Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/opto/castnode.cpp
40930 views
1
/*
2
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "opto/addnode.hpp"
27
#include "opto/callnode.hpp"
28
#include "opto/castnode.hpp"
29
#include "opto/connode.hpp"
30
#include "opto/matcher.hpp"
31
#include "opto/phaseX.hpp"
32
#include "opto/subnode.hpp"
33
#include "opto/type.hpp"
34
35
//=============================================================================
36
// If input is already higher or equal to cast type, then this is an identity.
37
Node* ConstraintCastNode::Identity(PhaseGVN* phase) {
38
Node* dom = dominating_cast(phase, phase);
39
if (dom != NULL) {
40
return dom;
41
}
42
if (_carry_dependency) {
43
return this;
44
}
45
return phase->type(in(1))->higher_equal_speculative(_type) ? in(1) : this;
46
}
47
48
//------------------------------Value------------------------------------------
49
// Take 'join' of input and cast-up type
50
const Type* ConstraintCastNode::Value(PhaseGVN* phase) const {
51
if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
52
const Type* ft = phase->type(in(1))->filter_speculative(_type);
53
54
#ifdef ASSERT
55
// Previous versions of this function had some special case logic,
56
// which is no longer necessary. Make sure of the required effects.
57
switch (Opcode()) {
58
case Op_CastII:
59
{
60
const Type* t1 = phase->type(in(1));
61
if( t1 == Type::TOP ) assert(ft == Type::TOP, "special case #1");
62
const Type* rt = t1->join_speculative(_type);
63
if (rt->empty()) assert(ft == Type::TOP, "special case #2");
64
break;
65
}
66
case Op_CastPP:
67
if (phase->type(in(1)) == TypePtr::NULL_PTR &&
68
_type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
69
assert(ft == Type::TOP, "special case #3");
70
break;
71
}
72
#endif //ASSERT
73
74
return ft;
75
}
76
77
//------------------------------Ideal------------------------------------------
78
// Return a node which is more "ideal" than the current node. Strip out
79
// control copies
80
Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape) {
81
return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
82
}
83
84
bool ConstraintCastNode::cmp(const Node &n) const {
85
return TypeNode::cmp(n) && ((ConstraintCastNode&)n)._carry_dependency == _carry_dependency;
86
}
87
88
uint ConstraintCastNode::size_of() const {
89
return sizeof(*this);
90
}
91
92
Node* ConstraintCastNode::make_cast(int opcode, Node* c, Node *n, const Type *t, bool carry_dependency) {
93
switch(opcode) {
94
case Op_CastII: {
95
Node* cast = new CastIINode(n, t, carry_dependency);
96
cast->set_req(0, c);
97
return cast;
98
}
99
case Op_CastLL: {
100
Node* cast = new CastLLNode(n, t, carry_dependency);
101
cast->set_req(0, c);
102
return cast;
103
}
104
case Op_CastPP: {
105
Node* cast = new CastPPNode(n, t, carry_dependency);
106
cast->set_req(0, c);
107
return cast;
108
}
109
case Op_CheckCastPP: return new CheckCastPPNode(c, n, t, carry_dependency);
110
default:
111
fatal("Bad opcode %d", opcode);
112
}
113
return NULL;
114
}
115
116
Node* ConstraintCastNode::make(Node* c, Node *n, const Type *t, BasicType bt) {
117
switch(bt) {
118
case T_INT: {
119
return make_cast(Op_CastII, c, n, t, false);
120
}
121
case T_LONG: {
122
return make_cast(Op_CastLL, c, n, t, false);
123
}
124
default:
125
fatal("Bad basic type %s", type2name(bt));
126
}
127
return NULL;
128
}
129
130
TypeNode* ConstraintCastNode::dominating_cast(PhaseGVN* gvn, PhaseTransform* pt) const {
131
Node* val = in(1);
132
Node* ctl = in(0);
133
int opc = Opcode();
134
if (ctl == NULL) {
135
return NULL;
136
}
137
// Range check CastIIs may all end up under a single range check and
138
// in that case only the narrower CastII would be kept by the code
139
// below which would be incorrect.
