Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/gc/shared/c1/barrierSetC1.cpp
40974 views
1
/*
2
* Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_Defs.hpp"
27
#include "c1/c1_LIRGenerator.hpp"
28
#include "classfile/javaClasses.hpp"
29
#include "gc/shared/c1/barrierSetC1.hpp"
30
#include "utilities/macros.hpp"
31
32
#ifndef PATCHED_ADDR
33
#define PATCHED_ADDR (max_jint)
34
#endif
35
36
#ifdef ASSERT
37
#define __ gen->lir(__FILE__, __LINE__)->
38
#else
39
#define __ gen->lir()->
40
#endif
41
42
LIR_Opr BarrierSetC1::resolve_address(LIRAccess& access, bool resolve_in_register) {
43
DecoratorSet decorators = access.decorators();
44
bool is_array = (decorators & IS_ARRAY) != 0;
45
bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0;
46
47
LIRItem& base = access.base().item();
48
LIR_Opr offset = access.offset().opr();
49
LIRGenerator *gen = access.gen();
50
51
LIR_Opr addr_opr;
52
if (is_array) {
53
addr_opr = LIR_OprFact::address(gen->emit_array_address(base.result(), offset, access.type()));
54
} else if (needs_patching) {
55
// we need to patch the offset in the instruction so don't allow
56
// generate_address to try to be smart about emitting the -1.
57
// Otherwise the patching code won't know how to find the
58
// instruction to patch.
59
addr_opr = LIR_OprFact::address(new LIR_Address(base.result(), PATCHED_ADDR, access.type()));
60
} else {
61
addr_opr = LIR_OprFact::address(gen->generate_address(base.result(), offset, 0, 0, access.type()));
62
}
63
64
if (resolve_in_register) {
65
LIR_Opr resolved_addr = gen->new_pointer_register();
66
if (needs_patching) {
67
__ leal(addr_opr, resolved_addr, lir_patch_normal, access.patch_emit_info());
68
access.clear_decorators(C1_NEEDS_PATCHING);
69
} else {
70
__ leal(addr_opr, resolved_addr);
71
}
72
return LIR_OprFact::address(new LIR_Address(resolved_addr, access.type()));
73
} else {
74
return addr_opr;
75
}
76
}
77
78
void BarrierSetC1::store_at(LIRAccess& access, LIR_Opr value) {
79
DecoratorSet decorators = access.decorators();
80
bool in_heap = (decorators & IN_HEAP) != 0;
81
assert(in_heap, "not supported yet");
82
83
LIR_Opr resolved = resolve_address(access, false);
84
access.set_resolved_addr(resolved);
85
store_at_resolved(access, value);
86
}
87
88
void BarrierSetC1::load_at(LIRAccess& access, LIR_Opr result) {
89
DecoratorSet decorators = access.decorators();
90
bool in_heap = (decorators & IN_HEAP) != 0;
91
assert(in_heap, "not supported yet");
92
93
LIR_Opr resolved = resolve_address(access, false);
94
access.set_resolved_addr(resolved);
95
load_at_resolved(access, result);
96
}
97
98
void BarrierSetC1::load(LIRAccess& access, LIR_Opr result) {
99
DecoratorSet decorators = access.decorators();
100
bool in_heap = (decorators & IN_HEAP) != 0;
101
assert(!in_heap, "consider using load_at");
102
load_at_resolved(access, result);
103
}
104
105
LIR_Opr BarrierSetC1::atomic_cmpxchg_at(LIRAccess& access, LIRItem& cmp_value, LIRItem& new_value) {
106
DecoratorSet decorators = access.decorators();
107
bool in_heap = (decorators & IN_HEAP) != 0;
108
assert(in_heap, "not supported yet");
109
110
access.load_address();
111
112
LIR_Opr resolved = resolve_address(access, true);
113
access.set_resolved_addr(resolved);
114
return atomic_cmpxchg_at_resolved(access, cmp_value, new_value);
115
}
116
117
LIR_Opr BarrierSetC1::atomic_xchg_at(LIRAccess& access, LIRItem& value) {
118
DecoratorSet decorators = access.decorators();
119
bool in_heap = (decorators & IN_HEAP) != 0;
120
assert(in_heap, "not supported yet");
121
122
access.load_address();
123
124
LIR_Opr resolved = resolve_address(access, true);
125
access.set_resolved_addr(resolved);
126
return atomic_xchg_at_resolved(access, value);
127
}
128
129
LIR_Opr BarrierSetC1::atomic_add_at(LIRAccess& access, LIRItem& value) {
