Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/gc/shared/adaptiveSizePolicy.cpp
40957 views
1
/*
2
* Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "gc/shared/adaptiveSizePolicy.hpp"
27
#include "gc/shared/gcCause.hpp"
28
#include "gc/shared/gcUtil.inline.hpp"
29
#include "logging/log.hpp"
30
#include "runtime/timer.hpp"
31
32
elapsedTimer AdaptiveSizePolicy::_minor_timer;
33
elapsedTimer AdaptiveSizePolicy::_major_timer;
34
35
// The throughput goal is implemented as
36
// _throughput_goal = 1 - ( 1 / (1 + gc_cost_ratio))
37
// gc_cost_ratio is the ratio
38
// application cost / gc cost
39
// For example a gc_cost_ratio of 4 translates into a
40
// throughput goal of .80
41
42
AdaptiveSizePolicy::AdaptiveSizePolicy(size_t init_eden_size,
43
size_t init_promo_size,
44
size_t init_survivor_size,
45
double gc_pause_goal_sec,
46
uint gc_cost_ratio) :
47
_throughput_goal(1.0 - double(1.0 / (1.0 + (double) gc_cost_ratio))),
48
_eden_size(init_eden_size),
49
_promo_size(init_promo_size),
50
_survivor_size(init_survivor_size),
51
_avg_minor_pause(new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding)),
52
_avg_minor_interval(new AdaptiveWeightedAverage(AdaptiveTimeWeight)),
53
_avg_minor_gc_cost(new AdaptiveWeightedAverage(AdaptiveTimeWeight)),
54
_avg_major_interval(new AdaptiveWeightedAverage(AdaptiveTimeWeight)),
55
_avg_major_gc_cost(new AdaptiveWeightedAverage(AdaptiveTimeWeight)),
56
_avg_young_live(new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight)),
57
_avg_eden_live(new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight)),
58
_avg_old_live(new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight)),
59
_avg_survived(new AdaptivePaddedAverage(AdaptiveSizePolicyWeight, SurvivorPadding)),
60
_avg_pretenured(new AdaptivePaddedNoZeroDevAverage(AdaptiveSizePolicyWeight, SurvivorPadding)),
61
_minor_pause_old_estimator(new LinearLeastSquareFit(AdaptiveSizePolicyWeight)),
62
_minor_pause_young_estimator(new LinearLeastSquareFit(AdaptiveSizePolicyWeight)),
63
_minor_collection_estimator(new LinearLeastSquareFit(AdaptiveSizePolicyWeight)),
64
_major_collection_estimator(new LinearLeastSquareFit(AdaptiveSizePolicyWeight)),
65
_latest_minor_mutator_interval_seconds(0),
66
_threshold_tolerance_percent(1.0 + ThresholdTolerance/100.0),
67
_gc_pause_goal_sec(gc_pause_goal_sec),
68
_young_gen_policy_is_ready(false),
69
_change_young_gen_for_min_pauses(0),
70
_change_old_gen_for_maj_pauses(0),
71
_change_old_gen_for_throughput(0),
72
_change_young_gen_for_throughput(0),
73
_increment_tenuring_threshold_for_gc_cost(false),
74
_decrement_tenuring_threshold_for_gc_cost(false),
75
_decrement_tenuring_threshold_for_survivor_limit(false),
76
_decrease_for_footprint(0),
77
_decide_at_full_gc(0),
78
_young_gen_change_for_minor_throughput(0),
79
_old_gen_change_for_major_throughput(0) {
80
81
// Start the timers
82
_minor_timer.start();
83
}
84
85
bool AdaptiveSizePolicy::tenuring_threshold_change() const {
86
return decrement_tenuring_threshold_for_gc_cost() ||
87
increment_tenuring_threshold_for_gc_cost() ||
88
decrement_tenuring_threshold_for_survivor_limit();
89
}
90
91
void AdaptiveSizePolicy::minor_collection_begin() {
92
// Update the interval time
93
_minor_timer.stop();
94
// Save most recent collection time
95
_latest_minor_mutator_interval_seconds = _minor_timer.seconds();
96
_minor_timer.reset();
97
_minor_timer.start();
98
}
99
100
void AdaptiveSizePolicy::update_minor_pause_young_estimator(
101
double minor_pause_in_ms) {
102
double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
103
_minor_pause_young_estimator->update(eden_size_in_mbytes,
104
minor_pause_in_ms);
105
}
106
107
void AdaptiveSizePolicy::minor_collection_end(GCCause::Cause gc_cause) {
108
// Update the pause time.
