Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/gc/shenandoah/shenandoahHeap.cpp
40957 views
1
/*
2
* Copyright (c) 2013, 2021, Red Hat, Inc. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "memory/allocation.hpp"
27
#include "memory/universe.hpp"
28
29
#include "gc/shared/gcArguments.hpp"
30
#include "gc/shared/gcTimer.hpp"
31
#include "gc/shared/gcTraceTime.inline.hpp"
32
#include "gc/shared/locationPrinter.inline.hpp"
33
#include "gc/shared/memAllocator.hpp"
34
#include "gc/shared/plab.hpp"
35
#include "gc/shared/tlab_globals.hpp"
36
37
#include "gc/shenandoah/shenandoahBarrierSet.hpp"
38
#include "gc/shenandoah/shenandoahClosures.inline.hpp"
39
#include "gc/shenandoah/shenandoahCollectionSet.hpp"
40
#include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
41
#include "gc/shenandoah/shenandoahConcurrentMark.hpp"
42
#include "gc/shenandoah/shenandoahControlThread.hpp"
43
#include "gc/shenandoah/shenandoahFreeSet.hpp"
44
#include "gc/shenandoah/shenandoahPhaseTimings.hpp"
45
#include "gc/shenandoah/shenandoahHeap.inline.hpp"
46
#include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
47
#include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
48
#include "gc/shenandoah/shenandoahInitLogger.hpp"
49
#include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
50
#include "gc/shenandoah/shenandoahMemoryPool.hpp"
51
#include "gc/shenandoah/shenandoahMetrics.hpp"
52
#include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
53
#include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
54
#include "gc/shenandoah/shenandoahPacer.inline.hpp"
55
#include "gc/shenandoah/shenandoahPadding.hpp"
56
#include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
57
#include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
58
#include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
59
#include "gc/shenandoah/shenandoahStringDedup.hpp"
60
#include "gc/shenandoah/shenandoahSTWMark.hpp"
61
#include "gc/shenandoah/shenandoahUtils.hpp"
62
#include "gc/shenandoah/shenandoahVerifier.hpp"
63
#include "gc/shenandoah/shenandoahCodeRoots.hpp"
64
#include "gc/shenandoah/shenandoahVMOperations.hpp"
65
#include "gc/shenandoah/shenandoahWorkGroup.hpp"
66
#include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
67
#include "gc/shenandoah/mode/shenandoahIUMode.hpp"
68
#include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
69
#include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
70
#if INCLUDE_JFR
71
#include "gc/shenandoah/shenandoahJfrSupport.hpp"
72
#endif
73
74
#include "classfile/systemDictionary.hpp"
75
#include "memory/classLoaderMetaspace.hpp"
76
#include "memory/metaspaceUtils.hpp"
77
#include "oops/compressedOops.inline.hpp"
78
#include "prims/jvmtiTagMap.hpp"
79
#include "runtime/atomic.hpp"
80
#include "runtime/globals.hpp"
81
#include "runtime/interfaceSupport.inline.hpp"
82
#include "runtime/java.hpp"
83
#include "runtime/orderAccess.hpp"
84
#include "runtime/safepointMechanism.hpp"
85
#include "runtime/vmThread.hpp"
86
#include "services/mallocTracker.hpp"
87
#include "services/memTracker.hpp"
88
#include "utilities/events.hpp"
89
#include "utilities/powerOfTwo.hpp"
90
91
class ShenandoahPretouchHeapTask : public AbstractGangTask {
92
private:
93
ShenandoahRegionIterator _regions;
94
const size_t _page_size;
95
public:
96
ShenandoahPretouchHeapTask(size_t page_size) :
97
AbstractGangTask("Shenandoah Pretouch Heap"),
98
_page_size(page_size) {}
99
100
virtual void work(uint worker_id) {
101
ShenandoahHeapRegion* r = _regions.next();
102
while (r != NULL) {
103
if (r->is_committed()) {
104
os::pretouch_memory(r->bottom(), r->end(), _page_size);
105
}
106
r = _regions.next();
107
}
108
}
109
};
110
111
class ShenandoahPretouchBitmapTask : public AbstractGangTask {
112
private:
113
ShenandoahRegionIterator _regions;
114
char* _bitmap_base;
115
const size_t _bitmap_size;
116
const size_t _page_size;
117
public:
118
ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
119
AbstractGangTask("Shenandoah Pretouch Bitmap"),
120
_bitmap_base(bitmap_base),
121
_bitmap_size(bitmap_size),
122
_page_size(page_size) {}
123
124
virtual void work(uint worker_id) {
125
ShenandoahHeapRegion* r = _regions.next();
126
while (r != NULL) {
127
size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
128
size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
129
assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
130
131
if (r->is_committed()) {
132
os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
133
}
134
135
r = _regions.next();
136
}
137
}
138
};
139
140
jint ShenandoahHeap::initialize() {
141
//
142
// Figure out heap sizing
143
//
144
145
size_t init_byte_size = InitialHeapSize;
146
size_t min_byte_size = MinHeapSize;
147
size_t max_byte_size = MaxHeapSize;
148
size_t heap_alignment = HeapAlignment;
149
150
size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
151
152
Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap");
153
Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
154
155
_num_regions = ShenandoahHeapRegion::region_count();
156
assert(_num_regions == (max_byte_size / reg_size_bytes),
157
"Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
158
_num_regions, max_byte_size, reg_size_bytes);
159
160
// Now we know the number of regions, initialize the heuristics.
161
initialize_heuristics();
162
163
size_t num_committed_regions = init_byte_size / reg_size_bytes;
164
num_committed_regions = MIN2(num_committed_regions, _num_regions);
165
assert(num_committed_regions <= _num_regions, "sanity");
166
_initial_size = num_committed_regions * reg_size_bytes;
167
168
size_t num_min_regions = min_byte_size / reg_size_bytes;
169
num_min_regions = MIN2(num_min_regions, _num_regions);
170
assert(num_min_regions <= _num_regions, "sanity");
171
_minimum_size = num_min_regions * reg_size_bytes;
172
173
// Default to max heap size.
174
_soft_max_size = _num_regions * reg_size_bytes;
175
176
_committed = _initial_size;
177
178
size_t heap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
179
size_t bitmap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
180
size_t region_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
181
182
//
183
// Reserve and commit memory for heap
184
//
185
186
ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
187
initialize_reserved_region(heap_rs);
188
_heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
189
_heap_region_special = heap_rs.special();
190
191
assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
192
"Misaligned heap: " PTR_FORMAT, p2i(base()));
193
194
#if SHENANDOAH_OPTIMIZED_MARKTASK
195
// The optimized ShenandoahMarkTask takes some bits away from the full object bits.
196
// Fail if we ever attempt to address more than we can.
197
if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
198
FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
199
"but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
200
"VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
201
p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
202
vm_exit_during_initialization("Fatal Error", buf);
203
}
204
#endif
205
206
ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
207
if (!_heap_region_special) {
208
os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
209
"Cannot commit heap memory");
210
}
211
212
//
213
// Reserve and commit memory for bitmap(s)
214
//
215
216
_bitmap_size = ShenandoahMarkBitMap::compute_size(heap_rs.size());
217
_bitmap_size = align_up(_bitmap_size, bitmap_page_size);
218
219
size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
220
221
guarantee(bitmap_bytes_per_region != 0,
222
"Bitmap bytes per region should not be zero");
223
guarantee(is_power_of_2(bitmap_bytes_per_region),
224
"Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
225
226
if (bitmap_page_size > bitmap_bytes_per_region) {
227
_bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
228
_bitmap_bytes_per_slice = bitmap_page_size;
229
} else {
230
_bitmap_regions_per_slice = 1;
231
_bitmap_bytes_per_slice = bitmap_bytes_per_region;
232
}
233
234
guarantee(_bitmap_regions_per_slice >= 1,
235
"Should have at least one region per slice: " SIZE_FORMAT,
236
_bitmap_regions_per_slice);
237
238
guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
239
"Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
240
_bitmap_bytes_per_slice, bitmap_page_size);
241
242
ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
243
MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
244
_bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
245
_bitmap_region_special = bitmap.special();
246
247
size_t bitmap_init_commit = _bitmap_bytes_per_slice *
248
align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
249
bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
250
if (!_bitmap_region_special) {
251
os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
252
"Cannot commit bitmap memory");
253
}
254
255
_marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers);
256
257
if (ShenandoahVerify) {
258
ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
259
if (!verify_bitmap.special()) {
260
os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
261
"Cannot commit verification bitmap memory");
262
}
263
MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
264
MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
265
_verification_bit_map.initialize(_heap_region, verify_bitmap_region);
266
_verifier = new ShenandoahVerifier(this, &_verification_bit_map);
267
}
268
269
// Reserve aux bitmap for use in object_iterate(). We don't commit it here.
270
ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size);
271
MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
272
_aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
273
_aux_bitmap_region_special = aux_bitmap.special();
274
_aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
275
276
//
277
// Create regions and region sets
278
//
279
size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
280
size_t region_storage_size = align_up(region_align * _num_regions, region_page_size);
281
region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity());
282
283
ReservedSpace region_storage(region_storage_size, region_page_size);
284
MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
285
if (!region_storage.special()) {
286
os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
287
"Cannot commit region memory");
288
}
289
290
// Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
291
// Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
292
// If not successful, bite a bullet and allocate at whatever address.
