Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/gc/g1/c2/g1BarrierSetC2.cpp
40976 views
1
/*
2
* Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "classfile/javaClasses.hpp"
27
#include "gc/g1/c2/g1BarrierSetC2.hpp"
28
#include "gc/g1/g1BarrierSet.hpp"
29
#include "gc/g1/g1BarrierSetRuntime.hpp"
30
#include "gc/g1/g1CardTable.hpp"
31
#include "gc/g1/g1ThreadLocalData.hpp"
32
#include "gc/g1/heapRegion.hpp"
33
#include "opto/arraycopynode.hpp"
34
#include "opto/compile.hpp"
35
#include "opto/escape.hpp"
36
#include "opto/graphKit.hpp"
37
#include "opto/idealKit.hpp"
38
#include "opto/macro.hpp"
39
#include "opto/rootnode.hpp"
40
#include "opto/type.hpp"
41
#include "utilities/macros.hpp"
42
43
const TypeFunc *G1BarrierSetC2::write_ref_field_pre_entry_Type() {
44
const Type **fields = TypeTuple::fields(2);
45
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
46
fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
47
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
48
49
// create result type (range)
50
fields = TypeTuple::fields(0);
51
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
52
53
return TypeFunc::make(domain, range);
54
}
55
56
const TypeFunc *G1BarrierSetC2::write_ref_field_post_entry_Type() {
57
const Type **fields = TypeTuple::fields(2);
58
fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr
59
fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
60
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
61
62
// create result type (range)
63
fields = TypeTuple::fields(0);
64
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
65
66
return TypeFunc::make(domain, range);
67
}
68
69
#define __ ideal.
70
/*
71
* Determine if the G1 pre-barrier can be removed. The pre-barrier is
72
* required by SATB to make sure all objects live at the start of the
73
* marking are kept alive, all reference updates need to any previous
74
* reference stored before writing.
75
*
76
* If the previous value is NULL there is no need to save the old value.
77
* References that are NULL are filtered during runtime by the barrier
78
* code to avoid unnecessary queuing.
79
*
80
* However in the case of newly allocated objects it might be possible to
81
* prove that the reference about to be overwritten is NULL during compile
82
* time and avoid adding the barrier code completely.
83
*
84
* The compiler needs to determine that the object in which a field is about
85
* to be written is newly allocated, and that no prior store to the same field
86
* has happened since the allocation.
87
*
88
* Returns true if the pre-barrier can be removed
89
*/
90
bool G1BarrierSetC2::g1_can_remove_pre_barrier(GraphKit* kit,
91
PhaseTransform* phase,
92
Node* adr,
93
BasicType bt,
94
uint adr_idx) const {
95
intptr_t offset = 0;
96
Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
97
AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
98
99
if (offset == Type::OffsetBot) {
100
return false; // cannot unalias unless there are precise offsets
101
}
102
103
if (alloc == NULL) {
104
return false; // No allocation found
105
}
106
107
intptr_t size_in_bytes = type2aelembytes(bt);
108
109
Node* mem = kit->memory(adr_idx); // start searching here...
110
111
for (int cnt = 0; cnt < 50; cnt++) {
112
113
if (mem->is_Store()) {
114
115
Node* st_adr = mem->in(MemNode::Address);
116
intptr_t st_offset = 0;
117
Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
118
119
if (st_base == NULL) {
120
break; // inscrutable pointer
121
}
122
123
// Break we have found a store with same base and offset as ours so break
124
if (st_base == base && st_offset == offset) {
125
break;
126
}
127
128
if (st_offset != offset && st_offset != Type::OffsetBot) {
129
const int MAX_STORE = BytesPerLong;
130
if (st_offset >= offset + size_in_bytes ||
131
st_offset <= offset - MAX_STORE ||
132
st_offset <= offset - mem->as_Store()->memory_size()) {
133
// Success: The offsets are provably independent.
134
// (You may ask, why not just test st_offset != offset and be done?
135
// The answer is that stores of different sizes can co-exist
136
// in the same sequence of RawMem effects. We sometimes initialize
137
// a whole 'tile' of array elements with a single jint or jlong.)
