Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.cpp
40975 views
1
/*
2
* Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
27
#include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp"
28
#include "gc/shenandoah/shenandoahCollectionSet.hpp"
29
#include "gc/shenandoah/shenandoahFreeSet.hpp"
30
#include "gc/shenandoah/shenandoahHeap.inline.hpp"
31
#include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
32
#include "logging/log.hpp"
33
#include "logging/logTag.hpp"
34
#include "utilities/quickSort.hpp"
35
36
// These constants are used to adjust the margin of error for the moving
37
// average of the allocation rate and cycle time. The units are standard
38
// deviations.
39
const double ShenandoahAdaptiveHeuristics::FULL_PENALTY_SD = 0.2;
40
const double ShenandoahAdaptiveHeuristics::DEGENERATE_PENALTY_SD = 0.1;
41
42
// These are used to decide if we want to make any adjustments at all
43
// at the end of a successful concurrent cycle.
44
const double ShenandoahAdaptiveHeuristics::LOWEST_EXPECTED_AVAILABLE_AT_END = -0.5;
45
const double ShenandoahAdaptiveHeuristics::HIGHEST_EXPECTED_AVAILABLE_AT_END = 0.5;
46
47
// These values are the confidence interval expressed as standard deviations.
48
// At the minimum confidence level, there is a 25% chance that the true value of
49
// the estimate (average cycle time or allocation rate) is not more than
50
// MINIMUM_CONFIDENCE standard deviations away from our estimate. Similarly, the
51
// MAXIMUM_CONFIDENCE interval here means there is a one in a thousand chance
52
// that the true value of our estimate is outside the interval. These are used
53
// as bounds on the adjustments applied at the outcome of a GC cycle.
54
const double ShenandoahAdaptiveHeuristics::MINIMUM_CONFIDENCE = 0.319; // 25%
55
const double ShenandoahAdaptiveHeuristics::MAXIMUM_CONFIDENCE = 3.291; // 99.9%
56
57
ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics() :
58
ShenandoahHeuristics(),
59
_margin_of_error_sd(ShenandoahAdaptiveInitialConfidence),
60
_spike_threshold_sd(ShenandoahAdaptiveInitialSpikeThreshold),
61
_last_trigger(OTHER) { }
62
63
ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {}
64
65
void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
66
RegionData* data, size_t size,
67
size_t actual_free) {
68
size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100;
69
70
// The logic for cset selection in adaptive is as follows:
71
//
72
// 1. We cannot get cset larger than available free space. Otherwise we guarantee OOME
73
// during evacuation, and thus guarantee full GC. In practice, we also want to let
74
// application to allocate something. This is why we limit CSet to some fraction of
75
// available space. In non-overloaded heap, max_cset would contain all plausible candidates
76
// over garbage threshold.
77
//
78
// 2. We should not get cset too low so that free threshold would not be met right
79
// after the cycle. Otherwise we get back-to-back cycles for no reason if heap is
80
// too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero.
81
//
82
// Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates
83
// before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before
84
// we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme,
85
// ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit.
