Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/opto/cfgnode.cpp
40930 views
1
/*
2
* Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "gc/shared/barrierSet.hpp"
27
#include "gc/shared/c2/barrierSetC2.hpp"
28
#include "memory/allocation.inline.hpp"
29
#include "memory/resourceArea.hpp"
30
#include "oops/objArrayKlass.hpp"
31
#include "opto/addnode.hpp"
32
#include "opto/castnode.hpp"
33
#include "opto/cfgnode.hpp"
34
#include "opto/connode.hpp"
35
#include "opto/convertnode.hpp"
36
#include "opto/loopnode.hpp"
37
#include "opto/machnode.hpp"
38
#include "opto/movenode.hpp"
39
#include "opto/narrowptrnode.hpp"
40
#include "opto/mulnode.hpp"
41
#include "opto/phaseX.hpp"
42
#include "opto/regmask.hpp"
43
#include "opto/runtime.hpp"
44
#include "opto/subnode.hpp"
45
#include "opto/vectornode.hpp"
46
#include "utilities/vmError.hpp"
47
48
// Portions of code courtesy of Clifford Click
49
50
// Optimization - Graph Style
51
52
//=============================================================================
53
//------------------------------Value------------------------------------------
54
// Compute the type of the RegionNode.
55
const Type* RegionNode::Value(PhaseGVN* phase) const {
56
for( uint i=1; i<req(); ++i ) { // For all paths in
57
Node *n = in(i); // Get Control source
58
if( !n ) continue; // Missing inputs are TOP
59
if( phase->type(n) == Type::CONTROL )
60
return Type::CONTROL;
61
}
62
return Type::TOP; // All paths dead? Then so are we
63
}
64
65
//------------------------------Identity---------------------------------------
66
// Check for Region being Identity.
67
Node* RegionNode::Identity(PhaseGVN* phase) {
68
// Cannot have Region be an identity, even if it has only 1 input.
69
// Phi users cannot have their Region input folded away for them,
70
// since they need to select the proper data input
71
return this;
72
}
73
74
//------------------------------merge_region-----------------------------------
75
// If a Region flows into a Region, merge into one big happy merge. This is
76
// hard to do if there is stuff that has to happen
77
static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
78
if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
79
return NULL;
80
Node *progress = NULL; // Progress flag
81
PhaseIterGVN *igvn = phase->is_IterGVN();
82
83
uint rreq = region->req();
84
for( uint i = 1; i < rreq; i++ ) {
85
Node *r = region->in(i);
86
if( r && r->Opcode() == Op_Region && // Found a region?
87
r->in(0) == r && // Not already collapsed?
88
r != region && // Avoid stupid situations
89
r->outcnt() == 2 ) { // Self user and 'region' user only?
90
assert(!r->as_Region()->has_phi(), "no phi users");
91
if( !progress ) { // No progress
92
if (region->has_phi()) {
93
return NULL; // Only flatten if no Phi users
94
// igvn->hash_delete( phi );
95
}
96
igvn->hash_delete( region );
97
progress = region; // Making progress
98
}
99
igvn->hash_delete( r );
100
101
// Append inputs to 'r' onto 'region'
102
for( uint j = 1; j < r->req(); j++ ) {
103
// Move an input from 'r' to 'region'
104
region->add_req(r->in(j));
105
r->set_req(j, phase->C->top());
106
// Update phis of 'region'
107
//for( uint k = 0; k < max; k++ ) {
108
// Node *phi = region->out(k);
109
// if( phi->is_Phi() ) {
110
// phi->add_req(phi->in(i));
111
// }
112
//}
113
114
rreq++; // One more input to Region
115
} // Found a region to merge into Region
116
igvn->_worklist.push(r);
117
// Clobber pointer to the now dead 'r'
118
region->set_req(i, phase->C->top());
119
}
120
}
121
122
return progress;
123
}
124
125
126
127
//--------------------------------has_phi--------------------------------------
128
// Helper function: Return any PhiNode that uses this region or NULL
129
PhiNode* RegionNode::has_phi() const {
130
for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
131
Node* phi = fast_out(i);
132
if (phi->is_Phi()) { // Check for Phi users
133
assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
134
return phi->as_Phi(); // this one is good enough
135
}
136
}
137
138
return NULL;
139
}
140
141
142
//-----------------------------has_unique_phi----------------------------------
143
// Helper function: Return the only PhiNode that uses this region or NULL
144
PhiNode* RegionNode::has_unique_phi() const {
145
// Check that only one use is a Phi
146
PhiNode* only_phi = NULL;
147
for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
148
Node* phi = fast_out(i);
149
if (phi->is_Phi()) { // Check for Phi users
150
assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
151
if (only_phi == NULL) {
152
only_phi = phi->as_Phi();
153
} else {
154
return NULL; // multiple phis
155
}
156
}
157
}
158
159
return only_phi;
160
}
161
162
163
//------------------------------check_phi_clipping-----------------------------
164
// Helper function for RegionNode's identification of FP clipping
165
// Check inputs to the Phi
166
static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
167
min = NULL;
168
max = NULL;
169
val = NULL;
170
min_idx = 0;
171
max_idx = 0;
172
val_idx = 0;
173
uint phi_max = phi->req();
174
if( phi_max == 4 ) {
175
for( uint j = 1; j < phi_max; ++j ) {
176
Node *n = phi->in(j);
177
int opcode = n->Opcode();
178
switch( opcode ) {
179
case Op_ConI:
180
{
181
if( min == NULL ) {
182
min = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
183
min_idx = j;
184
} else {
185
max = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
186
max_idx = j;
187
if( min->get_int() > max->get_int() ) {
188
// Swap min and max
189
ConNode *temp;
190
uint temp_idx;
191
temp = min; min = max; max = temp;
192
temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
193
}
194
}
195
}
196
break;
197
default:
198
{
199
val = n;
200
val_idx = j;
201
}
202
break;
203
}
204
}
205
}
206
return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
207
}
208
209
210
//------------------------------check_if_clipping------------------------------
211
// Helper function for RegionNode's identification of FP clipping
212
// Check that inputs to Region come from two IfNodes,
213
//
214
// If
215
// False True
216
// If |
217
// False True |
218
// | | |
219
// RegionNode_inputs
220
//
221
static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
222
top_if = NULL;
223
bot_if = NULL;
224
225
// Check control structure above RegionNode for (if ( if ) )
226
Node *in1 = region->in(1);
227
Node *in2 = region->in(2);
228
Node *in3 = region->in(3);
229
// Check that all inputs are projections
230
if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
231
Node *in10 = in1->in(0);
232
Node *in20 = in2->in(0);
233
Node *in30 = in3->in(0);
234
// Check that #1 and #2 are ifTrue and ifFalse from same If
235
if( in10 != NULL && in10->is_If() &&
236
in20 != NULL && in20->is_If() &&
237
in30 != NULL && in30->is_If() && in10 == in20 &&
238
(in1->Opcode() != in2->Opcode()) ) {
239
Node *in100 = in10->in(0);
240
Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
241
// Check that control for in10 comes from other branch of IF from in3
242
if( in1000 != NULL && in1000->is_If() &&
243
in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
244
// Control pattern checks
245
top_if = (IfNode*)in1000;
246
bot_if = (IfNode*)in10;
247
}
248
}
249
}
250
251
return (top_if != NULL);
252
}
253
254
255
//------------------------------check_convf2i_clipping-------------------------
256
// Helper function for RegionNode's identification of FP clipping
257
// Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
258
static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
259
convf2i = NULL;
260
261
// Check for the RShiftNode
262
Node *rshift = phi->in(idx);
263
assert( rshift, "Previous checks ensure phi input is present");
264
if( rshift->Opcode() != Op_RShiftI ) { return false; }
265
266
// Check for the LShiftNode
267
Node *lshift = rshift->in(1);
268
assert( lshift, "Previous checks ensure phi input is present");
269
if( lshift->Opcode() != Op_LShiftI ) { return false; }
270
271
// Check for the ConvF2INode
272
Node *conv = lshift->in(1);
273
if( conv->Opcode() != Op_ConvF2I ) { return false; }
274
275
// Check that shift amounts are only to get sign bits set after F2I
276
jint max_cutoff = max->get_int();
277
jint min_cutoff = min->get_int();
278
jint left_shift = lshift->in(2)->get_int();
279
jint right_shift = rshift->in(2)->get_int();
280
jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
281
if( left_shift != right_shift ||
282
0 > left_shift || left_shift >= BitsPerJavaInteger ||
283
max_post_shift < max_cutoff ||
284
max_post_shift < -min_cutoff ) {
285
// Shifts are necessary but current transformation eliminates them
286
return false;
287
}
288
289
// OK to return the result of ConvF2I without shifting
290
convf2i = (ConvF2INode*)conv;
291
return true;
292
}
293
294
295
//------------------------------check_compare_clipping-------------------------
296
// Helper function for RegionNode's identification of FP clipping
297
static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
298
Node *i1 = iff->in(1);
299
if ( !i1->is_Bool() ) { return false; }
300
BoolNode *bool1 = i1->as_Bool();
301
if( less_than && bool1->_test._test != BoolTest::le ) { return false; }
302
else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
303
const Node *cmpF = bool1->in(1);
304
if( cmpF->Opcode() != Op_CmpF ) { return false; }
305
// Test that the float value being compared against
306
// is equivalent to the int value used as a limit
307
Node *nodef = cmpF->in(2);
308
if( nodef->Opcode() != Op_ConF ) { return false; }
309
jfloat conf = nodef->getf();
310
jint coni = limit->get_int();
311
if( ((int)conf) != coni ) { return false; }
312
input = cmpF->in(1);
313
return true;
314
}
315
316
//------------------------------is_unreachable_region--------------------------
317
// Find if the Region node is reachable from the root.
