Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/code/compiledIC.cpp
40931 views
1
/*
2
* Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "code/codeBehaviours.hpp"
27
#include "code/codeCache.hpp"
28
#include "code/compiledIC.hpp"
29
#include "code/icBuffer.hpp"
30
#include "code/nmethod.hpp"
31
#include "code/vtableStubs.hpp"
32
#include "interpreter/interpreter.hpp"
33
#include "interpreter/linkResolver.hpp"
34
#include "memory/metadataFactory.hpp"
35
#include "memory/oopFactory.hpp"
36
#include "memory/resourceArea.hpp"
37
#include "memory/universe.hpp"
38
#include "oops/klass.inline.hpp"
39
#include "oops/method.inline.hpp"
40
#include "oops/oop.inline.hpp"
41
#include "oops/symbol.hpp"
42
#include "runtime/handles.inline.hpp"
43
#include "runtime/icache.hpp"
44
#include "runtime/safepoint.hpp"
45
#include "runtime/sharedRuntime.hpp"
46
#include "runtime/stubRoutines.hpp"
47
#include "utilities/events.hpp"
48
49
50
// Every time a compiled IC is changed or its type is being accessed,
51
// either the CompiledIC_lock must be set or we must be at a safe point.
52
53
CompiledICLocker::CompiledICLocker(CompiledMethod* method)
54
: _method(method),
55
_behaviour(CompiledICProtectionBehaviour::current()),
56
_locked(_behaviour->lock(_method)) {
57
}
58
59
CompiledICLocker::~CompiledICLocker() {
60
if (_locked) {
61
_behaviour->unlock(_method);
62
}
63
}
64
65
bool CompiledICLocker::is_safe(CompiledMethod* method) {
66
return CompiledICProtectionBehaviour::current()->is_safe(method);
67
}
68
69
bool CompiledICLocker::is_safe(address code) {
70
CodeBlob* cb = CodeCache::find_blob_unsafe(code);
71
assert(cb != NULL && cb->is_compiled(), "must be compiled");
72
CompiledMethod* cm = cb->as_compiled_method();
73
return CompiledICProtectionBehaviour::current()->is_safe(cm);
74
}
75
76
//-----------------------------------------------------------------------------
77
// Low-level access to an inline cache. Private, since they might not be
78
// MT-safe to use.
79
80
void* CompiledIC::cached_value() const {
81
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
82
assert (!is_optimized(), "an optimized virtual call does not have a cached metadata");
83
84
if (!is_in_transition_state()) {
85
void* data = get_data();
86
// If we let the metadata value here be initialized to zero...
87
assert(data != NULL || Universe::non_oop_word() == NULL,
88
"no raw nulls in CompiledIC metadatas, because of patching races");
89
return (data == (void*)Universe::non_oop_word()) ? NULL : data;
90
} else {
91
return InlineCacheBuffer::cached_value_for((CompiledIC *)this);
92
}
93
}
94
95
96
void CompiledIC::internal_set_ic_destination(address entry_point, bool is_icstub, void* cache, bool is_icholder) {
97
assert(entry_point != NULL, "must set legal entry point");
98
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
99
assert (!is_optimized() || cache == NULL, "an optimized virtual call does not have a cached metadata");
100
assert (cache == NULL || cache != (Metadata*)badOopVal, "invalid metadata");
101
102
assert(!is_icholder || is_icholder_entry(entry_point), "must be");
103
104
// Don't use ic_destination for this test since that forwards
105
// through ICBuffer instead of returning the actual current state of
106
// the CompiledIC.
107
if (is_icholder_entry(_call->destination())) {
108
// When patching for the ICStub case the cached value isn't
109
// overwritten until the ICStub copied into the CompiledIC during
110
// the next safepoint. Make sure that the CompiledICHolder* is
111
// marked for release at this point since it won't be identifiable
112
// once the entry point is overwritten.
