloc_topSizeBlocks) {
1226
out->print_cr("Possible loop in TopSizeArray chaining!\n allocBlocks = %d, usedBlocks = %d", alloc_topSizeBlocks, used_topSizeBlocks);
1227
for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
1228
out->print_cr(" TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
1229
}
1230
}
1231
}
1232
out->print_cr("...done\n\n");
1233
} else {
1234
// insane heap state detected. Analysis data incomplete. Just throw it away.
1235
discard_StatArray(out);
1236
discard_TopSizeArray(out);
1237
}
1238
}
1239
1240
1241
done = false;
1242
while (!done && (nBlocks_free > 0)) {
1243
1244
printBox(ast, '=', "C O D E H E A P A N A L Y S I S (free blocks) for segment ", heapName);
1245
ast->print_cr(" The aggregate step collects information about all free blocks in CodeHeap.\n"
1246
" Subsequent print functions create their output based on this snapshot.\n");
1247
ast->print_cr(" Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free);
1248
ast->print_cr(" Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K);
1249
BUFFEREDSTREAM_FLUSH("\n")
1250
1251
//----------------------------------------
1252
//-- Prepare the FreeArray of FreeBlks --
1253
//----------------------------------------
1254
1255
//---< discard old array if size does not match >---
1256
if (nBlocks_free != alloc_freeBlocks) {
1257
discard_FreeArray(out);
1258
}
1259
1260
prepare_FreeArray(out, nBlocks_free, heapName);
1261
if (FreeArray == NULL) {
1262
done = true;
1263
continue;
1264
}
1265
1266
//----------------------------------------
1267
//-- Collect all FreeBlks in FreeArray --
1268
//----------------------------------------
1269
1270
unsigned int ix = 0;
1271
FreeBlock* cur = heap->freelist();
1272
1273
while (cur != NULL) {
1274
if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated
1275
FreeArray[ix].start = cur;
1276
FreeArray[ix].len = (unsigned int)(cur->length()<<log2_seg_size);
1277
FreeArray[ix].index = ix;
1278
}
1279
cur = cur->link();
1280
ix++;
1281
}
1282
if (ix != alloc_freeBlocks) {
1283
ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix);
1284
ast->print_cr("I will update the counter and retry data collection");
1285
BUFFEREDSTREAM_FLUSH("\n")
1286
nBlocks_free = ix;
1287
continue;
1288
}
1289
done = true;
1290
}
1291
1292
if (!done || (nBlocks_free == 0)) {
1293
if (nBlocks_free == 0) {
1294
printBox(ast, '-', "no free blocks found in ", heapName);
1295
} else if (!done) {
1296
ast->print_cr("Free block count mismatch could not be resolved.");
1297
ast->print_cr("Try to run \"aggregate\" function to update counters");
1298
}
1299
BUFFEREDSTREAM_FLUSH("")
1300
1301
//---< discard old array and update global values >---
1302
discard_FreeArray(out);
1303
set_HeapStatGlobals(out, heapName);
1304
return;
1305
}
1306
1307
//---< calculate and fill remaining fields >---
1308
if (FreeArray != NULL) {
1309
// This loop is intentionally printing directly to "out".
1310
// It should not print anything, anyway.
1311
for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1312
size_t lenSum = 0;
1313
FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len));
1314
for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) {
1315
CodeBlob *cb = (CodeBlob*)(heap->find_start(h));
1316
if ((cb != NULL) && !cb->is_nmethod()) { // checks equivalent to those in get_cbType()
1317
FreeArray[ix].stubs_in_gap = true;
1318
}
1319
FreeArray[ix].n_gapBlocks++;
1320
lenSum += h->length()<<log2_seg_size;
1321
if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) {
1322
out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start);
1323
}
1324
}
1325
if (lenSum != FreeArray[ix].gap) {
1326
out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum);
1327
}
1328
}
1329
}
1330
set_HeapStatGlobals(out, heapName);
1331
1332
printBox(ast, '=', "C O D E H E A P A N A L Y S I S C O M P L E T E for segment ", heapName);
1333
BUFFEREDSTREAM_FLUSH("\n")
1334
}
1335
1336
1337
void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) {
1338
if (!initialization_complete) {
1339
return;
1340
}
1341
1342
const char* heapName = get_heapName(heap);
1343
get_HeapStatGlobals(out, heapName);
1344
1345
if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) {
1346
return;
1347
}
1348
BUFFEREDSTREAM_DECL(ast, out)
1349
1350
{
1351
printBox(ast, '=', "U S E D S P A C E S T A T I S T I C S for ", heapName);
1352
ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n"
1353
" and other identifying information with the block size data.\n"
1354
"\n"
1355
" Method names are dynamically retrieved from the code cache at print time.\n"
1356
" Due to the living nature of the code cache and because the CodeCache_lock\n"
1357
" is not continuously held, the displayed name might be wrong or no name\n"
1358
" might be found at all. The likelihood for that to happen increases\n"
1359
" over time passed between analysis and print step.\n", used_topSizeBlocks);
1360
BUFFEREDSTREAM_FLUSH_LOCKED("\n")
1361
}
1362
1363
//----------------------------
1364
//-- Print Top Used Blocks --
1365
//----------------------------
1366
{
1367
char* low_bound = heap->low_boundary();
1368
1369
printBox(ast, '-', "Largest Used Blocks in ", heapName);
1370
print_blobType_legend(ast);
1371
1372
ast->fill_to(51);
1373
ast->print("%4s", "blob");
1374
ast->fill_to(56);
1375
ast->print("%9s", "compiler");
1376
ast->fill_to(66);
1377
ast->print_cr("%6s", "method");
1378
ast->print_cr("%18s %13s %17s %4s %9s %5s %s", "Addr(module) ", "offset", "size", "type", " type lvl", " temp", "Name");
1379
BUFFEREDSTREAM_FLUSH_LOCKED("")
1380
1381
//---< print Top Ten Used Blocks >---
1382
if (used_topSizeBlocks > 0) {
1383
unsigned int printed_topSizeBlocks = 0;
1384
for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
1385
printed_topSizeBlocks++;
1386
if (TopSizeArray[i].blob_name == NULL) {
1387
TopSizeArray[i].blob_name = os::strdup("unnamed blob or blob name unavailable");
1388
}
1389
// heap->find_start() is safe. Only works on _segmap.