140
if (is_CastII() && as_CastII()->has_range_check()) {
141
return NULL;
142
}
143
if (type()->isa_rawptr() && (gvn->type_or_null(val) == NULL || gvn->type(val)->isa_oopptr())) {
144
return NULL;
145
}
146
for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
147
Node* u = val->fast_out(i);
148
if (u != this &&
149
u->outcnt() > 0 &&
150
u->Opcode() == opc &&
151
u->in(0) != NULL &&
152
u->bottom_type()->higher_equal(type())) {
153
if (pt->is_dominator(u->in(0), ctl)) {
154
return u->as_Type();
155
}
156
if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() &&
157
u->in(0)->is_Proj() && u->in(0)->in(0)->is_Initialize() &&
158
u->in(1)->in(0)->as_Allocate()->initialization() == u->in(0)->in(0)) {
159
// CheckCastPP following an allocation always dominates all
160
// use of the allocation result
161
return u->as_Type();
162
}
163
}
164
}
165
return NULL;
166
}
167
168
#ifndef PRODUCT
169
void ConstraintCastNode::dump_spec(outputStream *st) const {
170
TypeNode::dump_spec(st);
171
if (_carry_dependency) {
172
st->print(" carry dependency");
173
}
174
}
175
#endif
176
177
const Type* CastIINode::Value(PhaseGVN* phase) const {
178
const Type *res = ConstraintCastNode::Value(phase);
179
180
// Try to improve the type of the CastII if we recognize a CmpI/If
181
// pattern.
182
if (_carry_dependency) {
183
if (in(0) != NULL && in(0)->in(0) != NULL && in(0)->in(0)->is_If()) {
184
assert(in(0)->is_IfFalse() || in(0)->is_IfTrue(), "should be If proj");
185
Node* proj = in(0);
186
if (proj->in(0)->in(1)->is_Bool()) {
187
Node* b = proj->in(0)->in(1);
188
if (b->in(1)->Opcode() == Op_CmpI) {
189
Node* cmp = b->in(1);
190
if (cmp->in(1) == in(1) && phase->type(cmp->in(2))->isa_int()) {
191
const TypeInt* in2_t = phase->type(cmp->in(2))->is_int();
192
const Type* t = TypeInt::INT;
193
BoolTest test = b->as_Bool()->_test;
194
if (proj->is_IfFalse()) {
195
test = test.negate();
196
}
197
BoolTest::mask m = test._test;
198
jlong lo_long = min_jint;
199
jlong hi_long = max_jint;
200
if (m == BoolTest::le || m == BoolTest::lt) {
201
hi_long = in2_t->_hi;
202
if (m == BoolTest::lt) {
203
hi_long -= 1;
204
}
205
} else if (m == BoolTest::ge || m == BoolTest::gt) {
206
lo_long = in2_t->_lo;
207
if (m == BoolTest::gt) {
208
lo_long += 1;
209
}
210
} else if (m == BoolTest::eq) {
211
lo_long = in2_t->_lo;
212
hi_long = in2_t->_hi;
213
} else if (m == BoolTest::ne) {
214
// can't do any better
215
} else {
216
stringStream ss;
217
test.dump_on(&ss);
218
fatal("unexpected comparison %s", ss.as_string());
219
}
220
int lo_int = (int)lo_long;
221
int hi_int = (int)hi_long;
222
223
if (lo_long != (jlong)lo_int) {
224
lo_int = min_jint;
225
}
226
if (hi_long != (jlong)hi_int) {
227
hi_int = max_jint;
228
}
229
230
t = TypeInt::make(lo_int, hi_int, Type::WidenMax);
231
232
res = res->filter_speculative(t);
233
234
return res;
235
}
236
}
237
}
238
}
239
}
240
return res;
241
}
242
243
static Node* find_or_make_CastII(PhaseIterGVN* igvn, Node* parent, Node* control, const TypeInt* type, bool carry_dependency) {
244
Node* n = new CastIINode(parent, type, carry_dependency);
245
n->set_req(0, control);
246
Node* existing = igvn->hash_find_insert(n);
247
if (existing != NULL) {
248
n->destruct(igvn);
249
return existing;
250
}
251
return igvn->register_new_node_with_optimizer(n);
252
}
253
254
Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) {
255
Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
256
if (progress != NULL) {
257
return progress;
258
}
259
260
PhaseIterGVN *igvn = phase->is_IterGVN();
261
const TypeInt* this_type = this->type()->is_int();
262
Node* z = in(1);
263
const TypeInteger* rx = NULL;
264
const TypeInteger* ry = NULL;
265
// Similar to ConvI2LNode::Ideal() for the same reasons
266
if (!_range_check_dependency && Compile::push_thru_add(phase, z, this_type, rx, ry, T_INT)) {
267
if (igvn == NULL) {
268
// Postpone this optimization to iterative GVN, where we can handle deep
269
// AddI chains without an exponential number of recursive Ideal() calls.
270
phase->record_for_igvn(this);
271
return NULL;
272
}
273
int op = z->Opcode();
274
Node* x = z->in(1);
275
Node* y = z->in(2);
276
277
Node* cx = find_or_make_CastII(igvn, x, in(0), rx->is_int(), _carry_dependency);
278
Node* cy = find_or_make_CastII(igvn, y, in(0), ry->is_int(), _carry_dependency);
279
switch (op) {
280
case Op_AddI: return new AddINode(cx, cy);
281
case Op_SubI: return new SubINode(cx, cy);
282
default: ShouldNotReachHere();
283
}
284
}
285
286
// Similar to ConvI2LNode::Ideal() for the same reasons
287
// Do not narrow the type of range check dependent CastIINodes to
288
// avoid corruption of the graph if a CastII is replaced by TOP but
289
// the corresponding range check is not removed.
290
if (can_reshape && !_range_check_dependency) {
291
if (phase->C->post_loop_opts_phase()) {
292
const TypeInt* this_type = this->type()->is_int();
293
const TypeInt* in_type = phase->type(in(1))->isa_int();
294
if (in_type != NULL && this_type != NULL &&
295
(in_type->_lo != this_type->_lo ||
296
in_type->_hi != this_type->_hi)) {
297
jint lo1 = this_type->_lo;
298
jint hi1 = this_type->_hi;
299
int w1 = this_type->_widen;
300
301
if (lo1 >= 0) {
302
// Keep a range assertion of >=0.
303
lo1 = 0; hi1 = max_jint;
304
} else if (hi1 < 0) {
305
// Keep a range assertion of <0.
306
lo1 = min_jint; hi1 = -1;
307
} else {
308
lo1 = min_jint; hi1 = max_jint;
309
}
310
const TypeInt* wtype = TypeInt::make(MAX2(in_type->_lo, lo1),
311
MIN2(in_type->_hi, hi1),
312
MAX2((int)in_type->_widen, w1));
313
if (wtype != type()) {
314
set_type(wtype);
315
return this;
316
}
317
}
318
} else {
319
phase->C->record_for_post_loop_opts_igvn(this);
320
}
321
}
322
return NULL;
323
}
324
325
Node* CastIINode::Identity(PhaseGVN* phase) {
326
Node* progress = ConstraintCastNode::Identity(phase);
327
if (progress != this) {
328
return progress;
329
}
330
if (_range_check_dependency) {
331
if (phase->C->post_loop_opts_phase()) {
332
return this->in(1);
333
} else {
334
phase->C->record_for_post_loop_opts_igvn(this);
335
}
336
}
337
return this;
338
}
339
340
bool CastIINode::cmp(const Node &n) const {
341
return ConstraintCastNode::cmp(n) && ((CastIINode&)n)._range_check_dependency == _range_check_dependency;
342
}
343
344
uint CastIINode::size_of() const {
345
return sizeof(*this);
346
}
347
348
#ifndef PRODUCT
349
void CastIINode::dump_spec(outputStream* st) const {
350
ConstraintCastNode::dump_spec(st);
351
if (_range_check_dependency) {
352
st->print(" range check dependency");
353
}
354
}
355
#endif
356
357
//=============================================================================
358
//------------------------------Identity---------------------------------------
359
// If input is already higher or equal to cast type, then this is an identity.