113
InlineCacheBuffer::queue_for_release((CompiledICHolder*)get_data());
114
}
115
116
if (TraceCompiledIC) {
117
tty->print(" ");
118
print_compiled_ic();
119
tty->print(" changing destination to " INTPTR_FORMAT, p2i(entry_point));
120
if (!is_optimized()) {
121
tty->print(" changing cached %s to " INTPTR_FORMAT, is_icholder ? "icholder" : "metadata", p2i((address)cache));
122
}
123
if (is_icstub) {
124
tty->print(" (icstub)");
125
}
126
tty->cr();
127
}
128
129
{
130
CodeBlob* cb = CodeCache::find_blob_unsafe(_call->instruction_address());
131
assert(cb != NULL && cb->is_compiled(), "must be compiled");
132
_call->set_destination_mt_safe(entry_point);
133
}
134
135
if (is_optimized() || is_icstub) {
136
// Optimized call sites don't have a cache value and ICStub call
137
// sites only change the entry point. Changing the value in that
138
// case could lead to MT safety issues.
139
assert(cache == NULL, "must be null");
140
return;
141
}
142
143
if (cache == NULL) cache = Universe::non_oop_word();
144
145
set_data((intptr_t)cache);
146
}
147
148
149
void CompiledIC::set_ic_destination(ICStub* stub) {
150
internal_set_ic_destination(stub->code_begin(), true, NULL, false);
151
}
152
153
154
155
address CompiledIC::ic_destination() const {
156
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
157
if (!is_in_transition_state()) {
158
return _call->destination();
159
} else {
160
return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
161
}
162
}
163
164
165
bool CompiledIC::is_in_transition_state() const {
166
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
167
return InlineCacheBuffer::contains(_call->destination());;
168
}
169
170
171
bool CompiledIC::is_icholder_call() const {
172
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
173
return !_is_optimized && is_icholder_entry(ic_destination());
174
}
175
176
// Returns native address of 'call' instruction in inline-cache. Used by
177
// the InlineCacheBuffer when it needs to find the stub.
178
address CompiledIC::stub_address() const {
179
assert(is_in_transition_state(), "should only be called when we are in a transition state");
180
return _call->destination();
181
}
182
183
// Clears the IC stub if the compiled IC is in transition state
184
void CompiledIC::clear_ic_stub() {
185
if (is_in_transition_state()) {
186
ICStub* stub = ICStub_from_destination_address(stub_address());
187
stub->clear();
188
}
189
}
190
191
//-----------------------------------------------------------------------------
192
// High-level access to an inline cache. Guaranteed to be MT-safe.
193
194
void CompiledIC::initialize_from_iter(RelocIterator* iter) {
195
assert(iter->addr() == _call->instruction_address(), "must find ic_call");
196
197
if (iter->type() == relocInfo::virtual_call_type) {
198
virtual_call_Relocation* r = iter->virtual_call_reloc();
199
_is_optimized = false;
200
_value = _call->get_load_instruction(r);
201
} else {
202
assert(iter->type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
203
_is_optimized = true;
204
_value = NULL;
205
}
206
}
207
208
CompiledIC::CompiledIC(CompiledMethod* cm, NativeCall* call)
209
: _method(cm)
210
{
211
_call = _method->call_wrapper_at((address) call);
212
address ic_call = _call->instruction_address();
213
214
assert(ic_call != NULL, "ic_call address must be set");
215
assert(cm != NULL, "must pass compiled method");
216
assert(cm->contains(ic_call), "must be in compiled method");
217
218
// Search for the ic_call at the given address.
219
RelocIterator iter(cm, ic_call, ic_call+1);
220
bool ret = iter.next();
221
assert(ret == true, "relocInfo must exist at this address");
222
assert(iter.addr() == ic_call, "must find ic_call");
223
224
initialize_from_iter(&iter);
225
}
226
227
CompiledIC::CompiledIC(RelocIterator* iter)
228
: _method(iter->code())
229
{
230
_call = _method->call_wrapper_at(iter->addr());
231
address ic_call = _call->instruction_address();
232
233
CompiledMethod* nm = iter->code();
234
assert(ic_call != NULL, "ic_call address must be set");
235
assert(nm != NULL, "must pass compiled method");
236
assert(nm->contains(ic_call), "must be in compiled method");
237
238
initialize_from_iter(iter);
239
}
240
241
// This function may fail for two reasons: either due to running out of vtable
242
// stubs, or due to running out of IC stubs in an attempted transition to a
243
// transitional state. The needs_ic_stub_refill value will be set if the failure
244
// was due to running out of IC stubs, in which case the caller will refill IC
245
// stubs and retry.