293
{
294
size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
295
size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
296
297
uintptr_t min = round_up_power_of_2(cset_align);
298
uintptr_t max = (1u << 30u);
299
300
for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
301
char* req_addr = (char*)addr;
302
assert(is_aligned(req_addr, cset_align), "Should be aligned");
303
ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size(), req_addr);
304
if (cset_rs.is_reserved()) {
305
assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
306
_collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
307
break;
308
}
309
}
310
311
if (_collection_set == NULL) {
312
ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size());
313
_collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
314
}
315
}
316
317
_regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
318
_free_set = new ShenandoahFreeSet(this, _num_regions);
319
320
{
321
ShenandoahHeapLocker locker(lock());
322
323
for (size_t i = 0; i < _num_regions; i++) {
324
HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
325
bool is_committed = i < num_committed_regions;
326
void* loc = region_storage.base() + i * region_align;
327
328
ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
329
assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
330
331
_marking_context->initialize_top_at_mark_start(r);
332
_regions[i] = r;
333
assert(!collection_set()->is_in(i), "New region should not be in collection set");
334
}
335
336
// Initialize to complete
337
_marking_context->mark_complete();
338
339
_free_set->rebuild();
340
}
341
342
if (AlwaysPreTouch) {
343
// For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
344
// before initialize() below zeroes it with initializing thread. For any given region,
345
// we touch the region and the corresponding bitmaps from the same thread.
346
ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
347
348
_pretouch_heap_page_size = heap_page_size;
349
_pretouch_bitmap_page_size = bitmap_page_size;
350
351
#ifdef LINUX
352
// UseTransparentHugePages would madvise that backing memory can be coalesced into huge
353
// pages. But, the kernel needs to know that every small page is used, in order to coalesce
354
// them into huge one. Therefore, we need to pretouch with smaller pages.
355
if (UseTransparentHugePages) {
356
_pretouch_heap_page_size = (size_t)os::vm_page_size();
357
_pretouch_bitmap_page_size = (size_t)os::vm_page_size();
358
}
359
#endif
360
361
// OS memory managers may want to coalesce back-to-back pages. Make their jobs
362
// simpler by pre-touching continuous spaces (heap and bitmap) separately.
363
364
ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
365
_workers->run_task(&bcl);
366
367
ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
368
_workers->run_task(&hcl);
369
}
370
371
//
372
// Initialize the rest of GC subsystems
373
//
374
375
_liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
376
for (uint worker = 0; worker < _max_workers; worker++) {
377
_liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
378
Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
379
}
380
381
// There should probably be Shenandoah-specific options for these,
382
// just as there are G1-specific options.
383
{
384
ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
385
satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
386
satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
387
}
388
389
_monitoring_support = new ShenandoahMonitoringSupport(this);
390
_phase_timings = new ShenandoahPhaseTimings(max_workers());
391
ShenandoahCodeRoots::initialize();
392
393
if (ShenandoahPacing) {
394
_pacer = new ShenandoahPacer(this);
395
_pacer->setup_for_idle();
396
} else {
397
_pacer = NULL;
398
}
399
400
_control_thread = new ShenandoahControlThread();
401
402
ShenandoahInitLogger::print();
403
404
return JNI_OK;
405
}
406
407
void ShenandoahHeap::initialize_mode() {
408
if (ShenandoahGCMode != NULL) {
409
if (strcmp(ShenandoahGCMode, "satb") == 0) {
410
_gc_mode = new ShenandoahSATBMode();
411
} else if (strcmp(ShenandoahGCMode, "iu") == 0) {
412
_gc_mode = new ShenandoahIUMode();
413
} else if (strcmp(ShenandoahGCMode, "passive") == 0) {
414
_gc_mode = new ShenandoahPassiveMode();
415
} else {
416
vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
417
}
418
} else {
419
ShouldNotReachHere();
420
}
421
_gc_mode->initialize_flags();
422
if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
423
vm_exit_during_initialization(
424
err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
425
_gc_mode->name()));
426
}
427
if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
428
vm_exit_during_initialization(
429
err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
430
_gc_mode->name()));
431
}
432
}
433
434
void ShenandoahHeap::initialize_heuristics() {
435
assert(_gc_mode != NULL, "Must be initialized");
436
_heuristics = _gc_mode->initialize_heuristics();
437
438
if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
439
vm_exit_during_initialization(
440
err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
441
_heuristics->name()));
442
}
443
if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
444
vm_exit_during_initialization(
445
err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
446
_heuristics->name()));
447
}
448
}
449
450
#ifdef _MSC_VER
451
#pragma warning( push )
452
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
453
#endif
454
455
ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
456
CollectedHeap(),
457
_initial_size(0),
458
_used(0),
459
_committed(0),
460
_bytes_allocated_since_gc_start(0),
461
_max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
462
_workers(NULL),
463
_safepoint_workers(NULL),
464
_heap_region_special(false),
465
_num_regions(0),
466
_regions(NULL),
467
_update_refs_iterator(this),
468
_control_thread(NULL),
469
_shenandoah_policy(policy),
470
_gc_mode(NULL),
471
_heuristics(NULL),
472
_free_set(NULL),
473
_pacer(NULL),
474
_verifier(NULL),
475
_phase_timings(NULL),
476
_monitoring_support(NULL),
477
_memory_pool(NULL),
478
_stw_memory_manager("Shenandoah Pauses", "end of GC pause"),
479
_cycle_memory_manager("Shenandoah Cycles", "end of GC cycle"),
480
_gc_timer(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
481
_soft_ref_policy(),
482
_log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
483
_ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))),
484
_marking_context(NULL),
485
_bitmap_size(0),
486
_bitmap_regions_per_slice(0),
487
_bitmap_bytes_per_slice(0),
488
_bitmap_region_special(false),
489
_aux_bitmap_region_special(false),
490
_liveness_cache(NULL),
491
_collection_set(NULL)
492
{
493
// Initialize GC mode early, so we can adjust barrier support
494
initialize_mode();
495
BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
496
497
_max_workers = MAX2(_max_workers, 1U);
498
_workers = new ShenandoahWorkGang("Shenandoah GC Threads", _max_workers,
499
/* are_GC_task_threads */ true,
500
/* are_ConcurrentGC_threads */ true);
501
if (_workers == NULL) {
502
vm_exit_during_initialization("Failed necessary allocation.");
503
} else {
504
_workers->initialize_workers();
505
}
506
507
if (ParallelGCThreads > 1) {
508
_safepoint_workers = new ShenandoahWorkGang("Safepoint Cleanup Thread",
509
ParallelGCThreads,
510
/* are_GC_task_threads */ false,
511
/* are_ConcurrentGC_threads */ false);
512
_safepoint_workers->initialize_workers();
513
}
514
}
515
516
#ifdef _MSC_VER
517
#pragma warning( pop )
518
#endif
519
520
class ShenandoahResetBitmapTask : public AbstractGangTask {
521
private:
522
ShenandoahRegionIterator _regions;
523
524
public:
525
ShenandoahResetBitmapTask() :
526
AbstractGangTask("Shenandoah Reset Bitmap") {}
527
528
void work(uint worker_id) {
529
ShenandoahHeapRegion* region = _regions.next();
530
ShenandoahHeap* heap = ShenandoahHeap::heap();
531
ShenandoahMarkingContext* const ctx = heap->marking_context();
532
while (region != NULL) {
533
if (heap->is_bitmap_slice_committed(region)) {
534
ctx->clear_bitmap(region);
535
}
536
region = _regions.next();
537
}
538
}
539
};
540
541
void ShenandoahHeap::reset_mark_bitmap() {
542
assert_gc_workers(_workers->active_workers());
543
mark_incomplete_marking_context();
544
545
ShenandoahResetBitmapTask task;
546
_workers->run_task(&task);
547
}
548
549
void ShenandoahHeap::print_on(outputStream* st) const {
550
st->print_cr("Shenandoah Heap");
551
st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
552
byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
553
byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
554
byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()),
555
byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used()));
556
st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
557
num_regions(),
558
byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
559
proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
560
561
st->print("Status: ");
562
if (has_forwarded_objects()) st->print("has forwarded objects, ");
563
if (is_concurrent_mark_in_progress()) st->print("marking, ");
564
if (is_evacuation_in_progress()) st->print("evacuating, ");
565
if (is_update_refs_in_progress()) st->print("updating refs, ");
566
if (is_degenerated_gc_in_progress()) st->print("degenerated gc, ");
567
if (is_full_gc_in_progress()) st->print("full gc, ");
568
if (is_full_gc_move_in_progress()) st->print("full gc move, ");
569
if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, ");
570
if (is_concurrent_strong_root_in_progress() &&
571
!is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, ");
572
573
if (cancelled_gc()) {
574
st->print("cancelled");
575
} else {
576
st->print("not cancelled");
577
}
578
st->cr();
579
580
st->print_cr("Reserved region:");
581
st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
582
p2i(reserved_region().start()),
583
p2i(reserved_region().end()));
584
585
ShenandoahCollectionSet* cset = collection_set();
586
st->print_cr("Collection set:");
587
if (cset != NULL) {
588
st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
589
st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address()));
590
} else {
591
st->print_cr(" (NULL)");
592
}
593
594
st->cr();
595
MetaspaceUtils::print_on(st);
596
597
if (Verbose) {
598
print_heap_regions_on(st);
599
}
600
}
601
602
class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
603
public:
604
void do_thread(Thread* thread) {
605
assert(thread != NULL, "Sanity");
606
assert(thread->is_Worker_thread(), "Only worker thread expected");
607
ShenandoahThreadLocalData::initialize_gclab(thread);
608
}
609
};
610
611
void ShenandoahHeap::post_initialize() {
612
CollectedHeap::post_initialize();
613
MutexLocker ml(Threads_lock);
614
615
ShenandoahInitWorkerGCLABClosure init_gclabs;
616
_workers->threads_do(&init_gclabs);
617
618
// gclab can not be initialized early during VM startup, as it can not determinate its max_size.
