Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/gc/shared/collectedHeap.hpp
40957 views
1
/*
2
* Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
26
#define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
27
28
#include "gc/shared/gcCause.hpp"
29
#include "gc/shared/gcWhen.hpp"
30
#include "gc/shared/verifyOption.hpp"
31
#include "memory/allocation.hpp"
32
#include "memory/metaspace.hpp"
33
#include "memory/universe.hpp"
34
#include "runtime/handles.hpp"
35
#include "runtime/perfDataTypes.hpp"
36
#include "runtime/safepoint.hpp"
37
#include "services/memoryUsage.hpp"
38
#include "utilities/debug.hpp"
39
#include "utilities/formatBuffer.hpp"
40
#include "utilities/growableArray.hpp"
41
42
// A "CollectedHeap" is an implementation of a java heap for HotSpot. This
43
// is an abstract class: there may be many different kinds of heaps. This
44
// class defines the functions that a heap must implement, and contains
45
// infrastructure common to all heaps.
46
47
class AbstractGangTask;
48
class AdaptiveSizePolicy;
49
class BarrierSet;
50
class GCHeapLog;
51
class GCHeapSummary;
52
class GCTimer;
53
class GCTracer;
54
class GCMemoryManager;
55
class MemoryPool;
56
class MetaspaceSummary;
57
class ReservedHeapSpace;
58
class SoftRefPolicy;
59
class Thread;
60
class ThreadClosure;
61
class VirtualSpaceSummary;
62
class WorkGang;
63
class nmethod;
64
65
class ParallelObjectIterator : public CHeapObj<mtGC> {
66
public:
67
virtual void object_iterate(ObjectClosure* cl, uint worker_id) = 0;
68
virtual ~ParallelObjectIterator() {}
69
};
70
71
//
72
// CollectedHeap
73
// GenCollectedHeap
74
// SerialHeap
75
// G1CollectedHeap
76
// ParallelScavengeHeap
77
// ShenandoahHeap
78
// ZCollectedHeap
79
//
80
class CollectedHeap : public CHeapObj<mtInternal> {
81
friend class VMStructs;
82
friend class JVMCIVMStructs;
83
friend class IsGCActiveMark; // Block structured external access to _is_gc_active
84
friend class MemAllocator;
85
86
private:
87
GCHeapLog* _gc_heap_log;
88
89
// Historic gc information
90
size_t _capacity_at_last_gc;
91
size_t _used_at_last_gc;
92
93
protected:
94
// Not used by all GCs
95
MemRegion _reserved;
96
97
bool _is_gc_active;
98
99
// Used for filler objects (static, but initialized in ctor).
100
static size_t _filler_array_max_size;
101
102
// Last time the whole heap has been examined in support of RMI
103
// MaxObjectInspectionAge.
104
// This timestamp must be monotonically non-decreasing to avoid
105
// time-warp warnings.
106
jlong _last_whole_heap_examined_time_ns;
107
108
unsigned int _total_collections; // ... started
109
unsigned int _total_full_collections; // ... started
110
NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
111
NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
112
113
// Reason for current garbage collection. Should be set to
114
// a value reflecting no collection between collections.
115
GCCause::Cause _gc_cause;
116
GCCause::Cause _gc_lastcause;
117
PerfStringVariable* _perf_gc_cause;
118
PerfStringVariable* _perf_gc_lastcause;
119
120
// Constructor
121
CollectedHeap();
122
123
// Create a new tlab. All TLAB allocations must go through this.
124
// To allow more flexible TLAB allocations min_size specifies
125
// the minimum size needed, while requested_size is the requested
126
// size based on ergonomics. The actually allocated size will be
127
// returned in actual_size.
128
virtual HeapWord* allocate_new_tlab(size_t min_size,
129
size_t requested_size,
130
size_t* actual_size);
131
132
// Reinitialize tlabs before resuming mutators.
133
virtual void resize_all_tlabs();
134
135
// Raw memory allocation facilities
136
// The obj and array allocate methods are covers for these methods.
137
// mem_allocate() should never be
138
// called to allocate TLABs, only individual objects.
139
virtual HeapWord* mem_allocate(size_t size,
140
bool* gc_overhead_limit_was_exceeded) = 0;
141
142
// Filler object utilities.
143
static inline size_t filler_array_hdr_size();
144
static inline size_t filler_array_min_size();
145
146
DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
147
DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
148
149
// Fill with a single array; caller must ensure filler_array_min_size() <=
150
// words <= filler_array_max_size().
151
static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
152
153
// Fill with a single object (either an int array or a java.lang.Object).
