Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/gc/shenandoah/c2/shenandoahBarrierSetC2.cpp
40976 views
1
/*
2
* Copyright (c) 2018, 2021, Red Hat, Inc. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "classfile/javaClasses.hpp"
27
#include "gc/shared/barrierSet.hpp"
28
#include "gc/shenandoah/shenandoahBarrierSet.hpp"
29
#include "gc/shenandoah/shenandoahForwarding.hpp"
30
#include "gc/shenandoah/shenandoahHeap.hpp"
31
#include "gc/shenandoah/shenandoahRuntime.hpp"
32
#include "gc/shenandoah/shenandoahThreadLocalData.hpp"
33
#include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
34
#include "gc/shenandoah/c2/shenandoahSupport.hpp"
35
#include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
36
#include "opto/arraycopynode.hpp"
37
#include "opto/escape.hpp"
38
#include "opto/graphKit.hpp"
39
#include "opto/idealKit.hpp"
40
#include "opto/macro.hpp"
41
#include "opto/movenode.hpp"
42
#include "opto/narrowptrnode.hpp"
43
#include "opto/rootnode.hpp"
44
#include "opto/runtime.hpp"
45
46
ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() {
47
return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2());
48
}
49
50
ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena)
51
: _iu_barriers(new (comp_arena) GrowableArray<ShenandoahIUBarrierNode*>(comp_arena, 8, 0, NULL)),
52
_load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8, 0, NULL)) {
53
}
54
55
int ShenandoahBarrierSetC2State::iu_barriers_count() const {
56
return _iu_barriers->length();
57
}
58
59
ShenandoahIUBarrierNode* ShenandoahBarrierSetC2State::iu_barrier(int idx) const {
60
return _iu_barriers->at(idx);
61
}
62
63
void ShenandoahBarrierSetC2State::add_iu_barrier(ShenandoahIUBarrierNode* n) {
64
assert(!_iu_barriers->contains(n), "duplicate entry in barrier list");
65
_iu_barriers->append(n);
66
}
67
68
void ShenandoahBarrierSetC2State::remove_iu_barrier(ShenandoahIUBarrierNode* n) {
69
_iu_barriers->remove_if_existing(n);
70
}
71
72
int ShenandoahBarrierSetC2State::load_reference_barriers_count() const {
73
return _load_reference_barriers->length();
74
}
75
76
ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const {
77
return _load_reference_barriers->at(idx);
78
}
79
80
void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
81
assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list");
82
_load_reference_barriers->append(n);
83
}
84
85
void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
86
if (_load_reference_barriers->contains(n)) {
87
_load_reference_barriers->remove(n);
88
}
89
}
90
91
Node* ShenandoahBarrierSetC2::shenandoah_iu_barrier(GraphKit* kit, Node* obj) const {
92
if (ShenandoahIUBarrier) {
93
return kit->gvn().transform(new ShenandoahIUBarrierNode(obj));
94
}
95
return obj;
96
}
97
98
#define __ kit->
99
100
bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseTransform* phase, Node* adr,
101
BasicType bt, uint adr_idx) const {
102
intptr_t offset = 0;
103
Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
104
AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
105
106
if (offset == Type::OffsetBot) {
107
return false; // cannot unalias unless there are precise offsets
108
}
109
110
if (alloc == NULL) {
111
return false; // No allocation found
112
}
113
114
intptr_t size_in_bytes = type2aelembytes(bt);
115
116
Node* mem = __ memory(adr_idx); // start searching here...
117
118
for (int cnt = 0; cnt < 50; cnt++) {
119
120
if (mem->is_Store()) {
121
122
Node* st_adr = mem->in(MemNode::Address);
123
intptr_t st_offset = 0;
124
Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
125
126
if (st_base == NULL) {
127
break; // inscrutable pointer
128
}
129
130
// Break we have found a store with same base and offset as ours so break
131
if (st_base == base && st_offset == offset) {
132
break;
133
}
134
135
if (st_offset != offset && st_offset != Type::OffsetBot) {
136
const int MAX_STORE = BytesPerLong;
137
if (st_offset >= offset + size_in_bytes ||
138
st_offset <= offset - MAX_STORE ||
139
st_offset <= offset - mem->as_Store()->memory_size()) {
140
// Success: The offsets are provably independent.
141
// (You may ask, why not just test st_offset != offset and be done?
142
// The answer is that stores of different sizes can co-exist
143
// in the same sequence of RawMem effects. We sometimes initialize
144
// a whole 'tile' of array elements with a single jint or jlong.)
145
mem = mem->in(MemNode::Memory);
146
continue; // advance through independent store memory
147
}
148
}
149
150
if (st_base != base
151
&& MemNode::detect_ptr_independence(base, alloc, st_base,
152
AllocateNode::Ideal_allocation(st_base, phase),
153
phase)) {
154
// Success: The bases are provably independent.
155
mem = mem->in(MemNode::Memory);
156
continue; // advance through independent store memory
157
}
158
} else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
159
160
InitializeNode* st_init = mem->in(0)->as_Initialize();
161
AllocateNode* st_alloc = st_init->allocation();
162
163
// Make sure that we are looking at the same allocation site.