1390
// Returns NULL or void*. Returned CodeBlob may be uninitialized.
1391
HeapBlock* heapBlock = TopSizeArray[i].start;
1392
CodeBlob* this_blob = (CodeBlob*)(heap->find_start(heapBlock));
1393
if (this_blob != NULL) {
1394
//---< access these fields only if we own the CodeCache_lock >---
1395
//---< blob address >---
1396
ast->print(INTPTR_FORMAT, p2i(this_blob));
1397
ast->fill_to(19);
1398
//---< blob offset from CodeHeap begin >---
1399
ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
1400
ast->fill_to(33);
1401
} else {
1402
//---< block address >---
1403
ast->print(INTPTR_FORMAT, p2i(TopSizeArray[i].start));
1404
ast->fill_to(19);
1405
//---< block offset from CodeHeap begin >---
1406
ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)TopSizeArray[i].start-low_bound));
1407
ast->fill_to(33);
1408
}
1409
1410
//---< print size, name, and signature (for nMethods) >---
1411
bool is_nmethod = TopSizeArray[i].nm_size > 0;
1412
if (is_nmethod) {
1413
//---< nMethod size in hex >---
1414
ast->print(PTR32_FORMAT, TopSizeArray[i].nm_size);
1415
ast->print("(" SIZE_FORMAT_W(4) "K)", TopSizeArray[i].nm_size/K);
1416
ast->fill_to(51);
1417
ast->print(" %c", blobTypeChar[TopSizeArray[i].type]);
1418
//---< compiler information >---
1419
ast->fill_to(56);
1420
ast->print("%5s %3d", compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level);
1421
//---< method temperature >---
1422
ast->fill_to(67);
1423
ast->print("%5d", TopSizeArray[i].temperature);
1424
//---< name and signature >---
1425
ast->fill_to(67+6);
1426
if (TopSizeArray[i].type == nMethod_dead) {
1427
ast->print(" zombie method ");
1428
}
1429
ast->print("%s", TopSizeArray[i].blob_name);
1430
} else {
1431
//---< block size in hex >---
1432
ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size));
1433
ast->print("(" SIZE_FORMAT_W(4) "K)", (TopSizeArray[i].len<<log2_seg_size)/K);
1434
//---< no compiler information >---
1435
ast->fill_to(56);
1436
//---< name and signature >---
1437
ast->fill_to(67+6);
1438
ast->print("%s", TopSizeArray[i].blob_name);
1439
}
1440
ast->cr();
1441
BUFFEREDSTREAM_FLUSH_AUTO("")
1442
}
1443
if (used_topSizeBlocks != printed_topSizeBlocks) {
1444
ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks);
1445
for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
1446
ast->print_cr(" TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
1447
BUFFEREDSTREAM_FLUSH_AUTO("")
1448
}
1449
}
1450
BUFFEREDSTREAM_FLUSH("\n\n")
1451
}
1452
}
1453
1454
//-----------------------------
1455
//-- Print Usage Histogram --
1456
//-----------------------------
1457
1458
if (SizeDistributionArray != NULL) {
1459
unsigned long total_count = 0;
1460
unsigned long total_size = 0;
1461
const unsigned long pctFactor = 200;
1462
1463
for (unsigned int i = 0; i < nSizeDistElements; i++) {
1464
total_count += SizeDistributionArray[i].count;
1465
total_size += SizeDistributionArray[i].lenSum;
1466
}
1467
1468
if ((total_count > 0) && (total_size > 0)) {
1469
printBox(ast, '-', "Block count histogram for ", heapName);
1470
ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n"
1471
" of all blocks) have a size in the given range.\n"
1472
" %ld characters are printed per percentage point.\n", pctFactor/100);
1473
ast->print_cr("total size of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1474
ast->print_cr("total number of all blocks: %7ld\n", total_count);
1475
BUFFEREDSTREAM_FLUSH_LOCKED("")
1476
1477
ast->print_cr("[Size Range)------avg.-size-+----count-+");
1478
for (unsigned int i = 0; i < nSizeDistElements; i++) {
1479
if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1480
ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1481
,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1482
,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1483
);
1484
} else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1485
ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1486
,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1487
,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1488
);
1489
} else {
1490
ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1491
,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1492
,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1493
);
1494
}
1495
ast->print(" %8d | %8d |",
1496
SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1497
SizeDistributionArray[i].count);
1498
1499
unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count;
1500
for (unsigned int j = 1; j <= percent; j++) {
1501
ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1502
}
1503
ast->cr();
1504
BUFFEREDSTREAM_FLUSH_AUTO("")
1505
}
1506
ast->print_cr("----------------------------+----------+");
1507
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1508
1509
printBox(ast, '-', "Contribution per size range to total size for ", heapName);
1510
ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n"
1511
" occupied space) is used by the blocks in the given size range.\n"
1512
" %ld characters are printed per percentage point.\n", pctFactor/100);
1513
ast->print_cr("total size of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1514
ast->print_cr("total number of all blocks: %7ld\n", total_count);
1515
BUFFEREDSTREAM_FLUSH_LOCKED("")
1516
1517
ast->print_cr("[Size Range)------avg.-size-+----count-+");
1518
for (unsigned int i = 0; i < nSizeDistElements; i++) {
1519
if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1520
ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1521
,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1522
,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1523
);
1524
} else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1525
ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1526
,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1527
,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1528
);
1529
} else {
1530
ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1531
,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1532
,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1533
);
1534
}
1535
ast->print(" %8d | %8d |",
1536
SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1537
SizeDistributionArray[i].count);
1538
1539
unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size;
