Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/memory/heap.cpp
40950 views
1
/*
2
* Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "memory/heap.hpp"
27
#include "oops/oop.inline.hpp"
28
#include "runtime/os.hpp"
29
#include "runtime/mutexLocker.hpp"
30
#include "services/memTracker.hpp"
31
#include "utilities/align.hpp"
32
#include "utilities/powerOfTwo.hpp"
33
34
// Implementation of Heap
35
36
CodeHeap::CodeHeap(const char* name, const int code_blob_type)
37
: _code_blob_type(code_blob_type) {
38
_name = name;
39
_number_of_committed_segments = 0;
40
_number_of_reserved_segments = 0;
41
_segment_size = 0;
42
_log2_segment_size = 0;
43
_next_segment = 0;
44
_freelist = NULL;
45
_last_insert_point = NULL;
46
_freelist_segments = 0;
47
_freelist_length = 0;
48
_max_allocated_capacity = 0;
49
_blob_count = 0;
50
_nmethod_count = 0;
51
_adapter_count = 0;
52
_full_count = 0;
53
_fragmentation_count = 0;
54
}
55
56
// Dummy initialization of template array.
57
char CodeHeap::segmap_template[] = {0};
58
59
// This template array is used to (re)initialize the segmap,
60
// replacing a 1..254 loop.
61
void CodeHeap::init_segmap_template() {
62
assert(free_sentinel == 255, "Segment map logic changed!");
63
for (int i = 0; i <= free_sentinel; i++) {
64
segmap_template[i] = i;
65
}
66
}
67
68
// The segmap is marked free for that part of the heap
69
// which has not been allocated yet (beyond _next_segment).
70
// The range of segments to be marked is given by [beg..end).
71
// "Allocated" space in this context means there exists a
72
// HeapBlock or a FreeBlock describing this space.
73
// This method takes segment map indices as range boundaries
74
void CodeHeap::mark_segmap_as_free(size_t beg, size_t end) {
75
assert( beg < _number_of_committed_segments, "interval begin out of bounds");
76
assert(beg < end && end <= _number_of_committed_segments, "interval end out of bounds");
77
// Don't do unpredictable things in PRODUCT build
78
if (beg < end) {
79
// setup _segmap pointers for faster indexing
80
address p = (address)_segmap.low() + beg;
81
address q = (address)_segmap.low() + end;
82
// initialize interval
83
memset(p, free_sentinel, q-p);
84
}
85
}
86
87
// Don't get confused here.
88
// All existing blocks, no matter if they are used() or free(),
89
// have their segmap marked as used. This allows to find the
90
// block header (HeapBlock or FreeBlock) for any pointer
91
// within the allocated range (upper limit: _next_segment).
92
// This method takes segment map indices as range boundaries.
93
// The range of segments to be marked is given by [beg..end).
94
void CodeHeap::mark_segmap_as_used(size_t beg, size_t end, bool is_FreeBlock_join) {
95
assert( beg < _number_of_committed_segments, "interval begin out of bounds");
96
assert(beg < end && end <= _number_of_committed_segments, "interval end out of bounds");
97
// Don't do unpredictable things in PRODUCT build
98
if (beg < end) {
99
// setup _segmap pointers for faster indexing
100
address p = (address)_segmap.low() + beg;
101
address q = (address)_segmap.low() + end;
102
// initialize interval
103
// If we are joining two free blocks, the segmap range for each
104
// block is consistent. To create a consistent segmap range for
105
// the blocks combined, we have three choices:
106
// 1 - Do a full init from beg to end. Not very efficient because
107
// the segmap range for the left block is potentially initialized
108
// over and over again.
109
// 2 - Carry over the last segmap element value of the left block
110
// and initialize the segmap range of the right block starting
111
// with that value. Saves initializing the left block's segmap
112
// over and over again. Very efficient if FreeBlocks mostly
113
// are appended to the right.
114
// 3 - Take full advantage of the segmap being almost correct with
115
// the two blocks combined. Lets assume the left block consists
116
// of m segments. The the segmap looks like
117
// ... (m-2) (m-1) (m) 0 1 2 3 ...
118
// By substituting the '0' by '1', we create a valid, but
119
// suboptimal, segmap range covering the two blocks combined.
120
// We introduced an extra hop for the find_block_for() iteration.
121
//
122
// When this method is called with is_FreeBlock_join == true, the
123
// segmap index beg must select the first segment of the right block.
