Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/opto/block.hpp
40930 views
1
/*
2
* Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_OPTO_BLOCK_HPP
26
#define SHARE_OPTO_BLOCK_HPP
27
28
#include "opto/multnode.hpp"
29
#include "opto/node.hpp"
30
#include "opto/phase.hpp"
31
#include "utilities/powerOfTwo.hpp"
32
33
// Optimization - Graph Style
34
35
class Block;
36
class CFGLoop;
37
class MachCallNode;
38
class Matcher;
39
class RootNode;
40
class VectorSet;
41
class PhaseChaitin;
42
struct Tarjan;
43
44
//------------------------------Block_Array------------------------------------
45
// Map dense integer indices to Blocks. Uses classic doubling-array trick.
46
// Abstractly provides an infinite array of Block*'s, initialized to NULL.
47
// Note that the constructor just zeros things, and since I use Arena
48
// allocation I do not need a destructor to reclaim storage.
49
class Block_Array : public ResourceObj {
50
friend class VMStructs;
51
uint _size; // allocated size, as opposed to formal limit
52
debug_only(uint _limit;) // limit to formal domain
53
Arena *_arena; // Arena to allocate in
54
protected:
55
Block **_blocks;
56
void grow( uint i ); // Grow array node to fit
57
58
public:
59
Block_Array(Arena *a) : _size(OptoBlockListSize), _arena(a) {
60
debug_only(_limit=0);
61
_blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
62
for( int i = 0; i < OptoBlockListSize; i++ ) {
63
_blocks[i] = NULL;
64
}
65
}
66
Block *lookup( uint i ) const // Lookup, or NULL for not mapped
67
{ return (i<Max()) ? _blocks[i] : (Block*)NULL; }
68
Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
69
{ assert( i < Max(), "oob" ); return _blocks[i]; }
70
// Extend the mapping: index i maps to Block *n.
71
void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
72
uint Max() const { debug_only(return _limit); return _size; }
73
};
74
75
76
class Block_List : public Block_Array {
77
friend class VMStructs;
78
public:
79
uint _cnt;
80
Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
81
void push( Block *b ) { map(_cnt++,b); }
82
Block *pop() { return _blocks[--_cnt]; }
83
Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
84
void remove( uint i );
85
void insert( uint i, Block *n );
86
uint size() const { return _cnt; }
87
void reset() { _cnt = 0; }
88
void print();
89
};
90
91
92
class CFGElement : public ResourceObj {
93
friend class VMStructs;
94
public:
95
double _freq; // Execution frequency (estimate)
96
97
CFGElement() : _freq(0.0) {}
98
virtual bool is_block() { return false; }
99
virtual bool is_loop() { return false; }
100
Block* as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
101
CFGLoop* as_CFGLoop() { assert(is_loop(), "must be loop"); return (CFGLoop*)this; }
102
};
103
104
//------------------------------Block------------------------------------------
105
// This class defines a Basic Block.
106
// Basic blocks are used during the output routines, and are not used during
107
// any optimization pass. They are created late in the game.
108
class Block : public CFGElement {
109
friend class VMStructs;
110
111
private:
112
// Nodes in this block, in order
113
Node_List _nodes;
114
115
public:
116
117
// Get the node at index 'at_index', if 'at_index' is out of bounds return NULL
118
Node* get_node(uint at_index) const {
119
return _nodes[at_index];
120
}
121
122
// Get the number of nodes in this block
123
uint number_of_nodes() const {
124
return _nodes.size();
125
}
126
127
// Map a node 'node' to index 'to_index' in the block, if the index is out of bounds the size of the node list is increased
128
void map_node(Node* node, uint to_index) {
129
_nodes.map(to_index, node);
130
}
131
132
// Insert a node 'node' at index 'at_index', moving all nodes that are on a higher index one step, if 'at_index' is out of bounds we crash
133
void insert_node(Node* node, uint at_index) {
134
_nodes.insert(at_index, node);
135
}
136
137
// Remove a node at index 'at_index'
138
void remove_node(uint at_index) {
139
_nodes.remove(at_index);
140
}
141
142
// Push a node 'node' onto the node list
143
void push_node(Node* node) {
144
_nodes.push(node);
145
}
146
147
// Pop the last node off the node list
148
Node* pop_node() {
149
return _nodes.pop();
150
}
151
152
// Basic blocks have a Node which defines Control for all Nodes pinned in
153
// this block. This Node is a RegionNode. Exception-causing Nodes
154
// (division, subroutines) and Phi functions are always pinned. Later,
155
// every Node will get pinned to some block.
