Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/opto/block.cpp
40930 views
1
/*
2
* Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "libadt/vectset.hpp"
27
#include "memory/allocation.inline.hpp"
28
#include "memory/resourceArea.hpp"
29
#include "compiler/compilerDirectives.hpp"
30
#include "opto/block.hpp"
31
#include "opto/cfgnode.hpp"
32
#include "opto/chaitin.hpp"
33
#include "opto/loopnode.hpp"
34
#include "opto/machnode.hpp"
35
#include "opto/matcher.hpp"
36
#include "opto/opcodes.hpp"
37
#include "opto/rootnode.hpp"
38
#include "utilities/copy.hpp"
39
#include "utilities/powerOfTwo.hpp"
40
41
void Block_Array::grow( uint i ) {
42
assert(i >= Max(), "must be an overflow");
43
debug_only(_limit = i+1);
44
if( i < _size ) return;
45
if( !_size ) {
46
_size = 1;
47
_blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
48
_blocks[0] = NULL;
49
}
50
uint old = _size;
51
_size = next_power_of_2(i);
52
_blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
53
Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
54
}
55
56
void Block_List::remove(uint i) {
57
assert(i < _cnt, "index out of bounds");
58
Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
59
pop(); // shrink list by one block
60
}
61
62
void Block_List::insert(uint i, Block *b) {
63
push(b); // grow list by one block
64
Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
65
_blocks[i] = b;
66
}
67
68
#ifndef PRODUCT
69
void Block_List::print() {
70
for (uint i=0; i < size(); i++) {
71
tty->print("B%d ", _blocks[i]->_pre_order);
72
}
73
tty->print("size = %d\n", size());
74
}
75
#endif
76
77
uint Block::code_alignment() const {
78
// Check for Root block
79
if (_pre_order == 0) return CodeEntryAlignment;
80
// Check for Start block
81
if (_pre_order == 1) return InteriorEntryAlignment;
82
// Check for loop alignment
83
if (has_loop_alignment()) return loop_alignment();
84
85
return relocInfo::addr_unit(); // no particular alignment
86
}
87
88
uint Block::compute_loop_alignment() {
89
Node *h = head();
90
int unit_sz = relocInfo::addr_unit();
91
if (h->is_Loop() && h->as_Loop()->is_inner_loop()) {
92
// Pre- and post-loops have low trip count so do not bother with
93
// NOPs for align loop head. The constants are hidden from tuning
94
// but only because my "divide by 4" heuristic surely gets nearly
95
// all possible gain (a "do not align at all" heuristic has a
96
// chance of getting a really tiny gain).
97
if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
98
h->as_CountedLoop()->is_post_loop())) {
99
return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
100
}
101
// Loops with low backedge frequency should not be aligned.
102
Node *n = h->in(LoopNode::LoopBackControl)->in(0);
103
if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
104
return unit_sz; // Loop does not loop, more often than not!
105
}
106
return OptoLoopAlignment; // Otherwise align loop head
107
}
108
109
return unit_sz; // no particular alignment
110
}
111
112
// Compute the size of first 'inst_cnt' instructions in this block.
113
// Return the number of instructions left to compute if the block has
114
// less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
115
// exceeds OptoLoopAlignment.
116
uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
117
PhaseRegAlloc* ra) {
118
uint last_inst = number_of_nodes();
119
for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
120
uint inst_size = get_node(j)->size(ra);
121
if( inst_size > 0 ) {
122
inst_cnt--;
123
uint sz = sum_size + inst_size;
124
if( sz <= (uint)OptoLoopAlignment ) {
125
// Compute size of instructions which fit into fetch buffer only
126
// since all inst_cnt instructions will not fit even if we align them.
127
sum_size = sz;
128
} else {
129
return 0;
130
}
131
}
132
}
133
return inst_cnt;
134
}
135
136
uint Block::find_node( const Node *n ) const {
137
for( uint i = 0; i < number_of_nodes(); i++ ) {
138
if( get_node(i) == n )
139
return i;
140
}
141
ShouldNotReachHere();
142
return 0;
143
}
144
145
// Find and remove n from block list
146
void Block::find_remove( const Node *n ) {
147
remove_node(find_node(n));
148
}
149
150
bool Block::contains(const Node *n) const {
151
return _nodes.contains(n);
152
}
153
154
// Return empty status of a block. Empty blocks contain only the head, other
155
// ideal nodes, and an optional trailing goto.
156
int Block::is_Empty() const {
157
158
// Root or start block is not considered empty
159
if (head()->is_Root() || head()->is_Start()) {
160
return not_empty;
161
}
162
163
int success_result = completely_empty;
164
int end_idx = number_of_nodes() - 1;
165
166
// Check for ending goto
167
if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
168
success_result = empty_with_goto;
169
end_idx--;
170
}
171
172
// Unreachable blocks are considered empty
173
if (num_preds() <= 1) {
174
return success_result;
175
}
176
177
// Ideal nodes are allowable in empty blocks: skip them Only MachNodes
178
// turn directly into code, because only MachNodes have non-trivial
179
// emit() functions.
180
while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
181
end_idx--;
182
}
183
184
// No room for any interesting instructions?
185
if (end_idx == 0) {
186
return success_result;
187
}
188
189
return not_empty;
190
}
191
192
// Return true if the block's code implies that it is likely to be
193
// executed infrequently. Check to see if the block ends in a Halt or
194
// a low probability call.
195
bool Block::has_uncommon_code() const {
196
Node* en = end();
197
198
if (en->is_MachGoto())
199
en = en->in(0);
200
if (en->is_Catch())
201
en = en->in(0);
202
if (en->is_MachProj() && en->in(0)->is_MachCall()) {
203
MachCallNode* call = en->in(0)->as_MachCall();
204
if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
205
// This is true for slow-path stubs like new_{instance,array},
206
// slow_arraycopy, complete_monitor_locking, uncommon_trap.
207
// The magic number corresponds to the probability of an uncommon_trap,
208
// even though it is a count not a probability.
209
return true;
210
}
211
}
212
213
int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
214
return op == Op_Halt;
215
}
216
217
// True if block is low enough frequency or guarded by a test which
218
// mostly does not go here.
219
bool PhaseCFG::is_uncommon(const Block* block) {
220
// Initial blocks must never be moved, so are never uncommon.
221
if (block->head()->is_Root() || block->head()->is_Start()) return false;
222
223
// Check for way-low freq
224
if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
225
226
// Look for code shape indicating uncommon_trap or slow path
227
if (block->has_uncommon_code()) return true;
228
229
const float epsilon = 0.05f;
230
const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
231
uint uncommon_preds = 0;
232
uint freq_preds = 0;
233
uint uncommon_for_freq_preds = 0;
234
235
for( uint i=1; i< block->num_preds(); i++ ) {
236
Block* guard = get_block_for_node(block->pred(i));
237
// Check to see if this block follows its guard 1 time out of 10000
238
// or less.
239
//
240
// See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
241
// we intend to be "uncommon", such as slow-path TLE allocation,
242
// predicted call failure, and uncommon trap triggers.
243
//
244
// Use an epsilon value of 5% to allow for variability in frequency
245
// predictions and floating point calculations. The net effect is
246
// that guard_factor is set to 9500.
247
//
248
// Ignore low-frequency blocks.
249
// The next check is (guard->_freq < 1.e-5 * 9500.).
250
if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
251
uncommon_preds++;
252
} else {
253
freq_preds++;
254
if(block->_freq < guard->_freq * guard_factor ) {
255
uncommon_for_freq_preds++;
256
}
257
}
258
}
259
if( block->num_preds() > 1 &&
260
// The block is uncommon if all preds are uncommon or
261
(uncommon_preds == (block->num_preds()-1) ||
262
// it is uncommon for all frequent preds.