619
// Now, we will let WorkGang to initialize gclab when new worker is created.
620
_workers->set_initialize_gclab();
621
if (_safepoint_workers != NULL) {
622
_safepoint_workers->threads_do(&init_gclabs);
623
_safepoint_workers->set_initialize_gclab();
624
}
625
626
_heuristics->initialize();
627
628
JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers());
629
}
630
631
size_t ShenandoahHeap::used() const {
632
return Atomic::load(&_used);
633
}
634
635
size_t ShenandoahHeap::committed() const {
636
return Atomic::load(&_committed);
637
}
638
639
void ShenandoahHeap::increase_committed(size_t bytes) {
640
shenandoah_assert_heaplocked_or_safepoint();
641
_committed += bytes;
642
}
643
644
void ShenandoahHeap::decrease_committed(size_t bytes) {
645
shenandoah_assert_heaplocked_or_safepoint();
646
_committed -= bytes;
647
}
648
649
void ShenandoahHeap::increase_used(size_t bytes) {
650
Atomic::add(&_used, bytes, memory_order_relaxed);
651
}
652
653
void ShenandoahHeap::set_used(size_t bytes) {
654
Atomic::store(&_used, bytes);
655
}
656
657
void ShenandoahHeap::decrease_used(size_t bytes) {
658
assert(used() >= bytes, "never decrease heap size by more than we've left");
659
Atomic::sub(&_used, bytes, memory_order_relaxed);
660
}
661
662
void ShenandoahHeap::increase_allocated(size_t bytes) {
663
Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed);
664
}
665
666
void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
667
size_t bytes = words * HeapWordSize;
668
if (!waste) {
669
increase_used(bytes);
670
}
671
increase_allocated(bytes);
672
if (ShenandoahPacing) {
673
control_thread()->pacing_notify_alloc(words);
674
if (waste) {
675
pacer()->claim_for_alloc(words, true);
676
}
677
}
678
}
679
680
size_t ShenandoahHeap::capacity() const {
681
return committed();
682
}
683
684
size_t ShenandoahHeap::max_capacity() const {
685
return _num_regions * ShenandoahHeapRegion::region_size_bytes();
686
}
687
688
size_t ShenandoahHeap::soft_max_capacity() const {
689
size_t v = Atomic::load(&_soft_max_size);
690
assert(min_capacity() <= v && v <= max_capacity(),
691
"Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
692
min_capacity(), v, max_capacity());
693
return v;
694
}
695
696
void ShenandoahHeap::set_soft_max_capacity(size_t v) {
697
assert(min_capacity() <= v && v <= max_capacity(),
698
"Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
699
min_capacity(), v, max_capacity());
700
Atomic::store(&_soft_max_size, v);
701
}
702
703
size_t ShenandoahHeap::min_capacity() const {
704
return _minimum_size;
705
}
706
707
size_t ShenandoahHeap::initial_capacity() const {
708
return _initial_size;
709
}
710
711
bool ShenandoahHeap::is_in(const void* p) const {
712
HeapWord* heap_base = (HeapWord*) base();
713
HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions();
714
return p >= heap_base && p < last_region_end;
715
}
716
717
void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) {
718
assert (ShenandoahUncommit, "should be enabled");
719
720
// Application allocates from the beginning of the heap, and GC allocates at
721
// the end of it. It is more efficient to uncommit from the end, so that applications
722
// could enjoy the near committed regions. GC allocations are much less frequent,
723
// and therefore can accept the committing costs.
724
725
size_t count = 0;
726
for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
727
ShenandoahHeapRegion* r = get_region(i - 1);
728
if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
729
ShenandoahHeapLocker locker(lock());
730
if (r->is_empty_committed()) {
731
if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) {
732
break;
733
}
734
735
r->make_uncommitted();
736
count++;
737
}
738
}
739
SpinPause(); // allow allocators to take the lock
740
}
741
742
if (count > 0) {
743
control_thread()->notify_heap_changed();
744
}
745
}
746
747
HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
748
// New object should fit the GCLAB size
749
size_t min_size = MAX2(size, PLAB::min_size());
750
751
// Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
752
size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
753
new_size = MIN2(new_size, PLAB::max_size());
754
new_size = MAX2(new_size, PLAB::min_size());
755
756
// Record new heuristic value even if we take any shortcut. This captures
757
// the case when moderately-sized objects always take a shortcut. At some point,
758
// heuristics should catch up with them.
759
ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
760
761
if (new_size < size) {
762
// New size still does not fit the object. Fall back to shared allocation.
763
// This avoids retiring perfectly good GCLABs, when we encounter a large object.
764
return NULL;
765
}
766
767
// Retire current GCLAB, and allocate a new one.
768
PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
769
gclab->retire();
770
771
size_t actual_size = 0;
772
HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
773
if (gclab_buf == NULL) {
774
return NULL;
775
}
776
777
assert (size <= actual_size, "allocation should fit");
778
779
if (ZeroTLAB) {
780
// ..and clear it.
781
Copy::zero_to_words(gclab_buf, actual_size);
782
} else {
783
// ...and zap just allocated object.
784
#ifdef ASSERT
785
// Skip mangling the space corresponding to the object header to
786
// ensure that the returned space is not considered parsable by
787
// any concurrent GC thread.
788
size_t hdr_size = oopDesc::header_size();
789
Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
790
#endif // ASSERT
791
}
792
gclab->set_buf(gclab_buf, actual_size);
793
return gclab->allocate(size);
794
}
795
796
HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
797
size_t requested_size,
798
size_t* actual_size) {
799
ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
800
HeapWord* res = allocate_memory(req);
801
if (res != NULL) {
802
*actual_size = req.actual_size();
803
} else {
804
*actual_size = 0;
805
}
806
return res;
807
}
808
809
HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
810
size_t word_size,
811
size_t* actual_size) {
812
ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
813
HeapWord* res = allocate_memory(req);
814
if (res != NULL) {
815
*actual_size = req.actual_size();
816
} else {
817
*actual_size = 0;
818
}
819
return res;
820
}
821
822
HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
823
intptr_t pacer_epoch = 0;
824
bool in_new_region = false;
825
HeapWord* result = NULL;
826
827
if (req.is_mutator_alloc()) {
828
if (ShenandoahPacing) {
829
pacer()->pace_for_alloc(req.size());
830
pacer_epoch = pacer()->epoch();
831
}
832
833
if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
834
result = allocate_memory_under_lock(req, in_new_region);
835
}
836
837
// Allocation failed, block until control thread reacted, then retry allocation.
838
//
839
// It might happen that one of the threads requesting allocation would unblock
840
// way later after GC happened, only to fail the second allocation, because
841
// other threads have already depleted the free storage. In this case, a better
842
// strategy is to try again, as long as GC makes progress.
843
//
844
// Then, we need to make sure the allocation was retried after at least one
845
// Full GC, which means we want to try more than ShenandoahFullGCThreshold times.
846
847
size_t tries = 0;
848
849
while (result == NULL && _progress_last_gc.is_set()) {
850
tries++;
851
control_thread()->handle_alloc_failure(req);
852
result = allocate_memory_under_lock(req, in_new_region);
853
}
854
855
while (result == NULL && tries <= ShenandoahFullGCThreshold) {
856
tries++;
857
control_thread()->handle_alloc_failure(req);
858
result = allocate_memory_under_lock(req, in_new_region);
859
}
860
861
} else {
862
assert(req.is_gc_alloc(), "Can only accept GC allocs here");
863
result = allocate_memory_under_lock(req, in_new_region);
864
// Do not call handle_alloc_failure() here, because we cannot block.
865
// The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
866
}
867
868
if (in_new_region) {
869
control_thread()->notify_heap_changed();
870
}
871
872
if (result != NULL) {
873
size_t requested = req.size();
874
size_t actual = req.actual_size();
875
876
assert (req.is_lab_alloc() || (requested == actual),
877
"Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
878
ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
879
880
if (req.is_mutator_alloc()) {
881
notify_mutator_alloc_words(actual, false);
882
883
// If we requested more than we were granted, give the rest back to pacer.