138
mem = mem->in(MemNode::Memory);
139
continue; // advance through independent store memory
140
}
141
}
142
143
if (st_base != base
144
&& MemNode::detect_ptr_independence(base, alloc, st_base,
145
AllocateNode::Ideal_allocation(st_base, phase),
146
phase)) {
147
// Success: The bases are provably independent.
148
mem = mem->in(MemNode::Memory);
149
continue; // advance through independent store memory
150
}
151
} else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
152
153
InitializeNode* st_init = mem->in(0)->as_Initialize();
154
AllocateNode* st_alloc = st_init->allocation();
155
156
// Make sure that we are looking at the same allocation site.
157
// The alloc variable is guaranteed to not be null here from earlier check.
158
if (alloc == st_alloc) {
159
// Check that the initialization is storing NULL so that no previous store
160
// has been moved up and directly write a reference
161
Node* captured_store = st_init->find_captured_store(offset,
162
type2aelembytes(T_OBJECT),
163
phase);
164
if (captured_store == NULL || captured_store == st_init->zero_memory()) {
165
return true;
166
}
167
}
168
}
169
170
// Unless there is an explicit 'continue', we must bail out here,
171
// because 'mem' is an inscrutable memory state (e.g., a call).
172
break;
173
}
174
175
return false;
176
}
177
178
// G1 pre/post barriers
179
void G1BarrierSetC2::pre_barrier(GraphKit* kit,
180
bool do_load,
181
Node* ctl,
182
Node* obj,
183
Node* adr,
184
uint alias_idx,
185
Node* val,
186
const TypeOopPtr* val_type,
187
Node* pre_val,
188
BasicType bt) const {
189
// Some sanity checks
190
// Note: val is unused in this routine.
191
192
if (do_load) {
193
// We need to generate the load of the previous value
194
assert(obj != NULL, "must have a base");
195
assert(adr != NULL, "where are loading from?");
196
assert(pre_val == NULL, "loaded already?");
197
assert(val_type != NULL, "need a type");
198
199
if (use_ReduceInitialCardMarks()
200
&& g1_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
201
return;
202
}
203
204
} else {
205
// In this case both val_type and alias_idx are unused.
206
assert(pre_val != NULL, "must be loaded already");
207
// Nothing to be done if pre_val is null.
208
if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
209
assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
210
}
211
assert(bt == T_OBJECT, "or we shouldn't be here");
212
213
IdealKit ideal(kit, true);
214
215
Node* tls = __ thread(); // ThreadLocalStorage
216
217
Node* no_base = __ top();
218
Node* zero = __ ConI(0);
219
Node* zeroX = __ ConX(0);
220
221
float likely = PROB_LIKELY(0.999);
222
float unlikely = PROB_UNLIKELY(0.999);
223
224
BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
225
assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
226
227
// Offsets into the thread
228
const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
229
const int index_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
230
const int buffer_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
231
232
// Now the actual pointers into the thread
233
Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
234
Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
235
Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset));
236
237
// Now some of the values
238
Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
239
240
// if (!marking)
241
__ if_then(marking, BoolTest::ne, zero, unlikely); {
242
BasicType index_bt = TypeX_X->basic_type();
243
assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
244
Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
245
246
if (do_load) {
247
// load original value
248
// alias_idx correct??
249
pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
250
}
251
252
// if (pre_val != NULL)
253
__ if_then(pre_val, BoolTest::ne, kit->null()); {
254
Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
255
256
// is the queue for this thread full?
257
__ if_then(index, BoolTest::ne, zeroX, likely); {
258
259
// decrement the index
260
Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
261
262
// Now get the buffer location we will log the previous value into and store it
263
Node *log_addr = __ AddP(no_base, buffer, next_index);
264
__ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
265
// update the index
266
__ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
267
268
} __ else_(); {
269
270
// logging buffer is full, call the runtime
271
const TypeFunc *tf = write_ref_field_pre_entry_Type();
272
__ make_leaf_call(tf, CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_pre_entry), "write_ref_field_pre_entry", pre_val, tls);
273
} __ end_if(); // (!index)
274
} __ end_if(); // (pre_val != NULL)
275
} __ end_if(); // (!marking)
276
277
// Final sync IdealKit and GraphKit.