1540
for (unsigned int j = 1; j <= percent; j++) {
1541
ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1542
}
1543
ast->cr();
1544
BUFFEREDSTREAM_FLUSH_AUTO("")
1545
}
1546
ast->print_cr("----------------------------+----------+");
1547
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1548
}
1549
}
1550
}
1551
1552
1553
void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) {
1554
if (!initialization_complete) {
1555
return;
1556
}
1557
1558
const char* heapName = get_heapName(heap);
1559
get_HeapStatGlobals(out, heapName);
1560
1561
if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) {
1562
return;
1563
}
1564
BUFFEREDSTREAM_DECL(ast, out)
1565
1566
{
1567
printBox(ast, '=', "F R E E S P A C E S T A T I S T I C S for ", heapName);
1568
ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n"
1569
" Those gaps are of interest if there is a chance that they become\n"
1570
" unoccupied, e.g. by class unloading. Then, the two adjacent free\n"
1571
" blocks, together with the now unoccupied space, form a new, large\n"
1572
" free block.");
1573
BUFFEREDSTREAM_FLUSH_LOCKED("\n")
1574
}
1575
1576
{
1577
printBox(ast, '-', "List of all Free Blocks in ", heapName);
1578
1579
unsigned int ix = 0;
1580
for (ix = 0; ix < alloc_freeBlocks-1; ix++) {
1581
ast->print(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT ",", p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1582
ast->fill_to(38);
1583
ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes,", ix, ix+1, FreeArray[ix].gap);
1584
ast->fill_to(71);
1585
ast->print("block count: %6d", FreeArray[ix].n_gapBlocks);
1586
if (FreeArray[ix].stubs_in_gap) {
1587
ast->print(" !! permanent gap, contains stubs and/or blobs !!");
1588
}
1589
ast->cr();
1590
BUFFEREDSTREAM_FLUSH_AUTO("")
1591
}
1592
ast->print_cr(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT, p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1593
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1594
}
1595
1596
1597
//-----------------------------------------
1598
//-- Find and Print Top Ten Free Blocks --
1599
//-----------------------------------------
1600
1601
//---< find Top Ten Free Blocks >---
1602
const unsigned int nTop = 10;
1603
unsigned int currMax10 = 0;
1604
struct FreeBlk* FreeTopTen[nTop];
1605
memset(FreeTopTen, 0, sizeof(FreeTopTen));
1606
1607
for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) {
1608
if (FreeArray[ix].len > currMax10) { // larger than the ten largest found so far
1609
unsigned int currSize = FreeArray[ix].len;
1610
1611
unsigned int iy;
1612
for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) {
1613
if (FreeTopTen[iy]->len < currSize) {
1614
for (unsigned int iz = nTop-1; iz > iy; iz--) { // make room to insert new free block
1615
FreeTopTen[iz] = FreeTopTen[iz-1];
1616
}
1617
FreeTopTen[iy] = &FreeArray[ix]; // insert new free block
1618
if (FreeTopTen[nTop-1] != NULL) {
1619
currMax10 = FreeTopTen[nTop-1]->len;
1620
}
1621
break; // done with this, check next free block
1622
}
1623
}
1624
if (iy >= nTop) {
1625
ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1626
currSize, currMax10);
1627
continue;
1628
}
1629
if (FreeTopTen[iy] == NULL) {
1630
FreeTopTen[iy] = &FreeArray[ix];
1631
if (iy == (nTop-1)) {
1632
currMax10 = currSize;
1633
}
1634
}
1635
}
1636
}
1637
BUFFEREDSTREAM_FLUSH_AUTO("")
1638
1639
{
1640
printBox(ast, '-', "Top Ten Free Blocks in ", heapName);
1641
1642
//---< print Top Ten Free Blocks >---
1643
for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) {
1644
ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len);
1645
ast->fill_to(39);
1646
if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) {
1647
ast->print("last free block in list.");
1648
} else {
1649
ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap);
1650
ast->fill_to(63);
1651
ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks);
1652
}
1653
ast->cr();
1654
BUFFEREDSTREAM_FLUSH_AUTO("")
1655
}
1656
}
1657
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1658
1659
1660
//--------------------------------------------------------
1661
//-- Find and Print Top Ten Free-Occupied-Free Triples --
1662
//--------------------------------------------------------
1663
1664
//---< find and print Top Ten Triples (Free-Occupied-Free) >---
1665
currMax10 = 0;
1666
struct FreeBlk *FreeTopTenTriple[nTop];
1667
memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple));
1668
1669
for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1670
// If there are stubs in the gap, this gap will never become completely free.
1671
// The triple will thus never merge to one free block.
1672
unsigned int lenTriple = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len);
1673
FreeArray[ix].len = lenTriple;
1674
if (lenTriple > currMax10) { // larger than the ten largest found so far
1675
1676
unsigned int iy;
1677
for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
1678
if (FreeTopTenTriple[iy]->len < lenTriple) {
1679
for (unsigned int iz = nTop-1; iz > iy; iz--) {
1680
FreeTopTenTriple[iz] = FreeTopTenTriple[iz-1];
1681
}
1682
FreeTopTenTriple[iy] = &FreeArray[ix];
1683
if (FreeTopTenTriple[nTop-1] != NULL) {
1684
currMax10 = FreeTopTenTriple[nTop-1]->len;
1685
}
1686
break;
1687
}
1688
}
1689
if (iy == nTop) {
1690
ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1691
lenTriple, currMax10);
1692
continue;
1693
}
1694
if (FreeTopTenTriple[iy] == NULL) {
1695
FreeTopTenTriple[iy] = &FreeArray[ix];
1696
if (iy == (nTop-1)) {
1697
currMax10 = lenTriple;
1698
}
1699
}
1700
}
1701
}
1702
BUFFEREDSTREAM_FLUSH_AUTO("")
1703
1704
{
1705
printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName);
1706
ast->print_cr(" Use this information to judge how likely it is that a large(r) free block\n"
1707
" might get created by code cache sweeping.\n"
1708
" If all the occupied blocks can be swept, the three free blocks will be\n"
1709
" merged into one (much larger) free block. That would reduce free space\n"
1710
" fragmentation.\n");
1711
1712
//---< print Top Ten Free-Occupied-Free Triples >---
1713
for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
1714
ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len);
1715
ast->fill_to(39);