884
// This only matters if we are in the same pacing epoch: do not try to unpace
885
// over the budget for the other phase.
886
if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
887
pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
888
}
889
} else {
890
increase_used(actual*HeapWordSize);
891
}
892
}
893
894
return result;
895
}
896
897
HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
898
ShenandoahHeapLocker locker(lock());
899
return _free_set->allocate(req, in_new_region);
900
}
901
902
HeapWord* ShenandoahHeap::mem_allocate(size_t size,
903
bool* gc_overhead_limit_was_exceeded) {
904
ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
905
return allocate_memory(req);
906
}
907
908
MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
909
size_t size,
910
Metaspace::MetadataType mdtype) {
911
MetaWord* result;
912
913
// Inform metaspace OOM to GC heuristics if class unloading is possible.
914
if (heuristics()->can_unload_classes()) {
915
ShenandoahHeuristics* h = heuristics();
916
h->record_metaspace_oom();
917
}
918
919
// Expand and retry allocation
920
result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
921
if (result != NULL) {
922
return result;
923
}
924
925
// Start full GC
926
collect(GCCause::_metadata_GC_clear_soft_refs);
927
928
// Retry allocation
929
result = loader_data->metaspace_non_null()->allocate(size, mdtype);
930
if (result != NULL) {
931
return result;
932
}
933
934
// Expand and retry allocation
935
result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
936
if (result != NULL) {
937
return result;
938
}
939
940
// Out of memory
941
return NULL;
942
}
943
944
class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
945
private:
946
ShenandoahHeap* const _heap;
947
Thread* const _thread;
948
public:
949
ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
950
_heap(heap), _thread(Thread::current()) {}
951
952
void do_object(oop p) {
953
shenandoah_assert_marked(NULL, p);
954
if (!p->is_forwarded()) {
955
_heap->evacuate_object(p, _thread);
956
}
957
}
958
};
959
960
class ShenandoahEvacuationTask : public AbstractGangTask {
961
private:
962
ShenandoahHeap* const _sh;
963
ShenandoahCollectionSet* const _cs;
964
bool _concurrent;
965
public:
966
ShenandoahEvacuationTask(ShenandoahHeap* sh,
967
ShenandoahCollectionSet* cs,
968
bool concurrent) :
969
AbstractGangTask("Shenandoah Evacuation"),
970
_sh(sh),
971
_cs(cs),
972
_concurrent(concurrent)
973
{}
974
975
void work(uint worker_id) {
976
if (_concurrent) {
977
ShenandoahConcurrentWorkerSession worker_session(worker_id);
978
ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
979
ShenandoahEvacOOMScope oom_evac_scope;
980
do_work();
981
} else {
982
ShenandoahParallelWorkerSession worker_session(worker_id);
983
ShenandoahEvacOOMScope oom_evac_scope;
984
do_work();
985
}
986
}
987
988
private:
989
void do_work() {
990
ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
991
ShenandoahHeapRegion* r;
992
while ((r =_cs->claim_next()) != NULL) {
993
assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
994
_sh->marked_object_iterate(r, &cl);
995
996
if (ShenandoahPacing) {
997
_sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
998
}
999
1000
if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1001
break;
1002
}
1003
}
1004
}
1005
};
1006
1007
void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1008
ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1009
workers()->run_task(&task);
1010
}
1011
1012
void ShenandoahHeap::trash_cset_regions() {
1013
ShenandoahHeapLocker locker(lock());
1014
1015
ShenandoahCollectionSet* set = collection_set();
1016
ShenandoahHeapRegion* r;
1017
set->clear_current_index();
1018
while ((r = set->next()) != NULL) {
1019
r->make_trash();
1020
}
1021
collection_set()->clear();
1022
}
1023
1024
void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1025
st->print_cr("Heap Regions:");
1026
st->print_cr("EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HC=humongous continuation, CS=collection set, T=trash, P=pinned");
1027
st->print_cr("BTE=bottom/top/end, U=used, T=TLAB allocs, G=GCLAB allocs, S=shared allocs, L=live data");
1028
st->print_cr("R=root, CP=critical pins, TAMS=top-at-mark-start, UWM=update watermark");
1029
st->print_cr("SN=alloc sequence number");
1030
1031
for (size_t i = 0; i < num_regions(); i++) {
1032
get_region(i)->print_on(st);
1033
}
1034
}
1035
1036
void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1037
assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1038
1039
oop humongous_obj = cast_to_oop(start->bottom());
1040
size_t size = humongous_obj->size();
1041
size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1042
size_t index = start->index() + required_regions - 1;
1043
1044
assert(!start->has_live(), "liveness must be zero");
1045
1046
for(size_t i = 0; i < required_regions; i++) {
1047
// Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1048
// as it expects that every region belongs to a humongous region starting with a humongous start region.
1049
ShenandoahHeapRegion* region = get_region(index --);
1050
1051
assert(region->is_humongous(), "expect correct humongous start or continuation");
1052
assert(!region->is_cset(), "Humongous region should not be in collection set");
1053
1054
region->make_trash_immediate();
1055
}
1056
}
1057
1058
class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1059
public:
1060
ShenandoahCheckCleanGCLABClosure() {}
1061
void do_thread(Thread* thread) {
1062
PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1063
assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name());
1064
assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1065
}
1066
};
1067
1068
class ShenandoahRetireGCLABClosure : public ThreadClosure {
1069
private:
1070
bool const _resize;
1071
public:
1072
ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1073
void do_thread(Thread* thread) {
1074
PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1075
assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name());
1076
gclab->retire();
1077
if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1078
ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1079
}
1080
}
1081
};
1082
1083
void ShenandoahHeap::labs_make_parsable() {
1084
assert(UseTLAB, "Only call with UseTLAB");
1085
1086
ShenandoahRetireGCLABClosure cl(false);
1087
1088
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1089
ThreadLocalAllocBuffer& tlab = t->tlab();
1090
tlab.make_parsable();
1091
cl.do_thread(t);
1092
}
1093
1094
workers()->threads_do(&cl);
1095
}
1096
1097
void ShenandoahHeap::tlabs_retire(bool resize) {
1098
assert(UseTLAB, "Only call with UseTLAB");
1099
assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1100
1101
ThreadLocalAllocStats stats;
1102
1103
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1104
ThreadLocalAllocBuffer& tlab = t->tlab();
1105
tlab.retire(&stats);
1106
if (resize) {
1107
tlab.resize();
1108
}
1109
}
1110
1111
stats.publish();
1112
1113
#ifdef ASSERT
1114
ShenandoahCheckCleanGCLABClosure cl;
1115
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1116
cl.do_thread(t);
1117
}
1118
workers()->threads_do(&cl);
1119
#endif
1120
}
1121
1122
void ShenandoahHeap::gclabs_retire(bool resize) {
1123
assert(UseTLAB, "Only call with UseTLAB");
1124
assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1125
1126
ShenandoahRetireGCLABClosure cl(resize);
1127
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1128
cl.do_thread(t);
1129
}
1130
workers()->threads_do(&cl);
1131
1132
if (safepoint_workers() != NULL) {
1133
safepoint_workers()->threads_do(&cl);
1134
}
1135
}
1136
1137
// Returns size in bytes
1138
size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1139
if (ShenandoahElasticTLAB) {
1140
// With Elastic TLABs, return the max allowed size, and let the allocation path
1141
// figure out the safe size for current allocation.
1142
return ShenandoahHeapRegion::max_tlab_size_bytes();
1143
} else {
1144
return MIN2(_free_set->unsafe_peek_free(), ShenandoahHeapRegion::max_tlab_size_bytes());
1145
}
1146
}
1147
1148
size_t ShenandoahHeap::max_tlab_size() const {
1149
// Returns size in words
1150
return ShenandoahHeapRegion::max_tlab_size_words();
1151
}
1152
1153
void ShenandoahHeap::collect(GCCause::Cause cause) {
1154
control_thread()->request_gc(cause);
1155
}
1156
1157
void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1158
//assert(false, "Shouldn't need to do full collections");
1159
}
1160
1161
HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1162
ShenandoahHeapRegion* r = heap_region_containing(addr);
1163
if (r != NULL) {
1164
return r->block_start(addr);
1165
}
1166
return NULL;
1167
}
1168
1169
bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1170
ShenandoahHeapRegion* r = heap_region_containing(addr);
1171
return r->block_is_obj(addr);
1172
}
1173
1174
bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1175
return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1176
}
1177
1178
void ShenandoahHeap::prepare_for_verify() {
1179
if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1180
labs_make_parsable();
1181
}
1182
}
1183
1184
void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1185
workers()->threads_do(tcl);
1186
if (_safepoint_workers != NULL) {
1187
_safepoint_workers->threads_do(tcl);
1188
}
1189
if (ShenandoahStringDedup::is_enabled()) {
1190
ShenandoahStringDedup::threads_do(tcl);
1191
}
1192
}
1193
1194
void ShenandoahHeap::print_tracing_info() const {
1195
LogTarget(Info, gc, stats) lt;
1196
if (lt.is_enabled()) {
1197
ResourceMark rm;
1198
LogStream ls(lt);
1199
1200
phase_timings()->print_global_on(&ls);
1201
1202
ls.cr();
1203
ls.cr();
1204
1205
shenandoah_policy()->print_gc_stats(&ls);
1206
1207
ls.cr();
1208
ls.cr();
1209
}
1210
}
1211
1212
void ShenandoahHeap::verify(VerifyOption vo) {
1213
if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1214
if (ShenandoahVerify) {
1215
verifier()->verify_generic(vo);
1216
} else {
1217
// TODO: Consider allocating verification bitmaps on demand,
1218
// and turn this on unconditionally.