278
kit->final_sync(ideal);
279
}
280
281
/*
282
* G1 similar to any GC with a Young Generation requires a way to keep track of
283
* references from Old Generation to Young Generation to make sure all live
284
* objects are found. G1 also requires to keep track of object references
285
* between different regions to enable evacuation of old regions, which is done
286
* as part of mixed collections. References are tracked in remembered sets and
287
* is continuously updated as reference are written to with the help of the
288
* post-barrier.
289
*
290
* To reduce the number of updates to the remembered set the post-barrier
291
* filters updates to fields in objects located in the Young Generation,
292
* the same region as the reference, when the NULL is being written or
293
* if the card is already marked as dirty by an earlier write.
294
*
295
* Under certain circumstances it is possible to avoid generating the
296
* post-barrier completely if it is possible during compile time to prove
297
* the object is newly allocated and that no safepoint exists between the
298
* allocation and the store.
299
*
300
* In the case of slow allocation the allocation code must handle the barrier
301
* as part of the allocation in the case the allocated object is not located
302
* in the nursery; this would happen for humongous objects.
303
*
304
* Returns true if the post barrier can be removed
305
*/
306
bool G1BarrierSetC2::g1_can_remove_post_barrier(GraphKit* kit,
307
PhaseTransform* phase, Node* store,
308
Node* adr) const {
309
intptr_t offset = 0;
310
Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
311
AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
312
313
if (offset == Type::OffsetBot) {
314
return false; // cannot unalias unless there are precise offsets
315
}
316
317
if (alloc == NULL) {
318
return false; // No allocation found
319
}
320
321
// Start search from Store node
322
Node* mem = store->in(MemNode::Control);
323
if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
324
325
InitializeNode* st_init = mem->in(0)->as_Initialize();
326
AllocateNode* st_alloc = st_init->allocation();
327
328
// Make sure we are looking at the same allocation
329
if (alloc == st_alloc) {
330
return true;
331
}
332
}
333
334
return false;
335
}
336
337
//
338
// Update the card table and add card address to the queue
339
//
340
void G1BarrierSetC2::g1_mark_card(GraphKit* kit,
341
IdealKit& ideal,
342
Node* card_adr,
343
Node* oop_store,
344
uint oop_alias_idx,
345
Node* index,
346
Node* index_adr,
347
Node* buffer,
348
const TypeFunc* tf) const {
349
Node* zero = __ ConI(0);
350
Node* zeroX = __ ConX(0);
351
Node* no_base = __ top();
352
BasicType card_bt = T_BYTE;
353
// Smash zero into card. MUST BE ORDERED WRT TO STORE
354
__ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
355
356
// Now do the queue work
357
__ if_then(index, BoolTest::ne, zeroX); {
358
359
Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
360
Node* log_addr = __ AddP(no_base, buffer, next_index);
361
362
// Order, see storeCM.
363
__ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
364
__ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
365
366
} __ else_(); {
367
__ make_leaf_call(tf, CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_post_entry), "write_ref_field_post_entry", card_adr, __ thread());
368
} __ end_if();
369
370
}
371
372
void G1BarrierSetC2::post_barrier(GraphKit* kit,
373
Node* ctl,
374
Node* oop_store,
375
Node* obj,
376
Node* adr,
377
uint alias_idx,
378
Node* val,
379
BasicType bt,
380
bool use_precise) const {
381
// If we are writing a NULL then we need no post barrier
382
383
if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
384
// Must be NULL
385
const Type* t = val->bottom_type();
386
assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
387
// No post barrier if writing NULLx
388
return;
389
}
390
391
if (use_ReduceInitialCardMarks() && obj == kit->just_allocated_object(kit->control())) {
392
// We can skip marks on a freshly-allocated object in Eden.
393
// Keep this code in sync with new_deferred_store_barrier() in runtime.cpp.
394
// That routine informs GC to take appropriate compensating steps,
395
// upon a slow-path allocation, so as to make this card-mark
396
// elision safe.
397
return;
398
}
399
400
if (use_ReduceInitialCardMarks()
401
&& g1_can_remove_post_barrier(kit, &kit->gvn(), oop_store, adr)) {
402
return;
403
}
404
405
if (!use_precise) {
406
// All card marks for a (non-array) instance are in one place:
407
adr = obj;
408
}
409
// (Else it's an array (or unknown), and we want more precise card marks.)