156
Node *head() const { return get_node(0); }
157
158
// CAUTION: num_preds() is ONE based, so that predecessor numbers match
159
// input edges to Regions and Phis.
160
uint num_preds() const { return head()->req(); }
161
Node *pred(uint i) const { return head()->in(i); }
162
163
// Array of successor blocks, same size as projs array
164
Block_Array _succs;
165
166
// Basic blocks have some number of Nodes which split control to all
167
// following blocks. These Nodes are always Projections. The field in
168
// the Projection and the block-ending Node determine which Block follows.
169
uint _num_succs;
170
171
// Basic blocks also carry all sorts of good old fashioned DFS information
172
// used to find loops, loop nesting depth, dominators, etc.
173
uint _pre_order; // Pre-order DFS number
174
175
// Dominator tree
176
uint _dom_depth; // Depth in dominator tree for fast LCA
177
Block* _idom; // Immediate dominator block
178
179
CFGLoop *_loop; // Loop to which this block belongs
180
uint _rpo; // Number in reverse post order walk
181
182
virtual bool is_block() { return true; }
183
float succ_prob(uint i); // return probability of i'th successor
184
int num_fall_throughs(); // How many fall-through candidate this block has
185
void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
186
bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
187
Block* lone_fall_through(); // Return lone fall-through Block or null
188
189
Block* dom_lca(Block* that); // Compute LCA in dominator tree.
190
191
bool dominates(Block* that) {
192
int dom_diff = this->_dom_depth - that->_dom_depth;
193
if (dom_diff > 0) return false;
194
for (; dom_diff < 0; dom_diff++) that = that->_idom;
195
return this == that;
196
}
197
198
// Report the alignment required by this block. Must be a power of 2.
199
// The previous block will insert nops to get this alignment.
200
uint code_alignment() const;
201
uint compute_loop_alignment();
202
203
// BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
204
// It is currently also used to scale such frequencies relative to
205
// FreqCountInvocations relative to the old value of 1500.
206
#define BLOCK_FREQUENCY(f) ((f * (double) 1500) / FreqCountInvocations)
207
208
// Register Pressure (estimate) for Splitting heuristic
209
uint _reg_pressure;
210
uint _ihrp_index;
211
uint _freg_pressure;
212
uint _fhrp_index;
213
214
// Mark and visited bits for an LCA calculation in insert_anti_dependences.
215
// Since they hold unique node indexes, they do not need reinitialization.
216
node_idx_t _raise_LCA_mark;
217
void set_raise_LCA_mark(node_idx_t x) { _raise_LCA_mark = x; }
218
node_idx_t raise_LCA_mark() const { return _raise_LCA_mark; }
219
node_idx_t _raise_LCA_visited;
220
void set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
221
node_idx_t raise_LCA_visited() const { return _raise_LCA_visited; }
222
223
// Estimated size in bytes of first instructions in a loop.
224
uint _first_inst_size;
225
uint first_inst_size() const { return _first_inst_size; }
226
void set_first_inst_size(uint s) { _first_inst_size = s; }
227
228
// Compute the size of first instructions in this block.
229
uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
230
231
// Compute alignment padding if the block needs it.
232
// Align a loop if loop's padding is less or equal to padding limit
233
// or the size of first instructions in the loop > padding.
234
uint alignment_padding(int current_offset) {
235
int block_alignment = code_alignment();
236
int max_pad = block_alignment-relocInfo::addr_unit();
237
if( max_pad > 0 ) {
238
assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
239
int current_alignment = current_offset & max_pad;
240
if( current_alignment != 0 ) {
241
uint padding = (block_alignment-current_alignment) & max_pad;
242
if( has_loop_alignment() &&
243
padding > (uint)MaxLoopPad &&
244
first_inst_size() <= padding ) {
245
return 0;
246
}
247
return padding;
248
}
249
}
250
return 0;
251
}
252
253
// Connector blocks. Connector blocks are basic blocks devoid of
254
// instructions, but may have relevant non-instruction Nodes, such as
255
// Phis or MergeMems. Such blocks are discovered and marked during the
256
// RemoveEmpty phase, and elided during Output.