164
// The alloc variable is guaranteed to not be null here from earlier check.
165
if (alloc == st_alloc) {
166
// Check that the initialization is storing NULL so that no previous store
167
// has been moved up and directly write a reference
168
Node* captured_store = st_init->find_captured_store(offset,
169
type2aelembytes(T_OBJECT),
170
phase);
171
if (captured_store == NULL || captured_store == st_init->zero_memory()) {
172
return true;
173
}
174
}
175
}
176
177
// Unless there is an explicit 'continue', we must bail out here,
178
// because 'mem' is an inscrutable memory state (e.g., a call).
179
break;
180
}
181
182
return false;
183
}
184
185
#undef __
186
#define __ ideal.
187
188
void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit,
189
bool do_load,
190
Node* obj,
191
Node* adr,
192
uint alias_idx,
193
Node* val,
194
const TypeOopPtr* val_type,
195
Node* pre_val,
196
BasicType bt) const {
197
// Some sanity checks
198
// Note: val is unused in this routine.
199
200
if (do_load) {
201
// We need to generate the load of the previous value
202
assert(obj != NULL, "must have a base");
203
assert(adr != NULL, "where are loading from?");
204
assert(pre_val == NULL, "loaded already?");
205
assert(val_type != NULL, "need a type");
206
207
if (ReduceInitialCardMarks
208
&& satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
209
return;
210
}
211
212
} else {
213
// In this case both val_type and alias_idx are unused.
214
assert(pre_val != NULL, "must be loaded already");
215
// Nothing to be done if pre_val is null.
216
if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
217
assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
218
}
219
assert(bt == T_OBJECT, "or we shouldn't be here");
220
221
IdealKit ideal(kit, true);
222
223
Node* tls = __ thread(); // ThreadLocalStorage
224
225
Node* no_base = __ top();
226
Node* zero = __ ConI(0);
227
Node* zeroX = __ ConX(0);
228
229
float likely = PROB_LIKELY(0.999);
230
float unlikely = PROB_UNLIKELY(0.999);
231
232
// Offsets into the thread
233
const int index_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset());
234
const int buffer_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
235
236
// Now the actual pointers into the thread
237
Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
238
Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset));
239
240
// Now some of the values
241
Node* marking;
242
Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())));
243
Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw);
244
marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING));
245
assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape");
246
247
// if (!marking)
248
__ if_then(marking, BoolTest::ne, zero, unlikely); {
249
BasicType index_bt = TypeX_X->basic_type();
250
assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading Shenandoah SATBMarkQueue::_index with wrong size.");
251
Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
252
253
if (do_load) {
254
// load original value
255
// alias_idx correct??
256
pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
257
}
258
259
// if (pre_val != NULL)
260
__ if_then(pre_val, BoolTest::ne, kit->null()); {
261
Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
262
263
// is the queue for this thread full?
264
__ if_then(index, BoolTest::ne, zeroX, likely); {
265
266
// decrement the index
267
Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
268
269
// Now get the buffer location we will log the previous value into and store it
270
Node *log_addr = __ AddP(no_base, buffer, next_index);
271
__ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
272
// update the index
273
__ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
274
275
} __ else_(); {
276
277
// logging buffer is full, call the runtime
278
const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type();
279
__ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", pre_val, tls);
280
} __ end_if(); // (!index)
281
} __ end_if(); // (pre_val != NULL)
282
} __ end_if(); // (!marking)
283
284
// Final sync IdealKit and GraphKit.
285
kit->final_sync(ideal);
286
287
if (ShenandoahSATBBarrier && adr != NULL) {
288
Node* c = kit->control();
289
Node* call = c->in(1)->in(1)->in(1)->in(0);
290
assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected");
291
call->add_req(adr);
292
}
293
}
294
295
bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) {
296
return call->is_CallLeaf() &&
297
call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry);
298
}
299
300
bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) {
301
if (!call->is_CallLeaf()) {
302
return false;
303
}
304
305
address entry_point = call->as_CallLeaf()->entry_point();
306
return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong)) ||
307
(entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow)) ||
308
(entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak)) ||
309
(entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow)) ||
310
(entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom));
311
}
312
313
bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseTransform *phase, Node* n) {
314
if (n->Opcode() != Op_If) {
315
return false;
316
}
317
318
Node* bol = n->in(1);
319
assert(bol->is_Bool(), "");
320
Node* cmpx = bol->in(1);
321
if (bol->as_Bool()->_test._test == BoolTest::ne &&
322
cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) &&
323
is_shenandoah_state_load(cmpx->in(1)->in(1)) &&
324
cmpx->in(1)->in(2)->is_Con() &&
325
cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) {
326
return true;
327
}
328
329
return false;
330
}
331
332
bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) {
333
if (!n->is_Load()) return false;
334
const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset());
335
return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal
336
&& n->in(2)->in(3)->is_Con()
337
&& n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset;
338
}
339
340
void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit,
341
bool do_load,
342
Node* obj,
343
Node* adr,
344
uint alias_idx,
345
Node* val,
346
const TypeOopPtr* val_type,
347
Node* pre_val,
348
BasicType bt) const {
349
if (ShenandoahSATBBarrier) {
350
IdealKit ideal(kit);
351
kit->sync_kit(ideal);
352
353
satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
354
355
ideal.sync_kit(kit);
356
kit->final_sync(ideal);
357
}
358
}
359
360
// Helper that guards and inserts a pre-barrier.