410
assert(adr != NULL, "");
411
412
IdealKit ideal(kit, true);
413
414
Node* tls = __ thread(); // ThreadLocalStorage
415
416
Node* no_base = __ top();
417
float likely = PROB_LIKELY_MAG(3);
418
float unlikely = PROB_UNLIKELY_MAG(3);
419
Node* young_card = __ ConI((jint)G1CardTable::g1_young_card_val());
420
Node* dirty_card = __ ConI((jint)G1CardTable::dirty_card_val());
421
Node* zeroX = __ ConX(0);
422
423
const TypeFunc *tf = write_ref_field_post_entry_Type();
424
425
// Offsets into the thread
426
const int index_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset());
427
const int buffer_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset());
428
429
// Pointers into the thread
430
431
Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
432
Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset));
433
434
// Now some values
435
// Use ctrl to avoid hoisting these values past a safepoint, which could
436
// potentially reset these fields in the JavaThread.
437
Node* index = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
438
Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
439
440
// Convert the store obj pointer to an int prior to doing math on it
441
// Must use ctrl to prevent "integerized oop" existing across safepoint
442
Node* cast = __ CastPX(__ ctrl(), adr);
443
444
// Divide pointer by card size
445
Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift) );
446
447
// Combine card table base and card offset
448
Node* card_adr = __ AddP(no_base, byte_map_base_node(kit), card_offset );
449
450
// If we know the value being stored does it cross regions?
451
452
if (val != NULL) {
453
// Does the store cause us to cross regions?
454
455
// Should be able to do an unsigned compare of region_size instead of
456
// and extra shift. Do we have an unsigned compare??
457
// Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
458
Node* xor_res = __ URShiftX ( __ XorX( cast, __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
459
460
// if (xor_res == 0) same region so skip
461
__ if_then(xor_res, BoolTest::ne, zeroX, likely); {
462
463
// No barrier if we are storing a NULL
464
__ if_then(val, BoolTest::ne, kit->null(), likely); {
465
466
// Ok must mark the card if not already dirty
467
468
// load the original value of the card
469
Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
470
471
__ if_then(card_val, BoolTest::ne, young_card, unlikely); {
472
kit->sync_kit(ideal);
473
kit->insert_mem_bar(Op_MemBarVolatile, oop_store);
474
__ sync_kit(kit);
475
476
Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
477
__ if_then(card_val_reload, BoolTest::ne, dirty_card); {
478
g1_mark_card(kit, ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
479
} __ end_if();
480
} __ end_if();
481
} __ end_if();
482
} __ end_if();
483
} else {
484
// The Object.clone() intrinsic uses this path if !ReduceInitialCardMarks.
485
// We don't need a barrier here if the destination is a newly allocated object
486
// in Eden. Otherwise, GC verification breaks because we assume that cards in Eden
487
// are set to 'g1_young_gen' (see G1CardTable::verify_g1_young_region()).
488
assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
489
Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
490
__ if_then(card_val, BoolTest::ne, young_card); {
491
g1_mark_card(kit, ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
492
} __ end_if();
493
}
494
495
// Final sync IdealKit and GraphKit.
496
kit->final_sync(ideal);
497
}
498
499
// Helper that guards and inserts a pre-barrier.
500
void G1BarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
501
Node* pre_val, bool need_mem_bar) const {
502
// We could be accessing the referent field of a reference object. If so, when G1
503
// is enabled, we need to log the value in the referent field in an SATB buffer.
504
// This routine performs some compile time filters and generates suitable
505
// runtime filters that guard the pre-barrier code.
506
// Also add memory barrier for non volatile load from the referent field
507
// to prevent commoning of loads across safepoint.
508
509
// Some compile time checks.
510
511
// If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
512
const TypeX* otype = offset->find_intptr_t_type();
513
if (otype != NULL && otype->is_con() &&
514
otype->get_con() != java_lang_ref_Reference::referent_offset()) {
515
// Constant offset but not the reference_offset so just return
516
return;
517
}
518
519
// We only need to generate the runtime guards for instances.
520
const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
521
if (btype != NULL) {
522
if (btype->isa_aryptr()) {
523
// Array type so nothing to do
524
return;
525
}
526
527
const TypeInstPtr* itype = btype->isa_instptr();
528
if (itype != NULL) {
529
// Can the klass of base_oop be statically determined to be
530
// _not_ a sub-class of Reference and _not_ Object?