257
bool _connector;
258
void set_connector() { _connector = true; }
259
bool is_connector() const { return _connector; };
260
261
// Loop_alignment will be set for blocks which are at the top of loops.
262
// The block layout pass may rotate loops such that the loop head may not
263
// be the sequentially first block of the loop encountered in the linear
264
// list of blocks. If the layout pass is not run, loop alignment is set
265
// for each block which is the head of a loop.
266
uint _loop_alignment;
267
void set_loop_alignment(Block *loop_top) {
268
uint new_alignment = loop_top->compute_loop_alignment();
269
if (new_alignment > _loop_alignment) {
270
_loop_alignment = new_alignment;
271
}
272
}
273
uint loop_alignment() const { return _loop_alignment; }
274
bool has_loop_alignment() const { return loop_alignment() > 0; }
275
276
// Create a new Block with given head Node.
277
// Creates the (empty) predecessor arrays.
278
Block( Arena *a, Node *headnode )
279
: CFGElement(),
280
_nodes(a),
281
_succs(a),
282
_num_succs(0),
283
_pre_order(0),
284
_idom(0),
285
_loop(NULL),
286
_reg_pressure(0),
287
_ihrp_index(1),
288
_freg_pressure(0),
289
_fhrp_index(1),
290
_raise_LCA_mark(0),
291
_raise_LCA_visited(0),
292
_first_inst_size(999999),
293
_connector(false),
294
_loop_alignment(0) {
295
_nodes.push(headnode);
296
}
297
298
// Index of 'end' Node
299
uint end_idx() const {
300
// %%%%% add a proj after every goto
301
// so (last->is_block_proj() != last) always, then simplify this code
302
// This will not give correct end_idx for block 0 when it only contains root.
303
int last_idx = _nodes.size() - 1;
304
Node *last = _nodes[last_idx];
305
assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
306
return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
307
}
308
309
// Basic blocks have a Node which ends them. This Node determines which
310
// basic block follows this one in the program flow. This Node is either an
311
// IfNode, a GotoNode, a JmpNode, or a ReturnNode.
312
Node *end() const { return _nodes[end_idx()]; }
313
314
// Add an instruction to an existing block. It must go after the head
315
// instruction and before the end instruction.
316
void add_inst( Node *n ) { insert_node(n, end_idx()); }
317
// Find node in block. Fails if node not in block.
318
uint find_node( const Node *n ) const;
319
// Find and remove n from block list
320
void find_remove( const Node *n );
321
// Check whether the node is in the block.
322
bool contains (const Node *n) const;
323
324
// Return the empty status of a block
325
enum { not_empty, empty_with_goto, completely_empty };
326
int is_Empty() const;
327
328
// Forward through connectors
329
Block* non_connector() {
330
Block* s = this;
331
while (s->is_connector()) {
332
s = s->_succs[0];
333
}
334
return s;
335
}
336
337
// Return true if b is a successor of this block
338
bool has_successor(Block* b) const {
339
for (uint i = 0; i < _num_succs; i++ ) {
340
if (non_connector_successor(i) == b) {
341
return true;
342
}
343
}
344
return false;
345
}
346
347
// Successor block, after forwarding through connectors
348
Block* non_connector_successor(int i) const {
349
return _succs[i]->non_connector();
350
}
351
352
// Examine block's code shape to predict if it is not commonly executed.
353
bool has_uncommon_code() const;
354
355
#ifndef PRODUCT
356
// Debugging print of basic block
357
void dump_bidx(const Block* orig, outputStream* st = tty) const;
358
void dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st = tty) const;
359
void dump_head(const PhaseCFG* cfg, outputStream* st = tty) const;
360
void dump() const;
361
void dump(const PhaseCFG* cfg) const;
362
#endif
363
};
364
365
366
//------------------------------PhaseCFG---------------------------------------
367
// Build an array of Basic Block pointers, one per Node.
368
class PhaseCFG : public Phase {
369
friend class VMStructs;
370
private:
371
// Root of whole program
372
RootNode* _root;
373
374
// The block containing the root node
375
Block* _root_block;
376
377
// List of basic blocks that are created during CFG creation
378
Block_List _blocks;
379
380
// Count of basic blocks
381
uint _number_of_blocks;
382
383
// Arena for the blocks to be stored in
384
Arena* _block_arena;
385
386
// Info used for scheduling
387
PhaseChaitin* _regalloc;
388
389
// Register pressure heuristic used?