130
DecoratorSet decorators = access.decorators();
131
bool in_heap = (decorators & IN_HEAP) != 0;
132
assert(in_heap, "not supported yet");
133
134
access.load_address();
135
136
LIR_Opr resolved = resolve_address(access, true);
137
access.set_resolved_addr(resolved);
138
return atomic_add_at_resolved(access, value);
139
}
140
141
void BarrierSetC1::store_at_resolved(LIRAccess& access, LIR_Opr value) {
142
DecoratorSet decorators = access.decorators();
143
bool is_volatile = (((decorators & MO_SEQ_CST) != 0) || AlwaysAtomicAccesses);
144
bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0;
145
bool mask_boolean = (decorators & C1_MASK_BOOLEAN) != 0;
146
LIRGenerator* gen = access.gen();
147
148
if (mask_boolean) {
149
value = gen->mask_boolean(access.base().opr(), value, access.access_emit_info());
150
}
151
152
if (is_volatile) {
153
__ membar_release();
154
}
155
156
LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
157
if (is_volatile && !needs_patching) {
158
gen->volatile_field_store(value, access.resolved_addr()->as_address_ptr(), access.access_emit_info());
159
} else {
160
__ store(value, access.resolved_addr()->as_address_ptr(), access.access_emit_info(), patch_code);
161
}
162
163
if (is_volatile && !support_IRIW_for_not_multiple_copy_atomic_cpu) {
164
__ membar();
165
}
166
}
167
168
void BarrierSetC1::load_at_resolved(LIRAccess& access, LIR_Opr result) {
169
LIRGenerator *gen = access.gen();
170
DecoratorSet decorators = access.decorators();
171
bool is_volatile = (((decorators & MO_SEQ_CST) != 0) || AlwaysAtomicAccesses);
172
bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0;
173
bool mask_boolean = (decorators & C1_MASK_BOOLEAN) != 0;
174
bool in_native = (decorators & IN_NATIVE) != 0;
175
176
if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile) {
177
__ membar();
178
}
179
180
LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
181
if (in_native) {
182
__ move_wide(access.resolved_addr()->as_address_ptr(), result);
183
} else if (is_volatile && !needs_patching) {
184
gen->volatile_field_load(access.resolved_addr()->as_address_ptr(), result, access.access_emit_info());
185
} else {
186
__ load(access.resolved_addr()->as_address_ptr(), result, access.access_emit_info(), patch_code);
187
}
188
189
if (is_volatile) {
190
__ membar_acquire();
191
}
192
193
/* Normalize boolean value returned by unsafe operation, i.e., value != 0 ? value = true : value false. */
194
if (mask_boolean) {
195
LabelObj* equalZeroLabel = new LabelObj();
196
__ cmp(lir_cond_equal, result, 0);
197
__ branch(lir_cond_equal, equalZeroLabel->label());
198
__ move(LIR_OprFact::intConst(1), result);
199
__ branch_destination(equalZeroLabel->label());
200
}
201
}
202
203
LIR_Opr BarrierSetC1::atomic_cmpxchg_at_resolved(LIRAccess& access, LIRItem& cmp_value, LIRItem& new_value) {
204
LIRGenerator *gen = access.gen();
205
return gen->atomic_cmpxchg(access.type(), access.resolved_addr(), cmp_value, new_value);
206
}
207
208
LIR_Opr BarrierSetC1::atomic_xchg_at_resolved(LIRAccess& access, LIRItem& value) {
209
LIRGenerator *gen = access.gen();
210
return gen->atomic_xchg(access.type(), access.resolved_addr(), value);
211
}
212
213
LIR_Opr BarrierSetC1::atomic_add_at_resolved(LIRAccess& access, LIRItem& value) {
214
LIRGenerator *gen = access.gen();
215
return gen->atomic_add(access.type(), access.resolved_addr(), value);
216
}
217
218
void BarrierSetC1::generate_referent_check(LIRAccess& access, LabelObj* cont) {
219
// We might be reading the value of the referent field of a
220
// Reference object in order to attach it back to the live
221
// object graph. If G1 is enabled then we need to record
222
// the value that is being returned in an SATB log buffer.
223
//
224
// We need to generate code similar to the following...