246
bool CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode,
247
bool& needs_ic_stub_refill, TRAPS) {
248
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
249
assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
250
assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
251
252
address entry;
253
if (call_info->call_kind() == CallInfo::itable_call) {
254
assert(bytecode == Bytecodes::_invokeinterface, "");
255
int itable_index = call_info->itable_index();
256
entry = VtableStubs::find_itable_stub(itable_index);
257
if (entry == NULL) {
258
return false;
259
}
260
#ifdef ASSERT
261
int index = call_info->resolved_method()->itable_index();
262
assert(index == itable_index, "CallInfo pre-computes this");
263
InstanceKlass* k = call_info->resolved_method()->method_holder();
264
assert(k->verify_itable_index(itable_index), "sanity check");
265
#endif //ASSERT
266
CompiledICHolder* holder = new CompiledICHolder(call_info->resolved_method()->method_holder(),
267
call_info->resolved_klass(), false);
268
holder->claim();
269
if (!InlineCacheBuffer::create_transition_stub(this, holder, entry)) {
270
delete holder;
271
needs_ic_stub_refill = true;
272
return false;
273
}
274
} else {
275
assert(call_info->call_kind() == CallInfo::vtable_call, "either itable or vtable");
276
// Can be different than selected_method->vtable_index(), due to package-private etc.
277
int vtable_index = call_info->vtable_index();
278
assert(call_info->resolved_klass()->verify_vtable_index(vtable_index), "sanity check");
279
entry = VtableStubs::find_vtable_stub(vtable_index);
280
if (entry == NULL) {
281
return false;
282
}
283
if (!InlineCacheBuffer::create_transition_stub(this, NULL, entry)) {
284
needs_ic_stub_refill = true;
285
return false;
286
}
287
}
288
289
if (TraceICs) {
290
ResourceMark rm;
291
assert(call_info->selected_method() != NULL, "Unexpected null selected method");
292
tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
293
p2i(instruction_address()), call_info->selected_method()->print_value_string(), p2i(entry));
294
}
295
296
// We can't check this anymore. With lazy deopt we could have already
297
// cleaned this IC entry before we even return. This is possible if
298
// we ran out of space in the inline cache buffer trying to do the
299
// set_next and we safepointed to free up space. This is a benign
300
// race because the IC entry was complete when we safepointed so
301
// cleaning it immediately is harmless.
302
// assert(is_megamorphic(), "sanity check");
303
return true;
304
}
305
306
307
// true if destination is megamorphic stub
308
bool CompiledIC::is_megamorphic() const {
309
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
310
assert(!is_optimized(), "an optimized call cannot be megamorphic");
311
312
// Cannot rely on cached_value. It is either an interface or a method.
313
return VtableStubs::entry_point(ic_destination()) != NULL;
314
}
315
316
bool CompiledIC::is_call_to_compiled() const {
317
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
318
319
// Use unsafe, since an inline cache might point to a zombie method. However, the zombie
320
// method is guaranteed to still exist, since we only remove methods after all inline caches
321
// has been cleaned up
322
CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
323
bool is_monomorphic = (cb != NULL && cb->is_compiled());
324
// Check that the cached_value is a klass for non-optimized monomorphic calls
325
// This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
326
// for calling directly to vep without using the inline cache (i.e., cached_value == NULL).
327
// For JVMCI this occurs because CHA is only used to improve inlining so call sites which could be optimized
328
// virtuals because there are no currently loaded subclasses of a type are left as virtual call sites.