109
_minor_timer.stop();
110
111
if (!GCCause::is_user_requested_gc(gc_cause) ||
112
UseAdaptiveSizePolicyWithSystemGC) {
113
double minor_pause_in_seconds = _minor_timer.seconds();
114
double minor_pause_in_ms = minor_pause_in_seconds * MILLIUNITS;
115
116
// Sample for performance counter
117
_avg_minor_pause->sample(minor_pause_in_seconds);
118
119
// Cost of collection (unit-less)
120
double collection_cost = 0.0;
121
if ((_latest_minor_mutator_interval_seconds > 0.0) &&
122
(minor_pause_in_seconds > 0.0)) {
123
double interval_in_seconds =
124
_latest_minor_mutator_interval_seconds + minor_pause_in_seconds;
125
collection_cost =
126
minor_pause_in_seconds / interval_in_seconds;
127
_avg_minor_gc_cost->sample(collection_cost);
128
// Sample for performance counter
129
_avg_minor_interval->sample(interval_in_seconds);
130
}
131
132
// The policy does not have enough data until at least some
133
// young collections have been done.
134
_young_gen_policy_is_ready =
135
(_avg_minor_gc_cost->count() >= AdaptiveSizePolicyReadyThreshold);
136
137
// Calculate variables used to estimate pause time vs. gen sizes
138
double eden_size_in_mbytes = ((double)_eden_size) / ((double)M);
139
update_minor_pause_young_estimator(minor_pause_in_ms);
140
update_minor_pause_old_estimator(minor_pause_in_ms);
141
142
log_trace(gc, ergo)("AdaptiveSizePolicy::minor_collection_end: minor gc cost: %f average: %f",
143
collection_cost, _avg_minor_gc_cost->average());
144
log_trace(gc, ergo)(" minor pause: %f minor period %f",
145
minor_pause_in_ms, _latest_minor_mutator_interval_seconds * MILLIUNITS);
146
147
// Calculate variable used to estimate collection cost vs. gen sizes
148
assert(collection_cost >= 0.0, "Expected to be non-negative");
149
_minor_collection_estimator->update(eden_size_in_mbytes, collection_cost);
150
}
151
152
// Interval times use this timer to measure the mutator time.
153
// Reset the timer after the GC pause.
154
_minor_timer.reset();
155
_minor_timer.start();
156
}
157
158
size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden, uint percent_change) {
159
size_t eden_heap_delta;
160
eden_heap_delta = cur_eden / 100 * percent_change;
161
return eden_heap_delta;
162
}
163
164
size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden) {
165
return eden_increment(cur_eden, YoungGenerationSizeIncrement);
166
}
167
168
size_t AdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
169
size_t eden_heap_delta = eden_increment(cur_eden) /
170
AdaptiveSizeDecrementScaleFactor;
171
return eden_heap_delta;
172
}
173
174
size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo, uint percent_change) {
175
size_t promo_heap_delta;
176
promo_heap_delta = cur_promo / 100 * percent_change;
177
return promo_heap_delta;
178
}
179
180
size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo) {
181
return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
182
}
183
184
size_t AdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
185
size_t promo_heap_delta = promo_increment(cur_promo);
186
promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
187
return promo_heap_delta;
188
}
189
190
double AdaptiveSizePolicy::time_since_major_gc() const {
191
_major_timer.stop();
192
double result = _major_timer.seconds();
193
_major_timer.start();
194
return result;
195
}
196
197
// Linear decay of major gc cost
198
double AdaptiveSizePolicy::decaying_major_gc_cost() const {
199
double major_interval = major_gc_interval_average_for_decay();
200
double major_gc_cost_average = major_gc_cost();
201
double decayed_major_gc_cost = major_gc_cost_average;
202
if(time_since_major_gc() > 0.0) {
203
decayed_major_gc_cost = major_gc_cost() *
204
(((double) AdaptiveSizeMajorGCDecayTimeScale) * major_interval)
205
/ time_since_major_gc();
206
}
207
208
// The decayed cost should always be smaller than the
209
// average cost but the vagaries of finite arithmetic could
210
// produce a larger value in decayed_major_gc_cost so protect
211
// against that.
