Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/gc/shenandoah/shenandoahHeap.inline.hpp
40961 views
1
/*
2
* Copyright (c) 2015, 2020, Red Hat, Inc. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP
26
#define SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP
27
28
#include "gc/shenandoah/shenandoahHeap.hpp"
29
30
#include "classfile/javaClasses.inline.hpp"
31
#include "gc/shared/markBitMap.inline.hpp"
32
#include "gc/shared/threadLocalAllocBuffer.inline.hpp"
33
#include "gc/shared/suspendibleThreadSet.hpp"
34
#include "gc/shared/tlab_globals.hpp"
35
#include "gc/shenandoah/shenandoahAsserts.hpp"
36
#include "gc/shenandoah/shenandoahBarrierSet.inline.hpp"
37
#include "gc/shenandoah/shenandoahCollectionSet.inline.hpp"
38
#include "gc/shenandoah/shenandoahForwarding.inline.hpp"
39
#include "gc/shenandoah/shenandoahWorkGroup.hpp"
40
#include "gc/shenandoah/shenandoahHeapRegionSet.inline.hpp"
41
#include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
42
#include "gc/shenandoah/shenandoahControlThread.hpp"
43
#include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
44
#include "gc/shenandoah/shenandoahThreadLocalData.hpp"
45
#include "oops/compressedOops.inline.hpp"
46
#include "oops/oop.inline.hpp"
47
#include "runtime/atomic.hpp"
48
#include "runtime/prefetch.inline.hpp"
49
#include "runtime/thread.hpp"
50
#include "utilities/copy.hpp"
51
#include "utilities/globalDefinitions.hpp"
52
53
inline ShenandoahHeap* ShenandoahHeap::heap() {
54
return named_heap<ShenandoahHeap>(CollectedHeap::Shenandoah);
55
}
56
57
inline ShenandoahHeapRegion* ShenandoahRegionIterator::next() {
58
size_t new_index = Atomic::add(&_index, (size_t) 1, memory_order_relaxed);
59
// get_region() provides the bounds-check and returns NULL on OOB.
60
return _heap->get_region(new_index - 1);
61
}
62
63
inline bool ShenandoahHeap::has_forwarded_objects() const {
64
return _gc_state.is_set(HAS_FORWARDED);
65
}
66
67
inline WorkGang* ShenandoahHeap::workers() const {
68
return _workers;
69
}
70
71
inline WorkGang* ShenandoahHeap::safepoint_workers() {
72
return _safepoint_workers;
73
}
74
75
inline size_t ShenandoahHeap::heap_region_index_containing(const void* addr) const {
76
uintptr_t region_start = ((uintptr_t) addr);
77
uintptr_t index = (region_start - (uintptr_t) base()) >> ShenandoahHeapRegion::region_size_bytes_shift();
78
assert(index < num_regions(), "Region index is in bounds: " PTR_FORMAT, p2i(addr));
79
return index;
80
}
81
82
inline ShenandoahHeapRegion* const ShenandoahHeap::heap_region_containing(const void* addr) const {
83
size_t index = heap_region_index_containing(addr);
84
ShenandoahHeapRegion* const result = get_region(index);
85
assert(addr >= result->bottom() && addr < result->end(), "Heap region contains the address: " PTR_FORMAT, p2i(addr));
86
return result;
87
}
88
89
inline void ShenandoahHeap::enter_evacuation(Thread* t) {
90
_oom_evac_handler.enter_evacuation(t);
91
}
92
93
inline void ShenandoahHeap::leave_evacuation(Thread* t) {
94
_oom_evac_handler.leave_evacuation(t);
95
}
96
97
template <class T>
98
inline void ShenandoahHeap::update_with_forwarded(T* p) {
99
T o = RawAccess<>::oop_load(p);
100
if (!CompressedOops::is_null(o)) {
101
oop obj = CompressedOops::decode_not_null(o);
102
if (in_collection_set(obj)) {
103
// Corner case: when evacuation fails, there are objects in collection
104
// set that are not really forwarded. We can still go and try and update them
105
// (uselessly) to simplify the common path.