318
bool RegionNode::is_unreachable_region(const PhaseGVN* phase) {
319
Node* top = phase->C->top();
320
assert(req() == 2 || (req() == 3 && in(1) != NULL && in(2) == top), "sanity check arguments");
321
if (_is_unreachable_region) {
322
// Return cached result from previous evaluation which should still be valid
323
assert(is_unreachable_from_root(phase), "walk the graph again and check if its indeed unreachable");
324
return true;
325
}
326
327
// First, cut the simple case of fallthrough region when NONE of
328
// region's phis references itself directly or through a data node.
329
if (is_possible_unsafe_loop(phase)) {
330
// If we have a possible unsafe loop, check if the region node is actually unreachable from root.
331
if (is_unreachable_from_root(phase)) {
332
_is_unreachable_region = true;
333
return true;
334
}
335
}
336
return false;
337
}
338
339
bool RegionNode::is_possible_unsafe_loop(const PhaseGVN* phase) const {
340
uint max = outcnt();
341
uint i;
342
for (i = 0; i < max; i++) {
343
Node* n = raw_out(i);
344
if (n != NULL && n->is_Phi()) {
345
PhiNode* phi = n->as_Phi();
346
assert(phi->in(0) == this, "sanity check phi");
347
if (phi->outcnt() == 0) {
348
continue; // Safe case - no loops
349
}
350
if (phi->outcnt() == 1) {
351
Node* u = phi->raw_out(0);
352
// Skip if only one use is an other Phi or Call or Uncommon trap.
353
// It is safe to consider this case as fallthrough.
354
if (u != NULL && (u->is_Phi() || u->is_CFG())) {
355
continue;
356
}
357
}
358
// Check when phi references itself directly or through an other node.
359
if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe) {
360
break; // Found possible unsafe data loop.
361
}
362
}
363
}
364
if (i >= max) {
365
return false; // An unsafe case was NOT found - don't need graph walk.
366
}
367
return true;
368
}
369
370
bool RegionNode::is_unreachable_from_root(const PhaseGVN* phase) const {
371
ResourceMark rm;
372
Node_List nstack;
373
VectorSet visited;
374
375
// Mark all control nodes reachable from root outputs
376
Node *n = (Node*)phase->C->root();
377
nstack.push(n);
378
visited.set(n->_idx);
379
while (nstack.size() != 0) {
380
n = nstack.pop();
381
uint max = n->outcnt();
382
for (uint i = 0; i < max; i++) {
383
Node* m = n->raw_out(i);
384
if (m != NULL && m->is_CFG()) {
385
if (m == this) {
386
return false; // We reached the Region node - it is not dead.
387
}
388
if (!visited.test_set(m->_idx))
389
nstack.push(m);
390
}
391
}
392
}
393
return true; // The Region node is unreachable - it is dead.
394
}
395
396
bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
397
// Incremental inlining + PhaseStringOpts sometimes produce:
398
//
399
// cmpP with 1 top input
400
// |
401
// If
402
// / \
403
// IfFalse IfTrue /- Some Node
404
// \ / / /
405
// Region / /-MergeMem
406
// \---Phi
407
//
408
//
409
// It's expected by PhaseStringOpts that the Region goes away and is
410
// replaced by If's control input but because there's still a Phi,
411
// the Region stays in the graph. The top input from the cmpP is
412
// propagated forward and a subgraph that is useful goes away. The
413
// code below replaces the Phi with the MergeMem so that the Region
414
// is simplified.
415
416
PhiNode* phi = has_unique_phi();
417
if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
418
MergeMemNode* m = NULL;
419
assert(phi->req() == 3, "same as region");
420
for (uint i = 1; i < 3; ++i) {
421
Node *mem = phi->in(i);
422
if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
423
// Nothing is control-dependent on path #i except the region itself.
424
m = mem->as_MergeMem();
425
uint j = 3 - i;
426
Node* other = phi->in(j);
427
if (other && other == m->base_memory()) {
428
// m is a successor memory to other, and is not pinned inside the diamond, so push it out.
429
// This will allow the diamond to collapse completely.
430
phase->is_IterGVN()->replace_node(phi, m);
431
return true;
432
}
433
}
434
}
435
}
436
return false;
437
}
438
439
//------------------------------Ideal------------------------------------------
440
// Return a node which is more "ideal" than the current node. Must preserve
441
// the CFG, but we can still strip out dead paths.
442
Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
443
if( !can_reshape && !in(0) ) return NULL; // Already degraded to a Copy
444
assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
445
446
// Check for RegionNode with no Phi users and both inputs come from either
447
// arm of the same IF. If found, then the control-flow split is useless.
448
bool has_phis = false;
449
if (can_reshape) { // Need DU info to check for Phi users
450
has_phis = (has_phi() != NULL); // Cache result
451
if (has_phis && try_clean_mem_phi(phase)) {
452
has_phis = false;
453
}
454
455
if (!has_phis) { // No Phi users? Nothing merging?
456
for (uint i = 1; i < req()-1; i++) {
457
Node *if1 = in(i);
458
if( !if1 ) continue;
459
Node *iff = if1->in(0);
460
if( !iff || !iff->is_If() ) continue;
461
for( uint j=i+1; j<req(); j++ ) {
462
if( in(j) && in(j)->in(0) == iff &&
463
if1->Opcode() != in(j)->Opcode() ) {
464
// Add the IF Projections to the worklist. They (and the IF itself)
465
// will be eliminated if dead.
466
phase->is_IterGVN()->add_users_to_worklist(iff);
467
set_req(i, iff->in(0));// Skip around the useless IF diamond
468
set_req(j, NULL);
469
return this; // Record progress
470
}
471
}
472
}
473
}
474
}
475
476
// Remove TOP or NULL input paths. If only 1 input path remains, this Region
477
// degrades to a copy.
478
bool add_to_worklist = false;
479
bool modified = false;
480
int cnt = 0; // Count of values merging
481
DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
482
int del_it = 0; // The last input path we delete
483
// For all inputs...
484
for( uint i=1; i<req(); ++i ){// For all paths in
485
Node *n = in(i); // Get the input
486
if( n != NULL ) {
487
// Remove useless control copy inputs
488
if( n->is_Region() && n->as_Region()->is_copy() ) {
489
set_req(i, n->nonnull_req());
490
modified = true;
491
i--;
492
continue;
493
}
494
if( n->is_Proj() ) { // Remove useless rethrows
495
Node *call = n->in(0);
496
if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
497
set_req(i, call->in(0));
498
modified = true;
499
i--;
500
continue;
501
}
502
}
503
if( phase->type(n) == Type::TOP ) {
504
set_req(i, NULL); // Ignore TOP inputs
505
modified = true;
506
i--;
507
continue;
508
}
509
cnt++; // One more value merging
510
511
} else if (can_reshape) { // Else found dead path with DU info
512
PhaseIterGVN *igvn = phase->is_IterGVN();
513
del_req(i); // Yank path from self
514
del_it = i;
515
uint max = outcnt();
516
DUIterator j;
517
bool progress = true;
518
while(progress) { // Need to establish property over all users
519
progress = false;
520
for (j = outs(); has_out(j); j++) {
521
Node *n = out(j);
522
if( n->req() != req() && n->is_Phi() ) {
523
assert( n->in(0) == this, "" );
524
igvn->hash_delete(n); // Yank from hash before hacking edges
525
n->set_req_X(i,NULL,igvn);// Correct DU info
526
n->del_req(i); // Yank path from Phis
527
if( max != outcnt() ) {
528
progress = true;
529
j = refresh_out_pos(j);
530
max = outcnt();
531
}
532
}
533
}
534
}
535
add_to_worklist = true;
536
i--;
537
}
538
}
539
540
if (can_reshape && cnt == 1) {
541
// Is it dead loop?
542
// If it is LoopNopde it had 2 (+1 itself) inputs and
543
// one of them was cut. The loop is dead if it was EntryContol.
544
// Loop node may have only one input because entry path
545
// is removed in PhaseIdealLoop::Dominators().
546
assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
547
if ((this->is_Loop() && (del_it == LoopNode::EntryControl ||
548
(del_it == 0 && is_unreachable_region(phase)))) ||
549
(!this->is_Loop() && has_phis && is_unreachable_region(phase))) {
550
// Yes, the region will be removed during the next step below.
551
// Cut the backedge input and remove phis since no data paths left.
552
// We don't cut outputs to other nodes here since we need to put them
553
// on the worklist.
554
PhaseIterGVN *igvn = phase->is_IterGVN();
555
if (in(1)->outcnt() == 1) {
556
igvn->_worklist.push(in(1));
557
}
558
del_req(1);
559
cnt = 0;
560
assert( req() == 1, "no more inputs expected" );
561
uint max = outcnt();
562
bool progress = true;
563
Node *top = phase->C->top();
564
DUIterator j;
565
while(progress) {
566
progress = false;
567
for (j = outs(); has_out(j); j++) {
568
Node *n = out(j);
569
if( n->is_Phi() ) {
570
assert(n->in(0) == this, "");
571
assert( n->req() == 2 && n->in(1) != NULL, "Only one data input expected" );
572
// Break dead loop data path.
573
// Eagerly replace phis with top to avoid regionless phis.
574
igvn->replace_node(n, top);
575
if( max != outcnt() ) {
576
progress = true;
577
j = refresh_out_pos(j);
578
max = outcnt();
579
}
580
}
581
}
582
}
583
add_to_worklist = true;
584
}
585
}
586
if (add_to_worklist) {
587
phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
588
}
589
590
if( cnt <= 1 ) { // Only 1 path in?
591
set_req(0, NULL); // Null control input for region copy
592
if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
593
// No inputs or all inputs are NULL.
594
return NULL;
595
} else if (can_reshape) { // Optimization phase - remove the node
596
PhaseIterGVN *igvn = phase->is_IterGVN();
597
// Strip mined (inner) loop is going away, remove outer loop.