531
ciKlass* klass = itype->klass();
532
if ( klass->is_loaded() &&
533
!klass->is_subtype_of(kit->env()->Reference_klass()) &&
534
!kit->env()->Object_klass()->is_subtype_of(klass)) {
535
return;
536
}
537
}
538
}
539
540
// The compile time filters did not reject base_oop/offset so
541
// we need to generate the following runtime filters
542
//
543
// if (offset == java_lang_ref_Reference::_reference_offset) {
544
// if (instance_of(base, java.lang.ref.Reference)) {
545
// pre_barrier(_, pre_val, ...);
546
// }
547
// }
548
549
float likely = PROB_LIKELY( 0.999);
550
float unlikely = PROB_UNLIKELY(0.999);
551
552
IdealKit ideal(kit);
553
554
Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset());
555
556
__ if_then(offset, BoolTest::eq, referent_off, unlikely); {
557
// Update graphKit memory and control from IdealKit.
558
kit->sync_kit(ideal);
559
560
Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
561
Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
562
563
// Update IdealKit memory and control from graphKit.
564
__ sync_kit(kit);
565
566
Node* one = __ ConI(1);
567
// is_instof == 0 if base_oop == NULL
568
__ if_then(is_instof, BoolTest::eq, one, unlikely); {
569
570
// Update graphKit from IdeakKit.
571
kit->sync_kit(ideal);
572
573
// Use the pre-barrier to record the value in the referent field
574
pre_barrier(kit, false /* do_load */,
575
__ ctrl(),
576
NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
577
pre_val /* pre_val */,
578
T_OBJECT);
579
if (need_mem_bar) {
580
// Add memory barrier to prevent commoning reads from this field
581
// across safepoint since GC can change its value.
582
kit->insert_mem_bar(Op_MemBarCPUOrder);
583
}
584
// Update IdealKit from graphKit.
585
__ sync_kit(kit);
586
587
} __ end_if(); // _ref_type != ref_none
588
} __ end_if(); // offset == referent_offset
589
590
// Final sync IdealKit and GraphKit.
591
kit->final_sync(ideal);
592
}
593
594
#undef __
595
596
Node* G1BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
597
DecoratorSet decorators = access.decorators();
598
Node* adr = access.addr().node();
599
Node* obj = access.base();
600
601
bool anonymous = (decorators & C2_UNSAFE_ACCESS) != 0;
602
bool mismatched = (decorators & C2_MISMATCHED) != 0;
603
bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
604
bool in_heap = (decorators & IN_HEAP) != 0;
605
bool in_native = (decorators & IN_NATIVE) != 0;
606
bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
607
bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
608
bool is_unordered = (decorators & MO_UNORDERED) != 0;
609
bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0;
610
bool is_mixed = !in_heap && !in_native;
611
bool need_cpu_mem_bar = !is_unordered || mismatched || is_mixed;
612
613
Node* top = Compile::current()->top();
614
Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top;
615
Node* load = CardTableBarrierSetC2::load_at_resolved(access, val_type);
616
617
// If we are reading the value of the referent field of a Reference
618
// object (either by using Unsafe directly or through reflection)
619
// then, if G1 is enabled, we need to record the referent in an
620
// SATB log buffer using the pre-barrier mechanism.
621
// Also we need to add memory barrier to prevent commoning reads
622
// from this field across safepoint since GC can change its value.
623
bool need_read_barrier = (((on_weak || on_phantom) && !no_keepalive) ||
624
(in_heap && unknown && offset != top && obj != top));
625
626
if (!access.is_oop() || !need_read_barrier) {
627
return load;
628
}
629
630
assert(access.is_parse_access(), "entry not supported at optimization time");
631
C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
632
GraphKit* kit = parse_access.kit();
633
634
if (on_weak || on_phantom) {
635
// Use the pre-barrier to record the value in the referent field
636
pre_barrier(kit, false /* do_load */,
637
kit->control(),
638
NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
639
load /* pre_val */, T_OBJECT);
640
// Add memory barrier to prevent commoning reads from this field
641
// across safepoint since GC can change its value.
642
kit->insert_mem_bar(Op_MemBarCPUOrder);
643
} else if (unknown) {
644
// We do not require a mem bar inside pre_barrier if need_mem_bar
645
// is set: the barriers would be emitted by us.