263
uncommon_for_freq_preds == freq_preds) ) {
264
return true;
265
}
266
return false;
267
}
268
269
#ifndef PRODUCT
270
void Block::dump_bidx(const Block* orig, outputStream* st) const {
271
if (_pre_order) st->print("B%d", _pre_order);
272
else st->print("N%d", head()->_idx);
273
274
if (Verbose && orig != this) {
275
// Dump the original block's idx
276
st->print(" (");
277
orig->dump_bidx(orig, st);
278
st->print(")");
279
}
280
}
281
282
void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
283
if (is_connector()) {
284
for (uint i=1; i<num_preds(); i++) {
285
Block *p = cfg->get_block_for_node(pred(i));
286
p->dump_pred(cfg, orig, st);
287
}
288
} else {
289
dump_bidx(orig, st);
290
st->print(" ");
291
}
292
}
293
294
void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
295
// Print the basic block.
296
dump_bidx(this, st);
297
st->print(": ");
298
299
// Print the outgoing CFG edges.
300
st->print("#\tout( ");
301
for( uint i=0; i<_num_succs; i++ ) {
302
non_connector_successor(i)->dump_bidx(_succs[i], st);
303
st->print(" ");
304
}
305
306
// Print the incoming CFG edges.
307
st->print(") <- ");
308
if( head()->is_block_start() ) {
309
st->print("in( ");
310
for (uint i=1; i<num_preds(); i++) {
311
Node *s = pred(i);
312
if (cfg != NULL) {
313
Block *p = cfg->get_block_for_node(s);
314
p->dump_pred(cfg, p, st);
315
} else {
316
while (!s->is_block_start()) {
317
s = s->in(0);
318
}
319
st->print("N%d ", s->_idx );
320
}
321
}
322
st->print(") ");
323
} else {
324
st->print("BLOCK HEAD IS JUNK ");
325
}
326
327
// Print loop, if any
328
const Block *bhead = this; // Head of self-loop
329
Node *bh = bhead->head();
330
331
if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
332
LoopNode *loop = bh->as_Loop();
333
const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
334
while (bx->is_connector()) {
335
bx = cfg->get_block_for_node(bx->pred(1));
336
}
337
st->print("Loop( B%d-B%d ", bhead->_pre_order, bx->_pre_order);
338
// Dump any loop-specific bits, especially for CountedLoops.
339
loop->dump_spec(st);
340
st->print(")");
341
} else if (has_loop_alignment()) {
342
st->print("top-of-loop");
343
}
344
345
// Print frequency and other optimization-relevant information
346
st->print(" Freq: %g",_freq);
347
if( Verbose || WizardMode ) {
348
st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
349
st->print(" RegPressure: %d",_reg_pressure);
350
st->print(" IHRP Index: %d",_ihrp_index);
351
st->print(" FRegPressure: %d",_freg_pressure);
352
st->print(" FHRP Index: %d",_fhrp_index);
353
}
354
st->cr();
355
}
356
357
void Block::dump() const {
358
dump(NULL);
359
}
360
361
void Block::dump(const PhaseCFG* cfg) const {
362
dump_head(cfg);
363
for (uint i=0; i< number_of_nodes(); i++) {
364
get_node(i)->dump();
365
}
366
tty->print("\n");
367
}
368
#endif
369
370
PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
371
: Phase(CFG)
372
, _root(root)
373
, _block_arena(arena)
374
, _regalloc(NULL)
375
, _scheduling_for_pressure(false)
376
, _matcher(matcher)
377
, _node_to_block_mapping(arena)
378
, _node_latency(NULL)
379
#ifndef PRODUCT
380
, _trace_opto_pipelining(C->directive()->TraceOptoPipeliningOption)
381
#endif
382
#ifdef ASSERT
383
, _raw_oops(arena)
384
#endif
385
{
386
ResourceMark rm;
387
// I'll need a few machine-specific GotoNodes. Make an Ideal GotoNode,
388
// then Match it into a machine-specific Node. Then clone the machine
389
// Node on demand.
390
Node *x = new GotoNode(NULL);
391
x->init_req(0, x);
392
_goto = matcher.match_tree(x);
393
assert(_goto != NULL, "");
394
_goto->set_req(0,_goto);
395
396
// Build the CFG in Reverse Post Order
397
_number_of_blocks = build_cfg();
398
_root_block = get_block_for_node(_root);
399
}
400
401
// Build a proper looking CFG. Make every block begin with either a StartNode
402
// or a RegionNode. Make every block end with either a Goto, If or Return.
403
// The RootNode both starts and ends it's own block. Do this with a recursive
404
// backwards walk over the control edges.
405
uint PhaseCFG::build_cfg() {
406
VectorSet visited;
407
408
// Allocate stack with enough space to avoid frequent realloc
409
Node_Stack nstack(C->live_nodes() >> 1);
410
nstack.push(_root, 0);
411
uint sum = 0; // Counter for blocks
412
413
while (nstack.is_nonempty()) {
414
// node and in's index from stack's top
415
// 'np' is _root (see above) or RegionNode, StartNode: we push on stack
416
// only nodes which point to the start of basic block (see below).
417
Node *np = nstack.node();
418
// idx > 0, except for the first node (_root) pushed on stack
419
// at the beginning when idx == 0.
420
// We will use the condition (idx == 0) later to end the build.
421
uint idx = nstack.index();
422
Node *proj = np->in(idx);
423
const Node *x = proj->is_block_proj();
424
// Does the block end with a proper block-ending Node? One of Return,
425
// If or Goto? (This check should be done for visited nodes also).
426
if (x == NULL) { // Does not end right...
427
Node *g = _goto->clone(); // Force it to end in a Goto
428
g->set_req(0, proj);
429
np->set_req(idx, g);
430
x = proj = g;
431
}
432
if (!visited.test_set(x->_idx)) { // Visit this block once
433
// Skip any control-pinned middle'in stuff
434
Node *p = proj;
435
do {
436
proj = p; // Update pointer to last Control
437
p = p->in(0); // Move control forward
438
} while( !p->is_block_proj() &&
439
!p->is_block_start() );
440
// Make the block begin with one of Region or StartNode.
441
if( !p->is_block_start() ) {
442
RegionNode *r = new RegionNode( 2 );
443
r->init_req(1, p); // Insert RegionNode in the way
444
proj->set_req(0, r); // Insert RegionNode in the way
445
p = r;
446
}
447
// 'p' now points to the start of this basic block
448
449
// Put self in array of basic blocks
450
Block *bb = new (_block_arena) Block(_block_arena, p);
451
map_node_to_block(p, bb);
452
map_node_to_block(x, bb);
453
if( x != p ) { // Only for root is x == p
454
bb->push_node((Node*)x);
455
}
456
// Now handle predecessors
457
++sum; // Count 1 for self block
458
uint cnt = bb->num_preds();
459
for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
460
Node *prevproj = p->in(i); // Get prior input
461
assert( !prevproj->is_Con(), "dead input not removed" );
462
// Check to see if p->in(i) is a "control-dependent" CFG edge -
463
// i.e., it splits at the source (via an IF or SWITCH) and merges
464
// at the destination (via a many-input Region).
465
// This breaks critical edges. The RegionNode to start the block
466
// will be added when <p,i> is pulled off the node stack
467
if ( cnt > 2 ) { // Merging many things?
468
assert( prevproj== bb->pred(i),"");
469
if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
470
// Force a block on the control-dependent edge
471
Node *g = _goto->clone(); // Force it to end in a Goto
472
g->set_req(0,prevproj);
473
p->set_req(i,g);
474
}
475
}
476
nstack.push(p, i); // 'p' is RegionNode or StartNode
477
}
478
} else { // Post-processing visited nodes
479
nstack.pop(); // remove node from stack
480
// Check if it the fist node pushed on stack at the beginning.
481
if (idx == 0) break; // end of the build
482
// Find predecessor basic block
483
Block *pb = get_block_for_node(x);
484
// Insert into nodes array, if not already there
485
if (!has_block(proj)) {
486
assert( x != proj, "" );
487
// Map basic block of projection
488
map_node_to_block(proj, pb);
489
pb->push_node(proj);
490
}
491
// Insert self as a child of my predecessor block
492
pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
493
assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
494
"too many control users, not a CFG?" );
495
}
496
}
497
// Return number of basic blocks for all children and self
498
return sum;
499
}
500
501
// Inserts a goto & corresponding basic block between
502
// block[block_no] and its succ_no'th successor block
503
void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
504
// get block with block_no
505
assert(block_no < number_of_blocks(), "illegal block number");
506
Block* in = get_block(block_no);
507
// get successor block succ_no
508
assert(succ_no < in->_num_succs, "illegal successor number");
509
Block* out = in->_succs[succ_no];
510
// Compute frequency of the new block. Do this before inserting
511
// new block in case succ_prob() needs to infer the probability from
512
// surrounding blocks.