1716
ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap);
1717
ast->fill_to(63);
1718
ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks);
1719
ast->cr();
1720
BUFFEREDSTREAM_FLUSH_AUTO("")
1721
}
1722
}
1723
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1724
}
1725
1726
1727
void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) {
1728
if (!initialization_complete) {
1729
return;
1730
}
1731
1732
const char* heapName = get_heapName(heap);
1733
get_HeapStatGlobals(out, heapName);
1734
1735
if ((StatArray == NULL) || (alloc_granules == 0)) {
1736
return;
1737
}
1738
BUFFEREDSTREAM_DECL(ast, out)
1739
1740
unsigned int granules_per_line = 32;
1741
char* low_bound = heap->low_boundary();
1742
1743
{
1744
printBox(ast, '=', "B L O C K C O U N T S for ", heapName);
1745
ast->print_cr(" Each granule contains an individual number of heap blocks. Large blocks\n"
1746
" may span multiple granules and are counted for each granule they touch.\n");
1747
if (segment_granules) {
1748
ast->print_cr(" You have selected granule size to be as small as segment size.\n"
1749
" As a result, each granule contains exactly one block (or a part of one block)\n"
1750
" or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1751
" Occupied granules show their BlobType character, see legend.\n");
1752
print_blobType_legend(ast);
1753
}
1754
BUFFEREDSTREAM_FLUSH_LOCKED("")
1755
}
1756
1757
{
1758
if (segment_granules) {
1759
printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL);
1760
1761
granules_per_line = 128;
1762
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1763
print_line_delim(out, ast, low_bound, ix, granules_per_line);
1764
print_blobType_single(ast, StatArray[ix].type);
1765
}
1766
} else {
1767
printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1768
1769
granules_per_line = 128;
1770
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1771
print_line_delim(out, ast, low_bound, ix, granules_per_line);
1772
unsigned int count = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count
1773
+ StatArray[ix].stub_count + StatArray[ix].dead_count;
1774
print_count_single(ast, count);
1775
}
1776
}
1777
BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1778
}
1779
1780
{
1781
if (nBlocks_t1 > 0) {
1782
printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1783
1784
granules_per_line = 128;
1785
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1786
print_line_delim(out, ast, low_bound, ix, granules_per_line);
1787
if (segment_granules && StatArray[ix].t1_count > 0) {
1788
print_blobType_single(ast, StatArray[ix].type);
1789
} else {
1790
print_count_single(ast, StatArray[ix].t1_count);
1791
}
1792
}
1793
ast->print("|");
1794
} else {
1795
ast->print("No Tier1 nMethods found in CodeHeap.");
1796
}
1797
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1798
}
1799
1800
{
1801
if (nBlocks_t2 > 0) {
1802
printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1803
1804
granules_per_line = 128;
1805
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1806
print_line_delim(out, ast, low_bound, ix, granules_per_line);
1807
if (segment_granules && StatArray[ix].t2_count > 0) {
1808
print_blobType_single(ast, StatArray[ix].type);
1809
} else {
1810
print_count_single(ast, StatArray[ix].t2_count);
1811
}
1812
}
1813
ast->print("|");
1814
} else {
1815
ast->print("No Tier2 nMethods found in CodeHeap.");
1816
}
1817
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1818
}
1819
1820
{
1821
if (nBlocks_alive > 0) {
1822
printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1823
1824
granules_per_line = 128;
1825
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1826
print_line_delim(out, ast, low_bound, ix, granules_per_line);
1827
if (segment_granules && StatArray[ix].tx_count > 0) {
1828
print_blobType_single(ast, StatArray[ix].type);
1829
} else {
1830
print_count_single(ast, StatArray[ix].tx_count);
1831
}
1832
}
1833
ast->print("|");
1834
} else {
1835
ast->print("No not_used/not_entrant nMethods found in CodeHeap.");
1836
}
1837
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1838
}
1839
1840
{
1841
if (nBlocks_stub > 0) {
1842
printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1843
1844
granules_per_line = 128;
1845
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1846
print_line_delim(out, ast, low_bound, ix, granules_per_line);
1847
if (segment_granules && StatArray[ix].stub_count > 0) {
1848
print_blobType_single(ast, StatArray[ix].type);
1849
} else {
1850
print_count_single(ast, StatArray[ix].stub_count);
1851
}
1852
}
1853
ast->print("|");
1854
} else {
1855
ast->print("No Stubs and Blobs found in CodeHeap.");
1856
}
1857
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1858
}
1859
1860
{
1861
if (nBlocks_dead > 0) {
1862
printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1863
1864
granules_per_line = 128;
1865
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1866
print_line_delim(out, ast, low_bound, ix, granules_per_line);
1867
if (segment_granules && StatArray[ix].dead_count > 0) {
1868
print_blobType_single(ast, StatArray[ix].type);
1869
} else {
1870
print_count_single(ast, StatArray[ix].dead_count);
1871
}
1872
}
1873
ast->print("|");
1874
} else {
1875
ast->print("No dead nMethods found in CodeHeap.");
1876
}
1877
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1878
}
1879
1880
{
1881
if (!segment_granules) { // Prevent totally redundant printouts
1882
printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL);
1883
1884
granules_per_line = 24;
1885
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1886
print_line_delim(out, ast, low_bound, ix, granules_per_line);
1887
1888
print_count_single(ast, StatArray[ix].t1_count);
1889
ast->print(":");
1890
print_count_single(ast, StatArray[ix].t2_count);
1891
ast->print(":");
1892
if (segment_granules && StatArray[ix].stub_count > 0) {
1893
print_blobType_single(ast, StatArray[ix].type);
1894
} else {
1895
print_count_single(ast, StatArray[ix].stub_count);
1896
}
1897
ast->print(" ");
1898
}
1899
BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1900
}
1901
}
1902
}
1903
1904
1905
void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) {
1906
if (!initialization_complete) {
1907
return;
1908
}
1909