361
void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
362
Node* pre_val, bool need_mem_bar) const {
363
// We could be accessing the referent field of a reference object. If so, when Shenandoah
364
// is enabled, we need to log the value in the referent field in an SATB buffer.
365
// This routine performs some compile time filters and generates suitable
366
// runtime filters that guard the pre-barrier code.
367
// Also add memory barrier for non volatile load from the referent field
368
// to prevent commoning of loads across safepoint.
369
370
// Some compile time checks.
371
372
// If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
373
const TypeX* otype = offset->find_intptr_t_type();
374
if (otype != NULL && otype->is_con() &&
375
otype->get_con() != java_lang_ref_Reference::referent_offset()) {
376
// Constant offset but not the reference_offset so just return
377
return;
378
}
379
380
// We only need to generate the runtime guards for instances.
381
const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
382
if (btype != NULL) {
383
if (btype->isa_aryptr()) {
384
// Array type so nothing to do
385
return;
386
}
387
388
const TypeInstPtr* itype = btype->isa_instptr();
389
if (itype != NULL) {
390
// Can the klass of base_oop be statically determined to be
391
// _not_ a sub-class of Reference and _not_ Object?
392
ciKlass* klass = itype->klass();
393
if ( klass->is_loaded() &&
394
!klass->is_subtype_of(kit->env()->Reference_klass()) &&
395
!kit->env()->Object_klass()->is_subtype_of(klass)) {
396
return;
397
}
398
}
399
}
400
401
// The compile time filters did not reject base_oop/offset so
402
// we need to generate the following runtime filters
403
//
404
// if (offset == java_lang_ref_Reference::_reference_offset) {
405
// if (instance_of(base, java.lang.ref.Reference)) {
406
// pre_barrier(_, pre_val, ...);
407
// }
408
// }
409
410
float likely = PROB_LIKELY( 0.999);
411
float unlikely = PROB_UNLIKELY(0.999);
412
413
IdealKit ideal(kit);
414
415
Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset());
416
417
__ if_then(offset, BoolTest::eq, referent_off, unlikely); {
418
// Update graphKit memory and control from IdealKit.
419
kit->sync_kit(ideal);
420
421
Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
422
Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
423
424
// Update IdealKit memory and control from graphKit.
425
__ sync_kit(kit);
426
427
Node* one = __ ConI(1);
428
// is_instof == 0 if base_oop == NULL
429
__ if_then(is_instof, BoolTest::eq, one, unlikely); {
430
431
// Update graphKit from IdeakKit.
432
kit->sync_kit(ideal);
433
434
// Use the pre-barrier to record the value in the referent field
435
satb_write_barrier_pre(kit, false /* do_load */,
436
NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
437
pre_val /* pre_val */,
438
T_OBJECT);
439
if (need_mem_bar) {
440
// Add memory barrier to prevent commoning reads from this field
441
// across safepoint since GC can change its value.
442
kit->insert_mem_bar(Op_MemBarCPUOrder);
443
}
444
// Update IdealKit from graphKit.
445
__ sync_kit(kit);
446
447
} __ end_if(); // _ref_type != ref_none
448
} __ end_if(); // offset == referent_offset
449
450
// Final sync IdealKit and GraphKit.