598
if (is_CountedLoop() &&
599
as_Loop()->is_strip_mined()) {
600
Node* outer_sfpt = as_CountedLoop()->outer_safepoint();
601
Node* outer_out = as_CountedLoop()->outer_loop_exit();
602
if (outer_sfpt != NULL && outer_out != NULL) {
603
Node* in = outer_sfpt->in(0);
604
igvn->replace_node(outer_out, in);
605
LoopNode* outer = as_CountedLoop()->outer_loop();
606
igvn->replace_input_of(outer, LoopNode::LoopBackControl, igvn->C->top());
607
}
608
}
609
Node *parent_ctrl;
610
if( cnt == 0 ) {
611
assert( req() == 1, "no inputs expected" );
612
// During IGVN phase such region will be subsumed by TOP node
613
// so region's phis will have TOP as control node.
614
// Kill phis here to avoid it.
615
// Also set other user's input to top.
616
parent_ctrl = phase->C->top();
617
} else {
618
// The fallthrough case since we already checked dead loops above.
619
parent_ctrl = in(1);
620
assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
621
assert(parent_ctrl != this, "Close dead loop");
622
}
623
if (!add_to_worklist)
624
igvn->add_users_to_worklist(this); // Check for further allowed opts
625
for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
626
Node* n = last_out(i);
627
igvn->hash_delete(n); // Remove from worklist before modifying edges
628
if (n->outcnt() == 0) {
629
int uses_found = n->replace_edge(this, phase->C->top(), igvn);
630
if (uses_found > 1) { // (--i) done at the end of the loop.
631
i -= (uses_found - 1);
632
}
633
continue;
634
}
635
if( n->is_Phi() ) { // Collapse all Phis
636
// Eagerly replace phis to avoid regionless phis.
637
Node* in;
638
if( cnt == 0 ) {
639
assert( n->req() == 1, "No data inputs expected" );
640
in = parent_ctrl; // replaced by top
641
} else {
642
assert( n->req() == 2 && n->in(1) != NULL, "Only one data input expected" );
643
in = n->in(1); // replaced by unique input
644
if( n->as_Phi()->is_unsafe_data_reference(in) )
645
in = phase->C->top(); // replaced by top
646
}
647
igvn->replace_node(n, in);
648
}
649
else if( n->is_Region() ) { // Update all incoming edges
650
assert(n != this, "Must be removed from DefUse edges");
651
int uses_found = n->replace_edge(this, parent_ctrl, igvn);
652
if (uses_found > 1) { // (--i) done at the end of the loop.
653
i -= (uses_found - 1);
654
}
655
}
656
else {
657
assert(n->in(0) == this, "Expect RegionNode to be control parent");
658
n->set_req(0, parent_ctrl);
659
}
660
#ifdef ASSERT
661
for( uint k=0; k < n->req(); k++ ) {
662
assert(n->in(k) != this, "All uses of RegionNode should be gone");
663
}
664
#endif
665
}
666
// Remove the RegionNode itself from DefUse info
667
igvn->remove_dead_node(this);
668
return NULL;
669
}
670
return this; // Record progress
671
}
672
673
674
// If a Region flows into a Region, merge into one big happy merge.
675
if (can_reshape) {
676
Node *m = merge_region(this, phase);
677
if (m != NULL) return m;
678
}
679
680
// Check if this region is the root of a clipping idiom on floats
681
if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
682
// Check that only one use is a Phi and that it simplifies to two constants +
683
PhiNode* phi = has_unique_phi();
684
if (phi != NULL) { // One Phi user
685
// Check inputs to the Phi
686
ConNode *min;
687
ConNode *max;
688
Node *val;
689
uint min_idx;
690
uint max_idx;
691
uint val_idx;
692
if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx ) ) {
693
IfNode *top_if;
694
IfNode *bot_if;
695
if( check_if_clipping( this, bot_if, top_if ) ) {
696
// Control pattern checks, now verify compares
697
Node *top_in = NULL; // value being compared against
698
Node *bot_in = NULL;
699
if( check_compare_clipping( true, bot_if, min, bot_in ) &&
700
check_compare_clipping( false, top_if, max, top_in ) ) {
701
if( bot_in == top_in ) {
702
PhaseIterGVN *gvn = phase->is_IterGVN();
703
assert( gvn != NULL, "Only had DefUse info in IterGVN");
704
// Only remaining check is that bot_in == top_in == (Phi's val + mods)
705
706
// Check for the ConvF2INode
707
ConvF2INode *convf2i;
708
if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
709
convf2i->in(1) == bot_in ) {
710
// Matched pattern, including LShiftI; RShiftI, replace with integer compares
711
// max test
712
Node *cmp = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min ));
713
Node *boo = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt ));
714
IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
715
Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
716
Node *ifF = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
717
// min test
718
cmp = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max ));
719
boo = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt ));
720
iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
721
Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
722
ifF = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
723
// update input edges to region node
724
set_req_X( min_idx, if_min, gvn );
725
set_req_X( max_idx, if_max, gvn );
726
set_req_X( val_idx, ifF, gvn );
727
// remove unnecessary 'LShiftI; RShiftI' idiom
728
gvn->hash_delete(phi);
729
phi->set_req_X( val_idx, convf2i, gvn );
730
gvn->hash_find_insert(phi);
731
// Return transformed region node
732
return this;
733
}
734
}
735
}
736
}
737
}
738
}
739
}
740
741
if (can_reshape) {
742
modified |= optimize_trichotomy(phase->is_IterGVN());
743
}
744
745
return modified ? this : NULL;
746
}
747
748
//------------------------------optimize_trichotomy--------------------------
749
// Optimize nested comparisons of the following kind:
750
//
751
// int compare(int a, int b) {
752
// return (a < b) ? -1 : (a == b) ? 0 : 1;
753
// }
754
//
755
// Shape 1:
756
// if (compare(a, b) == 1) { ... } -> if (a > b) { ... }
757
//
758
// Shape 2:
759
// if (compare(a, b) == 0) { ... } -> if (a == b) { ... }
760
//
761
// Above code leads to the following IR shapes where both Ifs compare the
762
// same value and two out of three region inputs idx1 and idx2 map to
763
// the same value and control flow.
764
//
765
// (1) If (2) If
766
// / \ / \
767
// Proj Proj Proj Proj
768
// | \ | \
769
// | If | If If
770
// | / \ | / \ / \
771
// | Proj Proj | Proj Proj ==> Proj Proj
772
// | / / \ | / | /
773
// Region / \ | / | /
774
// \ / \ | / | /
775
// Region Region Region
776
//
777
// The method returns true if 'this' is modified and false otherwise.
778
bool RegionNode::optimize_trichotomy(PhaseIterGVN* igvn) {
779
int idx1 = 1, idx2 = 2;
780
Node* region = NULL;
781
if (req() == 3 && in(1) != NULL && in(2) != NULL) {
782
// Shape 1: Check if one of the inputs is a region that merges two control
783
// inputs and has no other users (especially no Phi users).
784
region = in(1)->isa_Region() ? in(1) : in(2)->isa_Region();
785
if (region == NULL || region->outcnt() != 2 || region->req() != 3) {
786
return false; // No suitable region input found
787
}
788
} else if (req() == 4) {
789
// Shape 2: Check if two control inputs map to the same value of the unique phi
790
// user and treat these as if they would come from another region (shape (1)).
791
PhiNode* phi = has_unique_phi();
792
if (phi == NULL) {
793
return false; // No unique phi user
794
}
795
if (phi->in(idx1) != phi->in(idx2)) {
796
idx2 = 3;
797
if (phi->in(idx1) != phi->in(idx2)) {
798
idx1 = 2;
799
if (phi->in(idx1) != phi->in(idx2)) {
800
return false; // No equal phi inputs found
801
}
802
}
803
}
804
assert(phi->in(idx1) == phi->in(idx2), "must be"); // Region is merging same value
805
region = this;
806
}
807
if (region == NULL || region->in(idx1) == NULL || region->in(idx2) == NULL) {
808
return false; // Region does not merge two control inputs
809
}
810
// At this point we know that region->in(idx1) and region->(idx2) map to the same
811
// value and control flow. Now search for ifs that feed into these region inputs.
812
ProjNode* proj1 = region->in(idx1)->isa_Proj();
813
ProjNode* proj2 = region->in(idx2)->isa_Proj();
814
if (proj1 == NULL || proj1->outcnt() != 1 ||
815
proj2 == NULL || proj2->outcnt() != 1) {
816
return false; // No projection inputs with region as unique user found
817
}
818
assert(proj1 != proj2, "should be different projections");
819
IfNode* iff1 = proj1->in(0)->isa_If();
820
IfNode* iff2 = proj2->in(0)->isa_If();
821
if (iff1 == NULL || iff1->outcnt() != 2 ||
822
iff2 == NULL || iff2->outcnt() != 2) {
823
return false; // No ifs found
824
}
825
if (iff1 == iff2) {
826
igvn->add_users_to_worklist(iff1); // Make sure dead if is eliminated
827
igvn->replace_input_of(region, idx1, iff1->in(0));
828
igvn->replace_input_of(region, idx2, igvn->C->top());
829
return (region == this); // Remove useless if (both projections map to the same control/value)
830
}
831
BoolNode* bol1 = iff1->in(1)->isa_Bool();
832
BoolNode* bol2 = iff2->in(1)->isa_Bool();
833
if (bol1 == NULL || bol2 == NULL) {
834
return false; // No bool inputs found
835
}
836
Node* cmp1 = bol1->in(1);
837
Node* cmp2 = bol2->in(1);
838
bool commute = false;
839
if (!cmp1->is_Cmp() || !cmp2->is_Cmp()) {
840
return false; // No comparison
841
} else if (cmp1->Opcode() == Op_CmpF || cmp1->Opcode() == Op_CmpD ||
842
cmp2->Opcode() == Op_CmpF || cmp2->Opcode() == Op_CmpD ||
843
cmp1->Opcode() == Op_CmpP || cmp1->Opcode() == Op_CmpN ||
844
cmp2->Opcode() == Op_CmpP || cmp2->Opcode() == Op_CmpN ||
845
cmp1->is_SubTypeCheck() || cmp2->is_SubTypeCheck()) {
846
// Floats and pointers don't exactly obey trichotomy. To be on the safe side, don't transform their tests.