106
shenandoah_assert_forwarded_except(p, obj, cancelled_gc());
107
oop fwd = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
108
shenandoah_assert_not_in_cset_except(p, fwd, cancelled_gc());
109
110
// Unconditionally store the update: no concurrent updates expected.
111
RawAccess<IS_NOT_NULL>::oop_store(p, fwd);
112
}
113
}
114
}
115
116
template <class T>
117
inline void ShenandoahHeap::conc_update_with_forwarded(T* p) {
118
T o = RawAccess<>::oop_load(p);
119
if (!CompressedOops::is_null(o)) {
120
oop obj = CompressedOops::decode_not_null(o);
121
if (in_collection_set(obj)) {
122
// Corner case: when evacuation fails, there are objects in collection
123
// set that are not really forwarded. We can still go and try CAS-update them
124
// (uselessly) to simplify the common path.
125
shenandoah_assert_forwarded_except(p, obj, cancelled_gc());
126
oop fwd = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
127
shenandoah_assert_not_in_cset_except(p, fwd, cancelled_gc());
128
129
// Sanity check: we should not be updating the cset regions themselves,
130
// unless we are recovering from the evacuation failure.
131
shenandoah_assert_not_in_cset_loc_except(p, !is_in(p) || cancelled_gc());
132
133
// Either we succeed in updating the reference, or something else gets in our way.
134
// We don't care if that is another concurrent GC update, or another mutator update.
135
// We only check that non-NULL store still updated with non-forwarded reference.
136
oop witness = cas_oop(fwd, p, obj);
137
shenandoah_assert_not_forwarded_except(p, witness, (witness == NULL) || (witness == obj));
138
}
139
}
140
}
141
142
inline oop ShenandoahHeap::cas_oop(oop n, oop* addr, oop c) {
143
assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr));
144
return (oop) Atomic::cmpxchg(addr, c, n);
145
}
146
147
inline oop ShenandoahHeap::cas_oop(oop n, narrowOop* addr, narrowOop c) {
148
assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr));
149
narrowOop val = CompressedOops::encode(n);
150
return CompressedOops::decode(Atomic::cmpxchg(addr, c, val));
151
}
152
153
inline oop ShenandoahHeap::cas_oop(oop n, narrowOop* addr, oop c) {
154
assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr));
155
narrowOop cmp = CompressedOops::encode(c);
156
narrowOop val = CompressedOops::encode(n);
157
return CompressedOops::decode(Atomic::cmpxchg(addr, cmp, val));
158
}
159
160
inline bool ShenandoahHeap::cancelled_gc() const {
161
return _cancelled_gc.get() == CANCELLED;
162
}
163
164
inline bool ShenandoahHeap::check_cancelled_gc_and_yield(bool sts_active) {
165
if (! (sts_active && ShenandoahSuspendibleWorkers)) {
166
return cancelled_gc();
167
}
168
169
jbyte prev = _cancelled_gc.cmpxchg(NOT_CANCELLED, CANCELLABLE);
170
if (prev == CANCELLABLE || prev == NOT_CANCELLED) {
171
if (SuspendibleThreadSet::should_yield()) {
172
SuspendibleThreadSet::yield();
173
}
174
175
// Back to CANCELLABLE. The thread that poked NOT_CANCELLED first gets
176
// to restore to CANCELLABLE.