1219
}
1220
}
1221
}
1222
size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1223
return _free_set->capacity();
1224
}
1225
1226
class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1227
private:
1228
MarkBitMap* _bitmap;
1229
ShenandoahScanObjectStack* _oop_stack;
1230
ShenandoahHeap* const _heap;
1231
ShenandoahMarkingContext* const _marking_context;
1232
1233
template <class T>
1234
void do_oop_work(T* p) {
1235
T o = RawAccess<>::oop_load(p);
1236
if (!CompressedOops::is_null(o)) {
1237
oop obj = CompressedOops::decode_not_null(o);
1238
if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1239
// There may be dead oops in weak roots in concurrent root phase, do not touch them.
1240
return;
1241
}
1242
obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
1243
1244
assert(oopDesc::is_oop(obj), "must be a valid oop");
1245
if (!_bitmap->is_marked(obj)) {
1246
_bitmap->mark(obj);
1247
_oop_stack->push(obj);
1248
}
1249
}
1250
}
1251
public:
1252
ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1253
_bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1254
_marking_context(_heap->marking_context()) {}
1255
void do_oop(oop* p) { do_oop_work(p); }
1256
void do_oop(narrowOop* p) { do_oop_work(p); }
1257
};
1258
1259
/*
1260
* This is public API, used in preparation of object_iterate().
1261
* Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1262
* need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1263
* control, we call SH::tlabs_retire, SH::gclabs_retire.
1264
*/
1265
void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1266
// No-op.
1267
}
1268
1269
/*
1270
* Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1271
*
1272
* We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1273
* scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1274
* calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1275
* scanning therefore depends on having a valid marking bitmap to support it. However, we only
1276
* have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1277
* marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1278
* wiped the bitmap in preparation for next marking).
1279
*
1280
* For all those reasons, we implement object iteration as a single marking traversal, reporting
1281
* objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1282
* is allowed to report dead objects, but is not required to do so.
1283
*/
1284
void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1285
// Reset bitmap
1286
if (!prepare_aux_bitmap_for_iteration())
1287
return;
1288
1289
ShenandoahScanObjectStack oop_stack;
1290
ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1291
// Seed the stack with root scan
1292
scan_roots_for_iteration(&oop_stack, &oops);
1293
1294
// Work through the oop stack to traverse heap
1295
while (! oop_stack.is_empty()) {
1296
oop obj = oop_stack.pop();
1297
assert(oopDesc::is_oop(obj), "must be a valid oop");
1298
cl->do_object(obj);
1299
obj->oop_iterate(&oops);
1300
}
1301
1302
assert(oop_stack.is_empty(), "should be empty");
1303
// Reclaim bitmap
1304
reclaim_aux_bitmap_for_iteration();
1305
}
1306
1307
bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1308
assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1309
1310
if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1311
log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1312
return false;
1313
}
1314
// Reset bitmap
1315
_aux_bit_map.clear();
1316
return true;
1317
}
1318
1319
void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1320
// Process GC roots according to current GC cycle
1321
// This populates the work stack with initial objects
1322
// It is important to relinquish the associated locks before diving
1323
// into heap dumper
1324
ShenandoahHeapIterationRootScanner rp;
1325
rp.roots_do(oops);
1326
}
1327
1328
void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1329
if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1330
log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1331
}
1332
}
1333
1334
// Closure for parallelly iterate objects
1335
class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1336
private:
1337
MarkBitMap* _bitmap;
1338
ShenandoahObjToScanQueue* _queue;
1339
ShenandoahHeap* const _heap;
1340
ShenandoahMarkingContext* const _marking_context;
1341
1342
template <class T>
1343
void do_oop_work(T* p) {
1344
T o = RawAccess<>::oop_load(p);
1345
if (!CompressedOops::is_null(o)) {
1346
oop obj = CompressedOops::decode_not_null(o);
1347
if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1348
// There may be dead oops in weak roots in concurrent root phase, do not touch them.
1349
return;
1350
}
1351
obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
1352
1353
assert(oopDesc::is_oop(obj), "Must be a valid oop");
1354
if (_bitmap->par_mark(obj)) {
1355
_queue->push(ShenandoahMarkTask(obj));
1356
}
1357
}
1358
}
1359
public:
1360
ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1361
_bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1362
_marking_context(_heap->marking_context()) {}
1363
void do_oop(oop* p) { do_oop_work(p); }
1364
void do_oop(narrowOop* p) { do_oop_work(p); }
1365
};
1366
1367
// Object iterator for parallel heap iteraion.
1368
// The root scanning phase happenes in construction as a preparation of
1369
// parallel marking queues.
1370
// Every worker processes it's own marking queue. work-stealing is used
1371
// to balance workload.
1372
class ShenandoahParallelObjectIterator : public ParallelObjectIterator {
1373
private:
1374
uint _num_workers;
1375
bool _init_ready;
1376
MarkBitMap* _aux_bit_map;
1377
ShenandoahHeap* _heap;
1378
ShenandoahScanObjectStack _roots_stack; // global roots stack
1379
ShenandoahObjToScanQueueSet* _task_queues;
1380
public:
1381
ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1382
_num_workers(num_workers),
1383
_init_ready(false),
1384
_aux_bit_map(bitmap),
1385
_heap(ShenandoahHeap::heap()) {
1386
// Initialize bitmap
1387
_init_ready = _heap->prepare_aux_bitmap_for_iteration();
1388
if (!_init_ready) {
1389
return;
1390
}
1391
1392
ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1393
_heap->scan_roots_for_iteration(&_roots_stack, &oops);
1394
1395
_init_ready = prepare_worker_queues();
1396
}
1397
1398
~ShenandoahParallelObjectIterator() {
1399
// Reclaim bitmap
1400
_heap->reclaim_aux_bitmap_for_iteration();
1401
// Reclaim queue for workers
1402
if (_task_queues!= NULL) {
1403
for (uint i = 0; i < _num_workers; ++i) {
1404
ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1405
if (q != NULL) {
1406
delete q;
1407
_task_queues->register_queue(i, NULL);
1408
}
1409
}
1410
delete _task_queues;
1411
_task_queues = NULL;
1412
}
1413
}
1414
1415
virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1416
if (_init_ready) {
1417
object_iterate_parallel(cl, worker_id, _task_queues);
1418
}
1419
}
1420
1421
private:
1422
// Divide global root_stack into worker queues
1423
bool prepare_worker_queues() {
1424
_task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1425
// Initialize queues for every workers
1426
for (uint i = 0; i < _num_workers; ++i) {
1427
ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1428
task_queue->initialize();
1429
_task_queues->register_queue(i, task_queue);
1430
}
1431
// Divide roots among the workers. Assume that object referencing distribution
1432
// is related with root kind, use round-robin to make every worker have same chance
1433
// to process every kind of roots
1434
size_t roots_num = _roots_stack.size();
1435
if (roots_num == 0) {
1436
// No work to do
1437
return false;
1438
}
1439
1440
for (uint j = 0; j < roots_num; j++) {
1441
uint stack_id = j % _num_workers;
1442
oop obj = _roots_stack.pop();
1443
_task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1444
}
1445
return true;
1446
}
1447
1448
void object_iterate_parallel(ObjectClosure* cl,
1449
uint worker_id,
1450
ShenandoahObjToScanQueueSet* queue_set) {
1451
assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1452
assert(queue_set != NULL, "task queue must not be NULL");
1453
1454
ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1455
assert(q != NULL, "object iterate queue must not be NULL");
1456
1457
ShenandoahMarkTask t;
1458
ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1459
1460
// Work through the queue to traverse heap.
1461
// Steal when there is no task in queue.