1910
const char* heapName = get_heapName(heap);
1911
get_HeapStatGlobals(out, heapName);
1912
1913
if ((StatArray == NULL) || (alloc_granules == 0)) {
1914
return;
1915
}
1916
BUFFEREDSTREAM_DECL(ast, out)
1917
1918
unsigned int granules_per_line = 32;
1919
char* low_bound = heap->low_boundary();
1920
1921
{
1922
printBox(ast, '=', "S P A C E U S A G E & F R A G M E N T A T I O N for ", heapName);
1923
ast->print_cr(" The heap space covered by one granule is occupied to a various extend.\n"
1924
" The granule occupancy is displayed by one decimal digit per granule.\n");
1925
if (segment_granules) {
1926
ast->print_cr(" You have selected granule size to be as small as segment size.\n"
1927
" As a result, each granule contains exactly one block (or a part of one block)\n"
1928
" or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1929
" Occupied granules show their BlobType character, see legend.\n");
1930
print_blobType_legend(ast);
1931
} else {
1932
ast->print_cr(" These digits represent a fill percentage range (see legend).\n");
1933
print_space_legend(ast);
1934
}
1935
BUFFEREDSTREAM_FLUSH_LOCKED("")
1936
}
1937
1938
{
1939
if (segment_granules) {
1940
printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL);
1941
1942
granules_per_line = 128;
1943
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1944
print_line_delim(out, ast, low_bound, ix, granules_per_line);
1945
print_blobType_single(ast, StatArray[ix].type);
1946
}
1947
} else {
1948
printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL);
1949
1950
granules_per_line = 128;
1951
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1952
print_line_delim(out, ast, low_bound, ix, granules_per_line);
1953
unsigned int space = StatArray[ix].t1_space + StatArray[ix].t2_space + StatArray[ix].tx_space
1954
+ StatArray[ix].stub_space + StatArray[ix].dead_space;
1955
print_space_single(ast, space);
1956
}
1957
}
1958
BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1959
}
1960
1961
{
1962
if (nBlocks_t1 > 0) {
1963
printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL);
1964
1965
granules_per_line = 128;
1966
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1967
print_line_delim(out, ast, low_bound, ix, granules_per_line);
1968
if (segment_granules && StatArray[ix].t1_space > 0) {
1969
print_blobType_single(ast, StatArray[ix].type);
1970
} else {
1971
print_space_single(ast, StatArray[ix].t1_space);
1972
}
1973
}
1974
ast->print("|");
1975
} else {
1976
ast->print("No Tier1 nMethods found in CodeHeap.");
1977
}
1978
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1979
}
1980
1981
{
1982
if (nBlocks_t2 > 0) {
1983
printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL);
1984
1985
granules_per_line = 128;
1986
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1987
print_line_delim(out, ast, low_bound, ix, granules_per_line);
1988
if (segment_granules && StatArray[ix].t2_space > 0) {
1989
print_blobType_single(ast, StatArray[ix].type);
1990
} else {
1991
print_space_single(ast, StatArray[ix].t2_space);
1992
}
1993
}
1994
ast->print("|");
1995
} else {
1996
ast->print("No Tier2 nMethods found in CodeHeap.");
1997
}
1998
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1999
}
2000
2001
{
2002
if (nBlocks_alive > 0) {
2003
printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full", NULL);
2004
2005
granules_per_line = 128;
2006
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2007
print_line_delim(out, ast, low_bound, ix, granules_per_line);
2008
if (segment_granules && StatArray[ix].tx_space > 0) {
2009
print_blobType_single(ast, StatArray[ix].type);
2010
} else {
2011
print_space_single(ast, StatArray[ix].tx_space);
2012
}
2013
}
2014
ast->print("|");
2015
} else {
2016
ast->print("No Tier2 nMethods found in CodeHeap.");
2017
}
2018
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2019
}
2020
2021
{
2022
if (nBlocks_stub > 0) {
2023
printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL);
2024
2025
granules_per_line = 128;
2026
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2027
print_line_delim(out, ast, low_bound, ix, granules_per_line);
2028
if (segment_granules && StatArray[ix].stub_space > 0) {
2029
print_blobType_single(ast, StatArray[ix].type);
2030
} else {
2031
print_space_single(ast, StatArray[ix].stub_space);
2032
}
2033
}
2034
ast->print("|");
2035
} else {
2036
ast->print("No Stubs and Blobs found in CodeHeap.");
2037
}
2038
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2039
}
2040
2041
{
2042
if (nBlocks_dead > 0) {
2043
printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL);
2044
2045
granules_per_line = 128;
2046
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2047
print_line_delim(out, ast, low_bound, ix, granules_per_line);
2048
print_space_single(ast, StatArray[ix].dead_space);
2049
}
2050
ast->print("|");
2051
} else {
2052
ast->print("No dead nMethods found in CodeHeap.");
2053
}
2054
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2055
}
2056
2057
{
2058
if (!segment_granules) { // Prevent totally redundant printouts
2059
printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL);
2060
2061
granules_per_line = 24;
2062
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2063
print_line_delim(out, ast, low_bound, ix, granules_per_line);
2064
2065
if (segment_granules && StatArray[ix].t1_space > 0) {
2066
print_blobType_single(ast, StatArray[ix].type);
2067
} else {
2068
print_space_single(ast, StatArray[ix].t1_space);
2069
}
2070
ast->print(":");
2071
if (segment_granules && StatArray[ix].t2_space > 0) {
2072
print_blobType_single(ast, StatArray[ix].type);
2073
} else {
2074
print_space_single(ast, StatArray[ix].t2_space);
2075
}
2076
ast->print(":");
2077
if (segment_granules && StatArray[ix].stub_space > 0) {
2078
print_blobType_single(ast, StatArray[ix].type);
2079
} else {
2080
print_space_single(ast, StatArray[ix].stub_space);
2081
}
2082
ast->print(" ");
2083
}
2084
ast->print("|");
2085
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2086
}
2087
}
2088
}
2089
2090
void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) {
2091
if (!initialization_complete) {
2092
return;
2093
}
2094
2095
const char* heapName = get_heapName(heap);
2096
get_HeapStatGlobals(out, heapName);
