Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/gc/shared/collectedHeap.cpp
40957 views
1
/*
2
* Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "classfile/classLoaderData.hpp"
27
#include "classfile/vmClasses.hpp"
28
#include "gc/shared/allocTracer.hpp"
29
#include "gc/shared/barrierSet.hpp"
30
#include "gc/shared/collectedHeap.hpp"
31
#include "gc/shared/collectedHeap.inline.hpp"
32
#include "gc/shared/gcLocker.inline.hpp"
33
#include "gc/shared/gcHeapSummary.hpp"
34
#include "gc/shared/stringdedup/stringDedup.hpp"
35
#include "gc/shared/gcTrace.hpp"
36
#include "gc/shared/gcTraceTime.inline.hpp"
37
#include "gc/shared/gcVMOperations.hpp"
38
#include "gc/shared/gcWhen.hpp"
39
#include "gc/shared/gc_globals.hpp"
40
#include "gc/shared/memAllocator.hpp"
41
#include "gc/shared/tlab_globals.hpp"
42
#include "logging/log.hpp"
43
#include "logging/logStream.hpp"
44
#include "memory/classLoaderMetaspace.hpp"
45
#include "memory/metaspaceUtils.hpp"
46
#include "memory/resourceArea.hpp"
47
#include "memory/universe.hpp"
48
#include "oops/instanceMirrorKlass.hpp"
49
#include "oops/oop.inline.hpp"
50
#include "runtime/handles.inline.hpp"
51
#include "runtime/init.hpp"
52
#include "runtime/perfData.hpp"
53
#include "runtime/thread.inline.hpp"
54
#include "runtime/threadSMR.hpp"
55
#include "runtime/vmThread.hpp"
56
#include "services/heapDumper.hpp"
57
#include "utilities/align.hpp"
58
#include "utilities/copy.hpp"
59
#include "utilities/events.hpp"
60
61
class ClassLoaderData;
62
63
size_t CollectedHeap::_filler_array_max_size = 0;
64
65
class GCMessage : public FormatBuffer<1024> {
66
public:
67
bool is_before;
68
};
69
70
template <>
71
void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
72
st->print_cr("GC heap %s", m.is_before ? "before" : "after");
73
st->print_raw(m);
74
}
75
76
class GCHeapLog : public EventLogBase<GCMessage> {
77
private:
78
void log_heap(CollectedHeap* heap, bool before);
79
80
public:
81
GCHeapLog() : EventLogBase<GCMessage>("GC Heap History", "gc") {}
82
83
void log_heap_before(CollectedHeap* heap) {
84
log_heap(heap, true);
85
}
86
void log_heap_after(CollectedHeap* heap) {
87
log_heap(heap, false);
88
}
89
};
90
91
void GCHeapLog::log_heap(CollectedHeap* heap, bool before) {
92
if (!should_log()) {
93
return;
94
}
95
96
double timestamp = fetch_timestamp();
97
MutexLocker ml(&_mutex, Mutex::_no_safepoint_check_flag);
98
int index = compute_log_index();
99
_records[index].thread = NULL; // Its the GC thread so it's not that interesting.