124
// Otherwise, it has to select the first segment of the left block.
125
// Variant 3 is used for all FreeBlock joins.
126
if (is_FreeBlock_join && (beg > 0)) {
127
#ifndef PRODUCT
128
FreeBlock* pBlock = (FreeBlock*)block_at(beg);
129
assert(beg + pBlock->length() == end, "Internal error: (%d - %d) != %d", (unsigned int)end, (unsigned int)beg, (unsigned int)(pBlock->length()));
130
assert(*p == 0, "Begin index does not select a block start segment, *p = %2.2x", *p);
131
#endif
132
// If possible, extend the previous hop.
133
if (*(p-1) < (free_sentinel-1)) {
134
*p = *(p-1) + 1;
135
} else {
136
*p = 1;
137
}
138
if (_fragmentation_count++ >= fragmentation_limit) {
139
defrag_segmap(true);
140
_fragmentation_count = 0;
141
}
142
} else {
143
size_t n_bulk = free_sentinel-1; // bulk processing uses template indices [1..254].
144
// Use shortcut for blocks <= 255 segments.
145
// Special case bulk processing: [0..254].
146
if ((end - beg) <= n_bulk) {
147
memcpy(p, &segmap_template[0], end - beg);
148
} else {
149
*p++ = 0; // block header marker
150
while (p < q) {
151
if ((p+n_bulk) <= q) {
152
memcpy(p, &segmap_template[1], n_bulk);
153
p += n_bulk;
154
} else {
155
memcpy(p, &segmap_template[1], q-p);
156
p = q;
157
}
158
}
159
}
160
}
161
}
162
}
163
164
void CodeHeap::invalidate(size_t beg, size_t end, size_t hdr_size) {
165
#ifndef PRODUCT
166
// Fill the given range with some bad value.
167
// length is expected to be in segment_size units.
168
// This prevents inadvertent execution of code leftover from previous use.
169
char* p = low_boundary() + segments_to_size(beg) + hdr_size;
170
memset(p, badCodeHeapNewVal, segments_to_size(end-beg)-hdr_size);
171
#endif
172
}
173
174
void CodeHeap::clear(size_t beg, size_t end) {
175
mark_segmap_as_free(beg, end);
176
invalidate(beg, end, 0);
177
}
178
179
void CodeHeap::clear() {
180
_next_segment = 0;
181
clear(_next_segment, _number_of_committed_segments);
182
}
183
184
185
static size_t align_to_page_size(size_t size) {
186
const size_t alignment = (size_t)os::vm_page_size();
187
assert(is_power_of_2(alignment), "no kidding ???");
188
return (size + alignment - 1) & ~(alignment - 1);
189
}
190
191
192
void CodeHeap::on_code_mapping(char* base, size_t size) {
193
#ifdef LINUX
194
extern void linux_wrap_code(char* base, size_t size);
195
linux_wrap_code(base, size);
196
#endif
197
}
198
199
200
bool CodeHeap::reserve(ReservedSpace rs, size_t committed_size, size_t segment_size) {
201
assert(rs.size() >= committed_size, "reserved < committed");
202
assert(segment_size >= sizeof(FreeBlock), "segment size is too small");
203
assert(is_power_of_2(segment_size), "segment_size must be a power of 2");
204
assert_locked_or_safepoint(CodeCache_lock);
205
206
_segment_size = segment_size;
207
_log2_segment_size = exact_log2(segment_size);
208
209
// Reserve and initialize space for _memory.