212
return MIN2(major_gc_cost_average, decayed_major_gc_cost);
213
}
214
215
// Use a value of the major gc cost that has been decayed
216
// by the factor
217
//
218
// average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale /
219
// time-since-last-major-gc
220
//
221
// if the average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale
222
// is less than time-since-last-major-gc.
223
//
224
// In cases where there are initial major gc's that
225
// are of a relatively high cost but no later major
226
// gc's, the total gc cost can remain high because
227
// the major gc cost remains unchanged (since there are no major
228
// gc's). In such a situation the value of the unchanging
229
// major gc cost can keep the mutator throughput below
230
// the goal when in fact the major gc cost is becoming diminishingly
231
// small. Use the decaying gc cost only to decide whether to
232
// adjust for throughput. Using it also to determine the adjustment
233
// to be made for throughput also seems reasonable but there is
234
// no test case to use to decide if it is the right thing to do
235
// don't do it yet.
236
237
double AdaptiveSizePolicy::decaying_gc_cost() const {
238
double decayed_major_gc_cost = major_gc_cost();
239
double avg_major_interval = major_gc_interval_average_for_decay();
240
if (UseAdaptiveSizeDecayMajorGCCost &&
241
(AdaptiveSizeMajorGCDecayTimeScale > 0) &&
242
(avg_major_interval > 0.00)) {
243
double time_since_last_major_gc = time_since_major_gc();
244
245
// Decay the major gc cost?
246
if (time_since_last_major_gc >
247
((double) AdaptiveSizeMajorGCDecayTimeScale) * avg_major_interval) {
248
249
// Decay using the time-since-last-major-gc
250
decayed_major_gc_cost = decaying_major_gc_cost();
251
log_trace(gc, ergo)("decaying_gc_cost: major interval average: %f time since last major gc: %f",
252
avg_major_interval, time_since_last_major_gc);
253
log_trace(gc, ergo)(" major gc cost: %f decayed major gc cost: %f",
254
major_gc_cost(), decayed_major_gc_cost);
255
}
256
}
257
double result = MIN2(1.0, decayed_major_gc_cost + minor_gc_cost());
258
return result;
259
}
260
261
262
void AdaptiveSizePolicy::clear_generation_free_space_flags() {
263
set_change_young_gen_for_min_pauses(0);
264
set_change_old_gen_for_maj_pauses(0);
265
266
set_change_old_gen_for_throughput(0);
267
set_change_young_gen_for_throughput(0);
268
set_decrease_for_footprint(0);
269
set_decide_at_full_gc(0);
270
}
271
272
class AdaptiveSizePolicyTimeOverheadTester: public GCOverheadTester {
273
double _gc_cost;
274
275
public:
276
AdaptiveSizePolicyTimeOverheadTester(double gc_cost) : _gc_cost(gc_cost) {}
277
278
bool is_exceeded() {
279
return _gc_cost > (GCTimeLimit / 100.0);
280
}
281
};
282
283
class AdaptiveSizePolicySpaceOverheadTester: public GCOverheadTester {
284
size_t _eden_live;
285
size_t _max_old_gen_size;
286
size_t _max_eden_size;
287
size_t _promo_size;
288
double _avg_eden_live;
289
double _avg_old_live;
290
291
public:
292
AdaptiveSizePolicySpaceOverheadTester(size_t eden_live,
293
size_t max_old_gen_size,
294
size_t max_eden_size,
295
size_t promo_size,
296
double avg_eden_live,
297
double avg_old_live) :
298
_eden_live(eden_live),
299
_max_old_gen_size(max_old_gen_size),
300
_max_eden_size(max_eden_size),
301
_promo_size(promo_size),
302
_avg_eden_live(avg_eden_live),
303
_avg_old_live(avg_old_live) {}
304
305
bool is_exceeded() {
306
// _max_eden_size is the upper limit on the size of eden based on
307
// the maximum size of the young generation and the sizes
308
// of the survivor space.