86
87
size_t capacity = ShenandoahHeap::heap()->soft_max_capacity();
88
size_t max_cset = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste);
89
size_t free_target = (capacity / 100 * ShenandoahMinFreeThreshold) + max_cset;
90
size_t min_garbage = (free_target > actual_free ? (free_target - actual_free) : 0);
91
92
log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "%s, Actual Free: "
93
SIZE_FORMAT "%s, Max CSet: " SIZE_FORMAT "%s, Min Garbage: " SIZE_FORMAT "%s",
94
byte_size_in_proper_unit(free_target), proper_unit_for_byte_size(free_target),
95
byte_size_in_proper_unit(actual_free), proper_unit_for_byte_size(actual_free),
96
byte_size_in_proper_unit(max_cset), proper_unit_for_byte_size(max_cset),
97
byte_size_in_proper_unit(min_garbage), proper_unit_for_byte_size(min_garbage));
98
99
// Better select garbage-first regions
100
QuickSort::sort<RegionData>(data, (int)size, compare_by_garbage, false);
101
102
size_t cur_cset = 0;
103
size_t cur_garbage = 0;
104
105
for (size_t idx = 0; idx < size; idx++) {
106
ShenandoahHeapRegion* r = data[idx]._region;
107
108
size_t new_cset = cur_cset + r->get_live_data_bytes();
109
size_t new_garbage = cur_garbage + r->garbage();
110
111
if (new_cset > max_cset) {
112
break;
113
}
114
115
if ((new_garbage < min_garbage) || (r->garbage() > garbage_threshold)) {
116
cset->add_region(r);
117
cur_cset = new_cset;
118
cur_garbage = new_garbage;
119
}
120
}
121
}
122
123
void ShenandoahAdaptiveHeuristics::record_cycle_start() {
124
ShenandoahHeuristics::record_cycle_start();
125
_allocation_rate.allocation_counter_reset();
126
}
127
128
void ShenandoahAdaptiveHeuristics::record_success_concurrent() {
129
ShenandoahHeuristics::record_success_concurrent();
130
131
size_t available = ShenandoahHeap::heap()->free_set()->available();
132
133
_available.add(available);
134
double z_score = 0.0;
135
if (_available.sd() > 0) {
136
z_score = (available - _available.avg()) / _available.sd();
137
}
138
139
log_debug(gc, ergo)("Available: " SIZE_FORMAT " %sB, z-score=%.3f. Average available: %.1f %sB +/- %.1f %sB.",
140
byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
141
z_score,
142
byte_size_in_proper_unit(_available.avg()), proper_unit_for_byte_size(_available.avg()),
143
byte_size_in_proper_unit(_available.sd()), proper_unit_for_byte_size(_available.sd()));
144
145
// In the case when a concurrent GC cycle completes successfully but with an
146
// unusually small amount of available memory we will adjust our trigger
147
// parameters so that they are more likely to initiate a new cycle.
148
// Conversely, when a GC cycle results in an above average amount of available
149
// memory, we will adjust the trigger parameters to be less likely to initiate
150
// a GC cycle.
151
//
152
// The z-score we've computed is in no way statistically related to the
153
// trigger parameters, but it has the nice property that worse z-scores for
154
// available memory indicate making larger adjustments to the trigger
155
// parameters. It also results in fewer adjustments as the application
156
// stabilizes.
157
//
158
// In order to avoid making endless and likely unnecessary adjustments to the
159
// trigger parameters, the change in available memory (with respect to the
160
// average) at the end of a cycle must be beyond these threshold values.
161
if (z_score < LOWEST_EXPECTED_AVAILABLE_AT_END ||
162
z_score > HIGHEST_EXPECTED_AVAILABLE_AT_END) {
163
// The sign is flipped because a negative z-score indicates that the
164
// available memory at the end of the cycle is below average. Positive
165
// adjustments make the triggers more sensitive (i.e., more likely to fire).
166
// The z-score also gives us a measure of just how far below normal. This
167
// property allows us to adjust the trigger parameters proportionally.
168
//
169
// The `100` here is used to attenuate the size of our adjustments. This
170
// number was chosen empirically. It also means the adjustments at the end of
171
// a concurrent cycle are an order of magnitude smaller than the adjustments
172
// made for a degenerated or full GC cycle (which themselves were also
173
// chosen empirically).
174
adjust_last_trigger_parameters(z_score / -100);
175
}
176
}
177
178
void ShenandoahAdaptiveHeuristics::record_success_degenerated() {
179
ShenandoahHeuristics::record_success_degenerated();
180
// Adjust both trigger's parameters in the case of a degenerated GC because
181
// either of them should have triggered earlier to avoid this case.
182
adjust_margin_of_error(DEGENERATE_PENALTY_SD);
183
adjust_spike_threshold(DEGENERATE_PENALTY_SD);
184
}
185
186
void ShenandoahAdaptiveHeuristics::record_success_full() {
187
ShenandoahHeuristics::record_success_full();
188
// Adjust both trigger's parameters in the case of a full GC because
189
// either of them should have triggered earlier to avoid this case.