847
// SubTypeCheck is not commutative
848
return false;
849
} else if (cmp1 != cmp2) {
850
if (cmp1->in(1) == cmp2->in(2) &&
851
cmp1->in(2) == cmp2->in(1)) {
852
commute = true; // Same but swapped inputs, commute the test
853
} else {
854
return false; // Ifs are not comparing the same values
855
}
856
}
857
proj1 = proj1->other_if_proj();
858
proj2 = proj2->other_if_proj();
859
if (!((proj1->unique_ctrl_out() == iff2 &&
860
proj2->unique_ctrl_out() == this) ||
861
(proj2->unique_ctrl_out() == iff1 &&
862
proj1->unique_ctrl_out() == this))) {
863
return false; // Ifs are not connected through other projs
864
}
865
// Found 'iff -> proj -> iff -> proj -> this' shape where all other projs are merged
866
// through 'region' and map to the same value. Merge the boolean tests and replace
867
// the ifs by a single comparison.
868
BoolTest test1 = (proj1->_con == 1) ? bol1->_test : bol1->_test.negate();
869
BoolTest test2 = (proj2->_con == 1) ? bol2->_test : bol2->_test.negate();
870
test1 = commute ? test1.commute() : test1;
871
// After possibly commuting test1, if we can merge test1 & test2, then proj2/iff2/bol2 are the nodes to refine.
872
BoolTest::mask res = test1.merge(test2);
873
if (res == BoolTest::illegal) {
874
return false; // Unable to merge tests
875
}
876
// Adjust iff1 to always pass (only iff2 will remain)
877
igvn->replace_input_of(iff1, 1, igvn->intcon(proj1->_con));
878
if (res == BoolTest::never) {
879
// Merged test is always false, adjust iff2 to always fail
880
igvn->replace_input_of(iff2, 1, igvn->intcon(1 - proj2->_con));
881
} else {
882
// Replace bool input of iff2 with merged test
883
BoolNode* new_bol = new BoolNode(bol2->in(1), res);
884
igvn->replace_input_of(iff2, 1, igvn->transform((proj2->_con == 1) ? new_bol : new_bol->negate(igvn)));
885
if (new_bol->outcnt() == 0) {
886
igvn->remove_dead_node(new_bol);
887
}
888
}
889
return false;
890
}
891
892
const RegMask &RegionNode::out_RegMask() const {
893
return RegMask::Empty;
894
}
895
896
// Find the one non-null required input. RegionNode only
897
Node *Node::nonnull_req() const {
898
assert( is_Region(), "" );
899
for( uint i = 1; i < _cnt; i++ )
900
if( in(i) )
901
return in(i);
902
ShouldNotReachHere();
903
return NULL;
904
}
905
906
907
//=============================================================================
908
// note that these functions assume that the _adr_type field is flattened
909
uint PhiNode::hash() const {
910
const Type* at = _adr_type;
911
return TypeNode::hash() + (at ? at->hash() : 0);
912
}
913
bool PhiNode::cmp( const Node &n ) const {
914
return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
915
}
916
static inline
917
const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
918
if (at == NULL || at == TypePtr::BOTTOM) return at;
919
return Compile::current()->alias_type(at)->adr_type();
920
}
921
922
//----------------------------make---------------------------------------------
923
// create a new phi with edges matching r and set (initially) to x
924
PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
925
uint preds = r->req(); // Number of predecessor paths
926
assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
927
PhiNode* p = new PhiNode(r, t, at);
928
for (uint j = 1; j < preds; j++) {
929
// Fill in all inputs, except those which the region does not yet have
930
if (r->in(j) != NULL)
931
p->init_req(j, x);
932
}
933
return p;
934
}
935
PhiNode* PhiNode::make(Node* r, Node* x) {
936
const Type* t = x->bottom_type();
937
const TypePtr* at = NULL;
938
if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type());
939
return make(r, x, t, at);
940
}
941
PhiNode* PhiNode::make_blank(Node* r, Node* x) {
942
const Type* t = x->bottom_type();
943
const TypePtr* at = NULL;
944
if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type());
945
return new PhiNode(r, t, at);
946
}
947
948
949
//------------------------slice_memory-----------------------------------------
950
// create a new phi with narrowed memory type
951
PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
952
PhiNode* mem = (PhiNode*) clone();
953
*(const TypePtr**)&mem->_adr_type = adr_type;
954
// convert self-loops, or else we get a bad graph
955
for (uint i = 1; i < req(); i++) {
956
if ((const Node*)in(i) == this) mem->set_req(i, mem);
957
}
958
mem->verify_adr_type();
959
return mem;
960
}
961
962
//------------------------split_out_instance-----------------------------------
963
// Split out an instance type from a bottom phi.
964
PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
965
const TypeOopPtr *t_oop = at->isa_oopptr();
966
assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
967
const TypePtr *t = adr_type();
968
assert(type() == Type::MEMORY &&
969
(t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
970
t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
971
t->is_oopptr()->cast_to_exactness(true)
972
->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
973
->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
974
"bottom or raw memory required");
975
976
// Check if an appropriate node already exists.
977
Node *region = in(0);
978
for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
979
Node* use = region->fast_out(k);
980
if( use->is_Phi()) {
981
PhiNode *phi2 = use->as_Phi();
982
if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
983
return phi2;
984
}
985
}
986
}
987
Compile *C = igvn->C;
988
Arena *a = Thread::current()->resource_area();
989
Node_Array node_map = new Node_Array(a);
990
Node_Stack stack(a, C->live_nodes() >> 4);
991
PhiNode *nphi = slice_memory(at);
992
igvn->register_new_node_with_optimizer( nphi );
993
node_map.map(_idx, nphi);
994
stack.push((Node *)this, 1);
995
while(!stack.is_empty()) {
996
PhiNode *ophi = stack.node()->as_Phi();
997
uint i = stack.index();
998
assert(i >= 1, "not control edge");
999
stack.pop();
1000
nphi = node_map[ophi->_idx]->as_Phi();
1001
for (; i < ophi->req(); i++) {
1002
Node *in = ophi->in(i);
1003
if (in == NULL || igvn->type(in) == Type::TOP)
1004
continue;
1005
Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
1006
PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
1007
if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
1008
opt = node_map[optphi->_idx];
1009
if (opt == NULL) {
1010
stack.push(ophi, i);
1011
nphi = optphi->slice_memory(at);
1012
igvn->register_new_node_with_optimizer( nphi );
1013
node_map.map(optphi->_idx, nphi);
1014
ophi = optphi;
1015
i = 0; // will get incremented at top of loop
1016
continue;
1017
}
1018
}
1019
nphi->set_req(i, opt);
1020
}
1021
}
1022
return nphi;
1023
}
1024
1025
//------------------------verify_adr_type--------------------------------------
1026
#ifdef ASSERT
1027
void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
1028
if (visited.test_set(_idx)) return; //already visited
1029
1030
// recheck constructor invariants:
1031
verify_adr_type(false);
1032
1033
// recheck local phi/phi consistency:
1034
assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
1035
"adr_type must be consistent across phi nest");
1036
1037
// walk around
1038
for (uint i = 1; i < req(); i++) {
1039
Node* n = in(i);
1040
if (n == NULL) continue;
1041
const Node* np = in(i);
1042
if (np->is_Phi()) {
1043
np->as_Phi()->verify_adr_type(visited, at);
1044
} else if (n->bottom_type() == Type::TOP
1045
|| (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
1046
// ignore top inputs
1047
} else {
1048
const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
1049
// recheck phi/non-phi consistency at leaves:
1050
assert((nat != NULL) == (at != NULL), "");
1051
assert(nat == at || nat == TypePtr::BOTTOM,
1052
"adr_type must be consistent at leaves of phi nest");
1053
}
1054
}
1055
}
1056
1057
// Verify a whole nest of phis rooted at this one.
1058
void PhiNode::verify_adr_type(bool recursive) const {
1059
if (VMError::is_error_reported()) return; // muzzle asserts when debugging an error
1060
if (Node::in_dump()) return; // muzzle asserts when printing
1061
1062
assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
1063
1064
if (!VerifyAliases) return; // verify thoroughly only if requested
1065
1066
assert(_adr_type == flatten_phi_adr_type(_adr_type),
1067
"Phi::adr_type must be pre-normalized");
1068
1069
if (recursive) {
1070
VectorSet visited;
1071
verify_adr_type(visited, _adr_type);
1072
}
1073
}
1074
#endif
1075
1076
1077
//------------------------------Value------------------------------------------
1078
// Compute the type of the PhiNode
1079
const Type* PhiNode::Value(PhaseGVN* phase) const {
1080
Node *r = in(0); // RegionNode
1081
if( !r ) // Copy or dead
1082
return in(1) ? phase->type(in(1)) : Type::TOP;
1083
1084
// Note: During parsing, phis are often transformed before their regions.
1085
// This means we have to use type_or_null to defend against untyped regions.
1086
if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1087
return Type::TOP;
1088
1089
// Check for trip-counted loop. If so, be smarter.
1090
BaseCountedLoopNode* l = r->is_BaseCountedLoop() ? r->as_BaseCountedLoop() : NULL;
1091
if (l && ((const Node*)l->phi() == this)) { // Trip counted loop!