309
// The question being asked is whether the space being recovered by
310
// a collection is low.
311
// free_in_eden is the free space in eden after a collection and
312
// free_in_old_gen is the free space in the old generation after
313
// a collection.
314
//
315
// Use the minimum of the current value of the live in eden
316
// or the average of the live in eden.
317
// If the current value drops quickly, that should be taken
318
// into account (i.e., don't trigger if the amount of free
319
// space has suddenly jumped up). If the current is much
320
// higher than the average, use the average since it represents
321
// the longer term behavior.
322
const size_t live_in_eden =
323
MIN2(_eden_live, (size_t)_avg_eden_live);
324
const size_t free_in_eden = _max_eden_size > live_in_eden ?
325
_max_eden_size - live_in_eden : 0;
326
const size_t free_in_old_gen = (size_t)(_max_old_gen_size - _avg_old_live);
327
const size_t total_free_limit = free_in_old_gen + free_in_eden;
328
const size_t total_mem = _max_old_gen_size + _max_eden_size;
329
const double free_limit_ratio = GCHeapFreeLimit / 100.0;
330
const double mem_free_limit = total_mem * free_limit_ratio;
331
const double mem_free_old_limit = _max_old_gen_size * free_limit_ratio;
332
const double mem_free_eden_limit = _max_eden_size * free_limit_ratio;
333
size_t promo_limit = (size_t)(_max_old_gen_size - _avg_old_live);
334
// But don't force a promo size below the current promo size. Otherwise,
335
// the promo size will shrink for no good reason.
336
promo_limit = MAX2(promo_limit, _promo_size);
337
338
log_trace(gc, ergo)(
339
"AdaptiveSizePolicySpaceOverheadTester::is_exceeded:"
340
" promo_limit: " SIZE_FORMAT
341
" max_eden_size: " SIZE_FORMAT
342
" total_free_limit: " SIZE_FORMAT
343
" max_old_gen_size: " SIZE_FORMAT
344
" max_eden_size: " SIZE_FORMAT
345
" mem_free_limit: " SIZE_FORMAT,
346
promo_limit, _max_eden_size, total_free_limit,
347
_max_old_gen_size, _max_eden_size,
348
(size_t)mem_free_limit);
349
350
return free_in_old_gen < (size_t)mem_free_old_limit &&
351
free_in_eden < (size_t)mem_free_eden_limit;
352
}
353
};
354
355
void AdaptiveSizePolicy::check_gc_overhead_limit(
356
size_t eden_live,
357
size_t max_old_gen_size,
358
size_t max_eden_size,
359
bool is_full_gc,
360
GCCause::Cause gc_cause,
361
SoftRefPolicy* soft_ref_policy) {
362
363
AdaptiveSizePolicyTimeOverheadTester time_overhead(gc_cost());
364
AdaptiveSizePolicySpaceOverheadTester space_overhead(eden_live,
365
max_old_gen_size,
366
max_eden_size,
367
_promo_size,
368
avg_eden_live()->average(),
369
avg_old_live()->average());
370
_overhead_checker.check_gc_overhead_limit(&time_overhead,
371
&space_overhead,
372
is_full_gc,
373
gc_cause,
374
soft_ref_policy);
375
}
376
// Printing
377
378
bool AdaptiveSizePolicy::print() const {
379
assert(UseAdaptiveSizePolicy, "UseAdaptiveSizePolicy need to be enabled.");
380
381
if (!log_is_enabled(Debug, gc, ergo)) {
382
return false;
383
}
384
385
// Print goal for which action is needed.