177
if (prev == CANCELLABLE) {
178
_cancelled_gc.set(CANCELLABLE);
179
}
180
return false;
181
} else {
182
return true;
183
}
184
}
185
186
inline void ShenandoahHeap::clear_cancelled_gc() {
187
_cancelled_gc.set(CANCELLABLE);
188
_oom_evac_handler.clear();
189
}
190
191
inline HeapWord* ShenandoahHeap::allocate_from_gclab(Thread* thread, size_t size) {
192
assert(UseTLAB, "TLABs should be enabled");
193
194
PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
195
if (gclab == NULL) {
196
assert(!thread->is_Java_thread() && !thread->is_Worker_thread(),
197
"Performance: thread should have GCLAB: %s", thread->name());
198
// No GCLABs in this thread, fallback to shared allocation
199
return NULL;
200
}
201
HeapWord* obj = gclab->allocate(size);
202
if (obj != NULL) {
203
return obj;
204
}
205
// Otherwise...
206
return allocate_from_gclab_slow(thread, size);
207
}
208
209
inline oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
210
if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) {
211
// This thread went through the OOM during evac protocol and it is safe to return
212
// the forward pointer. It must not attempt to evacuate any more.
213
return ShenandoahBarrierSet::resolve_forwarded(p);
214
}
215
216
assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
217
218
size_t size = p->size();
219
220
assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects");
221
222
bool alloc_from_gclab = true;
223
HeapWord* copy = NULL;
224
225
#ifdef ASSERT
226
if (ShenandoahOOMDuringEvacALot &&
227
(os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
228
copy = NULL;
229
} else {
230
#endif
231
if (UseTLAB) {
232
copy = allocate_from_gclab(thread, size);
233
}
234
if (copy == NULL) {
235
ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size);
236
copy = allocate_memory(req);
237
alloc_from_gclab = false;
238
}
239
#ifdef ASSERT
240
}
241
#endif
242
243
if (copy == NULL) {
244
control_thread()->handle_alloc_failure_evac(size);
245
246
_oom_evac_handler.handle_out_of_memory_during_evacuation();
247
248
return ShenandoahBarrierSet::resolve_forwarded(p);
249
}
250
251
// Copy the object:
252
Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size);
253
254
// Try to install the new forwarding pointer.
255
oop copy_val = cast_to_oop(copy);
256
oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
257
if (result == copy_val) {
258
// Successfully evacuated. Our copy is now the public one!
259
shenandoah_assert_correct(NULL, copy_val);
260
return copy_val;
261
} else {
262
// Failed to evacuate. We need to deal with the object that is left behind. Since this
263
// new allocation is certainly after TAMS, it will be considered live in the next cycle.
264
// But if it happens to contain references to evacuated regions, those references would
265
// not get updated for this stale copy during this cycle, and we will crash while scanning
266
// it the next cycle.
267
//
268
// For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next
269
// object will overwrite this stale copy, or the filler object on LAB retirement will
270
// do this. For non-GCLAB allocations, we have no way to retract the allocation, and
271
// have to explicitly overwrite the copy with the filler object. With that overwrite,
272
// we have to keep the fwdptr initialized and pointing to our (stale) copy.