1092
// protect against init_trip() or limit() returning NULL
1093
if (l->can_be_counted_loop(phase)) {
1094
const Node* init = l->init_trip();
1095
const Node* limit = l->limit();
1096
const Node* stride = l->stride();
1097
if (init != NULL && limit != NULL && stride != NULL) {
1098
const TypeInteger* lo = phase->type(init)->isa_integer(l->bt());
1099
const TypeInteger* hi = phase->type(limit)->isa_integer(l->bt());
1100
const TypeInteger* stride_t = phase->type(stride)->isa_integer(l->bt());
1101
if (lo != NULL && hi != NULL && stride_t != NULL) { // Dying loops might have TOP here
1102
assert(stride_t->hi_as_long() >= stride_t->lo_as_long(), "bad stride type");
1103
BoolTest::mask bt = l->loopexit()->test_trip();
1104
// If the loop exit condition is "not equal", the condition
1105
// would not trigger if init > limit (if stride > 0) or if
1106
// init < limit if (stride > 0) so we can't deduce bounds
1107
// for the iv from the exit condition.
1108
if (bt != BoolTest::ne) {
1109
if (stride_t->hi_as_long() < 0) { // Down-counter loop
1110
swap(lo, hi);
1111
return TypeInteger::make(MIN2(lo->lo_as_long(), hi->lo_as_long()), hi->hi_as_long(), 3, l->bt())->filter_speculative(_type);
1112
} else if (stride_t->lo_as_long() >= 0) {
1113
return TypeInteger::make(lo->lo_as_long(), MAX2(lo->hi_as_long(), hi->hi_as_long()), 3, l->bt())->filter_speculative(_type);
1114
}
1115
}
1116
}
1117
}
1118
} else if (l->in(LoopNode::LoopBackControl) != NULL &&
1119
in(LoopNode::EntryControl) != NULL &&
1120
phase->type(l->in(LoopNode::LoopBackControl)) == Type::TOP) {
1121
// During CCP, if we saturate the type of a counted loop's Phi
1122
// before the special code for counted loop above has a chance
1123
// to run (that is as long as the type of the backedge's control
1124
// is top), we might end up with non monotonic types
1125
return phase->type(in(LoopNode::EntryControl))->filter_speculative(_type);
1126
}
1127
}
1128
1129
// Until we have harmony between classes and interfaces in the type
1130
// lattice, we must tread carefully around phis which implicitly
1131
// convert the one to the other.
1132
const TypePtr* ttp = _type->make_ptr();
1133
const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
1134
const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
1135
bool is_intf = false;
1136
if (ttip != NULL) {
1137
ciKlass* k = ttip->klass();
1138
if (k->is_loaded() && k->is_interface())
1139
is_intf = true;
1140
}
1141
if (ttkp != NULL) {
1142
ciKlass* k = ttkp->klass();
1143
if (k->is_loaded() && k->is_interface())
1144
is_intf = true;
1145
}
1146
1147
// Default case: merge all inputs
1148
const Type *t = Type::TOP; // Merged type starting value
1149
for (uint i = 1; i < req(); ++i) {// For all paths in
1150
// Reachable control path?
1151
if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
1152
const Type* ti = phase->type(in(i));
1153
// We assume that each input of an interface-valued Phi is a true
1154
// subtype of that interface. This might not be true of the meet
1155
// of all the input types. The lattice is not distributive in
1156
// such cases. Ward off asserts in type.cpp by refusing to do
1157
// meets between interfaces and proper classes.
1158
const TypePtr* tip = ti->make_ptr();
1159
const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
1160
if (tiip) {
1161
bool ti_is_intf = false;
1162
ciKlass* k = tiip->klass();
1163
if (k->is_loaded() && k->is_interface())
1164
ti_is_intf = true;
1165
if (is_intf != ti_is_intf)
1166
{ t = _type; break; }
1167
}
1168
t = t->meet_speculative(ti);
1169
}
1170
}
1171
1172
// The worst-case type (from ciTypeFlow) should be consistent with "t".
1173
// That is, we expect that "t->higher_equal(_type)" holds true.
1174
// There are various exceptions:
1175
// - Inputs which are phis might in fact be widened unnecessarily.
1176
// For example, an input might be a widened int while the phi is a short.
1177
// - Inputs might be BotPtrs but this phi is dependent on a null check,
1178
// and postCCP has removed the cast which encodes the result of the check.
1179
// - The type of this phi is an interface, and the inputs are classes.
1180
// - Value calls on inputs might produce fuzzy results.
1181
// (Occurrences of this case suggest improvements to Value methods.)
1182
//
1183
// It is not possible to see Type::BOTTOM values as phi inputs,
1184
// because the ciTypeFlow pre-pass produces verifier-quality types.
1185
const Type* ft = t->filter_speculative(_type); // Worst case type
1186
1187
#ifdef ASSERT
1188
// The following logic has been moved into TypeOopPtr::filter.
1189
const Type* jt = t->join_speculative(_type);
1190
if (jt->empty()) { // Emptied out???
1191
1192
// Check for evil case of 't' being a class and '_type' expecting an
1193
// interface. This can happen because the bytecodes do not contain
1194
// enough type info to distinguish a Java-level interface variable
1195
// from a Java-level object variable. If we meet 2 classes which
1196
// both implement interface I, but their meet is at 'j/l/O' which
1197
// doesn't implement I, we have no way to tell if the result should
1198
// be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
1199
// into a Phi which "knows" it's an Interface type we'll have to
1200
// uplift the type.
1201
if (!t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface()) {
1202
assert(ft == _type, ""); // Uplift to interface
1203
} else if (!t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
1204
assert(ft == _type, ""); // Uplift to interface
1205
} else {
1206
// We also have to handle 'evil cases' of interface- vs. class-arrays
1207
Type::get_arrays_base_elements(jt, _type, NULL, &ttip);
1208
if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1209
assert(ft == _type, ""); // Uplift to array of interface
1210
} else {
1211
// Otherwise it's something stupid like non-overlapping int ranges
1212
// found on dying counted loops.
1213
assert(ft == Type::TOP, ""); // Canonical empty value
1214
}
1215
}
1216
}
1217
1218
else {
1219
1220
// If we have an interface-typed Phi and we narrow to a class type, the join
1221
// should report back the class. However, if we have a J/L/Object
1222
// class-typed Phi and an interface flows in, it's possible that the meet &
1223
// join report an interface back out. This isn't possible but happens
1224
// because the type system doesn't interact well with interfaces.
1225
const TypePtr *jtp = jt->make_ptr();
1226
const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1227
const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1228
if( jtip && ttip ) {
1229
if( jtip->is_loaded() && jtip->klass()->is_interface() &&
1230
ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1231
assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1232
ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1233
jt = ft;
1234
}
1235
}
1236
if( jtkp && ttkp ) {
1237
if( jtkp->is_loaded() && jtkp->klass()->is_interface() &&
1238
!jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1239
ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1240
assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1241
ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1242
jt = ft;
1243
}
1244
}
1245
if (jt != ft && jt->base() == ft->base()) {
1246
if (jt->isa_int() &&
1247
jt->is_int()->_lo == ft->is_int()->_lo &&
1248
jt->is_int()->_hi == ft->is_int()->_hi)
1249
jt = ft;
1250
if (jt->isa_long() &&
1251
jt->is_long()->_lo == ft->is_long()->_lo &&
1252
jt->is_long()->_hi == ft->is_long()->_hi)
1253
jt = ft;
1254
}
1255
if (jt != ft) {
1256
tty->print("merge type: "); t->dump(); tty->cr();
1257
tty->print("kill type: "); _type->dump(); tty->cr();
1258
tty->print("join type: "); jt->dump(); tty->cr();
1259
tty->print("filter type: "); ft->dump(); tty->cr();
1260
}
1261
assert(jt == ft, "");
1262
}
1263
#endif //ASSERT
1264
1265
// Deal with conversion problems found in data loops.
1266
ft = phase->saturate(ft, phase->type_or_null(this), _type);
1267
1268
return ft;
1269
}
1270
1271
1272
//------------------------------is_diamond_phi---------------------------------
1273
// Does this Phi represent a simple well-shaped diamond merge? Return the
1274
// index of the true path or 0 otherwise.
1275
// If check_control_only is true, do not inspect the If node at the
1276
// top, and return -1 (not an edge number) on success.
1277
int PhiNode::is_diamond_phi(bool check_control_only) const {
1278
// Check for a 2-path merge
1279
Node *region = in(0);
1280
if( !region ) return 0;
1281
if( region->req() != 3 ) return 0;
1282
if( req() != 3 ) return 0;
1283
// Check that both paths come from the same If
1284
Node *ifp1 = region->in(1);
1285
Node *ifp2 = region->in(2);
1286
if( !ifp1 || !ifp2 ) return 0;
1287
Node *iff = ifp1->in(0);
1288
if( !iff || !iff->is_If() ) return 0;
1289
if( iff != ifp2->in(0) ) return 0;
1290
if (check_control_only) return -1;
1291
// Check for a proper bool/cmp
1292
const Node *b = iff->in(1);
1293
if( !b->is_Bool() ) return 0;
1294
const Node *cmp = b->in(1);
1295
if( !cmp->is_Cmp() ) return 0;
1296
1297
// Check for branching opposite expected
1298
if( ifp2->Opcode() == Op_IfTrue ) {
1299
assert( ifp1->Opcode() == Op_IfFalse, "" );
1300
return 2;
1301
} else {
1302
assert( ifp1->Opcode() == Op_IfTrue, "" );
1303
return 1;
1304
}
1305
}
1306
1307
//----------------------------check_cmove_id-----------------------------------
1308
// Check for CMove'ing a constant after comparing against the constant.
1309
// Happens all the time now, since if we compare equality vs a constant in
1310
// the parser, we "know" the variable is constant on one path and we force
1311
// it. Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1312
// conditional move: "x = (x==0)?0:x;". Yucko. This fix is slightly more
1313
// general in that we don't need constants. Since CMove's are only inserted
1314
// in very special circumstances, we do it here on generic Phi's.
1315
Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1316
assert(true_path !=0, "only diamond shape graph expected");
1317
1318
// is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1319
// phi->region->if_proj->ifnode->bool->cmp
1320
Node* region = in(0);
1321
Node* iff = region->in(1)->in(0);
1322
BoolNode* b = iff->in(1)->as_Bool();
1323
Node* cmp = b->in(1);
1324
Node* tval = in(true_path);
1325
Node* fval = in(3-true_path);
1326
Node* id = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1327
if (id == NULL)
1328
return NULL;
1329
1330
// Either value might be a cast that depends on a branch of 'iff'.