451
kit->final_sync(ideal);
452
}
453
454
#undef __
455
456
const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type() {
457
const Type **fields = TypeTuple::fields(2);
458
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
459
fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
460
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
461
462
// create result type (range)
463
fields = TypeTuple::fields(0);
464
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
465
466
return TypeFunc::make(domain, range);
467
}
468
469
const TypeFunc* ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type() {
470
const Type **fields = TypeTuple::fields(1);
471
fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop
472
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
473
474
// create result type (range)
475
fields = TypeTuple::fields(0);
476
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
477
478
return TypeFunc::make(domain, range);
479
}
480
481
const TypeFunc* ShenandoahBarrierSetC2::shenandoah_load_reference_barrier_Type() {
482
const Type **fields = TypeTuple::fields(2);
483
fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; // original field value
484
fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // original load address
485
486
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
487
488
// create result type (range)
489
fields = TypeTuple::fields(1);
490
fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM;
491
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
492
493
return TypeFunc::make(domain, range);
494
}
495
496
Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
497
DecoratorSet decorators = access.decorators();
498
499
const TypePtr* adr_type = access.addr().type();
500
Node* adr = access.addr().node();
501
502
bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
503
bool on_heap = (decorators & IN_HEAP) != 0;
504
505
if (!access.is_oop() || (!on_heap && !anonymous)) {
506
return BarrierSetC2::store_at_resolved(access, val);
507
}
508
509
if (access.is_parse_access()) {
510
C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
511
GraphKit* kit = parse_access.kit();
512
513
uint adr_idx = kit->C->get_alias_index(adr_type);
514
assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
515
Node* value = val.node();
516
value = shenandoah_iu_barrier(kit, value);
517
val.set_node(value);
518
shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(),
519
static_cast<const TypeOopPtr*>(val.type()), NULL /* pre_val */, access.type());
520
} else {
521
assert(access.is_opt_access(), "only for optimization passes");
522
assert(((decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code");
523
C2OptAccess& opt_access = static_cast<C2OptAccess&>(access);
524
PhaseGVN& gvn = opt_access.gvn();
525
526
if (ShenandoahIUBarrier) {
527
Node* enqueue = gvn.transform(new ShenandoahIUBarrierNode(val.node()));
528
val.set_node(enqueue);
529
}
530
}
531
return BarrierSetC2::store_at_resolved(access, val);
532
}
533
534
Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
535
// 1: non-reference load, no additional barrier is needed
536
if (!access.is_oop()) {
537
return BarrierSetC2::load_at_resolved(access, val_type);;
538
}
539
540
Node* load = BarrierSetC2::load_at_resolved(access, val_type);
541
DecoratorSet decorators = access.decorators();
542
BasicType type = access.type();
543
544
// 2: apply LRB if needed
545
if (ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) {
546
load = new ShenandoahLoadReferenceBarrierNode(NULL, load, decorators);
547
if (access.is_parse_access()) {
548
load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load);
549
} else {
550
load = static_cast<C2OptAccess &>(access).gvn().transform(load);
551
}
552
}
553
554
// 3: apply keep-alive barrier for java.lang.ref.Reference if needed
555
if (ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) {
556
Node* top = Compile::current()->top();
557
Node* adr = access.addr().node();
558
Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top;
559
Node* obj = access.base();
560
561
bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
562
bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0;
563
bool keep_alive = (decorators & AS_NO_KEEPALIVE) == 0;
564
565
// If we are reading the value of the referent field of a Reference
566
// object (either by using Unsafe directly or through reflection)
567
// then, if SATB is enabled, we need to record the referent in an
568
// SATB log buffer using the pre-barrier mechanism.
569
// Also we need to add memory barrier to prevent commoning reads
570
// from this field across safepoint since GC can change its value.
571
if (!on_weak_ref || (unknown && (offset == top || obj == top)) || !keep_alive) {
572
return load;
573
}
574
575
assert(access.is_parse_access(), "entry not supported at optimization time");
576
C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
577
GraphKit* kit = parse_access.kit();
578
bool mismatched = (decorators & C2_MISMATCHED) != 0;
579
bool is_unordered = (decorators & MO_UNORDERED) != 0;
580
bool in_native = (decorators & IN_NATIVE) != 0;
581
bool need_cpu_mem_bar = !is_unordered || mismatched || in_native;
582
583
if (on_weak_ref) {
584
// Use the pre-barrier to record the value in the referent field
585
satb_write_barrier_pre(kit, false /* do_load */,
586
NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
587
load /* pre_val */, T_OBJECT);
588
// Add memory barrier to prevent commoning reads from this field
589
// across safepoint since GC can change its value.
590
kit->insert_mem_bar(Op_MemBarCPUOrder);
591
} else if (unknown) {
592
// We do not require a mem bar inside pre_barrier if need_mem_bar
593
// is set: the barriers would be emitted by us.
594
insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
595
}
596
}
597
598
return load;
599
}
600
601
Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
602
Node* new_val, const Type* value_type) const {
603
GraphKit* kit = access.kit();
604
if (access.is_oop()) {
605
new_val = shenandoah_iu_barrier(kit, new_val);
606
shenandoah_write_barrier_pre(kit, false /* do_load */,
607
NULL, NULL, max_juint, NULL, NULL,
608
expected_val /* pre_val */, T_OBJECT);
609
610
MemNode::MemOrd mo = access.mem_node_mo();
611
Node* mem = access.memory();
612
Node* adr = access.addr().node();
613
const TypePtr* adr_type = access.addr().type();
614
Node* load_store = NULL;
615
616
#ifdef _LP64
617
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
618
Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
619
Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
620
if (ShenandoahCASBarrier) {
621