329
#ifdef ASSERT
330
CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
331
bool is_c1_or_jvmci_method = caller->is_compiled_by_c1() || caller->is_compiled_by_jvmci();
332
assert( is_c1_or_jvmci_method ||
333
!is_monomorphic ||
334
is_optimized() ||
335
!caller->is_alive() ||
336
(cached_metadata() != NULL && cached_metadata()->is_klass()), "sanity check");
337
#endif // ASSERT
338
return is_monomorphic;
339
}
340
341
342
bool CompiledIC::is_call_to_interpreted() const {
343
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
344
// Call to interpreter if destination is either calling to a stub (if it
345
// is optimized), or calling to an I2C blob
346
bool is_call_to_interpreted = false;
347
if (!is_optimized()) {
348
// must use unsafe because the destination can be a zombie (and we're cleaning)
349
// and the print_compiled_ic code wants to know if site (in the non-zombie)
350
// is to the interpreter.
351
CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
352
is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
353
assert(!is_call_to_interpreted || (is_icholder_call() && cached_icholder() != NULL), "sanity check");
354
} else {
355
// Check if we are calling into our own codeblob (i.e., to a stub)
356
address dest = ic_destination();
357
#ifdef ASSERT
358
{
359
_call->verify_resolve_call(dest);
360
}
361
#endif /* ASSERT */
362
is_call_to_interpreted = _call->is_call_to_interpreted(dest);
363
}
364
return is_call_to_interpreted;
365
}
366
367
bool CompiledIC::set_to_clean(bool in_use) {
368
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
369
if (TraceInlineCacheClearing || TraceICs) {
370
tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", p2i(instruction_address()));
371
print();
372
}
373
374
address entry = _call->get_resolve_call_stub(is_optimized());
375
376
// A zombie transition will always be safe, since the metadata has already been set to NULL, so
377
// we only need to patch the destination
378
bool safe_transition = _call->is_safe_for_patching() || !in_use || is_optimized() || SafepointSynchronize::is_at_safepoint();
379
380
if (safe_transition) {
381
// Kill any leftover stub we might have too
382
clear_ic_stub();
383
if (is_optimized()) {
384
set_ic_destination(entry);
385
} else {
386
set_ic_destination_and_value(entry, (void*)NULL);
387
}
388
} else {
389
// Unsafe transition - create stub.
390
if (!InlineCacheBuffer::create_transition_stub(this, NULL, entry)) {
391
return false;
392
}
393
}
394
// We can't check this anymore. With lazy deopt we could have already
395
// cleaned this IC entry before we even return. This is possible if
396
// we ran out of space in the inline cache buffer trying to do the
397
// set_next and we safepointed to free up space. This is a benign
398
// race because the IC entry was complete when we safepointed so
399
// cleaning it immediately is harmless.
400
// assert(is_clean(), "sanity check");
401
return true;
402
}
403
404
bool CompiledIC::is_clean() const {
405
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
406
bool is_clean = false;
407
address dest = ic_destination();
408
is_clean = dest == _call->get_resolve_call_stub(is_optimized());
409
assert(!is_clean || is_optimized() || cached_value() == NULL, "sanity check");
410
return is_clean;
411
}
412
413
bool CompiledIC::set_to_monomorphic(CompiledICInfo& info) {
414
assert(CompiledICLocker::is_safe(_method), "mt unsafe call");
415
// Updating a cache to the wrong entry can cause bugs that are very hard
416
// to track down - if cache entry gets invalid - we just clean it. In
417
// this way it is always the same code path that is responsible for
418
// updating and resolving an inline cache
419
//
420
// The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
421
// callsites. In addition ic_miss code will update a site to monomorphic if it determines
422
// that an monomorphic call to the interpreter can now be monomorphic to compiled code.