513
float freq = in->_freq * in->succ_prob(succ_no);
514
// get ProjNode corresponding to the succ_no'th successor of the in block
515
ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
516
// create region for basic block
517
RegionNode* region = new RegionNode(2);
518
region->init_req(1, proj);
519
// setup corresponding basic block
520
Block* block = new (_block_arena) Block(_block_arena, region);
521
map_node_to_block(region, block);
522
C->regalloc()->set_bad(region->_idx);
523
// add a goto node
524
Node* gto = _goto->clone(); // get a new goto node
525
gto->set_req(0, region);
526
// add it to the basic block
527
block->push_node(gto);
528
map_node_to_block(gto, block);
529
C->regalloc()->set_bad(gto->_idx);
530
// hook up successor block
531
block->_succs.map(block->_num_succs++, out);
532
// remap successor's predecessors if necessary
533
for (uint i = 1; i < out->num_preds(); i++) {
534
if (out->pred(i) == proj) out->head()->set_req(i, gto);
535
}
536
// remap predecessor's successor to new block
537
in->_succs.map(succ_no, block);
538
// Set the frequency of the new block
539
block->_freq = freq;
540
// add new basic block to basic block list
541
add_block_at(block_no + 1, block);
542
}
543
544
// Does this block end in a multiway branch that cannot have the default case
545
// flipped for another case?
546
static bool no_flip_branch(Block *b) {
547
int branch_idx = b->number_of_nodes() - b->_num_succs-1;
548
if (branch_idx < 1) {
549
return false;
550
}
551
Node *branch = b->get_node(branch_idx);
552
if (branch->is_Catch()) {
553
return true;
554
}
555
if (branch->is_Mach()) {
556
if (branch->is_MachNullCheck()) {
557
return true;
558
}
559
int iop = branch->as_Mach()->ideal_Opcode();
560
if (iop == Op_FastLock || iop == Op_FastUnlock) {
561
return true;
562
}
563
// Don't flip if branch has an implicit check.
564
if (branch->as_Mach()->is_TrapBasedCheckNode()) {
565
return true;
566
}
567
}
568
return false;
569
}
570
571
// Check for NeverBranch at block end. This needs to become a GOTO to the
572
// true target. NeverBranch are treated as a conditional branch that always
573
// goes the same direction for most of the optimizer and are used to give a
574
// fake exit path to infinite loops. At this late stage they need to turn
575
// into Goto's so that when you enter the infinite loop you indeed hang.
576
void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
577
// Find true target
578
int end_idx = b->end_idx();
579
int idx = b->get_node(end_idx+1)->as_Proj()->_con;
580
Block *succ = b->_succs[idx];
581
Node* gto = _goto->clone(); // get a new goto node
582
gto->set_req(0, b->head());
583
Node *bp = b->get_node(end_idx);
584
b->map_node(gto, end_idx); // Slam over NeverBranch
585
map_node_to_block(gto, b);
586
C->regalloc()->set_bad(gto->_idx);
587
b->pop_node(); // Yank projections
588
b->pop_node(); // Yank projections
589
b->_succs.map(0,succ); // Map only successor
590
b->_num_succs = 1;
591
// remap successor's predecessors if necessary
592
uint j;
593
for( j = 1; j < succ->num_preds(); j++)
594
if( succ->pred(j)->in(0) == bp )
595
succ->head()->set_req(j, gto);
596
// Kill alternate exit path
597
Block *dead = b->_succs[1-idx];
598
for( j = 1; j < dead->num_preds(); j++)
599
if( dead->pred(j)->in(0) == bp )
600
break;
601
// Scan through block, yanking dead path from
602
// all regions and phis.
603
dead->head()->del_req(j);
604
for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
605
dead->get_node(k)->del_req(j);
606
}
607
608
// Helper function to move block bx to the slot following b_index. Return
609
// true if the move is successful, otherwise false
610
bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
611
if (bx == NULL) return false;
612
613
// Return false if bx is already scheduled.
614
uint bx_index = bx->_pre_order;
615
if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
616
return false;
617
}
618
619
// Find the current index of block bx on the block list
620
bx_index = b_index + 1;
621
while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
622
bx_index++;
623
}
624
assert(get_block(bx_index) == bx, "block not found");
625
626
// If the previous block conditionally falls into bx, return false,
627
// because moving bx will create an extra jump.
628
for(uint k = 1; k < bx->num_preds(); k++ ) {
629
Block* pred = get_block_for_node(bx->pred(k));
630
if (pred == get_block(bx_index - 1)) {
631
if (pred->_num_succs != 1) {
632
return false;
633
}
634
}
635
}
636
637
// Reinsert bx just past block 'b'
638
_blocks.remove(bx_index);
639
_blocks.insert(b_index + 1, bx);
640
return true;
641
}
642
643
// Move empty and uncommon blocks to the end.
644
void PhaseCFG::move_to_end(Block *b, uint i) {
645
int e = b->is_Empty();
646
if (e != Block::not_empty) {
647
if (e == Block::empty_with_goto) {
648
// Remove the goto, but leave the block.
649
b->pop_node();
650
}
651
// Mark this block as a connector block, which will cause it to be
652
// ignored in certain functions such as non_connector_successor().
653
b->set_connector();
654
}
655
// Move the empty block to the end, and don't recheck.
656
_blocks.remove(i);
657
_blocks.push(b);
658
}
659
660
// Set loop alignment for every block
661
void PhaseCFG::set_loop_alignment() {
662
uint last = number_of_blocks();
663
assert(get_block(0) == get_root_block(), "");
664
665
for (uint i = 1; i < last; i++) {
666
Block* block = get_block(i);
667
if (block->head()->is_Loop()) {
668
block->set_loop_alignment(block);
669
}
670
}
671
}
672
673
// Make empty basic blocks to be "connector" blocks, Move uncommon blocks
674
// to the end.
675
void PhaseCFG::remove_empty_blocks() {
676
// Move uncommon blocks to the end
677
uint last = number_of_blocks();
678
assert(get_block(0) == get_root_block(), "");
679
680
for (uint i = 1; i < last; i++) {
681
Block* block = get_block(i);
682
if (block->is_connector()) {
683
break;
684
}
685
686
// Check for NeverBranch at block end. This needs to become a GOTO to the
687
// true target. NeverBranch are treated as a conditional branch that
688
// always goes the same direction for most of the optimizer and are used
689
// to give a fake exit path to infinite loops. At this late stage they
690
// need to turn into Goto's so that when you enter the infinite loop you
691
// indeed hang.
692
if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
693
convert_NeverBranch_to_Goto(block);
694
}
695
696
// Look for uncommon blocks and move to end.
697
if (!C->do_freq_based_layout()) {
698
if (is_uncommon(block)) {
699
move_to_end(block, i);
700
last--; // No longer check for being uncommon!
701
if (no_flip_branch(block)) { // Fall-thru case must follow?
702
// Find the fall-thru block
703
block = get_block(i);
704
move_to_end(block, i);
705
last--;
706
}
707
// backup block counter post-increment
708
i--;
709
}
710
}
711
}
712
713
// Move empty blocks to the end
714
last = number_of_blocks();
715
for (uint i = 1; i < last; i++) {
716
Block* block = get_block(i);
717
if (block->is_Empty() != Block::not_empty) {
718
move_to_end(block, i);
719
last--;
720
i--;
721
}
722
} // End of for all blocks
723
}
724
725
Block *PhaseCFG::fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext) {
726
// Trap based checks must fall through to the successor with
727
// PROB_ALWAYS.
728
// They should be an If with 2 successors.