390
bool _scheduling_for_pressure;
391
392
// The matcher for this compilation
393
Matcher& _matcher;
394
395
// Map nodes to owning basic block
396
Block_Array _node_to_block_mapping;
397
398
// Loop from the root
399
CFGLoop* _root_loop;
400
401
// Outmost loop frequency
402
double _outer_loop_frequency;
403
404
// Per node latency estimation, valid only during GCM
405
GrowableArray<uint>* _node_latency;
406
407
// Build a proper looking cfg. Return count of basic blocks
408
uint build_cfg();
409
410
// Build the dominator tree so that we know where we can move instructions
411
void build_dominator_tree();
412
413
// Estimate block frequencies based on IfNode probabilities, so that we know where we want to move instructions
414
void estimate_block_frequency();
415
416
// Global Code Motion. See Click's PLDI95 paper. Place Nodes in specific
417
// basic blocks; i.e. _node_to_block_mapping now maps _idx for all Nodes to some Block.
418
// Move nodes to ensure correctness from GVN and also try to move nodes out of loops.
419
void global_code_motion();
420
421
// Schedule Nodes early in their basic blocks.
422
bool schedule_early(VectorSet &visited, Node_Stack &roots);
423
424
// For each node, find the latest block it can be scheduled into
425
// and then select the cheapest block between the latest and earliest
426
// block to place the node.
427
void schedule_late(VectorSet &visited, Node_Stack &stack);
428
429
// Compute the (backwards) latency of a node from a single use
430
int latency_from_use(Node *n, const Node *def, Node *use);
431
432
// Compute the (backwards) latency of a node from the uses of this instruction
433
void partial_latency_of_defs(Node *n);
434
435
// Compute the instruction global latency with a backwards walk
436
void compute_latencies_backwards(VectorSet &visited, Node_Stack &stack);
437
438
// Pick a block between early and late that is a cheaper alternative
439
// to late. Helper for schedule_late.
440
Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
441
442
bool schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t* recacl_pressure_nodes);
443
void set_next_call(Block* block, Node* n, VectorSet& next_call);
444
void needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call);
445
446
// Perform basic-block local scheduling
447
Node* select(Block* block, Node_List& worklist, GrowableArray<int>& ready_cnt, VectorSet& next_call, uint sched_slot,
448
intptr_t* recacl_pressure_nodes);
449
void adjust_register_pressure(Node* n, Block* block, intptr_t *recalc_pressure_nodes, bool finalize_mode);
450
451
// Schedule a call next in the block
452
uint sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call);
453
454
// Cleanup if any code lands between a Call and his Catch
455
void call_catch_cleanup(Block* block);
456
457
Node* catch_cleanup_find_cloned_def(Block* use_blk, Node* def, Block* def_blk, int n_clone_idx);
458
void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx);
459
460
// Detect implicit-null-check opportunities. Basically, find NULL checks
461
// with suitable memory ops nearby. Use the memory op to do the NULL check.
462
// I can generate a memory op if there is not one nearby.
463
void implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons);
464
465
// Perform a Depth First Search (DFS).
466
// Setup 'vertex' as DFS to vertex mapping.
467
// Setup 'semi' as vertex to DFS mapping.
468
// Set 'parent' to DFS parent.
469
uint do_DFS(Tarjan* tarjan, uint rpo_counter);
470
471
// Helper function to insert a node into a block
472
void schedule_node_into_block( Node *n, Block *b );
473
474
void replace_block_proj_ctrl( Node *n );
475
476
// Set the basic block for pinned Nodes
477
void schedule_pinned_nodes( VectorSet &visited );
478
479
// I'll need a few machine-specific GotoNodes. Clone from this one.
480
// Used when building the CFG and creating end nodes for blocks.
481
MachNode* _goto;
482
483
Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
484
void verify_anti_dependences(Block* LCA, Node* load) const {
485
assert(LCA == get_block_for_node(load), "should already be scheduled");
486
const_cast<PhaseCFG*>(this)->insert_anti_dependences(LCA, load, true);
487
}
488
489
bool move_to_next(Block* bx, uint b_index);
490
void move_to_end(Block* bx, uint b_index);
491
492
void insert_goto_at(uint block_no, uint succ_no);
493
494
// Check for NeverBranch at block end. This needs to become a GOTO to the
495
// true target. NeverBranch are treated as a conditional branch that always
496
// goes the same direction for most of the optimizer and are used to give a
497
// fake exit path to infinite loops. At this late stage they need to turn
498
// into Goto's so that when you enter the infinite loop you indeed hang.