1331
// Since the 'id' value will float free of the diamond, either
1332
// decast or return failure.
1333
Node* ctl = id->in(0);
1334
if (ctl != NULL && ctl->in(0) == iff) {
1335
if (id->is_ConstraintCast()) {
1336
return id->in(1);
1337
} else {
1338
// Don't know how to disentangle this value.
1339
return NULL;
1340
}
1341
}
1342
1343
return id;
1344
}
1345
1346
//------------------------------Identity---------------------------------------
1347
// Check for Region being Identity.
1348
Node* PhiNode::Identity(PhaseGVN* phase) {
1349
// Check for no merging going on
1350
// (There used to be special-case code here when this->region->is_Loop.
1351
// It would check for a tributary phi on the backedge that the main phi
1352
// trivially, perhaps with a single cast. The unique_input method
1353
// does all this and more, by reducing such tributaries to 'this'.)
1354
Node* uin = unique_input(phase, false);
1355
if (uin != NULL) {
1356
return uin;
1357
}
1358
1359
int true_path = is_diamond_phi();
1360
if (true_path != 0) {
1361
Node* id = is_cmove_id(phase, true_path);
1362
if (id != NULL) return id;
1363
}
1364
1365
// Looking for phis with identical inputs. If we find one that has
1366
// type TypePtr::BOTTOM, replace the current phi with the bottom phi.
1367
if (phase->is_IterGVN() && type() == Type::MEMORY && adr_type() !=
1368
TypePtr::BOTTOM && !adr_type()->is_known_instance()) {
1369
uint phi_len = req();
1370
Node* phi_reg = region();
1371
for (DUIterator_Fast imax, i = phi_reg->fast_outs(imax); i < imax; i++) {
1372
Node* u = phi_reg->fast_out(i);
1373
if (u->is_Phi() && u->as_Phi()->type() == Type::MEMORY &&
1374
u->adr_type() == TypePtr::BOTTOM && u->in(0) == phi_reg &&
1375
u->req() == phi_len) {
1376
for (uint j = 1; j < phi_len; j++) {
1377
if (in(j) != u->in(j)) {
1378
u = NULL;
1379
break;
1380
}
1381
}
1382
if (u != NULL) {
1383
return u;
1384
}
1385
}
1386
}
1387
}
1388
1389
return this; // No identity
1390
}
1391
1392
//-----------------------------unique_input------------------------------------
1393
// Find the unique value, discounting top, self-loops, and casts.
1394
// Return top if there are no inputs, and self if there are multiple.
1395
Node* PhiNode::unique_input(PhaseTransform* phase, bool uncast) {
1396
// 1) One unique direct input,
1397
// or if uncast is true:
1398
// 2) some of the inputs have an intervening ConstraintCast
1399
// 3) an input is a self loop
1400
//
1401
// 1) input or 2) input or 3) input __
1402
// / \ / \ \ / \
1403
// \ / | cast phi cast
1404
// phi \ / / \ /
1405
// phi / --
1406
1407
Node* r = in(0); // RegionNode
1408
Node* input = NULL; // The unique direct input (maybe uncasted = ConstraintCasts removed)
1409
1410
for (uint i = 1, cnt = req(); i < cnt; ++i) {
1411
Node* rc = r->in(i);
1412
if (rc == NULL || phase->type(rc) == Type::TOP)
1413
continue; // ignore unreachable control path
1414
Node* n = in(i);
1415
if (n == NULL)
1416
continue;
1417
Node* un = n;
1418
if (uncast) {
1419
#ifdef ASSERT
1420
Node* m = un->uncast();
1421
#endif
1422
while (un != NULL && un->req() == 2 && un->is_ConstraintCast()) {
1423
Node* next = un->in(1);
1424
if (phase->type(next)->isa_rawptr() && phase->type(un)->isa_oopptr()) {
1425
// risk exposing raw ptr at safepoint
1426
break;
1427
}
1428
un = next;
1429
}
1430
assert(m == un || un->in(1) == m, "Only expected at CheckCastPP from allocation");
1431
}
1432
if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1433
continue; // ignore if top, or in(i) and "this" are in a data cycle
1434
}
1435
// Check for a unique input (maybe uncasted)
1436
if (input == NULL) {
1437
input = un;
1438
} else if (input != un) {
1439
input = NodeSentinel; // no unique input
1440
}
1441
}
1442
if (input == NULL) {
1443
return phase->C->top(); // no inputs
1444
}
1445
1446
if (input != NodeSentinel) {
1447
return input; // one unique direct input
1448
}
1449
1450
// Nothing.
1451
return NULL;
1452
}
1453
1454
//------------------------------is_x2logic-------------------------------------
1455
// Check for simple convert-to-boolean pattern
1456
// If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1457
// Convert Phi to an ConvIB.
1458
static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1459
assert(true_path !=0, "only diamond shape graph expected");
1460
// Convert the true/false index into an expected 0/1 return.
1461
// Map 2->0 and 1->1.
1462
int flipped = 2-true_path;
1463
1464
// is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1465
// phi->region->if_proj->ifnode->bool->cmp
1466
Node *region = phi->in(0);
1467
Node *iff = region->in(1)->in(0);
1468
BoolNode *b = (BoolNode*)iff->in(1);
1469
const CmpNode *cmp = (CmpNode*)b->in(1);
1470
1471
Node *zero = phi->in(1);
1472
Node *one = phi->in(2);
1473
const Type *tzero = phase->type( zero );
1474
const Type *tone = phase->type( one );
1475
1476
// Check for compare vs 0
1477
const Type *tcmp = phase->type(cmp->in(2));
1478
if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1479
// Allow cmp-vs-1 if the other input is bounded by 0-1
1480
if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1481
return NULL;
1482
flipped = 1-flipped; // Test is vs 1 instead of 0!
1483
}
1484
1485
// Check for setting zero/one opposite expected
1486
if( tzero == TypeInt::ZERO ) {
1487
if( tone == TypeInt::ONE ) {
1488
} else return NULL;
1489
} else if( tzero == TypeInt::ONE ) {
1490
if( tone == TypeInt::ZERO ) {
1491
flipped = 1-flipped;
1492
} else return NULL;
1493
} else return NULL;
1494
1495
// Check for boolean test backwards
1496
if( b->_test._test == BoolTest::ne ) {
1497
} else if( b->_test._test == BoolTest::eq ) {
1498
flipped = 1-flipped;
1499
} else return NULL;
1500
1501
// Build int->bool conversion
1502
Node *n = new Conv2BNode(cmp->in(1));
1503
if( flipped )
1504
n = new XorINode( phase->transform(n), phase->intcon(1) );
1505
1506
return n;
1507
}
1508
1509
//------------------------------is_cond_add------------------------------------
1510
// Check for simple conditional add pattern: "(P < Q) ? X+Y : X;"
1511
// To be profitable the control flow has to disappear; there can be no other
1512
// values merging here. We replace the test-and-branch with:
1513
// "(sgn(P-Q))&Y) + X". Basically, convert "(P < Q)" into 0 or -1 by
1514
// moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1515
// Then convert Y to 0-or-Y and finally add.
1516
// This is a key transform for SpecJava _201_compress.
1517
static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1518
assert(true_path !=0, "only diamond shape graph expected");
1519
1520
// is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1521
// phi->region->if_proj->ifnode->bool->cmp
1522
RegionNode *region = (RegionNode*)phi->in(0);
1523
Node *iff = region->in(1)->in(0);
1524
BoolNode* b = iff->in(1)->as_Bool();
1525
const CmpNode *cmp = (CmpNode*)b->in(1);
1526
1527
// Make sure only merging this one phi here
1528
if (region->has_unique_phi() != phi) return NULL;
1529
1530
// Make sure each arm of the diamond has exactly one output, which we assume
1531
// is the region. Otherwise, the control flow won't disappear.
1532
if (region->in(1)->outcnt() != 1) return NULL;
1533
if (region->in(2)->outcnt() != 1) return NULL;
1534
1535
// Check for "(P < Q)" of type signed int
1536
if (b->_test._test != BoolTest::lt) return NULL;
1537
if (cmp->Opcode() != Op_CmpI) return NULL;
1538
1539
Node *p = cmp->in(1);
1540
Node *q = cmp->in(2);
1541
Node *n1 = phi->in( true_path);
1542
Node *n2 = phi->in(3-true_path);
1543
1544
int op = n1->Opcode();
1545
if( op != Op_AddI // Need zero as additive identity
1546
/*&&op != Op_SubI &&
1547
op != Op_AddP &&
1548
op != Op_XorI &&
1549
op != Op_OrI*/ )
1550
return NULL;
1551
1552
Node *x = n2;
1553
Node *y = NULL;
1554
if( x == n1->in(1) ) {
1555
y = n1->in(2);
1556
} else if( x == n1->in(2) ) {
1557
y = n1->in(1);
1558
} else return NULL;
1559
1560
// Not so profitable if compare and add are constants
1561
if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1562
return NULL;
1563
1564
Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) );
1565
Node *j_and = phase->transform( new AndINode(cmplt,y) );
1566
return new AddINode(j_and,x);
1567
}
1568
1569
//------------------------------is_absolute------------------------------------
1570
// Check for absolute value.
1571
static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1572
assert(true_path !=0, "only diamond shape graph expected");
1573
1574
int cmp_zero_idx = 0; // Index of compare input where to look for zero
1575
int phi_x_idx = 0; // Index of phi input where to find naked x
1576
1577
// ABS ends with the merge of 2 control flow paths.