154
static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
155
156
virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
157
158
// Verification functions
159
virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
160
PRODUCT_RETURN;
161
debug_only(static void check_for_valid_allocation_state();)
162
163
public:
164
enum Name {
165
None,
166
Serial,
167
Parallel,
168
G1,
169
Epsilon,
170
Z,
171
Shenandoah
172
};
173
174
protected:
175
// Get a pointer to the derived heap object. Used to implement
176
// derived class heap() functions rather than being called directly.
177
template<typename T>
178
static T* named_heap(Name kind) {
179
CollectedHeap* heap = Universe::heap();
180
assert(heap != NULL, "Uninitialized heap");
181
assert(kind == heap->kind(), "Heap kind %u should be %u",
182
static_cast<uint>(heap->kind()), static_cast<uint>(kind));
183
return static_cast<T*>(heap);
184
}
185
186
public:
187
188
static inline size_t filler_array_max_size() {
189
return _filler_array_max_size;
190
}
191
192
virtual Name kind() const = 0;
193
194
virtual const char* name() const = 0;
195
196
/**
197
* Returns JNI error code JNI_ENOMEM if memory could not be allocated,
198
* and JNI_OK on success.
199
*/
200
virtual jint initialize() = 0;
201
202
// In many heaps, there will be a need to perform some initialization activities
203
// after the Universe is fully formed, but before general heap allocation is allowed.
204
// This is the correct place to place such initialization methods.
205
virtual void post_initialize();
206
207
// Stop any onging concurrent work and prepare for exit.
208
virtual void stop() {}
209
210
// Stop and resume concurrent GC threads interfering with safepoint operations
211
virtual void safepoint_synchronize_begin() {}
212
virtual void safepoint_synchronize_end() {}
213
214
void initialize_reserved_region(const ReservedHeapSpace& rs);
215
216
virtual size_t capacity() const = 0;
217
virtual size_t used() const = 0;
218
219
// Returns unused capacity.
220
virtual size_t unused() const;
221
222
// Historic gc information
223
size_t free_at_last_gc() const { return _capacity_at_last_gc - _used_at_last_gc; }
224
size_t used_at_last_gc() const { return _used_at_last_gc; }
225
void update_capacity_and_used_at_gc();
226
227
// Return "true" if the part of the heap that allocates Java
228
// objects has reached the maximal committed limit that it can
229
// reach, without a garbage collection.
230
virtual bool is_maximal_no_gc() const = 0;
231
232
// Support for java.lang.Runtime.maxMemory(): return the maximum amount of
233
// memory that the vm could make available for storing 'normal' java objects.
234
// This is based on the reserved address space, but should not include space
235
// that the vm uses internally for bookkeeping or temporary storage
236
// (e.g., in the case of the young gen, one of the survivor
237
// spaces).
238
virtual size_t max_capacity() const = 0;
239
240
// Returns "TRUE" iff "p" points into the committed areas of the heap.
241
// This method can be expensive so avoid using it in performance critical
242
// code.
243
virtual bool is_in(const void* p) const = 0;
244
245
DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
246
247
virtual uint32_t hash_oop(oop obj) const;
248
249
void set_gc_cause(GCCause::Cause v);
250
GCCause::Cause gc_cause() { return _gc_cause; }
251
252
oop obj_allocate(Klass* klass, int size, TRAPS);
253
virtual oop array_allocate(Klass* klass, int size, int length, bool do_zero, TRAPS);
254
oop class_allocate(Klass* klass, int size, TRAPS);
255
256
// Utilities for turning raw memory into filler objects.
257
//
258
// min_fill_size() is the smallest region that can be filled.
259
// fill_with_objects() can fill arbitrary-sized regions of the heap using
260
// multiple objects. fill_with_object() is for regions known to be smaller
261
// than the largest array of integers; it uses a single object to fill the
262
// region and has slightly less overhead.
263
static size_t min_fill_size() {
264
return size_t(align_object_size(oopDesc::header_size()));
265
}
266
267
static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
268
269
static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
270
static void fill_with_object(MemRegion region, bool zap = true) {
271
fill_with_object(region.start(), region.word_size(), zap);
272
}
273
static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
274
fill_with_object(start, pointer_delta(end, start), zap);
275
}
276
277
virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
278
virtual size_t min_dummy_object_size() const;
279
size_t tlab_alloc_reserve() const;
280
281
// Some heaps may offer a contiguous region for shared non-blocking
282
// allocation, via inlined code (by exporting the address of the top and
283
// end fields defining the extent of the contiguous allocation region.)
284
285
// This function returns "true" iff the heap supports this kind of
286
// allocation. (Default is "no".)