100
_records[index].timestamp = timestamp;
101
_records[index].data.is_before = before;
102
stringStream st(_records[index].data.buffer(), _records[index].data.size());
103
104
st.print_cr("{Heap %s GC invocations=%u (full %u):",
105
before ? "before" : "after",
106
heap->total_collections(),
107
heap->total_full_collections());
108
109
heap->print_on(&st);
110
st.print_cr("}");
111
}
112
113
size_t CollectedHeap::unused() const {
114
MutexLocker ml(Heap_lock);
115
return capacity() - used();
116
}
117
118
VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
119
size_t capacity_in_words = capacity() / HeapWordSize;
120
121
return VirtualSpaceSummary(
122
_reserved.start(), _reserved.start() + capacity_in_words, _reserved.end());
123
}
124
125
GCHeapSummary CollectedHeap::create_heap_summary() {
126
VirtualSpaceSummary heap_space = create_heap_space_summary();
127
return GCHeapSummary(heap_space, used());
128
}
129
130
MetaspaceSummary CollectedHeap::create_metaspace_summary() {
131
const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary =
132
MetaspaceUtils::chunk_free_list_summary(Metaspace::NonClassType);
133
const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary =
134
MetaspaceUtils::chunk_free_list_summary(Metaspace::ClassType);
135
return MetaspaceSummary(MetaspaceGC::capacity_until_GC(),
136
MetaspaceUtils::get_combined_statistics(),
137
ms_chunk_free_list_summary, class_chunk_free_list_summary);
138
}
139
140
void CollectedHeap::print_heap_before_gc() {
141
LogTarget(Debug, gc, heap) lt;
142
if (lt.is_enabled()) {
143
LogStream ls(lt);
144
ls.print_cr("Heap before GC invocations=%u (full %u):", total_collections(), total_full_collections());
145
ResourceMark rm;
146
print_on(&ls);
147
}
148
149
if (_gc_heap_log != NULL) {
150
_gc_heap_log->log_heap_before(this);
151
}
152
}
153
154
void CollectedHeap::print_heap_after_gc() {
155
LogTarget(Debug, gc, heap) lt;
156
if (lt.is_enabled()) {
157
LogStream ls(lt);
158
ls.print_cr("Heap after GC invocations=%u (full %u):", total_collections(), total_full_collections());
159
ResourceMark rm;
160
print_on(&ls);
161
}
162
163
if (_gc_heap_log != NULL) {
164
_gc_heap_log->log_heap_after(this);
165
}
166
}
167
168
void CollectedHeap::print() const { print_on(tty); }
169
170
void CollectedHeap::print_on_error(outputStream* st) const {
171
st->print_cr("Heap:");
172
print_extended_on(st);
173
st->cr();
174
175
BarrierSet* bs = BarrierSet::barrier_set();
176
if (bs != NULL) {
177
bs->print_on(st);
178
}
179
}
180
181
void CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
182
const GCHeapSummary& heap_summary = create_heap_summary();
183
gc_tracer->report_gc_heap_summary(when, heap_summary);
184
185
const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
186
gc_tracer->report_metaspace_summary(when, metaspace_summary);
187
}
188
189
void CollectedHeap::trace_heap_before_gc(const GCTracer* gc_tracer) {
190
trace_heap(GCWhen::BeforeGC, gc_tracer);
191
}
192
193
void CollectedHeap::trace_heap_after_gc(const GCTracer* gc_tracer) {
194
trace_heap(GCWhen::AfterGC, gc_tracer);
195
}
196
197
// Default implementation, for collectors that don't support the feature.
198
bool CollectedHeap::supports_concurrent_gc_breakpoints() const {
199
return false;
200
}
201
202
bool CollectedHeap::is_oop(oop object) const {
203
if (!is_object_aligned(object)) {
204
return false;
205
}
206
207
if (!is_in(object)) {
208
return false;
209
}
210
211
if (is_in(object->klass_or_null())) {
212
return false;
213
}
214
215
return true;
216
}
217
218
// Memory state functions.
219
220
221
CollectedHeap::CollectedHeap() :
222
_capacity_at_last_gc(0),
223
_used_at_last_gc(0),
224
_is_gc_active(false),
225
_last_whole_heap_examined_time_ns(os::javaTimeNanos()),
226
_total_collections(0),
227
_total_full_collections(0),
228
_gc_cause(GCCause::_no_gc),
229
_gc_lastcause(GCCause::_no_gc)
230
{
231
const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
232
const size_t elements_per_word = HeapWordSize / sizeof(jint);
233
_filler_array_max_size = align_object_size(filler_array_hdr_size() +
234
max_len / elements_per_word);
235
236
NOT_PRODUCT(_promotion_failure_alot_count = 0;)
237
NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
238
239
if (UsePerfData) {
240
EXCEPTION_MARK;
241
242
// create the gc cause jvmstat counters
243
_perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
244
80, GCCause::to_string(_gc_cause), CHECK);
245
246
_perf_gc_lastcause =
247
PerfDataManager::create_string_variable(SUN_GC, "lastCause",
248
80, GCCause::to_string(_gc_lastcause), CHECK);
249
}
250
251
// Create the ring log
252
if (LogEvents) {
253
_gc_heap_log = new GCHeapLog();
254
} else {
255
_gc_heap_log = NULL;
256
}
257
}
258
259
// This interface assumes that it's being called by the
260
// vm thread. It collects the heap assuming that the
261
// heap lock is already held and that we are executing in
262
// the context of the vm thread.