1462
while (q->pop(t) || queue_set->steal(worker_id, t)) {
1463
oop obj = t.obj();
1464
assert(oopDesc::is_oop(obj), "must be a valid oop");
1465
cl->do_object(obj);
1466
obj->oop_iterate(&oops);
1467
}
1468
assert(q->is_empty(), "should be empty");
1469
}
1470
};
1471
1472
ParallelObjectIterator* ShenandoahHeap::parallel_object_iterator(uint workers) {
1473
return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1474
}
1475
1476
// Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1477
void ShenandoahHeap::keep_alive(oop obj) {
1478
if (is_concurrent_mark_in_progress() && (obj != NULL)) {
1479
ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1480
}
1481
}
1482
1483
void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1484
for (size_t i = 0; i < num_regions(); i++) {
1485
ShenandoahHeapRegion* current = get_region(i);
1486
blk->heap_region_do(current);
1487
}
1488
}
1489
1490
class ShenandoahParallelHeapRegionTask : public AbstractGangTask {
1491
private:
1492
ShenandoahHeap* const _heap;
1493
ShenandoahHeapRegionClosure* const _blk;
1494
1495
shenandoah_padding(0);
1496
volatile size_t _index;
1497
shenandoah_padding(1);
1498
1499
public:
1500
ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) :
1501
AbstractGangTask("Shenandoah Parallel Region Operation"),
1502
_heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {}
1503
1504
void work(uint worker_id) {
1505
ShenandoahParallelWorkerSession worker_session(worker_id);
1506
size_t stride = ShenandoahParallelRegionStride;
1507
1508
size_t max = _heap->num_regions();
1509
while (Atomic::load(&_index) < max) {
1510
size_t cur = Atomic::fetch_and_add(&_index, stride, memory_order_relaxed);
1511
size_t start = cur;
1512
size_t end = MIN2(cur + stride, max);
1513
if (start >= max) break;
1514
1515
for (size_t i = cur; i < end; i++) {
1516
ShenandoahHeapRegion* current = _heap->get_region(i);
1517
_blk->heap_region_do(current);
1518
}
1519
}
1520
}
1521
};
1522
1523
void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1524
assert(blk->is_thread_safe(), "Only thread-safe closures here");
1525
if (num_regions() > ShenandoahParallelRegionStride) {
1526
ShenandoahParallelHeapRegionTask task(blk);
1527
workers()->run_task(&task);
1528
} else {
1529
heap_region_iterate(blk);
1530
}
1531
}
1532
1533
class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1534
private:
1535
ShenandoahMarkingContext* const _ctx;
1536
public:
1537
ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1538
1539
void heap_region_do(ShenandoahHeapRegion* r) {
1540
assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1541
if (r->is_active()) {
1542
// Check if region needs updating its TAMS. We have updated it already during concurrent
1543
// reset, so it is very likely we don't need to do another write here.
1544
if (_ctx->top_at_mark_start(r) != r->top()) {
1545
_ctx->capture_top_at_mark_start(r);
1546
}
1547
} else {
1548
assert(_ctx->top_at_mark_start(r) == r->top(),
1549
"Region " SIZE_FORMAT " should already have correct TAMS", r->index());
1550
}
1551
}
1552
1553
bool is_thread_safe() { return true; }
1554
};
1555
1556
class ShenandoahRendezvousClosure : public HandshakeClosure {
1557
public:
1558
inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {}
1559
inline void do_thread(Thread* thread) {}
1560
};
1561
1562
void ShenandoahHeap::rendezvous_threads() {
1563
ShenandoahRendezvousClosure cl;
1564
Handshake::execute(&cl);
1565
}
1566
1567
void ShenandoahHeap::recycle_trash() {
1568
free_set()->recycle_trash();
1569
}
1570
1571
class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1572
private:
1573
ShenandoahMarkingContext* const _ctx;
1574
public:
1575
ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1576
1577
void heap_region_do(ShenandoahHeapRegion* r) {
1578
if (r->is_active()) {
1579
// Reset live data and set TAMS optimistically. We would recheck these under the pause
1580
// anyway to capture any updates that happened since now.
1581
r->clear_live_data();
1582
_ctx->capture_top_at_mark_start(r);
1583
}
1584
}
1585
1586
bool is_thread_safe() { return true; }
1587
};
1588
1589
void ShenandoahHeap::prepare_gc() {
1590
reset_mark_bitmap();
1591
1592
ShenandoahResetUpdateRegionStateClosure cl;
1593
parallel_heap_region_iterate(&cl);
1594
}
1595
1596
class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1597
private:
1598
ShenandoahMarkingContext* const _ctx;
1599
ShenandoahHeapLock* const _lock;
1600
1601
public:
1602
ShenandoahFinalMarkUpdateRegionStateClosure() :
1603
_ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {}
1604
1605
void heap_region_do(ShenandoahHeapRegion* r) {
1606
if (r->is_active()) {
1607
// All allocations past TAMS are implicitly live, adjust the region data.
1608
// Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
1609
HeapWord *tams = _ctx->top_at_mark_start(r);
1610
HeapWord *top = r->top();
1611
if (top > tams) {
1612
r->increase_live_data_alloc_words(pointer_delta(top, tams));
1613
}
1614
1615
// We are about to select the collection set, make sure it knows about
1616
// current pinning status. Also, this allows trashing more regions that
1617
// now have their pinning status dropped.
1618
if (r->is_pinned()) {
1619
if (r->pin_count() == 0) {
1620
ShenandoahHeapLocker locker(_lock);
1621
r->make_unpinned();
1622
}
1623
} else {
1624
if (r->pin_count() > 0) {
1625
ShenandoahHeapLocker locker(_lock);
1626
r->make_pinned();
1627
}
1628
}
1629
1630
// Remember limit for updating refs. It's guaranteed that we get no
1631
// from-space-refs written from here on.
1632
r->set_update_watermark_at_safepoint(r->top());
1633
} else {
1634
assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1635
assert(_ctx->top_at_mark_start(r) == r->top(),
1636
"Region " SIZE_FORMAT " should have correct TAMS", r->index());
1637
}
1638
}
1639
1640
bool is_thread_safe() { return true; }
1641
};
1642
1643
void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) {
1644
assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
1645
{
1646
ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states :
1647
ShenandoahPhaseTimings::degen_gc_final_update_region_states);
1648
ShenandoahFinalMarkUpdateRegionStateClosure cl;
1649
parallel_heap_region_iterate(&cl);
1650
1651
assert_pinned_region_status();
1652
}
1653
1654
{
1655
ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset :
1656
ShenandoahPhaseTimings::degen_gc_choose_cset);
1657
ShenandoahHeapLocker locker(lock());
1658
_collection_set->clear();
1659
heuristics()->choose_collection_set(_collection_set);
1660
}
1661
1662
{
1663
ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset :
1664
ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset);
1665
ShenandoahHeapLocker locker(lock());
1666
_free_set->rebuild();
1667
}
1668
}
1669
1670
void ShenandoahHeap::do_class_unloading() {
1671
_unloader.unload();
1672
}
1673
1674
void ShenandoahHeap::stw_weak_refs(bool full_gc) {
1675
// Weak refs processing
1676
ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
1677
: ShenandoahPhaseTimings::degen_gc_weakrefs;
1678
ShenandoahTimingsTracker t(phase);
1679
ShenandoahGCWorkerPhase worker_phase(phase);
1680
ref_processor()->process_references(phase, workers(), false /* concurrent */);
1681
}
1682
1683
void ShenandoahHeap::prepare_update_heap_references(bool concurrent) {
1684
assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
1685
1686
// Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
1687
// make them parsable for update code to work correctly. Plus, we can compute new sizes
1688
// for future GCLABs here.
1689
if (UseTLAB) {
1690
ShenandoahGCPhase phase(concurrent ?
1691
ShenandoahPhaseTimings::init_update_refs_manage_gclabs :
1692
ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
1693
gclabs_retire(ResizeTLAB);
1694
}
1695
1696
_update_refs_iterator.reset();
1697
}
1698
1699
void ShenandoahHeap::set_gc_state_all_threads(char state) {
1700
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1701
ShenandoahThreadLocalData::set_gc_state(t, state);
1702
}
1703
}
1704
1705
void ShenandoahHeap::set_gc_state_mask(uint mask, bool value) {
1706
assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should really be Shenandoah safepoint");
1707
_gc_state.set_cond(mask, value);
1708
set_gc_state_all_threads(_gc_state.raw_value());
1709
}
1710
1711
void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
1712
assert(!has_forwarded_objects(), "Not expected before/after mark phase");
1713
set_gc_state_mask(MARKING, in_progress);
1714
ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1715
}
1716
1717
void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
1718
assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
1719
set_gc_state_mask(EVACUATION, in_progress);
1720
}
1721
1722
void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
1723
if (in_progress) {
1724
_concurrent_strong_root_in_progress.set();
1725
} else {
1726
_concurrent_strong_root_in_progress.unset();
1727
}
1728
}
1729
1730
void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
1731
set_gc_state_mask(WEAK_ROOTS, cond);
1732
}
1733
1734
GCTracer* ShenandoahHeap::tracer() {
1735
return shenandoah_policy()->tracer();
1736
}
1737
1738
size_t ShenandoahHeap::tlab_used(Thread* thread) const {
1739
return _free_set->used();
1740
}
1741
1742
bool ShenandoahHeap::try_cancel_gc() {
1743
while (true) {
1744
jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
1745
if (prev == CANCELLABLE) return true;
1746
else if (prev == CANCELLED) return false;
1747
assert(ShenandoahSuspendibleWorkers, "should not get here when not using suspendible workers");
1748
assert(prev == NOT_CANCELLED, "must be NOT_CANCELLED");
1749
Thread* thread = Thread::current();
1750
if (thread->is_Java_thread()) {
1751
// We need to provide a safepoint here, otherwise we might
1752
// spin forever if a SP is pending.