646
insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
647
}
648
649
return load;
650
}
651
652
bool G1BarrierSetC2::is_gc_barrier_node(Node* node) const {
653
if (CardTableBarrierSetC2::is_gc_barrier_node(node)) {
654
return true;
655
}
656
if (node->Opcode() != Op_CallLeaf) {
657
return false;
658
}
659
CallLeafNode *call = node->as_CallLeaf();
660
if (call->_name == NULL) {
661
return false;
662
}
663
664
return strcmp(call->_name, "write_ref_field_pre_entry") == 0 || strcmp(call->_name, "write_ref_field_post_entry") == 0;
665
}
666
667
void G1BarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const {
668
assert(node->Opcode() == Op_CastP2X, "ConvP2XNode required");
669
assert(node->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
670
// It could be only one user, URShift node, in Object.clone() intrinsic
671
// but the new allocation is passed to arraycopy stub and it could not
672
// be scalar replaced. So we don't check the case.
673
674
// An other case of only one user (Xor) is when the value check for NULL
675
// in G1 post barrier is folded after CCP so the code which used URShift
676
// is removed.
677
678
// Take Region node before eliminating post barrier since it also
679
// eliminates CastP2X node when it has only one user.
680
Node* this_region = node->in(0);
681
assert(this_region != NULL, "");
682
683
// Remove G1 post barrier.
684
685
// Search for CastP2X->Xor->URShift->Cmp path which
686
// checks if the store done to a different from the value's region.
687
// And replace Cmp with #0 (false) to collapse G1 post barrier.
688
Node* xorx = node->find_out_with(Op_XorX);
689
if (xorx != NULL) {
690
Node* shift = xorx->unique_out();
691
Node* cmpx = shift->unique_out();
692
assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
693
cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
694
"missing region check in G1 post barrier");
695
macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
696
697
// Remove G1 pre barrier.
698
699
// Search "if (marking != 0)" check and set it to "false".
700
// There is no G1 pre barrier if previous stored value is NULL
701
// (for example, after initialization).
702
if (this_region->is_Region() && this_region->req() == 3) {
703
int ind = 1;
704
if (!this_region->in(ind)->is_IfFalse()) {
705
ind = 2;
706
}
707
if (this_region->in(ind)->is_IfFalse() &&
708
this_region->in(ind)->in(0)->Opcode() == Op_If) {
709
Node* bol = this_region->in(ind)->in(0)->in(1);
710
assert(bol->is_Bool(), "");
711
cmpx = bol->in(1);
712
if (bol->as_Bool()->_test._test == BoolTest::ne &&
713
cmpx->is_Cmp() && cmpx->in(2) == macro->intcon(0) &&
714
cmpx->in(1)->is_Load()) {
715
Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
716
const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
717
if (adr->is_AddP() && adr->in(AddPNode::Base) == macro->top() &&
718
adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
719
adr->in(AddPNode::Offset) == macro->MakeConX(marking_offset)) {
720
macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
721
}
722
}
723
}
724
}
725
} else {
726
assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
727
// This is a G1 post barrier emitted by the Object.clone() intrinsic.
728
// Search for the CastP2X->URShiftX->AddP->LoadB->Cmp path which checks if the card
729
// is marked as young_gen and replace the Cmp with 0 (false) to collapse the barrier.
730
Node* shift = node->find_out_with(Op_URShiftX);
731
assert(shift != NULL, "missing G1 post barrier");
732
Node* addp = shift->unique_out();
733
Node* load = addp->find_out_with(Op_LoadB);
734
assert(load != NULL, "missing G1 post barrier");
735
Node* cmpx = load->unique_out();
736
assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
737
cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
738
"missing card value check in G1 post barrier");
739
macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
740
// There is no G1 pre barrier in this case
741
}
742
// Now CastP2X can be removed since it is used only on dead path
743
// which currently still alive until igvn optimize it.