2097
2098
if ((StatArray == NULL) || (alloc_granules == 0)) {
2099
return;
2100
}
2101
BUFFEREDSTREAM_DECL(ast, out)
2102
2103
unsigned int granules_per_line = 32;
2104
char* low_bound = heap->low_boundary();
2105
2106
{
2107
printBox(ast, '=', "M E T H O D A G E by CompileID for ", heapName);
2108
ast->print_cr(" The age of a compiled method in the CodeHeap is not available as a\n"
2109
" time stamp. Instead, a relative age is deducted from the method's compilation ID.\n"
2110
" Age information is available for tier1 and tier2 methods only. There is no\n"
2111
" age information for stubs and blobs, because they have no compilation ID assigned.\n"
2112
" Information for the youngest method (highest ID) in the granule is printed.\n"
2113
" Refer to the legend to learn how method age is mapped to the displayed digit.");
2114
print_age_legend(ast);
2115
BUFFEREDSTREAM_FLUSH_LOCKED("")
2116
}
2117
2118
{
2119
printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2120
2121
granules_per_line = 128;
2122
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2123
print_line_delim(out, ast, low_bound, ix, granules_per_line);
2124
unsigned int age1 = StatArray[ix].t1_age;
2125
unsigned int age2 = StatArray[ix].t2_age;
2126
unsigned int agex = StatArray[ix].tx_age;
2127
unsigned int age = age1 > age2 ? age1 : age2;
2128
age = age > agex ? age : agex;
2129
print_age_single(ast, age);
2130
}
2131
ast->print("|");
2132
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2133
}
2134
2135
{
2136
if (nBlocks_t1 > 0) {
2137
printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2138
2139
granules_per_line = 128;
2140
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2141
print_line_delim(out, ast, low_bound, ix, granules_per_line);
2142
print_age_single(ast, StatArray[ix].t1_age);
2143
}
2144
ast->print("|");
2145
} else {
2146
ast->print("No Tier1 nMethods found in CodeHeap.");
2147
}
2148
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2149
}
2150
2151
{
2152
if (nBlocks_t2 > 0) {
2153
printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2154
2155
granules_per_line = 128;
2156
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2157
print_line_delim(out, ast, low_bound, ix, granules_per_line);
2158
print_age_single(ast, StatArray[ix].t2_age);
2159
}
2160
ast->print("|");
2161
} else {
2162
ast->print("No Tier2 nMethods found in CodeHeap.");
2163
}
2164
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2165
}
2166
2167
{
2168
if (nBlocks_alive > 0) {
2169
printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2170
2171
granules_per_line = 128;
2172
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2173
print_line_delim(out, ast, low_bound, ix, granules_per_line);
2174
print_age_single(ast, StatArray[ix].tx_age);
2175
}
2176
ast->print("|");
2177
} else {
2178
ast->print("No Tier2 nMethods found in CodeHeap.");
2179
}
2180
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2181
}
2182
2183
{
2184
if (!segment_granules) { // Prevent totally redundant printouts
2185
printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2186
2187
granules_per_line = 32;
2188
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2189
print_line_delim(out, ast, low_bound, ix, granules_per_line);
2190
print_age_single(ast, StatArray[ix].t1_age);
2191
ast->print(":");
2192
print_age_single(ast, StatArray[ix].t2_age);
2193
ast->print(" ");
2194
}
2195
ast->print("|");
2196
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2197
}
2198
}
2199
}
2200
2201
2202
void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) {
2203
if (!initialization_complete) {
2204
return;
2205
}
2206
2207
const char* heapName = get_heapName(heap);
2208
get_HeapStatGlobals(out, heapName);
2209
2210
if ((StatArray == NULL) || (alloc_granules == 0)) {
2211
return;
2212
}
2213
BUFFEREDSTREAM_DECL(ast, out)
2214
2215
unsigned int granules_per_line = 128;
2216
char* low_bound = heap->low_boundary();
2217
CodeBlob* last_blob = NULL;
2218
bool name_in_addr_range = true;
2219
bool have_locks = holding_required_locks();
2220
2221
//---< print at least 128K per block (i.e. between headers) >---
2222
if (granules_per_line*granule_size < 128*K) {
2223
granules_per_line = (unsigned int)((128*K)/granule_size);
2224
}
2225
2226
printBox(ast, '=', "M E T H O D N A M E S for ", heapName);
2227
ast->print_cr(" Method names are dynamically retrieved from the code cache at print time.\n"
2228
" Due to the living nature of the code heap and because the CodeCache_lock\n"
2229
" is not continuously held, the displayed name might be wrong or no name\n"
2230
" might be found at all. The likelihood for that to happen increases\n"
2231
" over time passed between aggregation and print steps.\n");
2232
BUFFEREDSTREAM_FLUSH_LOCKED("")
2233
2234
for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2235
//---< print a new blob on a new line >---
2236
if (ix%granules_per_line == 0) {
2237
if (!name_in_addr_range) {
2238
ast->print_cr("No methods, blobs, or stubs found in this address range");
2239
}
2240
name_in_addr_range = false;
2241
2242
size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules;
2243
ast->cr();
2244
ast->print_cr("--------------------------------------------------------------------");
2245
ast->print_cr("Address range [" INTPTR_FORMAT "," INTPTR_FORMAT "), " SIZE_FORMAT "k", p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K);
2246
ast->print_cr("--------------------------------------------------------------------");
2247
BUFFEREDSTREAM_FLUSH_AUTO("")
2248
}
2249
// Only check granule if it contains at least one blob.
2250
unsigned int nBlobs = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count +
2251
StatArray[ix].stub_count + StatArray[ix].dead_count;
2252
if (nBlobs > 0 ) {
2253
for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) {
2254
// heap->find_start() is safe. Only works on _segmap.
2255
// Returns NULL or void*. Returned CodeBlob may be uninitialized.
2256
char* this_seg = low_bound + ix*granule_size + is;
2257
CodeBlob* this_blob = (CodeBlob*)(heap->find_start(this_seg));
2258
bool blob_is_safe = blob_access_is_safe(this_blob);
2259
// blob could have been flushed, freed, and merged.
2260
// this_blob < last_blob is an indicator for that.