287
virtual bool supports_inline_contig_alloc() const {
288
return false;
289
}
290
// These functions return the addresses of the fields that define the
291
// boundaries of the contiguous allocation area. (These fields should be
292
// physically near to one another.)
293
virtual HeapWord* volatile* top_addr() const {
294
guarantee(false, "inline contiguous allocation not supported");
295
return NULL;
296
}
297
virtual HeapWord** end_addr() const {
298
guarantee(false, "inline contiguous allocation not supported");
299
return NULL;
300
}
301
302
// Some heaps may be in an unparseable state at certain times between
303
// collections. This may be necessary for efficient implementation of
304
// certain allocation-related activities. Calling this function before
305
// attempting to parse a heap ensures that the heap is in a parsable
306
// state (provided other concurrent activity does not introduce
307
// unparsability). It is normally expected, therefore, that this
308
// method is invoked with the world stopped.
309
// NOTE: if you override this method, make sure you call
310
// super::ensure_parsability so that the non-generational
311
// part of the work gets done. See implementation of
312
// CollectedHeap::ensure_parsability and, for instance,
313
// that of GenCollectedHeap::ensure_parsability().
314
// The argument "retire_tlabs" controls whether existing TLABs
315
// are merely filled or also retired, thus preventing further
316
// allocation from them and necessitating allocation of new TLABs.
317
virtual void ensure_parsability(bool retire_tlabs);
318
319
// The amount of space available for thread-local allocation buffers.
320
virtual size_t tlab_capacity(Thread *thr) const = 0;
321
322
// The amount of used space for thread-local allocation buffers for the given thread.
323
virtual size_t tlab_used(Thread *thr) const = 0;
324
325
virtual size_t max_tlab_size() const;
326
327
// An estimate of the maximum allocation that could be performed
328
// for thread-local allocation buffers without triggering any
329
// collection or expansion activity.
330
virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
331
guarantee(false, "thread-local allocation buffers not supported");
332
return 0;
333
}
334
335
// If a GC uses a stack watermark barrier, the stack processing is lazy, concurrent,
336
// incremental and cooperative. In order for that to work well, mechanisms that stop
337
// another thread might want to ensure its roots are in a sane state.
338
virtual bool uses_stack_watermark_barrier() const { return false; }
339
340
// Perform a collection of the heap; intended for use in implementing
341
// "System.gc". This probably implies as full a collection as the
342
// "CollectedHeap" supports.
343
virtual void collect(GCCause::Cause cause) = 0;
344
345
// Perform a full collection
346
virtual void do_full_collection(bool clear_all_soft_refs) = 0;
347
348
// This interface assumes that it's being called by the
349
// vm thread. It collects the heap assuming that the
350
// heap lock is already held and that we are executing in
351
// the context of the vm thread.
352
virtual void collect_as_vm_thread(GCCause::Cause cause);
353
354
virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
355
size_t size,
356
Metaspace::MetadataType mdtype);
357
358
// Returns "true" iff there is a stop-world GC in progress. (I assume
359
// that it should answer "false" for the concurrent part of a concurrent
360
// collector -- dld).
361
bool is_gc_active() const { return _is_gc_active; }
362
363
// Total number of GC collections (started)
364
unsigned int total_collections() const { return _total_collections; }
365
unsigned int total_full_collections() const { return _total_full_collections;}
366
367
// Increment total number of GC collections (started)
368
void increment_total_collections(bool full = false) {
369
_total_collections++;
370
if (full) {
371
increment_total_full_collections();
372
}
373
}
374
375
void increment_total_full_collections() { _total_full_collections++; }
376
377
// Return the SoftRefPolicy for the heap;
378
virtual SoftRefPolicy* soft_ref_policy() = 0;
379
380
virtual MemoryUsage memory_usage();
381
virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
382
virtual GrowableArray<MemoryPool*> memory_pools() = 0;
383
384
// Iterate over all objects, calling "cl.do_object" on each.
385
virtual void object_iterate(ObjectClosure* cl) = 0;
386
387
virtual ParallelObjectIterator* parallel_object_iterator(uint thread_num) {
388
return NULL;
389
}
390
391
// Keep alive an object that was loaded with AS_NO_KEEPALIVE.
392
virtual void keep_alive(oop obj) {}
393
394
// Perform any cleanup actions necessary before allowing a verification.
395
virtual void prepare_for_verify() = 0;
396
397
// Returns the longest time (in ms) that has elapsed since the last
398
// time that the whole heap has been examined by a garbage collection.
399
jlong millis_since_last_whole_heap_examined();
400
// GC should call this when the next whole heap analysis has completed to
401
// satisfy above requirement.