729
assert(branch->is_MachIf(), "must be If");
730
assert(block->_num_succs == 2, "must have 2 successors");
731
732
// Get the If node and the projection for the first successor.
733
MachIfNode *iff = block->get_node(block->number_of_nodes()-3)->as_MachIf();
734
ProjNode *proj0 = block->get_node(block->number_of_nodes()-2)->as_Proj();
735
ProjNode *proj1 = block->get_node(block->number_of_nodes()-1)->as_Proj();
736
ProjNode *projt = (proj0->Opcode() == Op_IfTrue) ? proj0 : proj1;
737
ProjNode *projf = (proj0->Opcode() == Op_IfFalse) ? proj0 : proj1;
738
739
// Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
740
assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
741
assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
742
743
ProjNode *proj_always;
744
ProjNode *proj_never;
745
// We must negate the branch if the implicit check doesn't follow
746
// the branch's TRUE path. Then, the new TRUE branch target will
747
// be the old FALSE branch target.
748
if (iff->_prob <= 2*PROB_NEVER) { // There are small rounding errors.
749
proj_never = projt;
750
proj_always = projf;
751
} else {
752
// We must negate the branch if the trap doesn't follow the
753
// branch's TRUE path. Then, the new TRUE branch target will
754
// be the old FALSE branch target.
755
proj_never = projf;
756
proj_always = projt;
757
iff->negate();
758
}
759
assert(iff->_prob <= 2*PROB_NEVER, "Trap based checks are expected to trap never!");
760
// Map the successors properly
761
block->_succs.map(0, get_block_for_node(proj_never ->raw_out(0))); // The target of the trap.
762
block->_succs.map(1, get_block_for_node(proj_always->raw_out(0))); // The fall through target.
763
764
if (block->get_node(block->number_of_nodes() - block->_num_succs + 1) != proj_always) {
765
block->map_node(proj_never, block->number_of_nodes() - block->_num_succs + 0);
766
block->map_node(proj_always, block->number_of_nodes() - block->_num_succs + 1);
767
}
768
769
// Place the fall through block after this block.
770
Block *bs1 = block->non_connector_successor(1);
771
if (bs1 != bnext && move_to_next(bs1, block_pos)) {
772
bnext = bs1;
773
}
774
// If the fall through block still is not the next block, insert a goto.
775
if (bs1 != bnext) {
776
insert_goto_at(block_pos, 1);
777
}
778
return bnext;
779
}
780
781
// Fix up the final control flow for basic blocks.
782
void PhaseCFG::fixup_flow() {
783
// Fixup final control flow for the blocks. Remove jump-to-next
784
// block. If neither arm of an IF follows the conditional branch, we
785
// have to add a second jump after the conditional. We place the
786
// TRUE branch target in succs[0] for both GOTOs and IFs.
787
for (uint i = 0; i < number_of_blocks(); i++) {
788
Block* block = get_block(i);
789
block->_pre_order = i; // turn pre-order into block-index
790
791
// Connector blocks need no further processing.
792
if (block->is_connector()) {
793
assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
794
continue;
795
}
796
assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
797
798
Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
799
Block* bs0 = block->non_connector_successor(0);
800
801
// Check for multi-way branches where I cannot negate the test to
802
// exchange the true and false targets.
803
if (no_flip_branch(block)) {
804
// Find fall through case - if must fall into its target.
805
// Get the index of the branch's first successor.
806
int branch_idx = block->number_of_nodes() - block->_num_succs;
807
808
// The branch is 1 before the branch's first successor.
809
Node *branch = block->get_node(branch_idx-1);
810
811
// Handle no-flip branches which have implicit checks and which require
812
// special block ordering and individual semantics of the 'fall through
813
// case'.
814
if ((TrapBasedNullChecks || TrapBasedRangeChecks) &&
815
branch->is_Mach() && branch->as_Mach()->is_TrapBasedCheckNode()) {
816
bnext = fixup_trap_based_check(branch, block, i, bnext);
817
} else {
818
// Else, default handling for no-flip branches
819
for (uint j2 = 0; j2 < block->_num_succs; j2++) {
820
const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
821
if (p->_con == 0) {
822
// successor j2 is fall through case
823
if (block->non_connector_successor(j2) != bnext) {
824
// but it is not the next block => insert a goto
825
insert_goto_at(i, j2);
826
}
827
// Put taken branch in slot 0
828
if (j2 == 0 && block->_num_succs == 2) {
829
// Flip targets in succs map
830
Block *tbs0 = block->_succs[0];
831
Block *tbs1 = block->_succs[1];
832
block->_succs.map(0, tbs1);
833
block->_succs.map(1, tbs0);
834
}
835
break;
836
}
837
}
838
}
839
840
// Remove all CatchProjs
841
for (uint j = 0; j < block->_num_succs; j++) {
842
block->pop_node();
843
}
844
845
} else if (block->_num_succs == 1) {
846
// Block ends in a Goto?
847
if (bnext == bs0) {
848
// We fall into next block; remove the Goto
849
block->pop_node();
850
}
851
852
} else if(block->_num_succs == 2) { // Block ends in a If?
853
// Get opcode of 1st projection (matches _succs[0])
854
// Note: Since this basic block has 2 exits, the last 2 nodes must
855
// be projections (in any order), the 3rd last node must be
856
// the IfNode (we have excluded other 2-way exits such as
857
// CatchNodes already).
858
MachNode* iff = block->get_node(block->number_of_nodes() - 3)->as_Mach();
859
ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
860
ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
861
862
// Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
863
assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
864
assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
865
866
Block* bs1 = block->non_connector_successor(1);
867
868
// Check for neither successor block following the current
869
// block ending in a conditional. If so, move one of the
870
// successors after the current one, provided that the
871
// successor was previously unscheduled, but moveable
872
// (i.e., all paths to it involve a branch).
873
if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
874
// Choose the more common successor based on the probability
875
// of the conditional branch.
876
Block* bx = bs0;
877
Block* by = bs1;
878
879
// _prob is the probability of taking the true path. Make
880
// p the probability of taking successor #1.
881
float p = iff->as_MachIf()->_prob;
882
if (proj0->Opcode() == Op_IfTrue) {
883
p = 1.0 - p;
884
}
885
886
// Prefer successor #1 if p > 0.5
887
if (p > PROB_FAIR) {
888
bx = bs1;
889
by = bs0;
890
}
891
892
// Attempt the more common successor first
893
if (move_to_next(bx, i)) {
894
bnext = bx;
895
} else if (move_to_next(by, i)) {
896
bnext = by;
897
}
898
}
899
900
// Check for conditional branching the wrong way. Negate
901
// conditional, if needed, so it falls into the following block
902
// and branches to the not-following block.
903
904
// Check for the next block being in succs[0]. We are going to branch
905
// to succs[0], so we want the fall-thru case as the next block in
906
// succs[1].
907
if (bnext == bs0) {
908
// Fall-thru case in succs[0], so flip targets in succs map
909
Block* tbs0 = block->_succs[0];
910
Block* tbs1 = block->_succs[1];
911
block->_succs.map(0, tbs1);
912
block->_succs.map(1, tbs0);
913
// Flip projection for each target
914
ProjNode* tmp = proj0;
915
proj0 = proj1;
916
proj1 = tmp;
917
918
} else if(bnext != bs1) {
919
// Need a double-branch
920
// The existing conditional branch need not change.
921
// Add a unconditional branch to the false target.
922
// Alas, it must appear in its own block and adding a
923
// block this late in the game is complicated. Sigh.
924
insert_goto_at(i, 1);
925
}
926
927
// Make sure we TRUE branch to the target
928
if (proj0->Opcode() == Op_IfFalse) {
929
iff->as_MachIf()->negate();
930
}
931
932
block->pop_node(); // Remove IfFalse & IfTrue projections
933
block->pop_node();
934
935
} else {
936
// Multi-exit block, e.g. a switch statement
937
// But we don't need to do anything here
938
}
939
} // End of for all blocks
940
}
941
942
943
// postalloc_expand: Expand nodes after register allocation.