load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
622
} else {
623
load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
624
}
625
} else
626
#endif
627
{
628
if (ShenandoahCASBarrier) {
629
load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
630
} else {
631
load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
632
}
633
}
634
635
access.set_raw_access(load_store);
636
pin_atomic_op(access);
637
638
#ifdef _LP64
639
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
640
load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
641
}
642
#endif
643
load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(NULL, load_store, access.decorators()));
644
return load_store;
645
}
646
return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
647
}
648
649
Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
650
Node* new_val, const Type* value_type) const {
651
GraphKit* kit = access.kit();
652
if (access.is_oop()) {
653
new_val = shenandoah_iu_barrier(kit, new_val);
654
shenandoah_write_barrier_pre(kit, false /* do_load */,
655
NULL, NULL, max_juint, NULL, NULL,
656
expected_val /* pre_val */, T_OBJECT);
657
DecoratorSet decorators = access.decorators();
658
MemNode::MemOrd mo = access.mem_node_mo();
659
Node* mem = access.memory();
660
bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
661
Node* load_store = NULL;
662
Node* adr = access.addr().node();
663
#ifdef _LP64
664
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
665
Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
666
Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
667
if (ShenandoahCASBarrier) {
668
if (is_weak_cas) {
669
load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
670
} else {
671
load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
672
}
673
} else {
674
if (is_weak_cas) {
675
load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
676
} else {
677
load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
678
}
679
}
680
} else
681
#endif
682
{
683
if (ShenandoahCASBarrier) {
684
if (is_weak_cas) {
685
load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
686
} else {
687
load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
688
}
689
} else {
690
if (is_weak_cas) {
691
load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
692
} else {
693
load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
694
}
695
}
696
}
697
access.set_raw_access(load_store);
698
pin_atomic_op(access);
699
return load_store;
700
}
701
return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
702
}
703
704
Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const {
705
GraphKit* kit = access.kit();
706
if (access.is_oop()) {
707
val = shenandoah_iu_barrier(kit, val);
708
}
709
Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type);
710
if (access.is_oop()) {
711
result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(NULL, result, access.decorators()));
712
shenandoah_write_barrier_pre(kit, false /* do_load */,
713
NULL, NULL, max_juint, NULL, NULL,
714
result /* pre_val */, T_OBJECT);
715
}
716
return result;
717
}
718
719
// Support for GC barriers emitted during parsing
720
bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const {
721
if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) return true;
722
if (node->Opcode() != Op_CallLeaf && node->Opcode() != Op_CallLeafNoFP) {
723
return false;
724
}
725
CallLeafNode *call = node->as_CallLeaf();
726
if (call->_name == NULL) {
727
return false;
728
}
729
730
return strcmp(call->_name, "shenandoah_clone_barrier") == 0 ||
731
strcmp(call->_name, "shenandoah_cas_obj") == 0 ||
732
strcmp(call->_name, "shenandoah_wb_pre") == 0;
733
}
734
735
Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const {
736
if (c == NULL) {
737
return c;
738
}
739
if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
740
return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn);
741
}
742
if (c->Opcode() == Op_ShenandoahIUBarrier) {
743
c = c->in(1);
744
}
745
return c;
746
}
747
748
bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const {
749
return !ShenandoahBarrierC2Support::expand(C, igvn);
750
}
751
752
bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const {
753
if (mode == LoopOptsShenandoahExpand) {
754
assert(UseShenandoahGC, "only for shenandoah");
755
ShenandoahBarrierC2Support::pin_and_expand(phase);
756
return true;
757
} else if (mode == LoopOptsShenandoahPostExpand) {
758
assert(UseShenandoahGC, "only for shenandoah");
759
visited.clear();
760
ShenandoahBarrierC2Support::optimize_after_expansion(visited, nstack, worklist, phase);
761
return true;
762
}
763
return false;
764
}
765
766
bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, bool is_clone_instance, ArrayCopyPhase phase) const {
767
bool is_oop = is_reference_type(type);
768
if (!is_oop) {
769
return false;
770
}
771
if (ShenandoahSATBBarrier && tightly_coupled_alloc) {
772
if (phase == Optimization) {
773
return false;
774
}
775
return !is_clone;
776
}
777
if (phase == Optimization) {
778
return !ShenandoahIUBarrier;
779
}
780
return true;
781
}
782
783
bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) {
784
const TypeOopPtr* src_type = gvn.type(src)->is_oopptr();
785
if (src_type->isa_instptr() != NULL) {
786
ciInstanceKlass* ik = src_type->klass()->as_instance_klass();
787
if ((src_type->klass_is_exact() || (!ik->is_interface() && !ik->has_subklass())) && !ik->has_injected_fields()) {
788
if (ik->has_object_fields()) {
789
return true;
790
} else {
791
if (!src_type->klass_is_exact()) {
792
Compile::current()->dependencies()->assert_leaf_type(ik);
793
}
794
}
795
} else {
796
return true;
797
}
798
} else if (src_type->isa_aryptr()) {
799
BasicType src_elem = src_type->klass()->as_array_klass()->element_type()->basic_type();
800
if (is_reference_type(src_elem)) {
801
return true;
802
}
803
} else {
804
return true;
805
}
806
return false;
807
}
808
809
void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
810
Node* ctrl = ac->in(TypeFunc::Control);
811
Node* mem = ac->in(TypeFunc::Memory);
812
Node* src_base = ac->in(ArrayCopyNode::Src);
813
Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
814
Node* dest_base = ac->in(ArrayCopyNode::Dest);
815
Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
816
Node* length = ac->in(ArrayCopyNode::Length);
817
818
Node* src = phase->basic_plus_adr(src_base, src_offset);
819
Node* dest = phase->basic_plus_adr(dest_base, dest_offset);
820
821
if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) {
822
// Check if heap is has forwarded objects. If it does, we need to call into the special
823
// routine that would fix up source references before we can continue.