499
void convert_NeverBranch_to_Goto(Block *b);
500
501
CFGLoop* create_loop_tree();
502
bool is_dominator(Node* dom_node, Node* node);
503
bool is_CFG(Node* n);
504
bool is_control_proj_or_safepoint(Node* n) const;
505
Block* find_block_for_node(Node* n) const;
506
bool is_dominating_control(Node* dom_ctrl, Node* n);
507
#ifndef PRODUCT
508
bool _trace_opto_pipelining; // tracing flag
509
#endif
510
511
public:
512
PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher);
513
514
void set_latency_for_node(Node* node, int latency) {
515
_node_latency->at_put_grow(node->_idx, latency);
516
}
517
518
uint get_latency_for_node(Node* node) {
519
return _node_latency->at_grow(node->_idx);
520
}
521
522
// Get the outer most frequency
523
double get_outer_loop_frequency() const {
524
return _outer_loop_frequency;
525
}
526
527
// Get the root node of the CFG
528
RootNode* get_root_node() const {
529
return _root;
530
}
531
532
// Get the block of the root node
533
Block* get_root_block() const {
534
return _root_block;
535
}
536
537
// Add a block at a position and moves the later ones one step
538
void add_block_at(uint pos, Block* block) {
539
_blocks.insert(pos, block);
540
_number_of_blocks++;
541
}
542
543
// Adds a block to the top of the block list
544
void add_block(Block* block) {
545
_blocks.push(block);
546
_number_of_blocks++;
547
}
548
549
// Clear the list of blocks
550
void clear_blocks() {
551
_blocks.reset();
552
_number_of_blocks = 0;
553
}
554
555
// Get the block at position pos in _blocks
556
Block* get_block(uint pos) const {
557
return _blocks[pos];
558
}
559
560
// Number of blocks
561
uint number_of_blocks() const {
562
return _number_of_blocks;
563
}
564
565
// set which block this node should reside in
566
void map_node_to_block(const Node* node, Block* block) {
567
_node_to_block_mapping.map(node->_idx, block);
568
}
569
570
// removes the mapping from a node to a block
571
void unmap_node_from_block(const Node* node) {
572
_node_to_block_mapping.map(node->_idx, NULL);
573
}
574
575
// get the block in which this node resides
576
Block* get_block_for_node(const Node* node) const {
577
return _node_to_block_mapping[node->_idx];
578
}
579
580
// does this node reside in a block; return true
581
bool has_block(const Node* node) const {
582
return (_node_to_block_mapping.lookup(node->_idx) != NULL);
583
}
584
585
// Use frequency calculations and code shape to predict if the block
586
// is uncommon.
587
bool is_uncommon(const Block* block);
588
589
#ifdef ASSERT
590
Unique_Node_List _raw_oops;
591
#endif
592
593
// Do global code motion by first building dominator tree and estimate block frequency
594
// Returns true on success
595
bool do_global_code_motion();
596
597
// Compute the (backwards) latency of a node from the uses
598
void latency_from_uses(Node *n);
599
600
// Set loop alignment
601
void set_loop_alignment();
602
603
// Remove empty basic blocks
604
void remove_empty_blocks();
605
Block *fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext);
606
void fixup_flow();
607
608
// Insert a node into a block at index and map the node to the block
609
void insert(Block *b, uint idx, Node *n) {
610
b->insert_node(n , idx);
611
map_node_to_block(n, b);
612
}
613
614
// Check all nodes and postalloc_expand them if necessary.
615
void postalloc_expand(PhaseRegAlloc* _ra);
616
617
#ifndef PRODUCT
618
bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
619
620
// Debugging print of CFG
621
void dump( ) const; // CFG only
622
void _dump_cfg( const Node *end, VectorSet &visited ) const;
623
void dump_headers();
624
#else
625
bool trace_opto_pipelining() const { return false; }
626
#endif
627
628
// Check that block b is in the home loop (or an ancestor) of n, if n is a
629
// memory writer.
630
void verify_memory_writer_placement(const Block* b, const Node* n) const NOT_DEBUG_RETURN;
631
void verify() const NOT_DEBUG_RETURN;
632
};
633
634
635
//------------------------------UnionFind--------------------------------------
636
// Map Block indices to a block-index for a cfg-cover.