944
//
945
// postalloc_expand has to be called after register allocation, just
946
// before output (i.e. scheduling). It only gets called if
947
// Matcher::require_postalloc_expand is true.
948
//
949
// Background:
950
//
951
// Nodes that are expandend (one compound node requiring several
952
// assembler instructions to be implemented split into two or more
953
// non-compound nodes) after register allocation are not as nice as
954
// the ones expanded before register allocation - they don't
955
// participate in optimizations as global code motion. But after
956
// register allocation we can expand nodes that use registers which
957
// are not spillable or registers that are not allocated, because the
958
// old compound node is simply replaced (in its location in the basic
959
// block) by a new subgraph which does not contain compound nodes any
960
// more. The scheduler called during output can later on process these
961
// non-compound nodes.
962
//
963
// Implementation:
964
//
965
// Nodes requiring postalloc expand are specified in the ad file by using
966
// a postalloc_expand statement instead of ins_encode. A postalloc_expand
967
// contains a single call to an encoding, as does an ins_encode
968
// statement. Instead of an emit() function a postalloc_expand() function
969
// is generated that doesn't emit assembler but creates a new
970
// subgraph. The code below calls this postalloc_expand function for each
971
// node with the appropriate attribute. This function returns the new
972
// nodes generated in an array passed in the call. The old node,
973
// potential MachTemps before and potential Projs after it then get
974
// disconnected and replaced by the new nodes. The instruction
975
// generating the result has to be the last one in the array. In
976
// general it is assumed that Projs after the node expanded are
977
// kills. These kills are not required any more after expanding as
978
// there are now explicitly visible def-use chains and the Projs are
979
// removed. This does not hold for calls: They do not only have
980
// kill-Projs but also Projs defining values. Therefore Projs after
981
// the node expanded are removed for all but for calls. If a node is
982
// to be reused, it must be added to the nodes list returned, and it
983
// will be added again.
984
//
985
// Implementing the postalloc_expand function for a node in an enc_class
986
// is rather tedious. It requires knowledge about many node details, as
987
// the nodes and the subgraph must be hand crafted. To simplify this,
988
// adlc generates some utility variables into the postalloc_expand function,
989
// e.g., holding the operands as specified by the postalloc_expand encoding
990
// specification, e.g.:
991
// * unsigned idx_<par_name> holding the index of the node in the ins
992
// * Node *n_<par_name> holding the node loaded from the ins
993
// * MachOpnd *op_<par_name> holding the corresponding operand
994
//
995
// The ordering of operands can not be determined by looking at a
996
// rule. Especially if a match rule matches several different trees,
997
// several nodes are generated from one instruct specification with
998
// different operand orderings. In this case the adlc generated
999
// variables are the only way to access the ins and operands
1000
// deterministically.
1001
//
1002
// If assigning a register to a node that contains an oop, don't
1003
// forget to call ra_->set_oop() for the node.
1004
void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) {
1005
GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node.
1006
GrowableArray <Node *> remove(32);
1007
GrowableArray <Node *> succs(32);
1008
unsigned int max_idx = C->unique(); // Remember to distinguish new from old nodes.
1009
DEBUG_ONLY(bool foundNode = false);
1010
1011
// for all blocks
1012
for (uint i = 0; i < number_of_blocks(); i++) {
1013
Block *b = _blocks[i];
1014
// For all instructions in the current block.
1015
for (uint j = 0; j < b->number_of_nodes(); j++) {
1016
Node *n = b->get_node(j);
1017
if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) {
1018
#ifdef ASSERT
1019
if (TracePostallocExpand) {
1020
if (!foundNode) {
1021
foundNode = true;
1022
tty->print("POSTALLOC EXPANDING %d %s\n", C->compile_id(),
1023
C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1024
}
1025
tty->print(" postalloc expanding "); n->dump();
1026
if (Verbose) {
1027
tty->print(" with ins:\n");
1028
for (uint k = 0; k < n->len(); ++k) {
1029
if (n->in(k)) { tty->print(" "); n->in(k)->dump(); }
1030
}
1031
}
1032
}
1033
#endif
1034
new_nodes.clear();
1035
// Collect nodes that have to be removed from the block later on.
1036
uint req = n->req();
1037
remove.clear();
1038
for (uint k = 0; k < req; ++k) {
1039
if (n->in(k) && n->in(k)->is_MachTemp()) {
1040
remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed.
1041
n->in(k)->del_req(0);
1042
j--;
1043
}
1044
}
1045
1046
// Check whether we can allocate enough nodes. We set a fix limit for
1047
// the size of postalloc expands with this.
1048
uint unique_limit = C->unique() + 40;
1049
if (unique_limit >= _ra->node_regs_max_index()) {
1050
Compile::current()->record_failure("out of nodes in postalloc expand");
1051
return;
1052
}
1053
1054
// Emit (i.e. generate new nodes).
1055
n->as_Mach()->postalloc_expand(&new_nodes, _ra);
1056
1057
assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand.");
1058
1059
// Disconnect the inputs of the old node.
1060
//
1061
// We reuse MachSpillCopy nodes. If we need to expand them, there
1062
// are many, so reusing pays off. If reused, the node already
1063
// has the new ins. n must be the last node on new_nodes list.
1064
if (!n->is_MachSpillCopy()) {
1065
for (int k = req - 1; k >= 0; --k) {
1066
n->del_req(k);
1067
}
1068
}
1069
1070
#ifdef ASSERT
1071
// Check that all nodes have proper operands.
1072
for (int k = 0; k < new_nodes.length(); ++k) {
1073
if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ...
1074
MachNode *m = new_nodes.at(k)->as_Mach();
1075
for (unsigned int l = 0; l < m->num_opnds(); ++l) {
1076
if (MachOper::notAnOper(m->_opnds[l])) {
1077
outputStream *os = tty;
1078
os->print("Node %s ", m->Name());
1079
os->print("has invalid opnd %d: %p\n", l, m->_opnds[l]);
1080
assert(0, "Invalid operands, see inline trace in hs_err_pid file.");
1081
}
1082
}
1083
}
1084
#endif
1085
1086
// Collect succs of old node in remove (for projections) and in succs (for
1087
// all other nodes) do _not_ collect projections in remove (but in succs)
1088
// in case the node is a call. We need the projections for calls as they are
1089
// associated with registes (i.e. they are defs).
1090
succs.clear();
1091
for (DUIterator k = n->outs(); n->has_out(k); k++) {
1092
if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) {
1093
remove.push(n->out(k));
1094
} else {
1095
succs.push(n->out(k));
1096
}
1097
}
1098
// Replace old node n as input of its succs by last of the new nodes.
1099
for (int k = 0; k < succs.length(); ++k) {
1100
Node *succ = succs.at(k);
1101
for (uint l = 0; l < succ->req(); ++l) {
1102
if (succ->in(l) == n) {
1103
succ->set_req(l, new_nodes.at(new_nodes.length() - 1));
1104
}
1105
}
1106
for (uint l = succ->req(); l < succ->len(); ++l) {
1107
if (succ->in(l) == n) {
1108
succ->set_prec(l, new_nodes.at(new_nodes.length() - 1));
1109
}
1110
}
1111
}
1112
1113
// Index of old node in block.
1114
uint index = b->find_node(n);
1115
// Insert new nodes into block and map them in nodes->blocks array
1116
// and remember last node in n2.
1117
Node *n2 = NULL;
1118
for (int k = 0; k < new_nodes.length(); ++k) {
1119
n2 = new_nodes.at(k);
1120
b->insert_node(n2, ++index);
1121
map_node_to_block(n2, b);
1122
}
1123
1124
// Add old node n to remove and remove them all from block.
1125
remove.push(n);
1126
j--;
1127
#ifdef ASSERT
1128
if (TracePostallocExpand && Verbose) {
1129
tty->print(" removing:\n");
1130
for (int k = 0; k < remove.length(); ++k) {
1131
tty->print(" "); remove.at(k)->dump();
1132
}
1133
tty->print(" inserting:\n");
1134
for (int k = 0; k < new_nodes.length(); ++k) {
1135
tty->print(" "); new_nodes.at(k)->dump();
1136
}
1137
}
1138
#endif
1139
for (int k = 0; k < remove.length(); ++k) {
1140
if (b->contains(remove.at(k))) {
1141
b->find_remove(remove.at(k));
1142
} else {
1143
assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "");
1144
}
1145
}
1146
// If anything has been inserted (n2 != NULL), continue after last node inserted.