824
825
enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT };
826
Node* region = new RegionNode(PATH_LIMIT);
827
Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM);
828
829
Node* thread = phase->transform_later(new ThreadLocalNode());
830
Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
831
Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset));
832
833
uint gc_state_idx = Compile::AliasIdxRaw;
834
const TypePtr* gc_state_adr_type = NULL; // debug-mode-only argument
835
debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx));
836
837
Node* gc_state = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered));
838
int flags = ShenandoahHeap::HAS_FORWARDED;
839
if (ShenandoahIUBarrier) {
840
flags |= ShenandoahHeap::MARKING;
841
}
842
Node* stable_and = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(flags)));
843
Node* stable_cmp = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT)));
844
Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne));
845
846
IfNode* stable_iff = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If();
847
Node* stable_ctrl = phase->transform_later(new IfFalseNode(stable_iff));
848
Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff));
849
850
// Heap is stable, no need to do anything additional
851
region->init_req(_heap_stable, stable_ctrl);
852
mem_phi->init_req(_heap_stable, mem);
853
854
// Heap is unstable, call into clone barrier stub
855
Node* call = phase->make_leaf_call(unstable_ctrl, mem,
856
ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type(),
857
CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier),
858
"shenandoah_clone",
859
TypeRawPtr::BOTTOM,
860
src_base);
861
call = phase->transform_later(call);
862
863
ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control));
864
mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory));
865
region->init_req(_heap_unstable, ctrl);
866
mem_phi->init_req(_heap_unstable, mem);
867
868
// Wire up the actual arraycopy stub now
869
ctrl = phase->transform_later(region);
870
mem = phase->transform_later(mem_phi);
871
872
const char* name = "arraycopy";
873
call = phase->make_leaf_call(ctrl, mem,
874
OptoRuntime::fast_arraycopy_Type(),
875
phase->basictype2arraycopy(T_LONG, NULL, NULL, true, name, true),
876
name, TypeRawPtr::BOTTOM,
877
src, dest, length
878
LP64_ONLY(COMMA phase->top()));
879
call = phase->transform_later(call);
880
881
// Hook up the whole thing into the graph
882
phase->igvn().replace_node(ac, call);
883
} else {
884
BarrierSetC2::clone_at_expansion(phase, ac);
885
}
886
}
887
888
889
// Support for macro expanded GC barriers
890
void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const {
891
if (node->Opcode() == Op_ShenandoahIUBarrier) {
892
state()->add_iu_barrier((ShenandoahIUBarrierNode*) node);
893
}
894
if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
895
state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
896
}
897
}
898
899
void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const {
900
if (node->Opcode() == Op_ShenandoahIUBarrier) {
901
state()->remove_iu_barrier((ShenandoahIUBarrierNode*) node);
902
}
903
if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
904
state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
905
}
906
}
907
908
void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* n) const {
909
if (is_shenandoah_wb_pre_call(n)) {
910
shenandoah_eliminate_wb_pre(n, &macro->igvn());
911
}
912
}
913
914
void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const {
915
assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), "");
916
Node* c = call->as_Call()->proj_out(TypeFunc::Control);
917
c = c->unique_ctrl_out();
918
assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
919
c = c->unique_ctrl_out();
920
assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
921
Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
922
assert(iff->is_If(), "expect test");
923
if (!is_shenandoah_marking_if(igvn, iff)) {
924
c = c->unique_ctrl_out();
925
assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
926
iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
927
assert(is_shenandoah_marking_if(igvn, iff), "expect marking test");
928
}
929
Node* cmpx = iff->in(1)->in(1);
930
igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ));
931
igvn->rehash_node_delayed(call);
932
call->del_req(call->req()-1);
933
}
934
935
void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const {
936
if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) {
937
igvn->add_users_to_worklist(node);
938
}
939
}
940
941
void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const {
942
for (uint i = 0; i < useful.size(); i++) {
943
Node* n = useful.at(i);
944
if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) {
945
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
946
C->record_for_igvn(n->fast_out(i));
947
}
948
}
949
}
950
for (int i = state()->iu_barriers_count() - 1; i >= 0; i--) {
951
ShenandoahIUBarrierNode* n = state()->iu_barrier(i);
952
if (!useful.member(n)) {
953
state()->remove_iu_barrier(n);
954
}
955
}
956
for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) {
957
ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i);
958
if (!useful.member(n)) {
959
state()->remove_load_reference_barrier(n);
960
}
961
}
962
}
963
964
void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
965
return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena);
966
}
967
968
ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const {
969
return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state());
970
}
971
972
// If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be
973
// expanded later, then now is the time to do so.