190
adjust_margin_of_error(FULL_PENALTY_SD);
191
adjust_spike_threshold(FULL_PENALTY_SD);
192
}
193
194
static double saturate(double value, double min, double max) {
195
return MAX2(MIN2(value, max), min);
196
}
197
198
bool ShenandoahAdaptiveHeuristics::should_start_gc() {
199
ShenandoahHeap* heap = ShenandoahHeap::heap();
200
size_t max_capacity = heap->max_capacity();
201
size_t capacity = heap->soft_max_capacity();
202
size_t available = heap->free_set()->available();
203
size_t allocated = heap->bytes_allocated_since_gc_start();
204
205
// Make sure the code below treats available without the soft tail.
206
size_t soft_tail = max_capacity - capacity;
207
available = (available > soft_tail) ? (available - soft_tail) : 0;
208
209
// Track allocation rate even if we decide to start a cycle for other reasons.
210
double rate = _allocation_rate.sample(allocated);
211
_last_trigger = OTHER;
212
213
size_t min_threshold = capacity / 100 * ShenandoahMinFreeThreshold;
214
if (available < min_threshold) {
215
log_info(gc)("Trigger: Free (" SIZE_FORMAT "%s) is below minimum threshold (" SIZE_FORMAT "%s)",
216
byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
217
byte_size_in_proper_unit(min_threshold), proper_unit_for_byte_size(min_threshold));
218
return true;
219
}
220
221
const size_t max_learn = ShenandoahLearningSteps;
222
if (_gc_times_learned < max_learn) {
223
size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold;
224
if (available < init_threshold) {
225
log_info(gc)("Trigger: Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "%s) is below initial threshold (" SIZE_FORMAT "%s)",
226
_gc_times_learned + 1, max_learn,
227
byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
228
byte_size_in_proper_unit(init_threshold), proper_unit_for_byte_size(init_threshold));
229
return true;
230
}
231
}
232
233
// Check if allocation headroom is still okay. This also factors in:
234
// 1. Some space to absorb allocation spikes
235
// 2. Accumulated penalties from Degenerated and Full GC
236
size_t allocation_headroom = available;
237
238
size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor;
239
size_t penalties = capacity / 100 * _gc_time_penalties;
240
241
allocation_headroom -= MIN2(allocation_headroom, spike_headroom);
242
allocation_headroom -= MIN2(allocation_headroom, penalties);
243
244
double avg_cycle_time = _gc_time_history->davg() + (_margin_of_error_sd * _gc_time_history->dsd());
245
double avg_alloc_rate = _allocation_rate.upper_bound(_margin_of_error_sd);
246
if (avg_cycle_time > allocation_headroom / avg_alloc_rate) {
247
log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for average allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s) (margin of error = %.2f)",
248
avg_cycle_time * 1000,
249
byte_size_in_proper_unit(avg_alloc_rate), proper_unit_for_byte_size(avg_alloc_rate),
250
byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom),
251
_margin_of_error_sd);
252
253
log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "%s (free) - " SIZE_FORMAT "%s (spike) - " SIZE_FORMAT "%s (penalties) = " SIZE_FORMAT "%s",
254
byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
255
byte_size_in_proper_unit(spike_headroom), proper_unit_for_byte_size(spike_headroom),
256
byte_size_in_proper_unit(penalties), proper_unit_for_byte_size(penalties),
257
byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom));
258
259
_last_trigger = RATE;
260
return true;
261
}
262
263
bool is_spiking = _allocation_rate.is_spiking(rate, _spike_threshold_sd);
264
if (is_spiking && avg_cycle_time > allocation_headroom / rate) {
265
log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for instantaneous allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s) (spike threshold = %.2f)",
266
avg_cycle_time * 1000,
267
byte_size_in_proper_unit(rate), proper_unit_for_byte_size(rate),
268
byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom),
269
_spike_threshold_sd);
270
_last_trigger = SPIKE;
271
return true;
272
}
273
274
return ShenandoahHeuristics::should_start_gc();
275
}
276
277
void ShenandoahAdaptiveHeuristics::adjust_last_trigger_parameters(double amount) {
278
switch (_last_trigger) {
279
case RATE:
280
adjust_margin_of_error(amount);
281
break;
282
case SPIKE:
283
adjust_spike_threshold(amount);
284
break;
285
case OTHER:
286
// nothing to adjust here.