637
// Array lookup in the optimized case.
638
class UnionFind : public ResourceObj {
639
uint _cnt, _max;
640
uint* _indices;
641
ReallocMark _nesting; // assertion check for reallocations
642
public:
643
UnionFind( uint max );
644
void reset( uint max ); // Reset to identity map for [0..max]
645
646
uint lookup( uint nidx ) const {
647
return _indices[nidx];
648
}
649
uint operator[] (uint nidx) const { return lookup(nidx); }
650
651
void map( uint from_idx, uint to_idx ) {
652
assert( from_idx < _cnt, "oob" );
653
_indices[from_idx] = to_idx;
654
}
655
void extend( uint from_idx, uint to_idx );
656
657
uint Size() const { return _cnt; }
658
659
uint Find( uint idx ) {
660
assert( idx < 65536, "Must fit into uint");
661
uint uf_idx = lookup(idx);
662
return (uf_idx == idx) ? uf_idx : Find_compress(idx);
663
}
664
uint Find_compress( uint idx );
665
uint Find_const( uint idx ) const;
666
void Union( uint idx1, uint idx2 );
667
668
};
669
670
//----------------------------BlockProbPair---------------------------
671
// Ordered pair of Node*.
672
class BlockProbPair {
673
protected:
674
Block* _target; // block target
675
double _prob; // probability of edge to block
676
public:
677
BlockProbPair() : _target(NULL), _prob(0.0) {}
678
BlockProbPair(Block* b, double p) : _target(b), _prob(p) {}
679
680
Block* get_target() const { return _target; }
681
double get_prob() const { return _prob; }
682
};
683
684
//------------------------------CFGLoop-------------------------------------------
685
class CFGLoop : public CFGElement {
686
friend class VMStructs;
687
int _id;
688
int _depth;
689
CFGLoop *_parent; // root of loop tree is the method level "pseudo" loop, it's parent is null
690
CFGLoop *_sibling; // null terminated list
691
CFGLoop *_child; // first child, use child's sibling to visit all immediately nested loops
692
GrowableArray<CFGElement*> _members; // list of members of loop
693
GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
694
double _exit_prob; // probability any loop exit is taken on a single loop iteration
695
void update_succ_freq(Block* b, double freq);
696
697
public:
698
CFGLoop(int id) :
699
CFGElement(),
700
_id(id),
701
_depth(0),
702
_parent(NULL),
703
_sibling(NULL),
704
_child(NULL),
705
_exit_prob(1.0f) {}
706
CFGLoop* parent() { return _parent; }
707
void push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg);
708
void add_member(CFGElement *s) { _members.push(s); }
709
void add_nested_loop(CFGLoop* cl);
710
Block* head() {
711
assert(_members.at(0)->is_block(), "head must be a block");
712
Block* hd = _members.at(0)->as_Block();
713
assert(hd->_loop == this, "just checking");
714
assert(hd->head()->is_Loop(), "must begin with loop head node");
715
return hd;
716
}
717
Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
718
void compute_loop_depth(int depth);
719
void compute_freq(); // compute frequency with loop assuming head freq 1.0f
720
void scale_freq(); // scale frequency by loop trip count (including outer loops)
721
double outer_loop_freq() const; // frequency of outer loop
722
bool in_loop_nest(Block* b);
723
double trip_count() const { return 1.0 / _exit_prob; }
724
virtual bool is_loop() { return true; }
725
int id() { return _id; }
726
int depth() { return _depth; }
727
728
#ifndef PRODUCT
729
void dump( ) const;
730
void dump_tree() const;
731
#endif
732
};
733
734
735
//----------------------------------CFGEdge------------------------------------
736
// A edge between two basic blocks that will be embodied by a branch or a
737
// fall-through.