1147
// This does not always work. Some postalloc expands don't insert any nodes, if they
1148
// do optimizations (e.g., max(x,x)). In this case we decrement j accordingly.
1149
j = n2 ? b->find_node(n2) : j;
1150
}
1151
}
1152
}
1153
1154
#ifdef ASSERT
1155
if (foundNode) {
1156
tty->print("FINISHED %d %s\n", C->compile_id(),
1157
C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1158
tty->flush();
1159
}
1160
#endif
1161
}
1162
1163
1164
//------------------------------dump-------------------------------------------
1165
#ifndef PRODUCT
1166
void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited ) const {
1167
const Node *x = end->is_block_proj();
1168
assert( x, "not a CFG" );
1169
1170
// Do not visit this block again
1171
if( visited.test_set(x->_idx) ) return;
1172
1173
// Skip through this block
1174
const Node *p = x;
1175
do {
1176
p = p->in(0); // Move control forward
1177
assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
1178
} while( !p->is_block_start() );
1179
1180
// Recursively visit
1181
for (uint i = 1; i < p->req(); i++) {
1182
_dump_cfg(p->in(i), visited);
1183
}
1184
1185
// Dump the block
1186
get_block_for_node(p)->dump(this);
1187
}
1188
1189
void PhaseCFG::dump( ) const {
1190
tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
1191
if (_blocks.size()) { // Did we do basic-block layout?
1192
for (uint i = 0; i < number_of_blocks(); i++) {
1193
const Block* block = get_block(i);
1194
block->dump(this);
1195
}
1196
} else { // Else do it with a DFS
1197
VectorSet visited(_block_arena);
1198
_dump_cfg(_root,visited);
1199
}
1200
}
1201
1202
void PhaseCFG::dump_headers() {
1203
for (uint i = 0; i < number_of_blocks(); i++) {
1204
Block* block = get_block(i);
1205
if (block != NULL) {
1206
block->dump_head(this);
1207
}
1208
}
1209
}
1210
#endif // !PRODUCT
1211
1212
#ifdef ASSERT
1213
void PhaseCFG::verify_memory_writer_placement(const Block* b, const Node* n) const {
1214
if (!n->is_memory_writer()) {
1215
return;
1216
}
1217
CFGLoop* home_or_ancestor = find_block_for_node(n->in(0))->_loop;
1218
bool found = false;
1219
do {
1220
if (b->_loop == home_or_ancestor) {
1221
found = true;
1222
break;
1223
}
1224
home_or_ancestor = home_or_ancestor->parent();
1225
} while (home_or_ancestor != NULL);
1226
assert(found, "block b is not in n's home loop or an ancestor of it");
1227
}
1228
1229
void PhaseCFG::verify() const {
1230
// Verify sane CFG
1231
for (uint i = 0; i < number_of_blocks(); i++) {
1232
Block* block = get_block(i);
1233
uint cnt = block->number_of_nodes();
1234
uint j;
1235
for (j = 0; j < cnt; j++) {
1236
Node *n = block->get_node(j);
1237
assert(get_block_for_node(n) == block, "");
1238
if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1239
assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
1240
}
1241
verify_memory_writer_placement(block, n);
1242
if (n->needs_anti_dependence_check()) {
1243
verify_anti_dependences(block, n);
1244
}
1245
for (uint k = 0; k < n->req(); k++) {
1246
Node *def = n->in(k);
1247
if (def && def != n) {
1248
Block* def_block = get_block_for_node(def);
1249
assert(def_block || def->is_Con(), "must have block; constants for debug info ok");
1250
// Verify that all definitions dominate their uses (except for virtual
1251
// instructions merging multiple definitions).
1252
assert(n->is_Root() || n->is_Region() || n->is_Phi() || n->is_MachMerge() ||
1253
def_block->dominates(block),
1254
"uses must be dominated by definitions");
1255
// Verify that instructions in the block are in correct order.
1256
// Uses must follow their definition if they are at the same block.
1257
// Mostly done to check that MachSpillCopy nodes are placed correctly
1258
// when CreateEx node is moved in build_ifg_physical().
1259
if (def_block == block && !(block->head()->is_Loop() && n->is_Phi()) &&
1260
// See (+++) comment in reg_split.cpp
1261
!(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
1262
bool is_loop = false;
1263
if (n->is_Phi()) {
1264
for (uint l = 1; l < def->req(); l++) {
1265
if (n == def->in(l)) {
1266
is_loop = true;
1267
break; // Some kind of loop
1268
}
1269
}
1270
}
1271
assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
1272
}
1273
}
1274
}
1275
if (n->is_Proj()) {
1276
assert(j >= 1, "a projection cannot be the first instruction in a block");
1277
Node* pred = block->get_node(j - 1);
1278
Node* parent = n->in(0);
1279
assert(parent != NULL, "projections must have a parent");
1280
assert(pred == parent || (pred->is_Proj() && pred->in(0) == parent),
1281
"projections must follow their parents or other sibling projections");
1282
}
1283
}
1284
1285
j = block->end_idx();
1286
Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
1287
assert(bp, "last instruction must be a block proj");
1288
assert(bp == block->get_node(j), "wrong number of successors for this block");
1289
if (bp->is_Catch()) {
1290
while (block->get_node(--j)->is_MachProj()) {
1291
;
1292
}
1293
assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1294
} else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
1295
assert(block->_num_succs == 2, "Conditional branch must have two targets");
1296
}
1297
}
1298
}
1299
#endif // ASSERT
1300
1301
UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
1302
Copy::zero_to_bytes( _indices, sizeof(uint)*max );
1303
}
1304
1305
void UnionFind::extend( uint from_idx, uint to_idx ) {
1306
_nesting.check();
1307
if( from_idx >= _max ) {
1308
uint size = 16;
1309
while( size <= from_idx ) size <<=1;
1310
_indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
1311
_max = size;
1312
}
1313
while( _cnt <= from_idx ) _indices[_cnt++] = 0;
1314
_indices[from_idx] = to_idx;
1315
}
1316
1317
void UnionFind::reset( uint max ) {
1318
// Force the Union-Find mapping to be at least this large
1319
extend(max,0);
1320
// Initialize to be the ID mapping.
1321
for( uint i=0; i<max; i++ ) map(i,i);
1322
}
1323
1324
// Straight out of Tarjan's union-find algorithm
1325
uint UnionFind::Find_compress( uint idx ) {
1326
uint cur = idx;
1327
uint next = lookup(cur);
1328
while( next != cur ) { // Scan chain of equivalences
1329
assert( next < cur, "always union smaller" );
1330
cur = next; // until find a fixed-point
1331
next = lookup(cur);
1332
}
1333
// Core of union-find algorithm: update chain of
1334
// equivalences to be equal to the root.
1335
while( idx != next ) {
1336
uint tmp = lookup(idx);
1337
map(idx, next);
1338
idx = tmp;
1339
}
1340
return idx;
1341
}
1342
1343
// Like Find above, but no path compress, so bad asymptotic behavior
1344
uint UnionFind::Find_const( uint idx ) const {
1345
if( idx == 0 ) return idx; // Ignore the zero idx
1346
// Off the end? This can happen during debugging dumps
1347
// when data structures have not finished being updated.
1348
if( idx >= _max ) return idx;
1349
uint next = lookup(idx);
1350
while( next != idx ) { // Scan chain of equivalences
1351
idx = next; // until find a fixed-point
1352
next = lookup(idx);
1353
}
1354
return next;
1355
}
1356
1357
// union 2 sets together.