287
break;
288
default:
289
ShouldNotReachHere();
290
}
291
}
292
293
void ShenandoahAdaptiveHeuristics::adjust_margin_of_error(double amount) {
294
_margin_of_error_sd = saturate(_margin_of_error_sd + amount, MINIMUM_CONFIDENCE, MAXIMUM_CONFIDENCE);
295
log_debug(gc, ergo)("Margin of error now %.2f", _margin_of_error_sd);
296
}
297
298
void ShenandoahAdaptiveHeuristics::adjust_spike_threshold(double amount) {
299
_spike_threshold_sd = saturate(_spike_threshold_sd - amount, MINIMUM_CONFIDENCE, MAXIMUM_CONFIDENCE);
300
log_debug(gc, ergo)("Spike threshold now: %.2f", _spike_threshold_sd);
301
}
302
303
ShenandoahAllocationRate::ShenandoahAllocationRate() :
304
_last_sample_time(os::elapsedTime()),
305
_last_sample_value(0),
306
_interval_sec(1.0 / ShenandoahAdaptiveSampleFrequencyHz),
307
_rate(int(ShenandoahAdaptiveSampleSizeSeconds * ShenandoahAdaptiveSampleFrequencyHz), ShenandoahAdaptiveDecayFactor),
308
_rate_avg(int(ShenandoahAdaptiveSampleSizeSeconds * ShenandoahAdaptiveSampleFrequencyHz), ShenandoahAdaptiveDecayFactor) {
309
}
310
311
double ShenandoahAllocationRate::sample(size_t allocated) {
312
double now = os::elapsedTime();
313
double rate = 0.0;
314
if (now - _last_sample_time > _interval_sec) {
315
if (allocated >= _last_sample_value) {
316
rate = instantaneous_rate(now, allocated);
317
_rate.add(rate);
318
_rate_avg.add(_rate.avg());
319
}
320
321
_last_sample_time = now;
322
_last_sample_value = allocated;
323
}
324
return rate;
325
}
326
327
double ShenandoahAllocationRate::upper_bound(double sds) const {
328
// Here we are using the standard deviation of the computed running
329
// average, rather than the standard deviation of the samples that went
330
// into the moving average. This is a much more stable value and is tied
331
// to the actual statistic in use (moving average over samples of averages).
332
return _rate.davg() + (sds * _rate_avg.dsd());
333
}
334
335
void ShenandoahAllocationRate::allocation_counter_reset() {
336
_last_sample_time = os::elapsedTime();
337
_last_sample_value = 0;
338
}
339
340
bool ShenandoahAllocationRate::is_spiking(double rate, double threshold) const {
341
if (rate <= 0.0) {
342
return false;
343
}
344
345
double sd = _rate.sd();
346
if (sd > 0) {
347
// There is a small chance that that rate has already been sampled, but it
348
// seems not to matter in practice.
349
double z_score = (rate - _rate.avg()) / sd;
350
if (z_score > threshold) {
351
return true;
352
}
353
}
354
return false;
355
}
356
357
double ShenandoahAllocationRate::instantaneous_rate(size_t allocated) const {
358
return instantaneous_rate(os::elapsedTime(), allocated);
359
}
360
361
double ShenandoahAllocationRate::instantaneous_rate(double time, size_t allocated) const {
362
size_t last_value = _last_sample_value;
363
double last_time = _last_sample_time;
364
size_t allocation_delta = (allocated > last_value) ? (allocated - last_value) : 0;
365
double time_delta_sec = time - last_time;
366
return (time_delta_sec > 0) ? (allocation_delta / time_delta_sec) : 0;
367
}
368
369