2261
if (blob_is_safe && (this_blob > last_blob)) {
2262
last_blob = this_blob;
2263
2264
//---< get type and name >---
2265
blobType cbType = noType;
2266
if (segment_granules) {
2267
cbType = (blobType)StatArray[ix].type;
2268
} else {
2269
//---< access these fields only if we own the CodeCache_lock >---
2270
if (have_locks) {
2271
cbType = get_cbType(this_blob);
2272
}
2273
}
2274
2275
//---< access these fields only if we own the CodeCache_lock >---
2276
const char* blob_name = "<unavailable>";
2277
nmethod* nm = NULL;
2278
if (have_locks) {
2279
blob_name = this_blob->name();
2280
nm = this_blob->as_nmethod_or_null();
2281
// this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack
2282
if (blob_name == NULL) {
2283
blob_name = "<unavailable>";
2284
}
2285
}
2286
2287
//---< print table header for new print range >---
2288
if (!name_in_addr_range) {
2289
name_in_addr_range = true;
2290
ast->fill_to(51);
2291
ast->print("%9s", "compiler");
2292
ast->fill_to(61);
2293
ast->print_cr("%6s", "method");
2294
ast->print_cr("%18s %13s %17s %9s %5s %18s %s", "Addr(module) ", "offset", "size", " type lvl", " temp", "blobType ", "Name");
2295
BUFFEREDSTREAM_FLUSH_AUTO("")
2296
}
2297
2298
//---< print line prefix (address and offset from CodeHeap start) >---
2299
ast->print(INTPTR_FORMAT, p2i(this_blob));
2300
ast->fill_to(19);
2301
ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
2302
ast->fill_to(33);
2303
2304
// access nmethod and Method fields only if we own the CodeCache_lock.
2305
// This fact is implicitly transported via nm != NULL.
2306
if (nmethod_access_is_safe(nm)) {
2307
Method* method = nm->method();
2308
ResourceMark rm;
2309
//---< collect all data to locals as quickly as possible >---
2310
unsigned int total_size = nm->total_size();
2311
int hotness = nm->hotness_counter();
2312
bool get_name = (cbType == nMethod_inuse) || (cbType == nMethod_notused);
2313
//---< nMethod size in hex >---
2314
ast->print(PTR32_FORMAT, total_size);
2315
ast->print("(" SIZE_FORMAT_W(4) "K)", total_size/K);
2316
//---< compiler information >---
2317
ast->fill_to(51);
2318
ast->print("%5s %3d", compTypeName[StatArray[ix].compiler], StatArray[ix].level);
2319
//---< method temperature >---
2320
ast->fill_to(62);
2321
ast->print("%5d", hotness);
2322
//---< name and signature >---
2323
ast->fill_to(62+6);
2324
ast->print("%s", blobTypeName[cbType]);
2325
ast->fill_to(82+6);
2326
if (cbType == nMethod_dead) {
2327
ast->print("%14s", " zombie method");
2328
}
2329
2330
if (get_name) {
2331
Symbol* methName = method->name();
2332
const char* methNameS = (methName == NULL) ? NULL : methName->as_C_string();
2333
methNameS = (methNameS == NULL) ? "<method name unavailable>" : methNameS;
2334
Symbol* methSig = method->signature();
2335
const char* methSigS = (methSig == NULL) ? NULL : methSig->as_C_string();
2336
methSigS = (methSigS == NULL) ? "<method signature unavailable>" : methSigS;
2337
ast->print("%s", methNameS);
2338
ast->print("%s", methSigS);
2339
} else {
2340
ast->print("%s", blob_name);
2341
}
2342
} else if (blob_is_safe) {
2343
ast->fill_to(62+6);
2344
ast->print("%s", blobTypeName[cbType]);
2345
ast->fill_to(82+6);
2346
ast->print("%s", blob_name);
2347
} else {
2348
ast->fill_to(62+6);
2349
ast->print("<stale blob>");
2350
}
2351
ast->cr();
2352
BUFFEREDSTREAM_FLUSH_AUTO("")
2353
} else if (!blob_is_safe && (this_blob != last_blob) && (this_blob != NULL)) {
2354
last_blob = this_blob;
2355
}
2356
}
2357
} // nBlobs > 0
2358
}
2359
BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
2360
}
2361
2362
2363
void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) {
2364
unsigned int lineLen = 1 + 2 + 2 + 1;
2365
char edge, frame;
2366
2367
if (text1 != NULL) {
2368
lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars.
2369
}
2370
if (text2 != NULL) {
2371
lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars.
2372
}
2373
if (border == '-') {
2374
edge = '+';
2375
frame = '|';
2376
} else {
2377
edge = border;
2378
frame = border;
2379
}
2380
2381
ast->print("%c", edge);
2382
for (unsigned int i = 0; i < lineLen-2; i++) {
2383
ast->print("%c", border);
2384
}
2385
ast->print_cr("%c", edge);
2386
2387
ast->print("%c ", frame);
2388
if (text1 != NULL) {
2389
ast->print("%s", text1);
2390
}
2391
if (text2 != NULL) {
2392
ast->print("%s", text2);
2393
}
2394
ast->print_cr(" %c", frame);
2395
2396
ast->print("%c", edge);
2397
for (unsigned int i = 0; i < lineLen-2; i++) {
2398
ast->print("%c", border);
2399
}
2400
ast->print_cr("%c", edge);
2401
}
2402
2403
void CodeHeapState::print_blobType_legend(outputStream* out) {
2404
out->cr();
2405
printBox(out, '-', "Block types used in the following CodeHeap dump", NULL);
2406
for (int type = noType; type < lastType; type += 1) {
2407
out->print_cr(" %c - %s", blobTypeChar[type], blobTypeName[type]);
2408
}
2409
out->print_cr(" -----------------------------------------------------");
2410
out->cr();
2411
}
2412
2413
void CodeHeapState::print_space_legend(outputStream* out) {
2414
unsigned int indicator = 0;
2415
unsigned int age_range = 256;
2416
unsigned int range_beg = latest_compilation_id;
2417
out->cr();
2418
printBox(out, '-', "Space ranges, based on granule occupancy", NULL);
2419
out->print_cr(" - 0%% == occupancy");
2420
for (int i=0; i<=9; i++) {
2421
out->print_cr(" %d - %3d%% < occupancy < %3d%%", i, 10*i, 10*(i+1));
2422
}
2423
out->print_cr(" * - 100%% == occupancy");
2424