360
Node* CheckCastPPNode::Identity(PhaseGVN* phase) {
361
Node* dom = dominating_cast(phase, phase);
362
if (dom != NULL) {
363
return dom;
364
}
365
if (_carry_dependency) {
366
return this;
367
}
368
const Type* t = phase->type(in(1));
369
if (EnableVectorReboxing && in(1)->Opcode() == Op_VectorBox) {
370
if (t->higher_equal_speculative(phase->type(this))) {
371
return in(1);
372
}
373
} else if (t == phase->type(this)) {
374
// Toned down to rescue meeting at a Phi 3 different oops all implementing
375
// the same interface.
376
return in(1);
377
}
378
return this;
379
}
380
381
//------------------------------Value------------------------------------------
382
// Take 'join' of input and cast-up type, unless working with an Interface
383
const Type* CheckCastPPNode::Value(PhaseGVN* phase) const {
384
if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
385
386
const Type *inn = phase->type(in(1));
387
if( inn == Type::TOP ) return Type::TOP; // No information yet
388
389
const TypePtr *in_type = inn->isa_ptr();
390
const TypePtr *my_type = _type->isa_ptr();
391
const Type *result = _type;
392
if( in_type != NULL && my_type != NULL ) {
393
TypePtr::PTR in_ptr = in_type->ptr();
394
if (in_ptr == TypePtr::Null) {
395
result = in_type;
396
} else if (in_ptr == TypePtr::Constant) {
397
if (my_type->isa_rawptr()) {
398
result = my_type;
399
} else {
400
const TypeOopPtr *jptr = my_type->isa_oopptr();
401
assert(jptr, "");
402
result = !in_type->higher_equal(_type)
403
? my_type->cast_to_ptr_type(TypePtr::NotNull)
404
: in_type;
405
}
406
} else {
407
result = my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
408
}
409
}
410
411
// This is the code from TypePtr::xmeet() that prevents us from
412
// having 2 ways to represent the same type. We have to replicate it
413
// here because we don't go through meet/join.
414
if (result->remove_speculative() == result->speculative()) {
415
result = result->remove_speculative();
416
}
417
418
// Same as above: because we don't go through meet/join, remove the
419
// speculative type if we know we won't use it.
420
return result->cleanup_speculative();
421
422
// JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
423
// FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!