423
//
424
// In both of these cases the only thing being modifed is the jump/call target and these
425
// transitions are mt_safe
426
427
Thread *thread = Thread::current();
428
if (info.to_interpreter()) {
429
// Call to interpreter
430
if (info.is_optimized() && is_optimized()) {
431
assert(is_clean(), "unsafe IC path");
432
// the call analysis (callee structure) specifies that the call is optimized
433
// (either because of CHA or the static target is final)
434
// At code generation time, this call has been emitted as static call
435
// Call via stub
436
assert(info.cached_metadata() != NULL && info.cached_metadata()->is_method(), "sanity check");
437
methodHandle method (thread, (Method*)info.cached_metadata());
438
_call->set_to_interpreted(method, info);
439
440
if (TraceICs) {
441
ResourceMark rm(thread);
442
tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter: %s",
443
p2i(instruction_address()),
444
method->print_value_string());
445
}
446
} else {
447
// Call via method-klass-holder
448
CompiledICHolder* holder = info.claim_cached_icholder();
449
if (!InlineCacheBuffer::create_transition_stub(this, holder, info.entry())) {
450
delete holder;
451
return false;
452
}
453
if (TraceICs) {
454
ResourceMark rm(thread);
455
tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via icholder ", p2i(instruction_address()));
456
}
457
}
458
} else {
459
// Call to compiled code
460
bool static_bound = info.is_optimized() || (info.cached_metadata() == NULL);
461
#ifdef ASSERT
462
CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
463
assert (cb != NULL && cb->is_compiled(), "must be compiled!");
464
#endif /* ASSERT */
465
466
// This is MT safe if we come from a clean-cache and go through a
467
// non-verified entry point
468
bool safe = SafepointSynchronize::is_at_safepoint() ||
469
(!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
470
471
if (!safe) {
472
if (!InlineCacheBuffer::create_transition_stub(this, info.cached_metadata(), info.entry())) {
473
return false;
474
}
475
} else {
476
if (is_optimized()) {
477
set_ic_destination(info.entry());
478
} else {
479
set_ic_destination_and_value(info.entry(), info.cached_metadata());
480
}
481
}
482
483
if (TraceICs) {
484
ResourceMark rm(thread);
485
assert(info.cached_metadata() == NULL || info.cached_metadata()->is_klass(), "must be");
486
tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass = %s) %s",
487
p2i(instruction_address()),
488
(info.cached_metadata() != NULL) ? ((Klass*)info.cached_metadata())->print_value_string() : "NULL",
489
(safe) ? "" : " via stub");
490
}
491
}
492
// We can't check this anymore. With lazy deopt we could have already
493
// cleaned this IC entry before we even return. This is possible if
494
// we ran out of space in the inline cache buffer trying to do the
495
// set_next and we safepointed to free up space. This is a benign
496
// race because the IC entry was complete when we safepointed so
497
// cleaning it immediately is harmless.
498
// assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
499
return true;
500
}
501
502
503
// is_optimized: Compiler has generated an optimized call (i.e. fixed, no inline cache)
504
// static_bound: The call can be static bound. If it isn't also optimized, the property
505
// wasn't provable at time of compilation. An optimized call will have any necessary
506
// null check, while a static_bound won't. A static_bound (but not optimized) must
507
// therefore use the unverified entry point.
508
void CompiledIC::compute_monomorphic_entry(const methodHandle& method,
509
Klass* receiver_klass,
510
bool is_optimized,
511
bool static_bound,
512
bool caller_is_nmethod,
513
CompiledICInfo& info,
514
TRAPS) {
515
CompiledMethod* method_code = method->code();
516
517
address entry = NULL;
518
if (method_code != NULL && method_code->is_in_use()) {
519
assert(method_code->is_compiled(), "must be compiled");
520
// Call to compiled code
521
//
522
// Note: the following problem exists with Compiler1:
523
// - at compile time we may or may not know if the destination is final
524
// - if we know that the destination is final (is_optimized), we will emit
525
// an optimized virtual call (no inline cache), and need a Method* to make
526
// a call to the interpreter
527
// - if we don't know if the destination is final, we emit a standard
528
// virtual call, and use CompiledICHolder to call interpreted code
529
// (no static call stub has been generated)
530
// - In the case that we here notice the call is static bound we
531
// convert the call into what looks to be an optimized virtual call,
532
// but we must use the unverified entry point (since there will be no
533
// null check on a call when the target isn't loaded).
534
// This causes problems when verifying the IC because
535
// it looks vanilla but is optimized. Code in is_call_to_interpreted
536
// is aware of this and weakens its asserts.