1358
void UnionFind::Union( uint idx1, uint idx2 ) {
1359
uint src = Find(idx1);
1360
uint dst = Find(idx2);
1361
assert( src, "" );
1362
assert( dst, "" );
1363
assert( src < _max, "oob" );
1364
assert( dst < _max, "oob" );
1365
assert( src < dst, "always union smaller" );
1366
map(dst,src);
1367
}
1368
1369
#ifndef PRODUCT
1370
void Trace::dump( ) const {
1371
tty->print_cr("Trace (freq %f)", first_block()->_freq);
1372
for (Block *b = first_block(); b != NULL; b = next(b)) {
1373
tty->print(" B%d", b->_pre_order);
1374
if (b->head()->is_Loop()) {
1375
tty->print(" (L%d)", b->compute_loop_alignment());
1376
}
1377
if (b->has_loop_alignment()) {
1378
tty->print(" (T%d)", b->code_alignment());
1379
}
1380
}
1381
tty->cr();
1382
}
1383
1384
void CFGEdge::dump( ) const {
1385
tty->print(" B%d --> B%d Freq: %f out:%3d%% in:%3d%% State: ",
1386
from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1387
switch(state()) {
1388
case connected:
1389
tty->print("connected");
1390
break;
1391
case open:
1392
tty->print("open");
1393
break;
1394
case interior:
1395
tty->print("interior");
1396
break;
1397
}
1398
if (infrequent()) {
1399
tty->print(" infrequent");
1400
}
1401
tty->cr();
1402
}
1403
#endif
1404
1405
// Comparison function for edges
1406
static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1407
float freq0 = (*e0)->freq();
1408
float freq1 = (*e1)->freq();
1409
if (freq0 != freq1) {
1410
return freq0 > freq1 ? -1 : 1;
1411
}
1412
1413
int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1414
int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1415
1416
return dist1 - dist0;
1417
}
1418
1419
// Comparison function for edges
1420
extern "C" int trace_frequency_order(const void *p0, const void *p1) {
1421
Trace *tr0 = *(Trace **) p0;
1422
Trace *tr1 = *(Trace **) p1;
1423
Block *b0 = tr0->first_block();
1424
Block *b1 = tr1->first_block();
1425
1426
// The trace of connector blocks goes at the end;
1427
// we only expect one such trace
1428
if (b0->is_connector() != b1->is_connector()) {
1429
return b1->is_connector() ? -1 : 1;
1430
}
1431
1432
// Pull more frequently executed blocks to the beginning
1433
float freq0 = b0->_freq;
1434
float freq1 = b1->_freq;
1435
if (freq0 != freq1) {
1436
return freq0 > freq1 ? -1 : 1;
1437
}
1438
1439
int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1440
1441
return diff;
1442
}
1443
1444
// Find edges of interest, i.e, those which can fall through. Presumes that
1445
// edges which don't fall through are of low frequency and can be generally
1446
// ignored. Initialize the list of traces.
1447
void PhaseBlockLayout::find_edges() {
1448
// Walk the blocks, creating edges and Traces
1449
uint i;
1450
Trace *tr = NULL;
1451
for (i = 0; i < _cfg.number_of_blocks(); i++) {
1452
Block* b = _cfg.get_block(i);
1453
tr = new Trace(b, next, prev);
1454
traces[tr->id()] = tr;
1455
1456
// All connector blocks should be at the end of the list
1457
if (b->is_connector()) break;
1458
1459
// If this block and the next one have a one-to-one successor
1460
// predecessor relationship, simply append the next block
1461
int nfallthru = b->num_fall_throughs();
1462
while (nfallthru == 1 &&
1463
b->succ_fall_through(0)) {
1464
Block *n = b->_succs[0];
1465
1466
// Skip over single-entry connector blocks, we don't want to
1467
// add them to the trace.
1468
while (n->is_connector() && n->num_preds() == 1) {
1469
n = n->_succs[0];
1470
}
1471
1472
// We see a merge point, so stop search for the next block
1473
if (n->num_preds() != 1) break;
1474
1475
i++;
1476
assert(n == _cfg.get_block(i), "expecting next block");
1477
tr->append(n);
1478
uf->map(n->_pre_order, tr->id());
1479
traces[n->_pre_order] = NULL;
1480
nfallthru = b->num_fall_throughs();
1481
b = n;
1482
}
1483
1484
if (nfallthru > 0) {
1485
// Create a CFGEdge for each outgoing
1486
// edge that could be a fall-through.
1487
for (uint j = 0; j < b->_num_succs; j++ ) {
1488
if (b->succ_fall_through(j)) {
1489
Block *target = b->non_connector_successor(j);
1490
float freq = b->_freq * b->succ_prob(j);
1491
int from_pct = (int) ((100 * freq) / b->_freq);
1492
int to_pct = (int) ((100 * freq) / target->_freq);
1493
edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1494
}
1495
}
1496
}
1497
}
1498
1499
// Group connector blocks into one trace
1500
for (i++; i < _cfg.number_of_blocks(); i++) {
1501
Block *b = _cfg.get_block(i);
1502
assert(b->is_connector(), "connector blocks at the end");
1503
tr->append(b);
1504
uf->map(b->_pre_order, tr->id());
1505
traces[b->_pre_order] = NULL;
1506
}
1507
}
1508
1509
// Union two traces together in uf, and null out the trace in the list
1510
void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
1511
uint old_id = old_trace->id();
1512
uint updated_id = updated_trace->id();
1513
1514
uint lo_id = updated_id;
1515
uint hi_id = old_id;
1516
1517
// If from is greater than to, swap values to meet
1518
// UnionFind guarantee.
1519
if (updated_id > old_id) {
1520
lo_id = old_id;
1521
hi_id = updated_id;
1522
1523
// Fix up the trace ids
1524
traces[lo_id] = traces[updated_id];
1525
updated_trace->set_id(lo_id);
1526
}
1527
1528
// Union the lower with the higher and remove the pointer
1529
// to the higher.
1530
uf->Union(lo_id, hi_id);
1531
traces[hi_id] = NULL;
1532
}
1533
1534
// Append traces together via the most frequently executed edges
1535
void PhaseBlockLayout::grow_traces() {
1536
// Order the edges, and drive the growth of Traces via the most
1537
// frequently executed edges.
1538
edges->sort(edge_order);
1539
for (int i = 0; i < edges->length(); i++) {
1540
CFGEdge *e = edges->at(i);
1541
1542
if (e->state() != CFGEdge::open) continue;
1543
1544
Block *src_block = e->from();
1545
Block *targ_block = e->to();
1546
1547
// Don't grow traces along backedges?
1548
if (!BlockLayoutRotateLoops) {
1549
if (targ_block->_rpo <= src_block->_rpo) {
1550
targ_block->set_loop_alignment(targ_block);
1551
continue;
1552
}
1553
}
1554
1555
Trace *src_trace = trace(src_block);
1556
Trace *targ_trace = trace(targ_block);
1557
1558
// If the edge in question can join two traces at their ends,
1559
// append one trace to the other.
1560
if (src_trace->last_block() == src_block) {
1561
if (src_trace == targ_trace) {
1562
e->set_state(CFGEdge::interior);
1563
if (targ_trace->backedge(e)) {
1564
// Reset i to catch any newly eligible edge
1565
// (Or we could remember the first "open" edge, and reset there)
1566
i = 0;
1567
}
1568
} else if (targ_trace->first_block() == targ_block) {
1569
e->set_state(CFGEdge::connected);
1570
src_trace->append(targ_trace);
1571
union_traces(src_trace, targ_trace);
1572
}
1573
}
1574
}
1575
}
1576
1577
// Embed one trace into another, if the fork or join points are sufficiently
1578
// balanced.
1579
void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
1580
// Walk the edge list a another time, looking at unprocessed edges.
1581
// Fold in diamonds
1582
for (int i = 0; i < edges->length(); i++) {
1583
CFGEdge *e = edges->at(i);
1584
1585
if (e->state() != CFGEdge::open) continue;
1586
if (fall_thru_only) {
1587
if (e->infrequent()) continue;
1588
}
1589
1590
Block *src_block = e->from();
1591
Trace *src_trace = trace(src_block);
1592
bool src_at_tail = src_trace->last_block() == src_block;
1593
1594
Block *targ_block = e->to();
1595
Trace *targ_trace = trace(targ_block);
1596
bool targ_at_start = targ_trace->first_block() == targ_block;
1597
1598
if (src_trace == targ_trace) {
1599
// This may be a loop, but we can't do much about it.