263
void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
264
Thread* thread = Thread::current();
265
assert(thread->is_VM_thread(), "Precondition#1");
266
assert(Heap_lock->is_locked(), "Precondition#2");
267
GCCauseSetter gcs(this, cause);
268
switch (cause) {
269
case GCCause::_heap_inspection:
270
case GCCause::_heap_dump:
271
case GCCause::_metadata_GC_threshold : {
272
HandleMark hm(thread);
273
do_full_collection(false); // don't clear all soft refs
274
break;
275
}
276
case GCCause::_archive_time_gc:
277
case GCCause::_metadata_GC_clear_soft_refs: {
278
HandleMark hm(thread);
279
do_full_collection(true); // do clear all soft refs
280
break;
281
}
282
default:
283
ShouldNotReachHere(); // Unexpected use of this function
284
}
285
}
286
287
MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
288
size_t word_size,
289
Metaspace::MetadataType mdtype) {
290
uint loop_count = 0;
291
uint gc_count = 0;
292
uint full_gc_count = 0;
293
294
assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
295
296
do {
297
MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
298
if (result != NULL) {
299
return result;
300
}
301
302
if (GCLocker::is_active_and_needs_gc()) {
303
// If the GCLocker is active, just expand and allocate.
304
// If that does not succeed, wait if this thread is not
305
// in a critical section itself.
306
result = loader_data->metaspace_non_null()->expand_and_allocate(word_size, mdtype);
307
if (result != NULL) {
308
return result;
309
}
310
JavaThread* jthr = JavaThread::current();
311
if (!jthr->in_critical()) {
312
// Wait for JNI critical section to be exited
313
GCLocker::stall_until_clear();
314
// The GC invoked by the last thread leaving the critical
315
// section will be a young collection and a full collection
316
// is (currently) needed for unloading classes so continue
317
// to the next iteration to get a full GC.
318
continue;
319
} else {
320
if (CheckJNICalls) {
321
fatal("Possible deadlock due to allocating while"
322
" in jni critical section");
323
}
324
return NULL;
325
}
326
}
327
328
{ // Need lock to get self consistent gc_count's
329
MutexLocker ml(Heap_lock);
330
gc_count = Universe::heap()->total_collections();
331
full_gc_count = Universe::heap()->total_full_collections();
332
}
333
334
// Generate a VM operation
335
VM_CollectForMetadataAllocation op(loader_data,
336
word_size,
337
mdtype,
338
gc_count,
339
full_gc_count,
340
GCCause::_metadata_GC_threshold);
341
VMThread::execute(&op);
342
343
// If GC was locked out, try again. Check before checking success because the
344
// prologue could have succeeded and the GC still have been locked out.
345
if (op.gc_locked()) {
346
continue;
347
}
348
349
if (op.prologue_succeeded()) {
350
return op.result();
351
}
352
loop_count++;
353
if ((QueuedAllocationWarningCount > 0) &&
354
(loop_count % QueuedAllocationWarningCount == 0)) {
355
log_warning(gc, ergo)("satisfy_failed_metadata_allocation() retries %d times,"
356
" size=" SIZE_FORMAT, loop_count, word_size);
357
}
358
} while (true); // Until a GC is done
359
}
360
361
MemoryUsage CollectedHeap::memory_usage() {
362
return MemoryUsage(InitialHeapSize, used(), capacity(), max_capacity());
363
}
364
365
void CollectedHeap::set_gc_cause(GCCause::Cause v) {
366
if (UsePerfData) {
367
_gc_lastcause = _gc_cause;
368
_perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
369
_perf_gc_cause->set_value(GCCause::to_string(v));
370
}
371
_gc_cause = v;
372
}
373
374
#ifndef PRODUCT
375
void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
376
if (CheckMemoryInitialization && ZapUnusedHeapArea) {
377
// please note mismatch between size (in 32/64 bit words), and ju_addr that always point to a 32 bit word
378
for (juint* ju_addr = reinterpret_cast<juint*>(addr); ju_addr < reinterpret_cast<juint*>(addr + size); ++ju_addr) {
379
assert(*ju_addr == badHeapWordVal, "Found non badHeapWordValue in pre-allocation check");
380
}
381
}
382
}
383
#endif // PRODUCT
384
385
size_t CollectedHeap::max_tlab_size() const {
386
// TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
387
// This restriction could be removed by enabling filling with multiple arrays.
388
// If we compute that the reasonable way as
389
// header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
390
// we'll overflow on the multiply, so we do the divide first.