out->print_cr(" ----------------------------------------------");
2425
out->cr();
2426
}
2427
2428
void CodeHeapState::print_age_legend(outputStream* out) {
2429
unsigned int indicator = 0;
2430
unsigned int age_range = 256;
2431
unsigned int range_beg = latest_compilation_id;
2432
out->cr();
2433
printBox(out, '-', "Age ranges, based on compilation id", NULL);
2434
while (age_range > 0) {
2435
out->print_cr(" %d - %6d to %6d", indicator, range_beg, latest_compilation_id - latest_compilation_id/age_range);
2436
range_beg = latest_compilation_id - latest_compilation_id/age_range;
2437
age_range /= 2;
2438
indicator += 1;
2439
}
2440
out->print_cr(" -----------------------------------------");
2441
out->cr();
2442
}
2443
2444
void CodeHeapState::print_blobType_single(outputStream* out, u2 /* blobType */ type) {
2445
out->print("%c", blobTypeChar[type]);
2446
}
2447
2448
void CodeHeapState::print_count_single(outputStream* out, unsigned short count) {
2449
if (count >= 16) out->print("*");
2450
else if (count > 0) out->print("%1.1x", count);
2451
else out->print(" ");
2452
}
2453
2454
void CodeHeapState::print_space_single(outputStream* out, unsigned short space) {
2455
size_t space_in_bytes = ((unsigned int)space)<<log2_seg_size;
2456
char fraction = (space == 0) ? ' ' : (space_in_bytes >= granule_size-1) ? '*' : char('0'+10*space_in_bytes/granule_size);
2457
out->print("%c", fraction);
2458
}
2459
2460
void CodeHeapState::print_age_single(outputStream* out, unsigned int age) {
2461
unsigned int indicator = 0;
2462
unsigned int age_range = 256;
2463
if (age > 0) {
2464
while ((age_range > 0) && (latest_compilation_id-age > latest_compilation_id/age_range)) {
2465
age_range /= 2;
2466
indicator += 1;
2467
}
2468
out->print("%c", char('0'+indicator));
2469
} else {
2470
out->print(" ");
2471
}
2472
}
2473
2474
void CodeHeapState::print_line_delim(outputStream* out, outputStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
2475
if (ix % gpl == 0) {
2476
if (ix > 0) {
2477
ast->print("|");
2478
}
2479
ast->cr();
2480
assert(out == ast, "must use the same stream!");
2481
2482
ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2483
ast->fill_to(19);
2484
ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2485
}
2486
}
2487
2488
void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
2489
assert(out != ast, "must not use the same stream!");
2490
if (ix % gpl == 0) {
2491
if (ix > 0) {
2492
ast->print("|");
2493
}
2494
ast->cr();
2495
2496
// can't use BUFFEREDSTREAM_FLUSH_IF("", 512) here.
2497
// can't use this expression. bufferedStream::capacity() does not exist.
2498
// if ((ast->capacity() - ast->size()) < 512) {
2499
// Assume instead that default bufferedStream capacity (4K) was used.
2500
if (ast->size() > 3*K) {
2501
ttyLocker ttyl;
2502
out->print("%s", ast->as_string());
2503
ast->reset();
2504
}
2505
2506
ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2507
ast->fill_to(19);
2508
ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2509
}
2510
}
2511
2512
// Find out which blob type we have at hand.
2513
// Return "noType" if anything abnormal is detected.
2514
CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) {
2515
if (cb != NULL) {
2516
if (cb->is_runtime_stub()) return runtimeStub;
2517
if (cb->is_deoptimization_stub()) return deoptimizationStub;
2518
if (cb->is_uncommon_trap_stub()) return uncommonTrapStub;
2519
if (cb->is_exception_stub()) return exceptionStub;
2520
if (cb->is_safepoint_stub()) return safepointStub;
2521
if (cb->is_adapter_blob()) return adapterBlob;
2522
if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob;
2523
if (cb->is_buffer_blob()) return bufferBlob;
2524
2525
//---< access these fields only if we own CodeCache_lock and Compile_lock >---
2526
// Should be ensured by caller. aggregate() and print_names() do that.
2527
if (holding_required_locks()) {
2528
nmethod* nm = cb->as_nmethod_or_null();
2529
if (nm != NULL) { // no is_readable check required, nm = (nmethod*)cb.
2530
if (nm->is_zombie()) return nMethod_dead;
2531
if (nm->is_unloaded()) return nMethod_unloaded;
2532
if (nm->is_in_use()) return nMethod_inuse;
2533
if (nm->is_alive() && !(nm->is_not_entrant())) return nMethod_notused;
2534
if (nm->is_alive()) return nMethod_alive;
2535
return nMethod_dead;
2536
}
2537
}
2538
}
2539
return noType;
2540
}
2541
2542
// make sure the blob at hand is not garbage.
2543
bool CodeHeapState::blob_access_is_safe(CodeBlob* this_blob) {
2544
return (this_blob != NULL) && // a blob must have been found, obviously
2545
(this_blob->header_size() >= 0) &&
2546
(this_blob->relocation_size() >= 0) &&
2547
((address)this_blob + this_blob->header_size() == (address)(this_blob->relocation_begin())) &&
2548
((address)this_blob + CodeBlob::align_code_offset(this_blob->header_size() + this_blob->relocation_size()) == (address)(this_blob->content_begin()));
2549
}
2550
2551
// make sure the nmethod at hand (and the linked method) is not garbage.
2552
bool CodeHeapState::nmethod_access_is_safe(nmethod* nm) {
2553
Method* method = (nm == NULL) ? NULL : nm->method(); // nm->method() was found to be uninitialized, i.e. != NULL, but invalid.
2554
return (nm != NULL) && (method != NULL) && nm->is_alive() && (method->signature() != NULL);
2555
}
2556
2557
bool CodeHeapState::holding_required_locks() {
2558
return SafepointSynchronize::is_at_safepoint() ||
2559
(CodeCache_lock->owned_by_self() && Compile_lock->owned_by_self());
2560
}
2561
2562