974
bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; }
975
976
#ifdef ASSERT
977
void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const {
978
if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) {
979
ShenandoahBarrierC2Support::verify(Compile::current()->root());
980
} else if (phase == BarrierSetC2::BeforeCodeGen) {
981
// Verify Shenandoah pre-barriers
982
const int marking_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset());
983
984
Unique_Node_List visited;
985
Node_List worklist;
986
// We're going to walk control flow backwards starting from the Root
987
worklist.push(compile->root());
988
while (worklist.size() > 0) {
989
Node *x = worklist.pop();
990
if (x == NULL || x == compile->top()) continue;
991
if (visited.member(x)) {
992
continue;
993
} else {
994
visited.push(x);
995
}
996
997
if (x->is_Region()) {
998
for (uint i = 1; i < x->req(); i++) {
999
worklist.push(x->in(i));
1000
}
1001
} else {
1002
worklist.push(x->in(0));
1003
// We are looking for the pattern:
1004
// /->ThreadLocal
1005
// If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
1006
// \->ConI(0)
1007
// We want to verify that the If and the LoadB have the same control
1008
// See GraphKit::g1_write_barrier_pre()
1009
if (x->is_If()) {
1010
IfNode *iff = x->as_If();
1011
if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
1012
CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
1013
if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
1014
&& cmp->in(1)->is_Load()) {
1015
LoadNode *load = cmp->in(1)->as_Load();
1016
if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
1017
&& load->in(2)->in(3)->is_Con()
1018
&& load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
1019
1020
Node *if_ctrl = iff->in(0);
1021
Node *load_ctrl = load->in(0);
1022
1023
if (if_ctrl != load_ctrl) {
1024
// Skip possible CProj->NeverBranch in infinite loops
1025
if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
1026
&& (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
1027
if_ctrl = if_ctrl->in(0)->in(0);
1028
}
1029
}
1030
assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
1031
}
1032
}
1033
}
1034
}
1035
}
1036
}
1037
}
1038
}
1039
#endif
1040
1041
Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const {
1042
if (is_shenandoah_wb_pre_call(n)) {
1043
uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
1044
if (n->req() > cnt) {
1045
Node* addp = n->in(cnt);
1046
if (has_only_shenandoah_wb_pre_uses(addp)) {
1047
n->del_req(cnt);
1048
if (can_reshape) {
1049
phase->is_IterGVN()->_worklist.push(addp);
1050
}
1051
return n;
1052
}
1053
}
1054
}
1055
if (n->Opcode() == Op_CmpP) {
1056
Node* in1 = n->in(1);
1057
Node* in2 = n->in(2);
1058
1059
// If one input is NULL, then step over the strong LRB barriers on the other input
1060
if (in1->bottom_type() == TypePtr::NULL_PTR &&
1061
!((in2->Opcode() == Op_ShenandoahLoadReferenceBarrier) &&
1062
!ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in2)->decorators()))) {
1063
in2 = step_over_gc_barrier(in2);
1064
}
1065
if (in2->bottom_type() == TypePtr::NULL_PTR &&
1066
!((in1->Opcode() == Op_ShenandoahLoadReferenceBarrier) &&
1067
!ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in1)->decorators()))) {
1068
in1 = step_over_gc_barrier(in1);
1069
}
1070
1071
PhaseIterGVN* igvn = phase->is_IterGVN();
1072
if (in1 != n->in(1)) {
1073
if (igvn != NULL) {
1074
n->set_req_X(1, in1, igvn);
1075
} else {
1076
n->set_req(1, in1);
1077
}
1078
assert(in2 == n->in(2), "only one change");
1079
return n;
1080
}
1081
if (in2 != n->in(2)) {
1082
if (igvn != NULL) {
1083
n->set_req_X(2, in2, igvn);
1084
} else {
1085
n->set_req(2, in2);
1086
}
1087
return n;
1088
}
1089
} else if (can_reshape &&
1090
n->Opcode() == Op_If &&
1091
ShenandoahBarrierC2Support::is_heap_stable_test(n) &&
1092
n->in(0) != NULL) {
1093
Node* dom = n->in(0);
1094
Node* prev_dom = n;
1095
int op = n->Opcode();
1096
int dist = 16;
1097
// Search up the dominator tree for another heap stable test
1098
while (dom->Opcode() != op || // Not same opcode?
1099
!ShenandoahBarrierC2Support::is_heap_stable_test(dom) || // Not same input 1?
1100
prev_dom->in(0) != dom) { // One path of test does not dominate?