402
void record_whole_heap_examined_timestamp();
403
404
private:
405
// Generate any dumps preceding or following a full gc
406
void full_gc_dump(GCTimer* timer, bool before);
407
408
virtual void initialize_serviceability() = 0;
409
410
public:
411
void pre_full_gc_dump(GCTimer* timer);
412
void post_full_gc_dump(GCTimer* timer);
413
414
virtual VirtualSpaceSummary create_heap_space_summary();
415
GCHeapSummary create_heap_summary();
416
417
MetaspaceSummary create_metaspace_summary();
418
419
// Print heap information on the given outputStream.
420
virtual void print_on(outputStream* st) const = 0;
421
// The default behavior is to call print_on() on tty.
422
virtual void print() const;
423
424
// Print more detailed heap information on the given
425
// outputStream. The default behavior is to call print_on(). It is
426
// up to each subclass to override it and add any additional output
427
// it needs.
428
virtual void print_extended_on(outputStream* st) const {
429
print_on(st);
430
}
431
432
virtual void print_on_error(outputStream* st) const;
433
434
// Used to print information about locations in the hs_err file.
435
virtual bool print_location(outputStream* st, void* addr) const = 0;
436
437
// Iterator for all GC threads (other than VM thread)
438
virtual void gc_threads_do(ThreadClosure* tc) const = 0;
439
440
// Print any relevant tracing info that flags imply.
441
// Default implementation does nothing.
442
virtual void print_tracing_info() const = 0;
443
444
void print_heap_before_gc();
445
void print_heap_after_gc();
446
447
// Registering and unregistering an nmethod (compiled code) with the heap.
448
virtual void register_nmethod(nmethod* nm) = 0;
449
virtual void unregister_nmethod(nmethod* nm) = 0;
450
// Callback for when nmethod is about to be deleted.
451
virtual void flush_nmethod(nmethod* nm) = 0;
452
virtual void verify_nmethod(nmethod* nm) = 0;
453
454
void trace_heap_before_gc(const GCTracer* gc_tracer);
455
void trace_heap_after_gc(const GCTracer* gc_tracer);
456
457
// Heap verification
458
virtual void verify(VerifyOption option) = 0;
459
460
// Return true if concurrent gc control via WhiteBox is supported by
461
// this collector. The default implementation returns false.
462
virtual bool supports_concurrent_gc_breakpoints() const;
463
464
// Provides a thread pool to SafepointSynchronize to use
465
// for parallel safepoint cleanup.
466
// GCs that use a GC worker thread pool may want to share
467
// it for use during safepoint cleanup. This is only possible
468
// if the GC can pause and resume concurrent work (e.g. G1
469
// concurrent marking) for an intermittent non-GC safepoint.
470
// If this method returns NULL, SafepointSynchronize will
471
// perform cleanup tasks serially in the VMThread.
472
virtual WorkGang* safepoint_workers() { return NULL; }
473
474
// Support for object pinning. This is used by JNI Get*Critical()
475
// and Release*Critical() family of functions. If supported, the GC
476
// must guarantee that pinned objects never move.
477
virtual bool supports_object_pinning() const;
478
virtual oop pin_object(JavaThread* thread, oop obj);
479
virtual void unpin_object(JavaThread* thread, oop obj);
480
481
// Is the given object inside a CDS archive area?
482
virtual bool is_archived_object(oop object) const;
483
484
virtual bool is_oop(oop object) const;
485
// Non product verification and debugging.
486
#ifndef PRODUCT
487
// Support for PromotionFailureALot. Return true if it's time to cause a
488
// promotion failure. The no-argument version uses
489
// this->_promotion_failure_alot_count as the counter.
490
bool promotion_should_fail(volatile size_t* count);
491
bool promotion_should_fail();
492
493
// Reset the PromotionFailureALot counters. Should be called at the end of a
494
// GC in which promotion failure occurred.
495
void reset_promotion_should_fail(volatile size_t* count);
496
void reset_promotion_should_fail();
497
#endif // #ifndef PRODUCT
498
};
499
500
// Class to set and reset the GC cause for a CollectedHeap.
501
502
class GCCauseSetter : StackObj {
503
CollectedHeap* _heap;
504
GCCause::Cause _previous_cause;
505
public:
506
GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
507
_heap = heap;
508
_previous_cause = _heap->gc_cause();
509
_heap->set_gc_cause(cause);
510
}
511
512
~GCCauseSetter() {
513
_heap->set_gc_cause(_previous_cause);
514
}
515
};
516
517
#endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP
518
519