1600
e->set_state(CFGEdge::interior);
1601
continue;
1602
}
1603
1604
if (fall_thru_only) {
1605
// If the edge links the middle of two traces, we can't do anything.
1606
// Mark the edge and continue.
1607
if (!src_at_tail & !targ_at_start) {
1608
continue;
1609
}
1610
1611
// Don't grow traces along backedges?
1612
if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1613
continue;
1614
}
1615
1616
// If both ends of the edge are available, why didn't we handle it earlier?
1617
assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1618
1619
if (targ_at_start) {
1620
// Insert the "targ" trace in the "src" trace if the insertion point
1621
// is a two way branch.
1622
// Better profitability check possible, but may not be worth it.
1623
// Someday, see if the this "fork" has an associated "join";
1624
// then make a policy on merging this trace at the fork or join.
1625
// For example, other things being equal, it may be better to place this
1626
// trace at the join point if the "src" trace ends in a two-way, but
1627
// the insertion point is one-way.
1628
assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1629
e->set_state(CFGEdge::connected);
1630
src_trace->insert_after(src_block, targ_trace);
1631
union_traces(src_trace, targ_trace);
1632
} else if (src_at_tail) {
1633
if (src_trace != trace(_cfg.get_root_block())) {
1634
e->set_state(CFGEdge::connected);
1635
targ_trace->insert_before(targ_block, src_trace);
1636
union_traces(targ_trace, src_trace);
1637
}
1638
}
1639
} else if (e->state() == CFGEdge::open) {
1640
// Append traces, even without a fall-thru connection.
1641
// But leave root entry at the beginning of the block list.
1642
if (targ_trace != trace(_cfg.get_root_block())) {
1643
e->set_state(CFGEdge::connected);
1644
src_trace->append(targ_trace);
1645
union_traces(src_trace, targ_trace);
1646
}
1647
}
1648
}
1649
}
1650
1651
// Order the sequence of the traces in some desirable way, and fixup the
1652
// jumps at the end of each block.
1653
void PhaseBlockLayout::reorder_traces(int count) {
1654
ResourceArea *area = Thread::current()->resource_area();
1655
Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1656
Block_List worklist;
1657
int new_count = 0;
1658
1659
// Compact the traces.
1660
for (int i = 0; i < count; i++) {
1661
Trace *tr = traces[i];
1662
if (tr != NULL) {
1663
new_traces[new_count++] = tr;
1664
}
1665
}
1666
1667
// The entry block should be first on the new trace list.
1668
Trace *tr = trace(_cfg.get_root_block());
1669
assert(tr == new_traces[0], "entry trace misplaced");
1670
1671
// Sort the new trace list by frequency
1672
qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1673
1674
// Patch up the successor blocks
1675
_cfg.clear_blocks();
1676
for (int i = 0; i < new_count; i++) {
1677
Trace *tr = new_traces[i];
1678
if (tr != NULL) {
1679
tr->fixup_blocks(_cfg);
1680
}
1681
}
1682
}
1683
1684
// Order basic blocks based on frequency
1685
PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
1686
: Phase(BlockLayout)
1687
, _cfg(cfg) {
1688
ResourceMark rm;
1689
ResourceArea *area = Thread::current()->resource_area();
1690
1691
// List of traces
1692
int size = _cfg.number_of_blocks() + 1;
1693
traces = NEW_ARENA_ARRAY(area, Trace *, size);
1694
memset(traces, 0, size*sizeof(Trace*));
1695
next = NEW_ARENA_ARRAY(area, Block *, size);
1696
memset(next, 0, size*sizeof(Block *));
1697
prev = NEW_ARENA_ARRAY(area, Block *, size);
1698
memset(prev , 0, size*sizeof(Block *));
1699
1700
// List of edges
1701
edges = new GrowableArray<CFGEdge*>;
1702
1703
// Mapping block index --> block_trace
1704
uf = new UnionFind(size);
1705
uf->reset(size);
1706
1707
// Find edges and create traces.
1708
find_edges();
1709
1710
// Grow traces at their ends via most frequent edges.
1711
grow_traces();
1712
1713
// Merge one trace into another, but only at fall-through points.
1714
// This may make diamonds and other related shapes in a trace.
1715
merge_traces(true);
1716
1717
// Run merge again, allowing two traces to be catenated, even if
1718
// one does not fall through into the other. This appends loosely
1719
// related traces to be near each other.
1720
merge_traces(false);
1721
1722
// Re-order all the remaining traces by frequency
1723
reorder_traces(size);
1724
1725
assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
1726
}
1727
1728
1729
// Edge e completes a loop in a trace. If the target block is head of the
1730
// loop, rotate the loop block so that the loop ends in a conditional branch.
1731
bool Trace::backedge(CFGEdge *e) {
1732
bool loop_rotated = false;
1733
Block *src_block = e->from();
1734
Block *targ_block = e->to();
1735
1736
assert(last_block() == src_block, "loop discovery at back branch");
1737
if (first_block() == targ_block) {
1738
if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1739
// Find the last block in the trace that has a conditional
1740
// branch.
1741
Block *b;
1742
for (b = last_block(); b != NULL; b = prev(b)) {
1743
if (b->num_fall_throughs() == 2) {
1744
break;
1745
}
1746
}
1747
1748
if (b != last_block() && b != NULL) {
1749
loop_rotated = true;
1750
1751
// Rotate the loop by doing two-part linked-list surgery.
1752
append(first_block());
1753
break_loop_after(b);
1754
}
1755
}
1756
1757
// Backbranch to the top of a trace
1758
// Scroll forward through the trace from the targ_block. If we find
1759
// a loop head before another loop top, use the the loop head alignment.
1760
for (Block *b = targ_block; b != NULL; b = next(b)) {
1761
if (b->has_loop_alignment()) {
1762
break;
1763
}
1764
if (b->head()->is_Loop()) {
1765
targ_block = b;
1766
break;
1767
}
1768
}
1769
1770
first_block()->set_loop_alignment(targ_block);
1771
1772
} else {
1773
// That loop may already have a loop top (we're reaching it again
1774
// through the backedge of an outer loop)
1775
Block* b = prev(targ_block);
1776
bool has_top = targ_block->head()->is_Loop() && b->has_loop_alignment() && !b->head()->is_Loop();
1777
if (!has_top) {
1778
// Backbranch into the middle of a trace
1779
targ_block->set_loop_alignment(targ_block);
1780
}
1781
}
1782
1783
return loop_rotated;
1784
}
1785
1786
// push blocks onto the CFG list
1787
// ensure that blocks have the correct two-way branch sense
1788
void Trace::fixup_blocks(PhaseCFG &cfg) {
1789
Block *last = last_block();
1790
for (Block *b = first_block(); b != NULL; b = next(b)) {
1791
cfg.add_block(b);
1792
if (!b->is_connector()) {
1793
int nfallthru = b->num_fall_throughs();
1794
if (b != last) {
1795
if (nfallthru == 2) {
1796
// Ensure that the sense of the branch is correct
1797
Block *bnext = next(b);
1798
Block *bs0 = b->non_connector_successor(0);
1799
1800
MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
1801
ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
1802
ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
1803
1804
if (bnext == bs0) {
1805
// Fall-thru case in succs[0], should be in succs[1]
1806
1807
// Flip targets in _succs map
1808
Block *tbs0 = b->_succs[0];
1809
Block *tbs1 = b->_succs[1];
1810
b->_succs.map( 0, tbs1 );
1811
b->_succs.map( 1, tbs0 );
1812
1813
// Flip projections to match targets
1814
b->map_node(proj1, b->number_of_nodes() - 2);
1815
b->map_node(proj0, b->number_of_nodes() - 1);
1816
}
1817
}
1818
}
1819
}
1820
}
1821
}
1822
1823