273
if (alloc_from_gclab) {
274
ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
275
} else {
276
fill_with_object(copy, size);
277
shenandoah_assert_correct(NULL, copy_val);
278
}
279
shenandoah_assert_correct(NULL, result);
280
return result;
281
}
282
}
283
284
inline bool ShenandoahHeap::requires_marking(const void* entry) const {
285
oop obj = cast_to_oop(entry);
286
return !_marking_context->is_marked_strong(obj);
287
}
288
289
inline bool ShenandoahHeap::in_collection_set(oop p) const {
290
assert(collection_set() != NULL, "Sanity");
291
return collection_set()->is_in(p);
292
}
293
294
inline bool ShenandoahHeap::in_collection_set_loc(void* p) const {
295
assert(collection_set() != NULL, "Sanity");
296
return collection_set()->is_in_loc(p);
297
}
298
299
inline bool ShenandoahHeap::is_stable() const {
300
return _gc_state.is_clear();
301
}
302
303
inline bool ShenandoahHeap::is_idle() const {
304
return _gc_state.is_unset(MARKING | EVACUATION | UPDATEREFS);
305
}
306
307
inline bool ShenandoahHeap::is_concurrent_mark_in_progress() const {
308
return _gc_state.is_set(MARKING);
309
}
310
311
inline bool ShenandoahHeap::is_evacuation_in_progress() const {
312
return _gc_state.is_set(EVACUATION);
313
}
314
315
inline bool ShenandoahHeap::is_gc_in_progress_mask(uint mask) const {
316
return _gc_state.is_set(mask);
317
}
318
319
inline bool ShenandoahHeap::is_degenerated_gc_in_progress() const {
320
return _degenerated_gc_in_progress.is_set();
321
}
322
323
inline bool ShenandoahHeap::is_full_gc_in_progress() const {
324
return _full_gc_in_progress.is_set();
325
}
326
327
inline bool ShenandoahHeap::is_full_gc_move_in_progress() const {
328
return _full_gc_move_in_progress.is_set();
329
}
330
331
inline bool ShenandoahHeap::is_update_refs_in_progress() const {
332
return _gc_state.is_set(UPDATEREFS);
333
}
334
335
inline bool ShenandoahHeap::is_stw_gc_in_progress() const {
336
return is_full_gc_in_progress() || is_degenerated_gc_in_progress();
337
}
338
339
inline bool ShenandoahHeap::is_concurrent_strong_root_in_progress() const {
340
return _concurrent_strong_root_in_progress.is_set();
341
}
342
343
inline bool ShenandoahHeap::is_concurrent_weak_root_in_progress() const {
344
return _gc_state.is_set(WEAK_ROOTS);
345
}
346
347
template<class T>
348
inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl) {
349
marked_object_iterate(region, cl, region->top());
350
}
351
352
template<class T>
353
inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* limit) {
354
assert(! region->is_humongous_continuation(), "no humongous continuation regions here");
355
356
ShenandoahMarkingContext* const ctx = complete_marking_context();
357
assert(ctx->is_complete(), "sanity");
358
359
HeapWord* tams = ctx->top_at_mark_start(region);
360
361
size_t skip_bitmap_delta = 1;
362
HeapWord* start = region->bottom();
363
HeapWord* end = MIN2(tams, region->end());
364
365
// Step 1. Scan below the TAMS based on bitmap data.
366
HeapWord* limit_bitmap = MIN2(limit, tams);
367
368
// Try to scan the initial candidate. If the candidate is above the TAMS, it would
369
// fail the subsequent "< limit_bitmap" checks, and fall through to Step 2.
370
HeapWord* cb = ctx->get_next_marked_addr(start, end);
371
372
intx dist = ShenandoahMarkScanPrefetch;
373
if (dist > 0) {
374
// Batched scan that prefetches the oop data, anticipating the access to
375
// either header, oop field, or forwarding pointer. Not that we cannot
376
// touch anything in oop, while it still being prefetched to get enough
377
// time for prefetch to work. This is why we try to scan the bitmap linearly,
378
// disregarding the object size. However, since we know forwarding pointer
379
// preceeds the object, we can skip over it. Once we cannot trust the bitmap,
380
// there is no point for prefetching the oop contents, as oop->size() will
381
// touch it prematurely.
382
383
// No variable-length arrays in standard C++, have enough slots to fit
384
// the prefetch distance.