210
const size_t page_size = rs.page_size();
211
const size_t granularity = os::vm_allocation_granularity();
212
const size_t c_size = align_up(committed_size, page_size);
213
assert(c_size <= rs.size(), "alignment made committed size to large");
214
215
os::trace_page_sizes(_name, c_size, rs.size(), page_size,
216
rs.base(), rs.size());
217
if (!_memory.initialize(rs, c_size)) {
218
return false;
219
}
220
221
on_code_mapping(_memory.low(), _memory.committed_size());
222
_number_of_committed_segments = size_to_segments(_memory.committed_size());
223
_number_of_reserved_segments = size_to_segments(_memory.reserved_size());
224
assert(_number_of_reserved_segments >= _number_of_committed_segments, "just checking");
225
const size_t reserved_segments_alignment = MAX2((size_t)os::vm_page_size(), granularity);
226
const size_t reserved_segments_size = align_up(_number_of_reserved_segments, reserved_segments_alignment);
227
const size_t committed_segments_size = align_to_page_size(_number_of_committed_segments);
228
229
// reserve space for _segmap
230
ReservedSpace seg_rs(reserved_segments_size);
231
if (!_segmap.initialize(seg_rs, committed_segments_size)) {
232
return false;
233
}
234
235
MemTracker::record_virtual_memory_type((address)_segmap.low_boundary(), mtCode);
236
237
assert(_segmap.committed_size() >= (size_t) _number_of_committed_segments, "could not commit enough space for segment map");
238
assert(_segmap.reserved_size() >= (size_t) _number_of_reserved_segments , "could not reserve enough space for segment map");
239
assert(_segmap.reserved_size() >= _segmap.committed_size() , "just checking");
240
241
// initialize remaining instance variables, heap memory and segmap
242
clear();
243
init_segmap_template();
244
return true;
245
}
246
247
248
bool CodeHeap::expand_by(size_t size) {
249
assert_locked_or_safepoint(CodeCache_lock);
250
251
// expand _memory space
252
size_t dm = align_to_page_size(_memory.committed_size() + size) - _memory.committed_size();
253
if (dm > 0) {
254
// Use at least the available uncommitted space if 'size' is larger
255
if (_memory.uncommitted_size() != 0 && dm > _memory.uncommitted_size()) {
256
dm = _memory.uncommitted_size();
257
}
258
char* base = _memory.low() + _memory.committed_size();
259
if (!_memory.expand_by(dm)) return false;
260
on_code_mapping(base, dm);
261
size_t i = _number_of_committed_segments;
262
_number_of_committed_segments = size_to_segments(_memory.committed_size());
263
assert(_number_of_reserved_segments == size_to_segments(_memory.reserved_size()), "number of reserved segments should not change");
264
assert(_number_of_reserved_segments >= _number_of_committed_segments, "just checking");
265
// expand _segmap space
266
size_t ds = align_to_page_size(_number_of_committed_segments) - _segmap.committed_size();
267
if ((ds > 0) && !_segmap.expand_by(ds)) {
268
return false;
269
}
270
assert(_segmap.committed_size() >= (size_t) _number_of_committed_segments, "just checking");
271
// initialize additional space (heap memory and segmap)
272
clear(i, _number_of_committed_segments);
273
}
274
return true;
275
}
276
277
278
void* CodeHeap::allocate(size_t instance_size) {
279
size_t number_of_segments = size_to_segments(instance_size + header_size());
280
assert(segments_to_size(number_of_segments) >= sizeof(FreeBlock), "not enough room for FreeList");
281
assert_locked_or_safepoint(CodeCache_lock);
282
283
// First check if we can satisfy request from freelist
284
NOT_PRODUCT(verify());
285
HeapBlock* block = search_freelist(number_of_segments);
286
NOT_PRODUCT(verify());
287
288
if (block != NULL) {
289
assert(!block->free(), "must not be marked free");
290
guarantee((char*) block >= _memory.low_boundary() && (char*) block < _memory.high(),
291
"The newly allocated block " INTPTR_FORMAT " is not within the heap "
292
"starting with " INTPTR_FORMAT " and ending with " INTPTR_FORMAT,
293
p2i(block), p2i(_memory.low_boundary()), p2i(_memory.high()));
294
_max_allocated_capacity = MAX2(_max_allocated_capacity, allocated_capacity());
295
_blob_count++;
296
return block->allocated_space();
297
}
298
299
// Ensure minimum size for allocation to the heap.
300
number_of_segments = MAX2((int)CodeCacheMinBlockLength, (int)number_of_segments);
301
302
if (_next_segment + number_of_segments <= _number_of_committed_segments) {
303
mark_segmap_as_used(_next_segment, _next_segment + number_of_segments, false);
304
block = block_at(_next_segment);
305
block->initialize(number_of_segments);
306
_next_segment += number_of_segments;
307
guarantee((char*) block >= _memory.low_boundary() && (char*) block < _memory.high(),
308
"The newly allocated block " INTPTR_FORMAT " is not within the heap "
309
"starting with " INTPTR_FORMAT " and ending with " INTPTR_FORMAT,
310
p2i(block), p2i(_memory.low_boundary()), p2i(_memory.high()));
311
_max_allocated_capacity = MAX2(_max_allocated_capacity, allocated_capacity());
312
_blob_count++;
313
return block->allocated_space();
314
} else {
315
return NULL;
316
}
317
}
318
319
// Split the given block into two at the given segment.