1753
ThreadBlockInVM sp(thread->as_Java_thread());
1754
SpinPause();
1755
}
1756
}
1757
}
1758
1759
void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
1760
if (try_cancel_gc()) {
1761
FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
1762
log_info(gc)("%s", msg.buffer());
1763
Events::log(Thread::current(), "%s", msg.buffer());
1764
}
1765
}
1766
1767
uint ShenandoahHeap::max_workers() {
1768
return _max_workers;
1769
}
1770
1771
void ShenandoahHeap::stop() {
1772
// The shutdown sequence should be able to terminate when GC is running.
1773
1774
// Step 0. Notify policy to disable event recording.
1775
_shenandoah_policy->record_shutdown();
1776
1777
// Step 1. Notify control thread that we are in shutdown.
1778
// Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
1779
// Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
1780
control_thread()->prepare_for_graceful_shutdown();
1781
1782
// Step 2. Notify GC workers that we are cancelling GC.
1783
cancel_gc(GCCause::_shenandoah_stop_vm);
1784
1785
// Step 3. Wait until GC worker exits normally.
1786
control_thread()->stop();
1787
}
1788
1789
void ShenandoahHeap::stw_unload_classes(bool full_gc) {
1790
if (!unload_classes()) return;
1791
// Unload classes and purge SystemDictionary.
1792
{
1793
ShenandoahPhaseTimings::Phase phase = full_gc ?
1794
ShenandoahPhaseTimings::full_gc_purge_class_unload :
1795
ShenandoahPhaseTimings::degen_gc_purge_class_unload;
1796
ShenandoahGCPhase gc_phase(phase);
1797
ShenandoahGCWorkerPhase worker_phase(phase);
1798
bool purged_class = SystemDictionary::do_unloading(gc_timer());
1799
1800
ShenandoahIsAliveSelector is_alive;
1801
uint num_workers = _workers->active_workers();
1802
ShenandoahClassUnloadingTask unlink_task(phase, is_alive.is_alive_closure(), num_workers, purged_class);
1803
_workers->run_task(&unlink_task);
1804
}
1805
1806
{
1807
ShenandoahGCPhase phase(full_gc ?
1808
ShenandoahPhaseTimings::full_gc_purge_cldg :
1809
ShenandoahPhaseTimings::degen_gc_purge_cldg);
1810
ClassLoaderDataGraph::purge(/*at_safepoint*/true);
1811
}
1812
// Resize and verify metaspace
1813
MetaspaceGC::compute_new_size();
1814
DEBUG_ONLY(MetaspaceUtils::verify();)
1815
}
1816
1817
// Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
1818
// so they should not have forwarded oops.
1819
// However, we do need to "null" dead oops in the roots, if can not be done
1820
// in concurrent cycles.
1821
void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
1822
uint num_workers = _workers->active_workers();
1823
ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
1824
ShenandoahPhaseTimings::full_gc_purge_weak_par :
1825
ShenandoahPhaseTimings::degen_gc_purge_weak_par;
1826
ShenandoahGCPhase phase(timing_phase);
1827
ShenandoahGCWorkerPhase worker_phase(timing_phase);
1828
// Cleanup weak roots
1829
if (has_forwarded_objects()) {
1830
ShenandoahForwardedIsAliveClosure is_alive;
1831
ShenandoahUpdateRefsClosure keep_alive;
1832
ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
1833
cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
1834
_workers->run_task(&cleaning_task);
1835
} else {
1836
ShenandoahIsAliveClosure is_alive;
1837
#ifdef ASSERT
1838
ShenandoahAssertNotForwardedClosure verify_cl;
1839
ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
1840
cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
1841
#else
1842
ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
1843
cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
1844
#endif
1845
_workers->run_task(&cleaning_task);
1846
}
1847
}
1848
1849
void ShenandoahHeap::parallel_cleaning(bool full_gc) {
1850
assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1851
assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
1852
ShenandoahGCPhase phase(full_gc ?
1853
ShenandoahPhaseTimings::full_gc_purge :
1854
ShenandoahPhaseTimings::degen_gc_purge);
1855
stw_weak_refs(full_gc);
1856
stw_process_weak_roots(full_gc);
1857
stw_unload_classes(full_gc);
1858
}
1859
1860
void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
1861
set_gc_state_mask(HAS_FORWARDED, cond);
1862
}
1863
1864
void ShenandoahHeap::set_unload_classes(bool uc) {
1865
_unload_classes.set_cond(uc);
1866
}
1867
1868
bool ShenandoahHeap::unload_classes() const {
1869
return _unload_classes.is_set();
1870
}
1871
1872
address ShenandoahHeap::in_cset_fast_test_addr() {
1873
ShenandoahHeap* heap = ShenandoahHeap::heap();
1874
assert(heap->collection_set() != NULL, "Sanity");
1875
return (address) heap->collection_set()->biased_map_address();
1876
}
1877
1878
address ShenandoahHeap::cancelled_gc_addr() {
1879
return (address) ShenandoahHeap::heap()->_cancelled_gc.addr_of();
1880
}
1881
1882
address ShenandoahHeap::gc_state_addr() {
1883
return (address) ShenandoahHeap::heap()->_gc_state.addr_of();
1884
}
1885
1886
size_t ShenandoahHeap::bytes_allocated_since_gc_start() {
1887
return Atomic::load(&_bytes_allocated_since_gc_start);
1888
}
1889
1890
void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
1891
Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0);
1892
}
1893
1894
void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
1895
_degenerated_gc_in_progress.set_cond(in_progress);
1896
}
1897
1898
void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
1899
_full_gc_in_progress.set_cond(in_progress);
1900
}
1901
1902
void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
1903
assert (is_full_gc_in_progress(), "should be");
1904
_full_gc_move_in_progress.set_cond(in_progress);
1905
}
1906
1907
void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
1908
set_gc_state_mask(UPDATEREFS, in_progress);
1909
}
1910
1911
void ShenandoahHeap::register_nmethod(nmethod* nm) {
1912
ShenandoahCodeRoots::register_nmethod(nm);
1913
}
1914
1915
void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
1916
ShenandoahCodeRoots::unregister_nmethod(nm);
1917
}
1918
1919
void ShenandoahHeap::flush_nmethod(nmethod* nm) {
1920
ShenandoahCodeRoots::flush_nmethod(nm);
1921
}
1922
1923
oop ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
1924
heap_region_containing(o)->record_pin();
1925
return o;
1926
}
1927
1928
void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
1929
heap_region_containing(o)->record_unpin();
1930
}
1931
1932
void ShenandoahHeap::sync_pinned_region_status() {
1933
ShenandoahHeapLocker locker(lock());
1934
1935
for (size_t i = 0; i < num_regions(); i++) {
1936
ShenandoahHeapRegion *r = get_region(i);
1937
if (r->is_active()) {
1938
if (r->is_pinned()) {
1939
if (r->pin_count() == 0) {
1940
r->make_unpinned();
1941
}
1942
} else {
1943
if (r->pin_count() > 0) {
1944
r->make_pinned();
1945
}
1946
}
1947
}
1948
}
1949
1950
assert_pinned_region_status();
1951
}
1952
1953
#ifdef ASSERT
1954
void ShenandoahHeap::assert_pinned_region_status() {
1955
for (size_t i = 0; i < num_regions(); i++) {
1956
ShenandoahHeapRegion* r = get_region(i);
1957
assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
1958
"Region " SIZE_FORMAT " pinning status is inconsistent", i);
1959
}
1960
}
1961
#endif
1962
1963
ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
1964
return _gc_timer;
1965
}
1966
1967
void ShenandoahHeap::prepare_concurrent_roots() {
1968
assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1969
assert(!is_stw_gc_in_progress(), "Only concurrent GC");
1970
set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
1971
set_concurrent_weak_root_in_progress(true);
1972
if (unload_classes()) {
1973
_unloader.prepare();
1974
}
1975
}
1976
1977
void ShenandoahHeap::finish_concurrent_roots() {
1978
assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1979
assert(!is_stw_gc_in_progress(), "Only concurrent GC");
1980
if (unload_classes()) {
1981
_unloader.finish();
1982
}
1983
}
1984
1985
#ifdef ASSERT
1986
void ShenandoahHeap::assert_gc_workers(uint nworkers) {
1987
assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
1988
1989
if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1990
if (UseDynamicNumberOfGCThreads) {
1991
assert(nworkers <= ParallelGCThreads, "Cannot use more than it has");
1992
} else {
1993
// Use ParallelGCThreads inside safepoints
1994
assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints");
1995
}
1996
} else {
1997
if (UseDynamicNumberOfGCThreads) {
1998
assert(nworkers <= ConcGCThreads, "Cannot use more than it has");
1999
} else {
2000
// Use ConcGCThreads outside safepoints
2001
assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints");
2002
}
2003
}
2004
}
2005
#endif
2006
2007
ShenandoahVerifier* ShenandoahHeap::verifier() {
2008
guarantee(ShenandoahVerify, "Should be enabled");
2009
assert (_verifier != NULL, "sanity");
2010
return _verifier;
2011
}
2012
2013
template<bool CONCURRENT>
2014
class ShenandoahUpdateHeapRefsTask : public AbstractGangTask {
2015
private:
2016
ShenandoahHeap* _heap;
2017
ShenandoahRegionIterator* _regions;
2018
public:
2019
ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2020
AbstractGangTask("Shenandoah Update References"),
2021
_heap(ShenandoahHeap::heap()),
2022
_regions(regions) {
2023
}
2024
2025
void work(uint worker_id) {
2026
if (CONCURRENT) {
2027
ShenandoahConcurrentWorkerSession worker_session(worker_id);
2028
ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
2029
do_work<ShenandoahConcUpdateRefsClosure>();
2030
} else {
2031
ShenandoahParallelWorkerSession worker_session(worker_id);
2032
do_work<ShenandoahSTWUpdateRefsClosure>();
2033
}
2034
}
2035
2036
private:
2037
template<class T>
2038
void do_work() {
2039
T cl;
2040
ShenandoahHeapRegion* r = _regions->next();
2041
ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
2042
while (r != NULL) {
2043
HeapWord* update_watermark = r->get_update_watermark();
2044
assert (update_watermark >= r->bottom(), "sanity");
2045
if (r->is_active() && !r->is_cset()) {
2046
_heap->marked_object_oop_iterate(r, &cl, update_watermark);
2047
}
2048
if (ShenandoahPacing) {
2049
_heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
2050
}
2051
if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2052
return;
2053
}
2054
r = _regions->next();
2055
}
2056
}
2057
};
2058
2059
void ShenandoahHeap::update_heap_references(bool concurrent) {
2060
assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2061
2062
if (concurrent) {
2063
ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2064
workers()->run_task(&task);
2065
} else {
2066
ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2067
workers()->run_task(&task);
2068
}
2069
}
2070
2071
2072
class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
2073
private:
2074
ShenandoahHeapLock* const _lock;
2075
2076
public:
2077
ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {}
2078
2079
void heap_region_do(ShenandoahHeapRegion* r) {
2080
// Drop unnecessary "pinned" state from regions that does not have CP marks
2081
// anymore, as this would allow trashing them.