385
static const int SLOT_COUNT = 256;
386
guarantee(dist <= SLOT_COUNT, "adjust slot count");
387
HeapWord* slots[SLOT_COUNT];
388
389
int avail;
390
do {
391
avail = 0;
392
for (int c = 0; (c < dist) && (cb < limit_bitmap); c++) {
393
Prefetch::read(cb, oopDesc::mark_offset_in_bytes());
394
slots[avail++] = cb;
395
cb += skip_bitmap_delta;
396
if (cb < limit_bitmap) {
397
cb = ctx->get_next_marked_addr(cb, limit_bitmap);
398
}
399
}
400
401
for (int c = 0; c < avail; c++) {
402
assert (slots[c] < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(tams));
403
assert (slots[c] < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(limit));
404
oop obj = cast_to_oop(slots[c]);
405
assert(oopDesc::is_oop(obj), "sanity");
406
assert(ctx->is_marked(obj), "object expected to be marked");
407
cl->do_object(obj);
408
}
409
} while (avail > 0);
410
} else {
411
while (cb < limit_bitmap) {
412
assert (cb < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(tams));
413
assert (cb < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(limit));
414
oop obj = cast_to_oop(cb);
415
assert(oopDesc::is_oop(obj), "sanity");
416
assert(ctx->is_marked(obj), "object expected to be marked");
417
cl->do_object(obj);
418
cb += skip_bitmap_delta;
419
if (cb < limit_bitmap) {
420
cb = ctx->get_next_marked_addr(cb, limit_bitmap);
421
}
422
}
423
}
424
425
// Step 2. Accurate size-based traversal, happens past the TAMS.
426
// This restarts the scan at TAMS, which makes sure we traverse all objects,
427
// regardless of what happened at Step 1.
428
HeapWord* cs = tams;
429
while (cs < limit) {
430
assert (cs >= tams, "only objects past TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(tams));
431
assert (cs < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(limit));
432
oop obj = cast_to_oop(cs);
433
assert(oopDesc::is_oop(obj), "sanity");
434
assert(ctx->is_marked(obj), "object expected to be marked");
435
int size = obj->size();
436
cl->do_object(obj);
437
cs += size;
438
}
439
}
440
441
template <class T>
442
class ShenandoahObjectToOopClosure : public ObjectClosure {
443
T* _cl;
444
public:
445
ShenandoahObjectToOopClosure(T* cl) : _cl(cl) {}
446
447
void do_object(oop obj) {
448
obj->oop_iterate(_cl);
449
}
450
};
451
452
template <class T>
453
class ShenandoahObjectToOopBoundedClosure : public ObjectClosure {
454
T* _cl;
455
MemRegion _bounds;
456
public:
457
ShenandoahObjectToOopBoundedClosure(T* cl, HeapWord* bottom, HeapWord* top) :
458
_cl(cl), _bounds(bottom, top) {}
459
460
void do_object(oop obj) {
461
obj->oop_iterate(_cl, _bounds);
462
}
463
};
464
465
template<class T>
466
inline void ShenandoahHeap::marked_object_oop_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* top) {
467
if (region->is_humongous()) {
468
HeapWord* bottom = region->bottom();
469
if (top > bottom) {
470
region = region->humongous_start_region();
471
ShenandoahObjectToOopBoundedClosure<T> objs(cl, bottom, top);
472
marked_object_iterate(region, &objs);
473
}
474
} else {
475
ShenandoahObjectToOopClosure<T> objs(cl);
476
marked_object_iterate(region, &objs, top);
477
}
478
}
479
480
inline ShenandoahHeapRegion* const ShenandoahHeap::get_region(size_t region_idx) const {
481
if (region_idx < _num_regions) {
482
return _regions[region_idx];
483
} else {
484
return NULL;
485
}
486
}
487
488
inline void ShenandoahHeap::mark_complete_marking_context() {
489
_marking_context->mark_complete();
490
}
491
492
inline void ShenandoahHeap::mark_incomplete_marking_context() {
493
_marking_context->mark_incomplete();
494
}
495
496
inline ShenandoahMarkingContext* ShenandoahHeap::complete_marking_context() const {
497
assert (_marking_context->is_complete()," sanity");
498
return _marking_context;
499
}
500
501
inline ShenandoahMarkingContext* ShenandoahHeap::marking_context() const {
502
return _marking_context;
503
}
504
505
#endif // SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP
506
507