320
// This is helpful when a block was allocated too large
321
// to trim off the unused space at the end (interpreter).
322
// It also helps with splitting a large free block during allocation.
323
// Usage state (used or free) must be set by caller since
324
// we don't know if the resulting blocks will be used or free.
325
// split_at is the segment number (relative to segment_for(b))
326
// where the split happens. The segment with relative
327
// number split_at is the first segment of the split-off block.
328
HeapBlock* CodeHeap::split_block(HeapBlock *b, size_t split_at) {
329
if (b == NULL) return NULL;
330
// After the split, both blocks must have a size of at least CodeCacheMinBlockLength
331
assert((split_at >= CodeCacheMinBlockLength) && (split_at + CodeCacheMinBlockLength <= b->length()),
332
"split position(%d) out of range [0..%d]", (int)split_at, (int)b->length());
333
size_t split_segment = segment_for(b) + split_at;
334
size_t b_size = b->length();
335
size_t newb_size = b_size - split_at;
336
337
HeapBlock* newb = block_at(split_segment);
338
newb->set_length(newb_size);
339
mark_segmap_as_used(segment_for(newb), segment_for(newb) + newb_size, false);
340
b->set_length(split_at);
341
return newb;
342
}
343
344
void CodeHeap::deallocate_tail(void* p, size_t used_size) {
345
assert(p == find_start(p), "illegal deallocation");
346
assert_locked_or_safepoint(CodeCache_lock);
347
348
// Find start of HeapBlock
349
HeapBlock* b = (((HeapBlock *)p) - 1);
350
assert(b->allocated_space() == p, "sanity check");
351
352
size_t actual_number_of_segments = b->length();
353
size_t used_number_of_segments = size_to_segments(used_size + header_size());
354
size_t unused_number_of_segments = actual_number_of_segments - used_number_of_segments;
355
guarantee(used_number_of_segments <= actual_number_of_segments, "Must be!");
356
357
HeapBlock* f = split_block(b, used_number_of_segments);
358
add_to_freelist(f);
359
NOT_PRODUCT(verify());
360
}
361
362
void CodeHeap::deallocate(void* p) {
363
assert(p == find_start(p), "illegal deallocation");
364
assert_locked_or_safepoint(CodeCache_lock);
365
366
// Find start of HeapBlock
367
HeapBlock* b = (((HeapBlock *)p) - 1);
368
assert(b->allocated_space() == p, "sanity check");
369
guarantee((char*) b >= _memory.low_boundary() && (char*) b < _memory.high(),
370
"The block to be deallocated " INTPTR_FORMAT " is not within the heap "
371
"starting with " INTPTR_FORMAT " and ending with " INTPTR_FORMAT,
372
p2i(b), p2i(_memory.low_boundary()), p2i(_memory.high()));
373
add_to_freelist(b);
374
NOT_PRODUCT(verify());
375
}
376
377
/**
378
* The segment map is used to quickly find the the start (header) of a
379
* code block (e.g. nmethod) when only a pointer to a location inside the
380
* code block is known. This works as follows:
381
* - The storage reserved for the code heap is divided into 'segments'.
382
* - The size of a segment is determined by -XX:CodeCacheSegmentSize=<#bytes>.
383
* - The size must be a power of two to allow the use of shift operations
384
* to quickly convert between segment index and segment address.
385
* - Segment start addresses should be aligned to be multiples of CodeCacheSegmentSize.
386
* - It seems beneficial for CodeCacheSegmentSize to be equal to os::page_size().
387
* - Allocation in the code cache can only happen at segment start addresses.
388
* - Allocation in the code cache is in units of CodeCacheSegmentSize.
389
* - A pointer in the code cache can be mapped to a segment by calling
390
* segment_for(addr).
391
* - The segment map is a byte array where array element [i] is related
392
* to the i-th segment in the code heap.
393
* - Each time memory is allocated/deallocated from the code cache,
394
* the segment map is updated accordingly.
395
* Note: deallocation does not cause the memory to become "free", as
396
* indicated by the segment map state "free_sentinel". Deallocation
397
* just changes the block state from "used" to "free".
398
* - Elements of the segment map (byte) array are interpreted
399
* as unsigned integer.
400
* - Element values normally identify an offset backwards (in segment
401
* size units) from the associated segment towards the start of
402
* the block.
403
* - Some values have a special meaning:
404
* 0 - This segment is the start of a block (HeapBlock or FreeBlock).