537
if (is_optimized) {
538
entry = method_code->verified_entry_point();
539
} else {
540
entry = method_code->entry_point();
541
}
542
}
543
if (entry != NULL) {
544
// Call to near compiled code.
545
info.set_compiled_entry(entry, is_optimized ? NULL : receiver_klass, is_optimized);
546
} else {
547
if (is_optimized) {
548
// Use stub entry
549
info.set_interpreter_entry(method()->get_c2i_entry(), method());
550
} else {
551
// Use icholder entry
552
assert(method_code == NULL || method_code->is_compiled(), "must be compiled");
553
CompiledICHolder* holder = new CompiledICHolder(method(), receiver_klass);
554
info.set_icholder_entry(method()->get_c2i_unverified_entry(), holder);
555
}
556
}
557
assert(info.is_optimized() == is_optimized, "must agree");
558
}
559
560
561
bool CompiledIC::is_icholder_entry(address entry) {
562
CodeBlob* cb = CodeCache::find_blob_unsafe(entry);
563
if (cb != NULL && cb->is_adapter_blob()) {
564
return true;
565
}
566
// itable stubs also use CompiledICHolder
567
if (cb != NULL && cb->is_vtable_blob()) {
568
VtableStub* s = VtableStubs::entry_point(entry);
569
return (s != NULL) && s->is_itable_stub();
570
}
571
572
return false;
573
}
574
575
bool CompiledIC::is_icholder_call_site(virtual_call_Relocation* call_site, const CompiledMethod* cm) {
576
// This call site might have become stale so inspect it carefully.
577
address dest = cm->call_wrapper_at(call_site->addr())->destination();
578
return is_icholder_entry(dest);
579
}
580
581
// ----------------------------------------------------------------------------
582
583
bool CompiledStaticCall::set_to_clean(bool in_use) {
584
// in_use is unused but needed to match template function in CompiledMethod
585
assert(CompiledICLocker::is_safe(instruction_address()), "mt unsafe call");
586
// Reset call site
587
set_destination_mt_safe(resolve_call_stub());
588
589
// Do not reset stub here: It is too expensive to call find_stub.
590
// Instead, rely on caller (nmethod::clear_inline_caches) to clear
591
// both the call and its stub.
592
return true;
593
}
594
595
bool CompiledStaticCall::is_clean() const {
596
return destination() == resolve_call_stub();
597
}
598
599
bool CompiledStaticCall::is_call_to_compiled() const {
600
return CodeCache::contains(destination());
601
}
602
603
bool CompiledDirectStaticCall::is_call_to_interpreted() const {
604
// It is a call to interpreted, if it calls to a stub. Hence, the destination
605
// must be in the stub part of the nmethod that contains the call
606
CompiledMethod* cm = CodeCache::find_compiled(instruction_address());
607
return cm->stub_contains(destination());
608
}
609
610
void CompiledStaticCall::set_to_compiled(address entry) {
611
if (TraceICs) {
612
ResourceMark rm;
613
tty->print_cr("%s@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
614
name(),
615
p2i(instruction_address()),
616
p2i(entry));
617
}
618
// Call to compiled code
619
assert(CodeCache::contains(entry), "wrong entry point");
620
set_destination_mt_safe(entry);
621
}
622
623
void CompiledStaticCall::set(const StaticCallInfo& info) {
624
assert(CompiledICLocker::is_safe(instruction_address()), "mt unsafe call");
625
// Updating a cache to the wrong entry can cause bugs that are very hard
626
// to track down - if cache entry gets invalid - we just clean it. In
627
// this way it is always the same code path that is responsible for
628
// updating and resolving an inline cache
629
assert(is_clean(), "do not update a call entry - use clean");
630
631
if (info._to_interpreter) {
632
// Call to interpreted code
633
set_to_interpreted(info.callee(), info.entry());
634
} else {
635
set_to_compiled(info.entry());
636
}
637
}
638
639
// Compute settings for a CompiledStaticCall. Since we might have to set
640
// the stub when calling to the interpreter, we need to return arguments.