738
class CFGEdge : public ResourceObj {
739
friend class VMStructs;
740
private:
741
Block * _from; // Source basic block
742
Block * _to; // Destination basic block
743
double _freq; // Execution frequency (estimate)
744
int _state;
745
bool _infrequent;
746
int _from_pct;
747
int _to_pct;
748
749
// Private accessors
750
int from_pct() const { return _from_pct; }
751
int to_pct() const { return _to_pct; }
752
int from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
753
int to_infrequent() const { return to_pct() < BlockLayoutMinDiamondPercentage; }
754
755
public:
756
enum {
757
open, // initial edge state; unprocessed
758
connected, // edge used to connect two traces together
759
interior // edge is interior to trace (could be backedge)
760
};
761
762
CFGEdge(Block *from, Block *to, double freq, int from_pct, int to_pct) :
763
_from(from), _to(to), _freq(freq),
764
_state(open), _from_pct(from_pct), _to_pct(to_pct) {
765
_infrequent = from_infrequent() || to_infrequent();
766
}
767
768
double freq() const { return _freq; }
769
Block* from() const { return _from; }
770
Block* to () const { return _to; }
771
int infrequent() const { return _infrequent; }
772
int state() const { return _state; }
773
774
void set_state(int state) { _state = state; }
775
776
#ifndef PRODUCT
777
void dump( ) const;
778
#endif
779
};
780
781
782
//-----------------------------------Trace-------------------------------------
783
// An ordered list of basic blocks.
784
class Trace : public ResourceObj {
785
private:
786
uint _id; // Unique Trace id (derived from initial block)
787
Block ** _next_list; // Array mapping index to next block
788
Block ** _prev_list; // Array mapping index to previous block
789
Block * _first; // First block in the trace
790
Block * _last; // Last block in the trace
791
792
// Return the block that follows "b" in the trace.
793
Block * next(Block *b) const { return _next_list[b->_pre_order]; }
794
void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
795
796
// Return the block that precedes "b" in the trace.
797
Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
798
void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
799
800
// We've discovered a loop in this trace. Reset last to be "b", and first as
801
// the block following "b
802
void break_loop_after(Block *b) {
803
_last = b;
804
_first = next(b);
805
set_prev(_first, NULL);
806
set_next(_last, NULL);
807
}
808
809
public:
810
811
Trace(Block *b, Block **next_list, Block **prev_list) :
812
_id(b->_pre_order),
813
_next_list(next_list),
814
_prev_list(prev_list),
815
_first(b),
816
_last(b) {
817
set_next(b, NULL);
818
set_prev(b, NULL);
819
};
820
821
// Return the id number
822
uint id() const { return _id; }
823
void set_id(uint id) { _id = id; }
824
825
// Return the first block in the trace
826
Block * first_block() const { return _first; }
827
828
// Return the last block in the trace
829
Block * last_block() const { return _last; }
830
831
// Insert a trace in the middle of this one after b
832
void insert_after(Block *b, Trace *tr) {
833
set_next(tr->last_block(), next(b));
834
if (next(b) != NULL) {
835
set_prev(next(b), tr->last_block());
836
}
837
838
set_next(b, tr->first_block());
839
set_prev(tr->first_block(), b);
840
841
if (b == _last) {
842
_last = tr->last_block();
843
}
844
}
845
846
void insert_before(Block *b, Trace *tr) {
847
Block *p = prev(b);
848
assert(p != NULL, "use append instead");
849
insert_after(p, tr);
850
}
851
852
// Append another trace to this one.
853
void append(Trace *tr) {
854
insert_after(_last, tr);
855
}
856
857
// Append a block at the end of this trace
858
void append(Block *b) {
859
set_next(_last, b);
860
set_prev(b, _last);
861
_last = b;
862
}
863
864
// Adjust the the blocks in this trace
865
void fixup_blocks(PhaseCFG &cfg);
866
bool backedge(CFGEdge *e);
867
868
#ifndef PRODUCT
869
void dump( ) const;
870
#endif
871
};
872
873
//------------------------------PhaseBlockLayout-------------------------------
874
// Rearrange blocks into some canonical order, based on edges and their frequencies
875
class PhaseBlockLayout : public Phase {
876
friend class VMStructs;
877
PhaseCFG &_cfg; // Control flow graph
878
879
GrowableArray<CFGEdge *> *edges;
880
Trace **traces;
881
Block **next;
882
Block **prev;
883
UnionFind *uf;
884
885
// Given a block, find its encompassing Trace
886
Trace * trace(Block *b) {
887
return traces[uf->Find_compress(b->_pre_order)];
888
}
889
public:
890
PhaseBlockLayout(PhaseCFG &cfg);
891
892
void find_edges();
893
void grow_traces();
894
void merge_traces(bool loose_connections);
895
void reorder_traces(int count);
896
void union_traces(Trace* from, Trace* to);
897
};
898
899
#endif // SHARE_OPTO_BLOCK_HPP
900
901