405
* 255 - The free_sentinel value. This is a free segment, i.e. it is
406
* not yet allocated and thus does not belong to any block.
407
* - The value of the current element has to be subtracted from the
408
* current index to get closer to the start.
409
* - If the value of the then current element is zero, the block start
410
* segment is found and iteration stops. Otherwise, start over with the
411
* previous step.
412
*
413
* The following example illustrates a possible state of code cache
414
* and the segment map: (seg -> segment, nm ->nmethod)
415
*
416
* code cache segmap
417
* ----------- ---------
418
* seg 1 | nm 1 | -> | 0 |
419
* seg 2 | nm 1 | -> | 1 |
420
* ... | nm 1 | -> | .. |
421
* seg m-1 | nm 1 | -> | m-1 |
422
* seg m | nm 2 | -> | 0 |
423
* seg m+1 | nm 2 | -> | 1 |
424
* ... | nm 2 | -> | 2 |
425
* ... | nm 2 | -> | .. |
426
* ... | nm 2 | -> | 0xFE | (free_sentinel-1)
427
* ... | nm 2 | -> | 1 |
428
* seg m+n | nm 2 | -> | 2 |
429
* ... | nm 2 | -> | |
430
*
431
* How to read:
432
* A value of '0' in the segmap indicates that this segment contains the
433
* beginning of a CodeHeap block. Let's walk through a simple example:
434
*
435
* We want to find the start of the block that contains nm 1, and we are
436
* given a pointer that points into segment m-2. We then read the value
437
* of segmap[m-2]. The value is an offset that points to the segment
438
* which contains the start of the block.
439
*
440
* Another example: We want to locate the start of nm 2, and we happen to
441
* get a pointer that points into seg m+n. We first read seg[n+m], which
442
* returns '2'. So we have to update our segment map index (ix -= segmap[n+m])
443
* and start over.
444
*/
445
446
// Find block which contains the passed pointer,
447
// regardless of the block being used or free.
448
// NULL is returned if anything invalid is detected.
449
void* CodeHeap::find_block_for(void* p) const {
450
// Check the pointer to be in committed range.
451
if (!contains(p)) {
452
return NULL;
453
}
454
455
address seg_map = (address)_segmap.low();
456
size_t seg_idx = segment_for(p);
457
458
// This may happen in special cases. Just ignore.
459
// Example: PPC ICache stub generation.
460
if (is_segment_unused(seg_map[seg_idx])) {
461
return NULL;
462
}
463
464
// Iterate the segment map chain to find the start of the block.
465
while (seg_map[seg_idx] > 0) {
466
// Don't check each segment index to refer to a used segment.
467
// This method is called extremely often. Therefore, any checking
468
// has a significant impact on performance. Rely on CodeHeap::verify()
469
// to do the job on request.
470
seg_idx -= (int)seg_map[seg_idx];
471
}
472
473
return address_for(seg_idx);
474
}
475
476
// Find block which contains the passed pointer.
477
// The block must be used, i.e. must not be a FreeBlock.
478
// Return a pointer that points past the block header.
479
void* CodeHeap::find_start(void* p) const {
480
HeapBlock* h = (HeapBlock*)find_block_for(p);
481
return ((h == NULL) || h->free()) ? NULL : h->allocated_space();
482
}
483
484
// Find block which contains the passed pointer.
485
// Same as find_start(p), but with additional safety net.
486
CodeBlob* CodeHeap::find_blob_unsafe(void* start) const {
487
CodeBlob* result = (CodeBlob*)CodeHeap::find_start(start);
488
return (result != NULL && result->blob_contains((address)start)) ? result : NULL;
489
}
490
491
size_t CodeHeap::alignment_unit() const {
492
// this will be a power of two
493
return _segment_size;
494
}
495
496
497
size_t CodeHeap::alignment_offset() const {
498
// The lowest address in any allocated block will be
499
// equal to alignment_offset (mod alignment_unit).
500
return sizeof(HeapBlock) & (_segment_size - 1);
501
}
502
503
// Returns the current block if available and used.
504
// If not, it returns the subsequent block (if available), NULL otherwise.
505
// Free blocks are merged, therefore there is at most one free block
506
// between two used ones. As a result, the subsequent block (if available) is
507
// guaranteed to be used.
508
// The returned pointer points past the block header.