391
// We actually lose a little by dividing first,
392
// but that just makes the TLAB somewhat smaller than the biggest array,
393
// which is fine, since we'll be able to fill that.
394
size_t max_int_size = typeArrayOopDesc::header_size(T_INT) +
395
sizeof(jint) *
396
((juint) max_jint / (size_t) HeapWordSize);
397
return align_down(max_int_size, MinObjAlignment);
398
}
399
400
size_t CollectedHeap::filler_array_hdr_size() {
401
return align_object_offset(arrayOopDesc::header_size(T_INT)); // align to Long
402
}
403
404
size_t CollectedHeap::filler_array_min_size() {
405
return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
406
}
407
408
#ifdef ASSERT
409
void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
410
{
411
assert(words >= min_fill_size(), "too small to fill");
412
assert(is_object_aligned(words), "unaligned size");
413
}
414
415
void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
416
{
417
if (ZapFillerObjects && zap) {
418
Copy::fill_to_words(start + filler_array_hdr_size(),
419
words - filler_array_hdr_size(), 0XDEAFBABE);
420
}
421
}
422
#endif // ASSERT
423
424
void
425
CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
426
{
427
assert(words >= filler_array_min_size(), "too small for an array");
428
assert(words <= filler_array_max_size(), "too big for a single object");
429
430
const size_t payload_size = words - filler_array_hdr_size();
431
const size_t len = payload_size * HeapWordSize / sizeof(jint);
432
assert((int)len >= 0, "size too large " SIZE_FORMAT " becomes %d", words, (int)len);
433
434
ObjArrayAllocator allocator(Universe::intArrayKlassObj(), words, (int)len, /* do_zero */ false);
435
allocator.initialize(start);
436
DEBUG_ONLY(zap_filler_array(start, words, zap);)
437
}
438
439
void
440
CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
441
{
442
assert(words <= filler_array_max_size(), "too big for a single object");
443
444
if (words >= filler_array_min_size()) {
445
fill_with_array(start, words, zap);
446
} else if (words > 0) {
447
assert(words == min_fill_size(), "unaligned size");
448
ObjAllocator allocator(vmClasses::Object_klass(), words);
449
allocator.initialize(start);
450
}
451
}
452
453
void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
454
{
455
DEBUG_ONLY(fill_args_check(start, words);)
456
HandleMark hm(Thread::current()); // Free handles before leaving.
457
fill_with_object_impl(start, words, zap);
458
}
459
460
void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
461
{
462
DEBUG_ONLY(fill_args_check(start, words);)
463
HandleMark hm(Thread::current()); // Free handles before leaving.
464
465
// Multiple objects may be required depending on the filler array maximum size. Fill
466
// the range up to that with objects that are filler_array_max_size sized. The
467
// remainder is filled with a single object.
468
const size_t min = min_fill_size();
469
const size_t max = filler_array_max_size();
470
while (words > max) {
471
const size_t cur = (words - max) >= min ? max : max - min;
472
fill_with_array(start, cur, zap);
473
start += cur;
474
words -= cur;
475
}
476
477
fill_with_object_impl(start, words, zap);
478
}
479
480
void CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) {
481
CollectedHeap::fill_with_object(start, end, zap);
482
}
483
484
size_t CollectedHeap::min_dummy_object_size() const {
485
return oopDesc::header_size();
486
}
487
488
size_t CollectedHeap::tlab_alloc_reserve() const {
489
size_t min_size = min_dummy_object_size();
490
return min_size > (size_t)MinObjAlignment ? align_object_size(min_size) : 0;
491
}
492
493
HeapWord* CollectedHeap::allocate_new_tlab(size_t min_size,
494
size_t requested_size,
495
size_t* actual_size) {
496
guarantee(false, "thread-local allocation buffers not supported");
497
return NULL;
498
}
499
500
void CollectedHeap::ensure_parsability(bool retire_tlabs) {
501
assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
502
"Should only be called at a safepoint or at start-up");
503
504
ThreadLocalAllocStats stats;
505
506
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next();) {