1101
if (dist < 0) return NULL;
1102
1103
dist--;
1104
prev_dom = dom;
1105
dom = IfNode::up_one_dom(dom);
1106
if (!dom) return NULL;
1107
}
1108
1109
// Check that we did not follow a loop back to ourselves
1110
if (n == dom) {
1111
return NULL;
1112
}
1113
1114
return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN());
1115
}
1116
1117
return NULL;
1118
}
1119
1120
bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) {
1121
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1122
Node* u = n->fast_out(i);
1123
if (!is_shenandoah_wb_pre_call(u)) {
1124
return false;
1125
}
1126
}
1127
return n->outcnt() > 0;
1128
}
1129
1130
bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode) const {
1131
switch (opcode) {
1132
case Op_CallLeaf:
1133
case Op_CallLeafNoFP: {
1134
assert (n->is_Call(), "");
1135
CallNode *call = n->as_Call();
1136
if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) {
1137
uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
1138
if (call->req() > cnt) {
1139
assert(call->req() == cnt + 1, "only one extra input");
1140
Node *addp = call->in(cnt);
1141
assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?");
1142
call->del_req(cnt);
1143
}
1144
}
1145
return false;
1146
}
1147
case Op_ShenandoahCompareAndSwapP:
1148
case Op_ShenandoahCompareAndSwapN:
1149
case Op_ShenandoahWeakCompareAndSwapN:
1150
case Op_ShenandoahWeakCompareAndSwapP:
1151
case Op_ShenandoahCompareAndExchangeP:
1152
case Op_ShenandoahCompareAndExchangeN:
1153
return true;
1154
case Op_ShenandoahLoadReferenceBarrier:
1155
assert(false, "should have been expanded already");
1156
return true;
1157
default:
1158
return false;
1159
}
1160
}
1161
1162
bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const {
1163
switch (opcode) {
1164
case Op_ShenandoahCompareAndExchangeP:
1165
case Op_ShenandoahCompareAndExchangeN:
1166
conn_graph->add_objload_to_connection_graph(n, delayed_worklist);
1167
// fallthrough
1168
case Op_ShenandoahWeakCompareAndSwapP:
1169
case Op_ShenandoahWeakCompareAndSwapN:
1170
case Op_ShenandoahCompareAndSwapP:
1171
case Op_ShenandoahCompareAndSwapN:
1172
conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1173
return true;
1174
case Op_StoreP: {
1175
Node* adr = n->in(MemNode::Address);
1176
const Type* adr_type = gvn->type(adr);
1177
// Pointer stores in Shenandoah barriers looks like unsafe access.
1178
// Ignore such stores to be able scalar replace non-escaping
1179
// allocations.
1180
if (adr_type->isa_rawptr() && adr->is_AddP()) {
1181
Node* base = conn_graph->get_addp_base(adr);
1182
if (base->Opcode() == Op_LoadP &&
1183
base->in(MemNode::Address)->is_AddP()) {
1184
adr = base->in(MemNode::Address);
1185
Node* tls = conn_graph->get_addp_base(adr);
1186
if (tls->Opcode() == Op_ThreadLocal) {
1187
int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1188
const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
1189
if (offs == buf_offset) {
1190
return true; // Pre barrier previous oop value store.
1191
}
1192
}
1193
}
1194
}
1195
return false;
1196
}
1197
case Op_ShenandoahIUBarrier:
1198
conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1199
break;
1200
case Op_ShenandoahLoadReferenceBarrier:
1201
conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist);
1202
return true;
1203
default:
1204
// Nothing
1205
break;
1206
}
1207
return false;
1208
}
1209
1210
bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const {
1211
switch (opcode) {
1212
case Op_ShenandoahCompareAndExchangeP:
1213
case Op_ShenandoahCompareAndExchangeN: {
1214
Node *adr = n->in(MemNode::Address);
1215
conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
1216
// fallthrough
1217
}
1218
case Op_ShenandoahCompareAndSwapP:
1219
case Op_ShenandoahCompareAndSwapN:
1220
case Op_ShenandoahWeakCompareAndSwapP:
1221
case Op_ShenandoahWeakCompareAndSwapN:
1222
return conn_graph->add_final_edges_unsafe_access(n, opcode);
1223
case Op_ShenandoahIUBarrier:
1224
conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), NULL);
1225
return true;
1226
case Op_ShenandoahLoadReferenceBarrier:
1227
conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), NULL);
1228
return true;
1229
default:
1230
// Nothing
1231
break;
1232
}
1233
return false;
1234
}
1235
1236
bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const {
1237
return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) ||
1238
n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN);
1239
1240
}
1241
1242
bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const {
1243
switch (opcode) {
1244
case Op_ShenandoahCompareAndExchangeP:
1245
case Op_ShenandoahCompareAndExchangeN:
1246
case Op_ShenandoahWeakCompareAndSwapP:
1247
case Op_ShenandoahWeakCompareAndSwapN:
1248
case Op_ShenandoahCompareAndSwapP:
1249
case Op_ShenandoahCompareAndSwapN: { // Convert trinary to binary-tree
1250
Node* newval = n->in(MemNode::ValueIn);
1251
Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
1252
Node* pair = new BinaryNode(oldval, newval);
1253
n->set_req(MemNode::ValueIn,pair);
1254
n->del_req(LoadStoreConditionalNode::ExpectedIn);
1255
return true;
1256
}
1257
default:
1258
break;
1259
}
1260
return false;
1261
}
1262
1263
bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const {
1264
return xop == Op_ShenandoahCompareAndExchangeP ||
1265
xop == Op_ShenandoahCompareAndExchangeN ||
1266
xop == Op_ShenandoahWeakCompareAndSwapP ||
1267
xop == Op_ShenandoahWeakCompareAndSwapN ||
1268
xop == Op_ShenandoahCompareAndSwapN ||
1269
xop == Op_ShenandoahCompareAndSwapP;
1270
}
1271
1272