509
void* CodeHeap::next_used(HeapBlock* b) const {
510
if (b != NULL && b->free()) b = next_block(b);
511
assert(b == NULL || !b->free(), "must be in use or at end of heap");
512
return (b == NULL) ? NULL : b->allocated_space();
513
}
514
515
// Returns the first used HeapBlock
516
// The returned pointer points to the block header.
517
HeapBlock* CodeHeap::first_block() const {
518
if (_next_segment > 0)
519
return block_at(0);
520
return NULL;
521
}
522
523
// The returned pointer points to the block header.
524
HeapBlock* CodeHeap::block_start(void* q) const {
525
HeapBlock* b = (HeapBlock*)find_start(q);
526
if (b == NULL) return NULL;
527
return b - 1;
528
}
529
530
// Returns the next Heap block.
531
// The returned pointer points to the block header.
532
HeapBlock* CodeHeap::next_block(HeapBlock *b) const {
533
if (b == NULL) return NULL;
534
size_t i = segment_for(b) + b->length();
535
if (i < _next_segment)
536
return block_at(i);
537
return NULL;
538
}
539
540
541
// Returns current capacity
542
size_t CodeHeap::capacity() const {
543
return _memory.committed_size();
544
}
545
546
size_t CodeHeap::max_capacity() const {
547
return _memory.reserved_size();
548
}
549
550
int CodeHeap::allocated_segments() const {
551
return (int)_next_segment;
552
}
553
554
size_t CodeHeap::allocated_capacity() const {
555
// size of used heap - size on freelist
556
return segments_to_size(_next_segment - _freelist_segments);
557
}
558
559
// Returns size of the unallocated heap block
560
size_t CodeHeap::heap_unallocated_capacity() const {
561
// Total number of segments - number currently used
562
return segments_to_size(_number_of_reserved_segments - _next_segment);
563
}
564
565
// Free list management
566
567
FreeBlock* CodeHeap::following_block(FreeBlock *b) {
568
return (FreeBlock*)(((address)b) + _segment_size * b->length());
569
}
570
571
// Inserts block b after a
572
void CodeHeap::insert_after(FreeBlock* a, FreeBlock* b) {
573
assert(a != NULL && b != NULL, "must be real pointers");
574
575
// Link b into the list after a
576
b->set_link(a->link());
577
a->set_link(b);
578
579
// See if we can merge blocks
580
merge_right(b); // Try to make b bigger
581
merge_right(a); // Try to make a include b
582
}
583
584
// Try to merge this block with the following block
585
bool CodeHeap::merge_right(FreeBlock* a) {
586
assert(a->free(), "must be a free block");
587
if (following_block(a) == a->link()) {
588
assert(a->link() != NULL && a->link()->free(), "must be free too");
589
590
// Remember linked (following) block. invalidate should only zap header of this block.
591
size_t follower = segment_for(a->link());
592
// Merge block a to include the following block.
593
a->set_length(a->length() + a->link()->length());
594
a->set_link(a->link()->link());
595
596
// Update the segment map and invalidate block contents.
597
mark_segmap_as_used(follower, segment_for(a) + a->length(), true);
598
// Block contents has already been invalidated by add_to_freelist.
599
// What's left is the header of the following block which now is
600
// in the middle of the merged block. Just zap one segment.
601
invalidate(follower, follower + 1, 0);
602
603
_freelist_length--;
604
return true;
605
}
606
return false;
607
}
608
609
610
void CodeHeap::add_to_freelist(HeapBlock* a) {
611
FreeBlock* b = (FreeBlock*)a;
612
size_t bseg = segment_for(b);
613
_freelist_length++;
614
615
_blob_count--;
616
assert(_blob_count >= 0, "sanity");
617
618
assert(b != _freelist, "cannot be removed twice");
619
620
// Mark as free and update free space count
621
_freelist_segments += b->length();
622
b->set_free();
623
invalidate(bseg, bseg + b->length(), sizeof(FreeBlock));
624
625
// First element in list?
626
if (_freelist == NULL) {
627
b->set_link(NULL);
628
_freelist = b;
629
return;
630
}
631
632
// Since the freelist is ordered (smaller addresses -> larger addresses) and the
633
// element we want to insert into the freelist has a smaller address than the first
634
// element, we can simply add 'b' as the first element and we are done.
635
if (b < _freelist) {
636
// Insert first in list
637
b->set_link(_freelist);
638
_freelist = b;
639
merge_right(_freelist);
640
return;
641
}
642
643
// Scan for right place to put into list.