507
BarrierSet::barrier_set()->make_parsable(thread);
508
if (UseTLAB) {
509
if (retire_tlabs) {
510
thread->tlab().retire(&stats);
511
} else {
512
thread->tlab().make_parsable();
513
}
514
}
515
}
516
517
stats.publish();
518
}
519
520
void CollectedHeap::resize_all_tlabs() {
521
assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
522
"Should only resize tlabs at safepoint");
523
524
if (UseTLAB && ResizeTLAB) {
525
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
526
thread->tlab().resize();
527
}
528
}
529
}
530
531
jlong CollectedHeap::millis_since_last_whole_heap_examined() {
532
return (os::javaTimeNanos() - _last_whole_heap_examined_time_ns) / NANOSECS_PER_MILLISEC;
533
}
534
535
void CollectedHeap::record_whole_heap_examined_timestamp() {
536
_last_whole_heap_examined_time_ns = os::javaTimeNanos();
537
}
538
539
void CollectedHeap::full_gc_dump(GCTimer* timer, bool before) {
540
assert(timer != NULL, "timer is null");
541
if ((HeapDumpBeforeFullGC && before) || (HeapDumpAfterFullGC && !before)) {
542
GCTraceTime(Info, gc) tm(before ? "Heap Dump (before full gc)" : "Heap Dump (after full gc)", timer);
543
HeapDumper::dump_heap();
544
}
545
546
LogTarget(Trace, gc, classhisto) lt;
547
if (lt.is_enabled()) {
548
GCTraceTime(Trace, gc, classhisto) tm(before ? "Class Histogram (before full gc)" : "Class Histogram (after full gc)", timer);
549
ResourceMark rm;
550
LogStream ls(lt);
551
VM_GC_HeapInspection inspector(&ls, false /* ! full gc */);
552
inspector.doit();
553
}
554
}
555
556
void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
557
full_gc_dump(timer, true);
558
}
559
560
void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
561
full_gc_dump(timer, false);
562
}
563
564
void CollectedHeap::initialize_reserved_region(const ReservedHeapSpace& rs) {
565
// It is important to do this in a way such that concurrent readers can't
566
// temporarily think something is in the heap. (Seen this happen in asserts.)
567
_reserved.set_word_size(0);
568
_reserved.set_start((HeapWord*)rs.base());
569
_reserved.set_end((HeapWord*)rs.end());
570
}
571
572
void CollectedHeap::post_initialize() {
573
StringDedup::initialize();
574
initialize_serviceability();
575
}
576
577
#ifndef PRODUCT
578
579
bool CollectedHeap::promotion_should_fail(volatile size_t* count) {
580
// Access to count is not atomic; the value does not have to be exact.
581
if (PromotionFailureALot) {
582
const size_t gc_num = total_collections();
583
const size_t elapsed_gcs = gc_num - _promotion_failure_alot_gc_number;
584
if (elapsed_gcs >= PromotionFailureALotInterval) {
585
// Test for unsigned arithmetic wrap-around.
586
if (++*count >= PromotionFailureALotCount) {
587
*count = 0;
588
return true;
589
}
590
}
591
}
592
return false;
593
}
594
595
bool CollectedHeap::promotion_should_fail() {
596
return promotion_should_fail(&_promotion_failure_alot_count);
597
}
598
599
void CollectedHeap::reset_promotion_should_fail(volatile size_t* count) {
600
if (PromotionFailureALot) {
601
_promotion_failure_alot_gc_number = total_collections();
602
*count = 0;
603
}
604
}
605
606
void CollectedHeap::reset_promotion_should_fail() {
607
reset_promotion_should_fail(&_promotion_failure_alot_count);
608
}
609
610
#endif // #ifndef PRODUCT
611
612
bool CollectedHeap::supports_object_pinning() const {
613
return false;
614
}
615
616
oop CollectedHeap::pin_object(JavaThread* thread, oop obj) {
617
ShouldNotReachHere();
618
return NULL;
619
}
620
621
void CollectedHeap::unpin_object(JavaThread* thread, oop obj) {
622
ShouldNotReachHere();
623
}
624
625
bool CollectedHeap::is_archived_object(oop object) const {
626
return false;
627
}
628
629
uint32_t CollectedHeap::hash_oop(oop obj) const {
630
const uintptr_t addr = cast_from_oop<uintptr_t>(obj);
631
return static_cast<uint32_t>(addr >> LogMinObjAlignment);
632
}
633
634
// It's the caller's responsibility to ensure glitch-freedom
635
// (if required).
636
void CollectedHeap::update_capacity_and_used_at_gc() {
637
_capacity_at_last_gc = capacity();
638
_used_at_last_gc = used();
639
}
640
641