225
//
226
// if (offset == java_lang_ref_Reference::referent_offset()) {
227
// if (src != NULL) {
228
// if (klass(src)->reference_type() != REF_NONE) {
229
// pre_barrier(..., value, ...);
230
// }
231
// }
232
// }
233
234
bool gen_pre_barrier = true; // Assume we need to generate pre_barrier.
235
bool gen_offset_check = true; // Assume we need to generate the offset guard.
236
bool gen_source_check = true; // Assume we need to check the src object for null.
237
bool gen_type_check = true; // Assume we need to check the reference_type.
238
239
LIRGenerator *gen = access.gen();
240
241
LIRItem& base = access.base().item();
242
LIR_Opr offset = access.offset().opr();
243
244
if (offset->is_constant()) {
245
LIR_Const* constant = offset->as_constant_ptr();
246
jlong off_con = (constant->type() == T_INT ?
247
(jlong)constant->as_jint() :
248
constant->as_jlong());
249
250
251
if (off_con != (jlong) java_lang_ref_Reference::referent_offset()) {
252
// The constant offset is something other than referent_offset.
253
// We can skip generating/checking the remaining guards and
254
// skip generation of the code stub.
255
gen_pre_barrier = false;
256
} else {
257
// The constant offset is the same as referent_offset -
258
// we do not need to generate a runtime offset check.
259
gen_offset_check = false;
260
}
261
}
262
263
// We don't need to generate stub if the source object is an array
264
if (gen_pre_barrier && base.type()->is_array()) {
265
gen_pre_barrier = false;
266
}
267
268
if (gen_pre_barrier) {
269
// We still need to continue with the checks.
270
if (base.is_constant()) {
271
ciObject* src_con = base.get_jobject_constant();
272
guarantee(src_con != NULL, "no source constant");
273
274
if (src_con->is_null_object()) {
275
// The constant src object is null - We can skip
276
// generating the code stub.
277
gen_pre_barrier = false;
278
} else {
279
// Non-null constant source object. We still have to generate
280
// the slow stub - but we don't need to generate the runtime
281
// null object check.
282
gen_source_check = false;
283
}
284
}
285
}
286
if (gen_pre_barrier && !PatchALot) {
287
// Can the klass of object be statically determined to be
288
// a sub-class of Reference?
289
ciType* type = base.value()->declared_type();
290
if ((type != NULL) && type->is_loaded()) {
291
if (type->is_subtype_of(gen->compilation()->env()->Reference_klass())) {
292
gen_type_check = false;
293
} else if (type->is_klass() &&
294
!gen->compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
295
// Not Reference and not Object klass.
296
gen_pre_barrier = false;
297
}
298
}
299
}
300
301
if (gen_pre_barrier) {
302
// We can have generate one runtime check here. Let's start with
303
// the offset check.
304
// Allocate temp register to base and load it here, otherwise
305
// control flow below may confuse register allocator.
306
LIR_Opr base_reg = gen->new_register(T_OBJECT);
307
__ move(base.result(), base_reg);
308
if (gen_offset_check) {
309
// if (offset != referent_offset) -> continue
310
// If offset is an int then we can do the comparison with the
311
// referent_offset constant; otherwise we need to move
312
// referent_offset into a temporary register and generate
313
// a reg-reg compare.
314
315
LIR_Opr referent_off;
316
317
if (offset->type() == T_INT) {
318
referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset());
319
} else {
320
assert(offset->type() == T_LONG, "what else?");
321
referent_off = gen->new_register(T_LONG);
322
__ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset()), referent_off);
323
}
324
__ cmp(lir_cond_notEqual, offset, referent_off);
325
__ branch(lir_cond_notEqual, cont->label());
326
}
327
if (gen_source_check) {
328
// offset is a const and equals referent offset
329
// if (source == null) -> continue
330
__ cmp(lir_cond_equal, base_reg, LIR_OprFact::oopConst(NULL));
331
__ branch(lir_cond_equal, cont->label());
332
}
333
LIR_Opr src_klass = gen->new_register(T_METADATA);
334
if (gen_type_check) {
335
// We have determined that offset == referent_offset && src != null.
336
// if (src->_klass->_reference_type == REF_NONE) -> continue
337
__ move(new LIR_Address(base_reg, oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
338
LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
339
LIR_Opr reference_type = gen->new_register(T_INT);
340
__ move(reference_type_addr, reference_type);
341
__ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
342
__ branch(lir_cond_equal, cont->label());
343
}
344
}
345
}
346
347