644
// List is sorted by increasing addresses.
645
FreeBlock* prev = _freelist;
646
FreeBlock* cur = _freelist->link();
647
if ((_freelist_length > freelist_limit) && (_last_insert_point != NULL)) {
648
_last_insert_point = (FreeBlock*)find_block_for(_last_insert_point);
649
if ((_last_insert_point != NULL) && _last_insert_point->free() && (_last_insert_point < b)) {
650
prev = _last_insert_point;
651
cur = prev->link();
652
}
653
}
654
while(cur != NULL && cur < b) {
655
assert(prev < cur, "Freelist must be ordered");
656
prev = cur;
657
cur = cur->link();
658
}
659
assert((prev < b) && (cur == NULL || b < cur), "free-list must be ordered");
660
insert_after(prev, b);
661
_last_insert_point = prev;
662
}
663
664
/**
665
* Search freelist for an entry on the list with the best fit.
666
* @return NULL, if no one was found
667
*/
668
HeapBlock* CodeHeap::search_freelist(size_t length) {
669
FreeBlock* found_block = NULL;
670
FreeBlock* found_prev = NULL;
671
size_t found_length = _next_segment; // max it out to begin with
672
673
HeapBlock* res = NULL;
674
FreeBlock* prev = NULL;
675
FreeBlock* cur = _freelist;
676
677
length = length < CodeCacheMinBlockLength ? CodeCacheMinBlockLength : length;
678
679
// Search for best-fitting block
680
while(cur != NULL) {
681
size_t cur_length = cur->length();
682
if (cur_length == length) {
683
// We have a perfect fit
684
found_block = cur;
685
found_prev = prev;
686
found_length = cur_length;
687
break;
688
} else if ((cur_length > length) && (cur_length < found_length)) {
689
// This is a new, closer fit. Remember block, its previous element, and its length
690
found_block = cur;
691
found_prev = prev;
692
found_length = cur_length;
693
}
694
// Next element in list
695
prev = cur;
696
cur = cur->link();
697
}
698
699
if (found_block == NULL) {
700
// None found
701
return NULL;
702
}
703
704
// Exact (or at least good enough) fit. Remove from list.
705
// Don't leave anything on the freelist smaller than CodeCacheMinBlockLength.
706
if (found_length - length < CodeCacheMinBlockLength) {
707
_freelist_length--;
708
length = found_length;
709
if (found_prev == NULL) {
710
assert(_freelist == found_block, "sanity check");
711
_freelist = _freelist->link();
712
} else {
713
assert((found_prev->link() == found_block), "sanity check");
714
// Unmap element
715
found_prev->set_link(found_block->link());
716
}
717
res = (HeapBlock*)found_block;
718
// sizeof(HeapBlock) < sizeof(FreeBlock).
719
// Invalidate the additional space that FreeBlock occupies.
720
// The rest of the block should already be invalidated.
721
// This is necessary due to a dubious assert in nmethod.cpp(PcDescCache::reset_to()).
722
// Can't use invalidate() here because it works on segment_size units (too coarse).
723
DEBUG_ONLY(memset((void*)res->allocated_space(), badCodeHeapNewVal, sizeof(FreeBlock) - sizeof(HeapBlock)));
724
} else {
725
// Truncate the free block and return the truncated part
726
// as new HeapBlock. The remaining free block does not
727
// need to be updated, except for it's length. Truncating
728
// the segment map does not invalidate the leading part.
729
res = split_block(found_block, found_length - length);
730
}
731
732
res->set_used();
733
_freelist_segments -= length;
734
return res;
735
}
736
737
int CodeHeap::defrag_segmap(bool do_defrag) {
738
int extra_hops_used = 0;
739
int extra_hops_free = 0;
740
int blocks_used = 0;
741
int blocks_free = 0;
742
for(HeapBlock* h = first_block(); h != NULL; h = next_block(h)) {
743
size_t beg = segment_for(h);
744
size_t end = segment_for(h) + h->length();
745
int extra_hops = segmap_hops(beg, end);
746
if (h->free()) {
747
extra_hops_free += extra_hops;
748
blocks_free++;
749
} else {
750
extra_hops_used += extra_hops;
751
blocks_used++;
752
}
753
if (do_defrag && (extra_hops > 0)) {
754
mark_segmap_as_used(beg, end, false);
755
}
756
}
757
return extra_hops_used + extra_hops_free;
758
}
759
760
// Count the hops required to get from the last segment of a
761
// heap block to the block header segment. For the optimal case,
762
// #hops = ((#segments-1)+(free_sentinel-2))/(free_sentinel-1)
763
// The range of segments to be checked is given by [beg..end).