386
char* action = NULL;
387
bool change_for_pause = false;
388
if ((change_old_gen_for_maj_pauses() ==
389
decrease_old_gen_for_maj_pauses_true) ||
390
(change_young_gen_for_min_pauses() ==
391
decrease_young_gen_for_min_pauses_true)) {
392
action = (char*) " *** pause time goal ***";
393
change_for_pause = true;
394
} else if ((change_old_gen_for_throughput() ==
395
increase_old_gen_for_throughput_true) ||
396
(change_young_gen_for_throughput() ==
397
increase_young_gen_for_througput_true)) {
398
action = (char*) " *** throughput goal ***";
399
} else if (decrease_for_footprint()) {
400
action = (char*) " *** reduced footprint ***";
401
} else {
402
// No actions were taken. This can legitimately be the
403
// situation if not enough data has been gathered to make
404
// decisions.
405
return false;
406
}
407
408
// Pauses
409
// Currently the size of the old gen is only adjusted to
410
// change the major pause times.
411
char* young_gen_action = NULL;
412
char* tenured_gen_action = NULL;
413
414
char* shrink_msg = (char*) "(attempted to shrink)";
415
char* grow_msg = (char*) "(attempted to grow)";
416
char* no_change_msg = (char*) "(no change)";
417
if (change_young_gen_for_min_pauses() ==
418
decrease_young_gen_for_min_pauses_true) {
419
young_gen_action = shrink_msg;
420
} else if (change_for_pause) {
421
young_gen_action = no_change_msg;
422
}
423
424
if (change_old_gen_for_maj_pauses() == decrease_old_gen_for_maj_pauses_true) {
425
tenured_gen_action = shrink_msg;
426
} else if (change_for_pause) {
427
tenured_gen_action = no_change_msg;
428
}
429
430
// Throughput
431
if (change_old_gen_for_throughput() == increase_old_gen_for_throughput_true) {
432
assert(change_young_gen_for_throughput() ==
433
increase_young_gen_for_througput_true,
434
"Both generations should be growing");
435
young_gen_action = grow_msg;
436
tenured_gen_action = grow_msg;
437
} else if (change_young_gen_for_throughput() ==
438
increase_young_gen_for_througput_true) {
439
// Only the young generation may grow at start up (before
440
// enough full collections have been done to grow the old generation).
441
young_gen_action = grow_msg;
442
tenured_gen_action = no_change_msg;
443
}
444
445
// Minimum footprint
446
if (decrease_for_footprint() != 0) {
447
young_gen_action = shrink_msg;
448
tenured_gen_action = shrink_msg;
449
}
450
451
log_debug(gc, ergo)("UseAdaptiveSizePolicy actions to meet %s", action);
452
log_debug(gc, ergo)(" GC overhead (%%)");
453
log_debug(gc, ergo)(" Young generation: %7.2f\t %s",
454
100.0 * avg_minor_gc_cost()->average(), young_gen_action);
455
log_debug(gc, ergo)(" Tenured generation: %7.2f\t %s",
456
100.0 * avg_major_gc_cost()->average(), tenured_gen_action);
457
return true;
458
}
459
460
void AdaptiveSizePolicy::print_tenuring_threshold( uint new_tenuring_threshold_arg) const {
461
// Tenuring threshold
462
if (decrement_tenuring_threshold_for_survivor_limit()) {
463
log_debug(gc, ergo)("Tenuring threshold: (attempted to decrease to avoid survivor space overflow) = %u", new_tenuring_threshold_arg);
464
} else if (decrement_tenuring_threshold_for_gc_cost()) {
465
log_debug(gc, ergo)("Tenuring threshold: (attempted to decrease to balance GC costs) = %u", new_tenuring_threshold_arg);
466
} else if (increment_tenuring_threshold_for_gc_cost()) {
467
log_debug(gc, ergo)("Tenuring threshold: (attempted to increase to balance GC costs) = %u", new_tenuring_threshold_arg);
468
} else {
469
assert(!tenuring_threshold_change(), "(no change was attempted)");
470
}
471
}
472
473