1578
// Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1579
int false_path = 3 - true_path;
1580
1581
// is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1582
// phi->region->if_proj->ifnode->bool->cmp
1583
BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1584
Node *cmp = bol->in(1);
1585
1586
// Check bool sense
1587
if (cmp->Opcode() == Op_CmpF || cmp->Opcode() == Op_CmpD) {
1588
switch (bol->_test._test) {
1589
case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path; break;
1590
case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1591
case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path; break;
1592
case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1593
default: return NULL; break;
1594
}
1595
} else if (cmp->Opcode() == Op_CmpI || cmp->Opcode() == Op_CmpL) {
1596
switch (bol->_test._test) {
1597
case BoolTest::lt:
1598
case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1599
case BoolTest::gt:
1600
case BoolTest::ge: cmp_zero_idx = 2; phi_x_idx = true_path; break;
1601
default: return NULL; break;
1602
}
1603
}
1604
1605
// Test is next
1606
const Type *tzero = NULL;
1607
switch (cmp->Opcode()) {
1608
case Op_CmpI: tzero = TypeInt::ZERO; break; // Integer ABS
1609
case Op_CmpL: tzero = TypeLong::ZERO; break; // Long ABS
1610
case Op_CmpF: tzero = TypeF::ZERO; break; // Float ABS
1611
case Op_CmpD: tzero = TypeD::ZERO; break; // Double ABS
1612
default: return NULL;
1613
}
1614
1615
// Find zero input of compare; the other input is being abs'd
1616
Node *x = NULL;
1617
bool flip = false;
1618
if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1619
x = cmp->in(3 - cmp_zero_idx);
1620
} else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1621
// The test is inverted, we should invert the result...
1622
x = cmp->in(cmp_zero_idx);
1623
flip = true;
1624
} else {
1625
return NULL;
1626
}
1627
1628
// Next get the 2 pieces being selected, one is the original value
1629
// and the other is the negated value.
1630
if( phi_root->in(phi_x_idx) != x ) return NULL;
1631
1632
// Check other phi input for subtract node
1633
Node *sub = phi_root->in(3 - phi_x_idx);
1634
1635
bool is_sub = sub->Opcode() == Op_SubF || sub->Opcode() == Op_SubD ||
1636
sub->Opcode() == Op_SubI || sub->Opcode() == Op_SubL;
1637
1638
// Allow only Sub(0,X) and fail out for all others; Neg is not OK
1639
if (!is_sub || phase->type(sub->in(1)) != tzero || sub->in(2) != x) return NULL;
1640
1641
if (tzero == TypeF::ZERO) {
1642
x = new AbsFNode(x);
1643
if (flip) {
1644
x = new SubFNode(sub->in(1), phase->transform(x));
1645
}
1646
} else if (tzero == TypeD::ZERO) {
1647
x = new AbsDNode(x);
1648
if (flip) {
1649
x = new SubDNode(sub->in(1), phase->transform(x));
1650
}
1651
} else if (tzero == TypeInt::ZERO && Matcher::match_rule_supported(Op_AbsI)) {
1652
x = new AbsINode(x);
1653
if (flip) {
1654
x = new SubINode(sub->in(1), phase->transform(x));
1655
}
1656
} else if (tzero == TypeLong::ZERO && Matcher::match_rule_supported(Op_AbsL)) {
1657
x = new AbsLNode(x);
1658
if (flip) {
1659
x = new SubLNode(sub->in(1), phase->transform(x));
1660
}
1661
} else return NULL;
1662
1663
return x;
1664
}
1665
1666
//------------------------------split_once-------------------------------------
1667
// Helper for split_flow_path
1668
static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1669
igvn->hash_delete(n); // Remove from hash before hacking edges
1670
1671
uint j = 1;
1672
for (uint i = phi->req()-1; i > 0; i--) {
1673
if (phi->in(i) == val) { // Found a path with val?
1674
// Add to NEW Region/Phi, no DU info
1675
newn->set_req( j++, n->in(i) );
1676
// Remove from OLD Region/Phi
1677
n->del_req(i);
1678
}
1679
}
1680
1681
// Register the new node but do not transform it. Cannot transform until the
1682
// entire Region/Phi conglomerate has been hacked as a single huge transform.
1683
igvn->register_new_node_with_optimizer( newn );
1684
1685
// Now I can point to the new node.
1686
n->add_req(newn);
1687
igvn->_worklist.push(n);
1688
}
1689
1690
//------------------------------split_flow_path--------------------------------
1691
// Check for merging identical values and split flow paths
1692
static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1693
BasicType bt = phi->type()->basic_type();
1694
if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1695
return NULL; // Bail out on funny non-value stuff
1696
if( phi->req() <= 3 ) // Need at least 2 matched inputs and a
1697
return NULL; // third unequal input to be worth doing
1698
1699
// Scan for a constant
1700
uint i;
1701
for( i = 1; i < phi->req()-1; i++ ) {
1702
Node *n = phi->in(i);
1703
if( !n ) return NULL;
1704
if( phase->type(n) == Type::TOP ) return NULL;
1705
if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1706
break;
1707
}
1708
if( i >= phi->req() ) // Only split for constants
1709
return NULL;
1710
1711
Node *val = phi->in(i); // Constant to split for
1712
uint hit = 0; // Number of times it occurs
1713
Node *r = phi->region();
1714
1715
for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1716
Node *n = phi->in(i);
1717
if( !n ) return NULL;
1718
if( phase->type(n) == Type::TOP ) return NULL;
1719
if( phi->in(i) == val ) {
1720
hit++;
1721
if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1722
return NULL; // don't split loop entry path
1723
}
1724
}
1725
}
1726
1727
if( hit <= 1 || // Make sure we find 2 or more
1728
hit == phi->req()-1 ) // and not ALL the same value
1729
return NULL;
1730
1731
// Now start splitting out the flow paths that merge the same value.
1732
// Split first the RegionNode.
1733
PhaseIterGVN *igvn = phase->is_IterGVN();
1734
RegionNode *newr = new RegionNode(hit+1);
1735
split_once(igvn, phi, val, r, newr);
1736
1737
// Now split all other Phis than this one
1738
for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1739
Node* phi2 = r->fast_out(k);
1740
if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1741
PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1742
split_once(igvn, phi, val, phi2, newphi);
1743
}
1744
}
1745
1746
// Clean up this guy
1747
igvn->hash_delete(phi);
1748
for( i = phi->req()-1; i > 0; i-- ) {
1749
if( phi->in(i) == val ) {
1750
phi->del_req(i);
1751
}
1752
}
1753
phi->add_req(val);
1754
1755
return phi;
1756
}
1757
1758
//=============================================================================
1759
//------------------------------simple_data_loop_check-------------------------
1760
// Try to determining if the phi node in a simple safe/unsafe data loop.
1761
// Returns:
1762
// enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1763
// Safe - safe case when the phi and it's inputs reference only safe data
1764
// nodes;
1765
// Unsafe - the phi and it's inputs reference unsafe data nodes but there
1766
// is no reference back to the phi - need a graph walk
1767
// to determine if it is in a loop;
1768
// UnsafeLoop - unsafe case when the phi references itself directly or through
1769
// unsafe data node.
1770
// Note: a safe data node is a node which could/never reference itself during
1771
// GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1772
// I mark Phi nodes as safe node not only because they can reference itself
1773
// but also to prevent mistaking the fallthrough case inside an outer loop
1774
// as dead loop when the phi references itselfs through an other phi.
1775
PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1776
// It is unsafe loop if the phi node references itself directly.
1777
if (in == (Node*)this)
1778
return UnsafeLoop; // Unsafe loop
1779
// Unsafe loop if the phi node references itself through an unsafe data node.
1780
// Exclude cases with null inputs or data nodes which could reference
1781
// itself (safe for dead loops).
1782
if (in != NULL && !in->is_dead_loop_safe()) {
1783
// Check inputs of phi's inputs also.
1784
// It is much less expensive then full graph walk.
1785
uint cnt = in->req();
1786
uint i = (in->is_Proj() && !in->is_CFG()) ? 0 : 1;
1787
for (; i < cnt; ++i) {
1788
Node* m = in->in(i);
1789
if (m == (Node*)this)
1790
return UnsafeLoop; // Unsafe loop
1791
if (m != NULL && !m->is_dead_loop_safe()) {
1792
// Check the most common case (about 30% of all cases):
1793
// phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1794
Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1795
if (m1 == (Node*)this)
1796
return UnsafeLoop; // Unsafe loop
1797
if (m1 != NULL && m1 == m->in(2) &&
1798
m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1799
continue; // Safe case
1800
}
1801
// The phi references an unsafe node - need full analysis.
1802
return Unsafe;
1803
}
1804
}
1805
}
1806
return Safe; // Safe case - we can optimize the phi node.
1807
}
1808
1809
//------------------------------is_unsafe_data_reference-----------------------
1810
// If phi can be reached through the data input - it is data loop.
1811
bool PhiNode::is_unsafe_data_reference(Node *in) const {
1812
assert(req() > 1, "");
1813
// First, check simple cases when phi references itself directly or
1814
// through an other node.
1815
LoopSafety safety = simple_data_loop_check(in);
1816
if (safety == UnsafeLoop)
1817
return true; // phi references itself - unsafe loop
1818
else if (safety == Safe)
1819
return false; // Safe case - phi could be replaced with the unique input.
1820
1821
// Unsafe case when we should go through data graph to determine
1822
// if the phi references itself.
1823
1824
ResourceMark rm;
1825
1826
Node_List nstack;
1827
VectorSet visited;
1828
1829
nstack.push(in); // Start with unique input.
1830
visited.set(in->_idx);
1831
while (nstack.size() != 0) {
1832
Node* n = nstack.pop();
1833
uint cnt = n->req();
1834
uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1835
for (; i < cnt; i++) {
1836
Node* m = n->in(i);
1837
if (m == (Node*)this) {
1838
return true; // Data loop
1839
}
1840
if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1841
if (!visited.test_set(m->_idx))
1842
nstack.push(m);
1843
}
1844
}
1845
}
1846
return false; // The phi is not reachable from its inputs
1847
}
1848
1849
// Is this Phi's region or some inputs to the region enqueued for IGVN
1850
// and so could cause the region to be optimized out?