2082
2083
if (r->is_active()) {
2084
if (r->is_pinned()) {
2085
if (r->pin_count() == 0) {
2086
ShenandoahHeapLocker locker(_lock);
2087
r->make_unpinned();
2088
}
2089
} else {
2090
if (r->pin_count() > 0) {
2091
ShenandoahHeapLocker locker(_lock);
2092
r->make_pinned();
2093
}
2094
}
2095
}
2096
}
2097
2098
bool is_thread_safe() { return true; }
2099
};
2100
2101
void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2102
assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2103
assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2104
2105
{
2106
ShenandoahGCPhase phase(concurrent ?
2107
ShenandoahPhaseTimings::final_update_refs_update_region_states :
2108
ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2109
ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl;
2110
parallel_heap_region_iterate(&cl);
2111
2112
assert_pinned_region_status();
2113
}
2114
2115
{
2116
ShenandoahGCPhase phase(concurrent ?
2117
ShenandoahPhaseTimings::final_update_refs_trash_cset :
2118
ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2119
trash_cset_regions();
2120
}
2121
}
2122
2123
void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2124
{
2125
ShenandoahGCPhase phase(concurrent ?
2126
ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2127
ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2128
ShenandoahHeapLocker locker(lock());
2129
_free_set->rebuild();
2130
}
2131
}
2132
2133
void ShenandoahHeap::print_extended_on(outputStream *st) const {
2134
print_on(st);
2135
print_heap_regions_on(st);
2136
}
2137
2138
bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2139
size_t slice = r->index() / _bitmap_regions_per_slice;
2140
2141
size_t regions_from = _bitmap_regions_per_slice * slice;
2142
size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2143
for (size_t g = regions_from; g < regions_to; g++) {
2144
assert (g / _bitmap_regions_per_slice == slice, "same slice");
2145
if (skip_self && g == r->index()) continue;
2146
if (get_region(g)->is_committed()) {
2147
return true;
2148
}
2149
}
2150
return false;
2151
}
2152
2153
bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2154
shenandoah_assert_heaplocked();
2155
2156
// Bitmaps in special regions do not need commits
2157
if (_bitmap_region_special) {
2158
return true;
2159
}
2160
2161
if (is_bitmap_slice_committed(r, true)) {
2162
// Some other region from the group is already committed, meaning the bitmap
2163
// slice is already committed, we exit right away.
2164
return true;
2165
}
2166
2167
// Commit the bitmap slice:
2168
size_t slice = r->index() / _bitmap_regions_per_slice;
2169
size_t off = _bitmap_bytes_per_slice * slice;
2170
size_t len = _bitmap_bytes_per_slice;
2171
char* start = (char*) _bitmap_region.start() + off;
2172
2173
if (!os::commit_memory(start, len, false)) {
2174
return false;
2175
}
2176
2177
if (AlwaysPreTouch) {
2178
os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2179
}
2180
2181
return true;
2182
}
2183
2184
bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2185
shenandoah_assert_heaplocked();
2186
2187
// Bitmaps in special regions do not need uncommits
2188
if (_bitmap_region_special) {
2189
return true;
2190
}
2191
2192
if (is_bitmap_slice_committed(r, true)) {
2193
// Some other region from the group is still committed, meaning the bitmap
2194
// slice is should stay committed, exit right away.
2195
return true;
2196
}
2197
2198
// Uncommit the bitmap slice:
2199
size_t slice = r->index() / _bitmap_regions_per_slice;
2200
size_t off = _bitmap_bytes_per_slice * slice;
2201
size_t len = _bitmap_bytes_per_slice;
2202
if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2203
return false;
2204
}
2205
return true;
2206
}
2207
2208
void ShenandoahHeap::safepoint_synchronize_begin() {
2209
if (ShenandoahSuspendibleWorkers || UseStringDeduplication) {
2210
SuspendibleThreadSet::synchronize();
2211
}
2212
}
2213
2214
void ShenandoahHeap::safepoint_synchronize_end() {
2215
if (ShenandoahSuspendibleWorkers || UseStringDeduplication) {
2216
SuspendibleThreadSet::desynchronize();
2217
}
2218
}
2219
2220
void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) {
2221
static const char *msg = "Concurrent uncommit";
2222
ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */);
2223
EventMark em("%s", msg);
2224
2225
op_uncommit(shrink_before, shrink_until);
2226
}
2227
2228
void ShenandoahHeap::try_inject_alloc_failure() {
2229
if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2230
_inject_alloc_failure.set();
2231
os::naked_short_sleep(1);
2232
if (cancelled_gc()) {
2233
log_info(gc)("Allocation failure was successfully injected");
2234
}
2235
}
2236
}
2237
2238
bool ShenandoahHeap::should_inject_alloc_failure() {
2239
return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2240
}
2241
2242
void ShenandoahHeap::initialize_serviceability() {
2243
_memory_pool = new ShenandoahMemoryPool(this);
2244
_cycle_memory_manager.add_pool(_memory_pool);
2245
_stw_memory_manager.add_pool(_memory_pool);
2246
}
2247
2248
GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2249
GrowableArray<GCMemoryManager*> memory_managers(2);
2250
memory_managers.append(&_cycle_memory_manager);
2251
memory_managers.append(&_stw_memory_manager);
2252
return memory_managers;
2253
}
2254
2255
GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2256
GrowableArray<MemoryPool*> memory_pools(1);
2257
memory_pools.append(_memory_pool);
2258
return memory_pools;
2259
}
2260
2261
MemoryUsage ShenandoahHeap::memory_usage() {
2262
return _memory_pool->get_memory_usage();
2263
}
2264
2265
ShenandoahRegionIterator::ShenandoahRegionIterator() :
2266
_heap(ShenandoahHeap::heap()),
2267
_index(0) {}
2268
2269
ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2270
_heap(heap),
2271
_index(0) {}
2272
2273
void ShenandoahRegionIterator::reset() {
2274
_index = 0;
2275
}
2276
2277
bool ShenandoahRegionIterator::has_next() const {
2278
return _index < _heap->num_regions();
2279
}
2280
2281
char ShenandoahHeap::gc_state() const {
2282
return _gc_state.raw_value();
2283
}
2284
2285
ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2286
#ifdef ASSERT
2287
assert(_liveness_cache != NULL, "sanity");
2288
assert(worker_id < _max_workers, "sanity");
2289
for (uint i = 0; i < num_regions(); i++) {
2290
assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2291
}
2292
#endif
2293
return _liveness_cache[worker_id];
2294
}
2295
2296
void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2297
assert(worker_id < _max_workers, "sanity");
2298
assert(_liveness_cache != NULL, "sanity");
2299
ShenandoahLiveData* ld = _liveness_cache[worker_id];
2300
for (uint i = 0; i < num_regions(); i++) {
2301
ShenandoahLiveData live = ld[i];
2302
if (live > 0) {
2303
ShenandoahHeapRegion* r = get_region(i);
2304
r->increase_live_data_gc_words(live);
2305
ld[i] = 0;
2306
}
2307
}
2308
}
2309
2310