641
void CompiledStaticCall::compute_entry(const methodHandle& m, bool caller_is_nmethod, StaticCallInfo& info) {
642
CompiledMethod* m_code = m->code();
643
info._callee = m;
644
if (m_code != NULL && m_code->is_in_use()) {
645
info._to_interpreter = false;
646
info._entry = m_code->verified_entry_point();
647
} else {
648
// Callee is interpreted code. In any case entering the interpreter
649
// puts a converter-frame on the stack to save arguments.
650
assert(!m->is_method_handle_intrinsic(), "Compiled code should never call interpreter MH intrinsics");
651
info._to_interpreter = true;
652
info._entry = m()->get_c2i_entry();
653
}
654
}
655
656
address CompiledDirectStaticCall::find_stub_for(address instruction) {
657
// Find reloc. information containing this call-site
658
RelocIterator iter((nmethod*)NULL, instruction);
659
while (iter.next()) {
660
if (iter.addr() == instruction) {
661
switch(iter.type()) {
662
case relocInfo::static_call_type:
663
return iter.static_call_reloc()->static_stub();
664
// We check here for opt_virtual_call_type, since we reuse the code
665
// from the CompiledIC implementation
666
case relocInfo::opt_virtual_call_type:
667
return iter.opt_virtual_call_reloc()->static_stub();
668
case relocInfo::poll_type:
669
case relocInfo::poll_return_type: // A safepoint can't overlap a call.
670
default:
671
ShouldNotReachHere();
672
}
673
}
674
}
675
return NULL;
676
}
677
678
address CompiledDirectStaticCall::find_stub() {
679
return CompiledDirectStaticCall::find_stub_for(instruction_address());
680
}
681
682
address CompiledDirectStaticCall::resolve_call_stub() const {
683
return SharedRuntime::get_resolve_static_call_stub();
684
}
685
686
//-----------------------------------------------------------------------------
687
// Non-product mode code
688
#ifndef PRODUCT
689
690
void CompiledIC::verify() {
691
_call->verify();
692
assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
693
|| is_optimized() || is_megamorphic(), "sanity check");
694
}
695
696
void CompiledIC::print() {
697
print_compiled_ic();
698
tty->cr();
699
}
700
701
void CompiledIC::print_compiled_ic() {
702
tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT " cached_value " INTPTR_FORMAT,
703
p2i(instruction_address()), is_call_to_interpreted() ? "interpreted " : "", p2i(ic_destination()), p2i(is_optimized() ? NULL : cached_value()));
704
}
705
706
void CompiledDirectStaticCall::print() {
707
tty->print("static call at " INTPTR_FORMAT " -> ", p2i(instruction_address()));
708
if (is_clean()) {
709
tty->print("clean");
710
} else if (is_call_to_compiled()) {
711
tty->print("compiled");
712
} else if (is_call_to_interpreted()) {
713
tty->print("interpreted");
714
}
715
tty->cr();
716
}
717
718
void CompiledDirectStaticCall::verify_mt_safe(const methodHandle& callee, address entry,
719
NativeMovConstReg* method_holder,
720
NativeJump* jump) {
721
// A generated lambda form might be deleted from the Lambdaform
722
// cache in MethodTypeForm. If a jit compiled lambdaform method
723
// becomes not entrant and the cache access returns null, the new
724
// resolve will lead to a new generated LambdaForm.
725
Method* old_method = reinterpret_cast<Method*>(method_holder->data());
726
assert(old_method == NULL || old_method == callee() ||
727
callee->is_compiled_lambda_form() ||
728
!old_method->method_holder()->is_loader_alive() ||
729
old_method->is_old(), // may be race patching deoptimized nmethod due to redefinition.
730
"a) MT-unsafe modification of inline cache");
731
732
address destination = jump->jump_destination();
733
assert(destination == (address)-1 || destination == entry
734
|| old_method == NULL || !old_method->method_holder()->is_loader_alive() // may have a race due to class unloading.
735
|| old_method->is_old(), // may be race patching deoptimized nmethod due to redefinition.
736
"b) MT-unsafe modification of inline cache");
737
}
738
#endif // !PRODUCT
739
740