744
assert(node->outcnt() == 0 || node->unique_out()->Opcode() == Op_URShiftX, "");
745
macro->replace_node(node, macro->top());
746
}
747
748
Node* G1BarrierSetC2::step_over_gc_barrier(Node* c) const {
749
if (!use_ReduceInitialCardMarks() &&
750
c != NULL && c->is_Region() && c->req() == 3) {
751
for (uint i = 1; i < c->req(); i++) {
752
if (c->in(i) != NULL && c->in(i)->is_Region() &&
753
c->in(i)->req() == 3) {
754
Node* r = c->in(i);
755
for (uint j = 1; j < r->req(); j++) {
756
if (r->in(j) != NULL && r->in(j)->is_Proj() &&
757
r->in(j)->in(0) != NULL &&
758
r->in(j)->in(0)->Opcode() == Op_CallLeaf &&
759
r->in(j)->in(0)->as_Call()->entry_point() == CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_post_entry)) {
760
Node* call = r->in(j)->in(0);
761
c = c->in(i == 1 ? 2 : 1);
762
if (c != NULL && c->Opcode() != Op_Parm) {
763
c = c->in(0);
764
if (c != NULL) {
765
c = c->in(0);
766
assert(call->in(0) == NULL ||
767
call->in(0)->in(0) == NULL ||
768
call->in(0)->in(0)->in(0) == NULL ||
769
call->in(0)->in(0)->in(0)->in(0) == NULL ||
770
call->in(0)->in(0)->in(0)->in(0)->in(0) == NULL ||
771
c == call->in(0)->in(0)->in(0)->in(0)->in(0), "bad barrier shape");
772
return c;
773
}
774
}
775
}
776
}
777
}
778
}
779
}
780
return c;
781
}
782
783
#ifdef ASSERT
784
void G1BarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const {
785
if (phase != BarrierSetC2::BeforeCodeGen) {
786
return;
787
}
788
// Verify G1 pre-barriers
789
const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
790
791
Unique_Node_List visited;
792
Node_List worklist;
793
// We're going to walk control flow backwards starting from the Root
794
worklist.push(compile->root());
795
while (worklist.size() > 0) {
796
Node* x = worklist.pop();
797
if (x == NULL || x == compile->top()) continue;
798
if (visited.member(x)) {
799
continue;
800
} else {
801
visited.push(x);
802
}
803
804
if (x->is_Region()) {
805
for (uint i = 1; i < x->req(); i++) {
806
worklist.push(x->in(i));
807
}
808
} else {
809
worklist.push(x->in(0));
810
// We are looking for the pattern:
811
// /->ThreadLocal
812
// If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
813
// \->ConI(0)
814
// We want to verify that the If and the LoadB have the same control
815
// See GraphKit::g1_write_barrier_pre()
816
if (x->is_If()) {
817
IfNode *iff = x->as_If();
818
if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
819
CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
820
if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
821
&& cmp->in(1)->is_Load()) {
822
LoadNode* load = cmp->in(1)->as_Load();
823
if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
824
&& load->in(2)->in(3)->is_Con()
825
&& load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
826
827
Node* if_ctrl = iff->in(0);
828
Node* load_ctrl = load->in(0);
829
830
if (if_ctrl != load_ctrl) {
831
// Skip possible CProj->NeverBranch in infinite loops
832
if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
833
&& (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
834
if_ctrl = if_ctrl->in(0)->in(0);
835
}
836
}
837
assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
838
}
839
}
840
}
841
}
842
}
843
}
844
}
845
#endif
846
847
bool G1BarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const {
848
if (opcode == Op_StoreP) {
849
Node* adr = n->in(MemNode::Address);
850
const Type* adr_type = gvn->type(adr);
851
// Pointer stores in G1 barriers looks like unsafe access.
852
// Ignore such stores to be able scalar replace non-escaping
853
// allocations.
854
if (adr_type->isa_rawptr() && adr->is_AddP()) {
855
Node* base = conn_graph->get_addp_base(adr);
856
if (base->Opcode() == Op_LoadP &&
857
base->in(MemNode::Address)->is_AddP()) {
858
adr = base->in(MemNode::Address);
859
Node* tls = conn_graph->get_addp_base(adr);
860
if (tls->Opcode() == Op_ThreadLocal) {
861
int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
862
const int buf_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
863
if (offs == buf_offset) {
864
return true; // G1 pre barrier previous oop value store.
865
}
866
if (offs == in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset())) {
867
return true; // G1 post barrier card address store.
868
}
869
}
870
}
871
}
872
}
873
return false;
874
}
875
876