424
425
//
426
// Remove this code after overnight run indicates no performance
427
// loss from not performing JOIN at CheckCastPPNode
428
//
429
// const TypeInstPtr *in_oop = in->isa_instptr();
430
// const TypeInstPtr *my_oop = _type->isa_instptr();
431
// // If either input is an 'interface', return destination type
432
// assert (in_oop == NULL || in_oop->klass() != NULL, "");
433
// assert (my_oop == NULL || my_oop->klass() != NULL, "");
434
// if( (in_oop && in_oop->klass()->is_interface())
435
// ||(my_oop && my_oop->klass()->is_interface()) ) {
436
// TypePtr::PTR in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
437
// // Preserve cast away nullness for interfaces
438
// if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
439
// return my_oop->cast_to_ptr_type(TypePtr::NotNull);
440
// }
441
// return _type;
442
// }
443
//
444
// // Neither the input nor the destination type is an interface,
445
//
446
// // history: JOIN used to cause weird corner case bugs
447
// // return (in == TypeOopPtr::NULL_PTR) ? in : _type;
448
// // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
449
// // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
450
// const Type *join = in->join(_type);
451
// // Check if join preserved NotNull'ness for pointers
452
// if( join->isa_ptr() && _type->isa_ptr() ) {
453
// TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
454
// TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
455
// // If there isn't any NotNull'ness to preserve
456
// // OR if join preserved NotNull'ness then return it
457
// if( type_ptr == TypePtr::BotPTR || type_ptr == TypePtr::Null ||
458
// join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
459
// return join;
460
// }
461
// // ELSE return same old type as before
462
// return _type;
463
// }
464
// // Not joining two pointers
465
// return join;
466
}
467
468
//=============================================================================
469
//------------------------------Value------------------------------------------
470
const Type* CastX2PNode::Value(PhaseGVN* phase) const {
471
const Type* t = phase->type(in(1));
472
if (t == Type::TOP) return Type::TOP;
473
if (t->base() == Type_X && t->singleton()) {
474
uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
475
if (bits == 0) return TypePtr::NULL_PTR;
476
return TypeRawPtr::make((address) bits);
477
}
478
return CastX2PNode::bottom_type();
479
}
480
481
//------------------------------Idealize---------------------------------------
482
static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
483
if (t == Type::TOP) return false;
484
const TypeX* tl = t->is_intptr_t();
485
jint lo = min_jint;
486
jint hi = max_jint;
487
if (but_not_min_int) ++lo; // caller wants to negate the value w/o overflow
488
return (tl->_lo >= lo) && (tl->_hi <= hi);
489
}
490
491
static inline Node* addP_of_X2P(PhaseGVN *phase,
492
Node* base,
493
Node* dispX,
494
bool negate = false) {
495
if (negate) {
496
dispX = phase->transform(new SubXNode(phase->MakeConX(0), dispX));
497
}
498
return new AddPNode(phase->C->top(),
499
phase->transform(new CastX2PNode(base)),
500
dispX);
501
}
502
503
Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
504
// convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
505
int op = in(1)->Opcode();
506
Node* x;
507
Node* y;
508
switch (op) {
509
case Op_SubX:
510
x = in(1)->in(1);
511
// Avoid ideal transformations ping-pong between this and AddP for raw pointers.
512
if (phase->find_intptr_t_con(x, -1) == 0)
513
break;
514
y = in(1)->in(2);
515
if (fits_in_int(phase->type(y), true)) {
516
return addP_of_X2P(phase, x, y, true);
517
}
518
break;
519
case Op_AddX:
520
x = in(1)->in(1);
521
y = in(1)->in(2);
522
if (fits_in_int(phase->type(y))) {
523
return addP_of_X2P(phase, x, y);
524
}
525
if (fits_in_int(phase->type(x))) {
526
return addP_of_X2P(phase, y, x);
527
}
528
break;
529
}
530
return NULL;
531
}
532
533
//------------------------------Identity---------------------------------------
534
Node* CastX2PNode::Identity(PhaseGVN* phase) {
535
if (in(1)->Opcode() == Op_CastP2X) return in(1)->in(1);
536
return this;
537
}
538
539
//=============================================================================
540
//------------------------------Value------------------------------------------
541
const Type* CastP2XNode::Value(PhaseGVN* phase) const {
542
const Type* t = phase->type(in(1));
543
if (t == Type::TOP) return Type::TOP;
544
if (t->base() == Type::RawPtr && t->singleton()) {
545
uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
546
return TypeX::make(bits);
547
}
548
return CastP2XNode::bottom_type();
549
}
550
551
Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
552
return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
553
}
554
555
//------------------------------Identity---------------------------------------
556
Node* CastP2XNode::Identity(PhaseGVN* phase) {
557
if (in(1)->Opcode() == Op_CastX2P) return in(1)->in(1);
558
return this;
559
}
560
561