764
// Return the number of extra hops required. There may be extra hops
765
// due to the is_FreeBlock_join optimization in mark_segmap_as_used().
766
int CodeHeap::segmap_hops(size_t beg, size_t end) {
767
if (beg < end) {
768
// setup _segmap pointers for faster indexing
769
address p = (address)_segmap.low() + beg;
770
int hops_expected
771
= checked_cast<int>(((end-beg-1)+(free_sentinel-2))/(free_sentinel-1));
772
int nhops = 0;
773
size_t ix = end-beg-1;
774
while (p[ix] > 0) {
775
ix -= p[ix];
776
nhops++;
777
}
778
return (nhops > hops_expected) ? nhops - hops_expected : 0;
779
}
780
return 0;
781
}
782
783
//----------------------------------------------------------------------------
784
// Non-product code
785
786
#ifndef PRODUCT
787
788
void CodeHeap::print() {
789
tty->print_cr("The Heap");
790
}
791
792
void CodeHeap::verify() {
793
if (VerifyCodeCache) {
794
assert_locked_or_safepoint(CodeCache_lock);
795
size_t len = 0;
796
int count = 0;
797
for(FreeBlock* b = _freelist; b != NULL; b = b->link()) {
798
len += b->length();
799
count++;
800
// Check if we have merged all free blocks
801
assert(merge_right(b) == false, "Missed merging opportunity");
802
}
803
// Verify that freelist contains the right amount of free space
804
assert(len == _freelist_segments, "wrong freelist");
805
806
for(HeapBlock* h = first_block(); h != NULL; h = next_block(h)) {
807
if (h->free()) count--;
808
}
809
// Verify that the freelist contains the same number of blocks
810
// than free blocks found on the full list.
811
assert(count == 0, "missing free blocks");
812
813
//---< all free block memory must have been invalidated >---
814
for(FreeBlock* b = _freelist; b != NULL; b = b->link()) {
815
for (char* c = (char*)b + sizeof(FreeBlock); c < (char*)b + segments_to_size(b->length()); c++) {
816
assert(*c == (char)badCodeHeapNewVal, "FreeBlock@" PTR_FORMAT "(" PTR_FORMAT ") not invalidated @byte %d", p2i(b), b->length(), (int)(c - (char*)b));
817
}
818
}
819
820
address seg_map = (address)_segmap.low();
821
size_t nseg = 0;
822
int extra_hops = 0;
823
count = 0;
824
for(HeapBlock* b = first_block(); b != NULL; b = next_block(b)) {
825
size_t seg1 = segment_for(b);
826
size_t segn = seg1 + b->length();
827
extra_hops += segmap_hops(seg1, segn);
828
count++;
829
for (size_t i = seg1; i < segn; i++) {
830
nseg++;
831
//---< Verify segment map marking >---
832
// All allocated segments, no matter if in a free or used block,
833
// must be marked "in use".
834
assert(!is_segment_unused(seg_map[i]), "CodeHeap: unused segment. seg_map[%d]([%d..%d]) = %d, %s block", (int)i, (int)seg1, (int)segn, seg_map[i], b->free()? "free":"used");
835
assert((unsigned char)seg_map[i] < free_sentinel, "CodeHeap: seg_map[%d]([%d..%d]) = %d (out of range)", (int)i, (int)seg1, (int)segn, seg_map[i]);
836
}
837
}
838
assert(nseg == _next_segment, "CodeHeap: segment count mismatch. found %d, expected %d.", (int)nseg, (int)_next_segment);
839
assert(extra_hops <= _fragmentation_count, "CodeHeap: extra hops wrong. fragmentation: %d, extra hops: %d.", _fragmentation_count, extra_hops);
840
if (extra_hops >= (16 + 2 * count)) {
841
warning("CodeHeap: many extra hops due to optimization. blocks: %d, extra hops: %d.", count, extra_hops);
842
}
843
844
// Verify that the number of free blocks is not out of hand.
845
static int free_block_threshold = 10000;
846
if (count > free_block_threshold) {
847
warning("CodeHeap: # of free blocks > %d", free_block_threshold);
848
// Double the warning limit
849
free_block_threshold *= 2;
850
}
851
}
852
}
853
854
#endif
855
856