1851
bool PhiNode::wait_for_region_igvn(PhaseGVN* phase) {
1852
PhaseIterGVN* igvn = phase->is_IterGVN();
1853
Unique_Node_List& worklist = igvn->_worklist;
1854
bool delay = false;
1855
Node* r = in(0);
1856
for (uint j = 1; j < req(); j++) {
1857
Node* rc = r->in(j);
1858
Node* n = in(j);
1859
if (rc != NULL &&
1860
rc->is_Proj()) {
1861
if (worklist.member(rc)) {
1862
delay = true;
1863
} else if (rc->in(0) != NULL &&
1864
rc->in(0)->is_If()) {
1865
if (worklist.member(rc->in(0))) {
1866
delay = true;
1867
} else if (rc->in(0)->in(1) != NULL &&
1868
rc->in(0)->in(1)->is_Bool()) {
1869
if (worklist.member(rc->in(0)->in(1))) {
1870
delay = true;
1871
} else if (rc->in(0)->in(1)->in(1) != NULL &&
1872
rc->in(0)->in(1)->in(1)->is_Cmp()) {
1873
if (worklist.member(rc->in(0)->in(1)->in(1))) {
1874
delay = true;
1875
}
1876
}
1877
}
1878
}
1879
}
1880
}
1881
if (delay) {
1882
worklist.push(this);
1883
}
1884
return delay;
1885
}
1886
1887
//------------------------------Ideal------------------------------------------
1888
// Return a node which is more "ideal" than the current node. Must preserve
1889
// the CFG, but we can still strip out dead paths.
1890
Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1891
Node *r = in(0); // RegionNode
1892
assert(r != NULL && r->is_Region(), "this phi must have a region");
1893
assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1894
1895
// Note: During parsing, phis are often transformed before their regions.
1896
// This means we have to use type_or_null to defend against untyped regions.
1897
if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1898
return NULL; // No change
1899
1900
Node *top = phase->C->top();
1901
bool new_phi = (outcnt() == 0); // transforming new Phi
1902
// No change for igvn if new phi is not hooked
1903
if (new_phi && can_reshape)
1904
return NULL;
1905
1906
// The are 2 situations when only one valid phi's input is left
1907
// (in addition to Region input).
1908
// One: region is not loop - replace phi with this input.
1909
// Two: region is loop - replace phi with top since this data path is dead
1910
// and we need to break the dead data loop.
1911
Node* progress = NULL; // Record if any progress made
1912
for( uint j = 1; j < req(); ++j ){ // For all paths in
1913
// Check unreachable control paths
1914
Node* rc = r->in(j);
1915
Node* n = in(j); // Get the input
1916
if (rc == NULL || phase->type(rc) == Type::TOP) {
1917
if (n != top) { // Not already top?
1918
PhaseIterGVN *igvn = phase->is_IterGVN();
1919
if (can_reshape && igvn != NULL) {
1920
igvn->_worklist.push(r);
1921
}
1922
// Nuke it down
1923
set_req_X(j, top, phase);
1924
progress = this; // Record progress
1925
}
1926
}
1927
}
1928
1929
if (can_reshape && outcnt() == 0) {
1930
// set_req() above may kill outputs if Phi is referenced
1931
// only by itself on the dead (top) control path.
1932
return top;
1933
}
1934
1935
bool uncasted = false;
1936
Node* uin = unique_input(phase, false);
1937
if (uin == NULL && can_reshape &&
1938
// If there is a chance that the region can be optimized out do
1939
// not add a cast node that we can't remove yet.
1940
!wait_for_region_igvn(phase)) {
1941
uncasted = true;
1942
uin = unique_input(phase, true);
1943
}
1944
if (uin == top) { // Simplest case: no alive inputs.
1945
if (can_reshape) // IGVN transformation
1946
return top;
1947
else
1948
return NULL; // Identity will return TOP
1949
} else if (uin != NULL) {
1950
// Only one not-NULL unique input path is left.
1951
// Determine if this input is backedge of a loop.
1952
// (Skip new phis which have no uses and dead regions).
1953
if (outcnt() > 0 && r->in(0) != NULL) {
1954
if (is_data_loop(r->as_Region(), uin, phase)) {
1955
// Break this data loop to avoid creation of a dead loop.
1956
if (can_reshape) {
1957
return top;
1958
} else {
1959
// We can't return top if we are in Parse phase - cut inputs only
1960
// let Identity to handle the case.
1961
replace_edge(uin, top, phase);
1962
return NULL;
1963
}
1964
}
1965
}
1966
1967
if (uncasted) {
1968
// Add cast nodes between the phi to be removed and its unique input.
1969
// Wait until after parsing for the type information to propagate from the casts.
1970
assert(can_reshape, "Invalid during parsing");
1971
const Type* phi_type = bottom_type();
1972
assert(phi_type->isa_int() || phi_type->isa_ptr() || phi_type->isa_long(), "bad phi type");
1973
// Add casts to carry the control dependency of the Phi that is
1974
// going away
1975
Node* cast = NULL;
1976
if (phi_type->isa_int()) {
1977
cast = ConstraintCastNode::make_cast(Op_CastII, r, uin, phi_type, true);
1978
} else if (phi_type->isa_long()) {
1979
cast = ConstraintCastNode::make_cast(Op_CastLL, r, uin, phi_type, true);
1980
} else {
1981
const Type* uin_type = phase->type(uin);
1982
if (!phi_type->isa_oopptr() && !uin_type->isa_oopptr()) {
1983
cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1984
} else {
1985
// Use a CastPP for a cast to not null and a CheckCastPP for
1986
// a cast to a new klass (and both if both null-ness and
1987
// klass change).
1988
1989
// If the type of phi is not null but the type of uin may be
1990
// null, uin's type must be casted to not null
1991
if (phi_type->join(TypePtr::NOTNULL) == phi_type->remove_speculative() &&
1992
uin_type->join(TypePtr::NOTNULL) != uin_type->remove_speculative()) {
1993
cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, TypePtr::NOTNULL, true);
1994
}
1995
1996
// If the type of phi and uin, both casted to not null,
1997
// differ the klass of uin must be (check)cast'ed to match
1998
// that of phi
1999
if (phi_type->join_speculative(TypePtr::NOTNULL) != uin_type->join_speculative(TypePtr::NOTNULL)) {
2000
Node* n = uin;
2001
if (cast != NULL) {
2002
cast = phase->transform(cast);
2003
n = cast;
2004
}
2005
cast = ConstraintCastNode::make_cast(Op_CheckCastPP, r, n, phi_type, true);
2006
}
2007
if (cast == NULL) {
2008
cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
2009
}
2010
}
2011
}
2012
assert(cast != NULL, "cast should be set");
2013
cast = phase->transform(cast);
2014
// set all inputs to the new cast(s) so the Phi is removed by Identity
2015
PhaseIterGVN* igvn = phase->is_IterGVN();
2016
for (uint i = 1; i < req(); i++) {
2017
set_req_X(i, cast, igvn);
2018
}
2019
uin = cast;
2020
}
2021
2022
// One unique input.
2023
debug_only(Node* ident = Identity(phase));
2024
// The unique input must eventually be detected by the Identity call.
2025
#ifdef ASSERT
2026
if (ident != uin && !ident->is_top()) {
2027
// print this output before failing assert
2028
r->dump(3);
2029
this->dump(3);
2030
ident->dump();
2031
uin->dump();
2032
}
2033
#endif
2034
assert(ident == uin || ident->is_top(), "Identity must clean this up");
2035
return NULL;
2036
}
2037
2038
Node* opt = NULL;
2039
int true_path = is_diamond_phi();
2040
if( true_path != 0 ) {
2041
// Check for CMove'ing identity. If it would be unsafe,
2042
// handle it here. In the safe case, let Identity handle it.
2043
Node* unsafe_id = is_cmove_id(phase, true_path);
2044
if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
2045
opt = unsafe_id;
2046
2047
// Check for simple convert-to-boolean pattern
2048
if( opt == NULL )
2049
opt = is_x2logic(phase, this, true_path);
2050
2051
// Check for absolute value
2052
if( opt == NULL )
2053
opt = is_absolute(phase, this, true_path);
2054
2055
// Check for conditional add
2056
if( opt == NULL && can_reshape )
2057
opt = is_cond_add(phase, this, true_path);
2058
2059
// These 4 optimizations could subsume the phi:
2060
// have to check for a dead data loop creation.
2061
if( opt != NULL ) {
2062
if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
2063
// Found dead loop.
2064
if( can_reshape )
2065
return top;
2066
// We can't return top if we are in Parse phase - cut inputs only
2067
// to stop further optimizations for this phi. Identity will return TOP.
2068
assert(req() == 3, "only diamond merge phi here");
2069
set_req(1, top);
2070
set_req(2, top);
2071
return NULL;
2072
} else {
2073
return opt;
2074
}
2075
}
2076
}
2077
2078
// Check for merging identical values and split flow paths
2079
if (can_reshape) {
2080
opt = split_flow_path(phase, this);
2081
// This optimization only modifies phi - don't need to check for dead loop.
2082
assert(opt == NULL || opt == this, "do not elide phi");
2083
if (opt != NULL) return opt;
2084
}
2085
2086
if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
2087
// Try to undo Phi of AddP:
2088
// (Phi (AddP base address offset) (AddP base2 address2 offset2))
2089
// becomes:
2090
// newbase := (Phi base base2)
2091
// newaddress := (Phi address address2)
2092
// newoffset := (Phi offset offset2)
2093
// (AddP newbase newaddress newoffset)
2094
//
2095
// This occurs as a result of unsuccessful split_thru_phi and
2096
// interferes with taking advantage of addressing modes. See the
2097
// clone_shift_expressions code in matcher.cpp
2098
Node* addp = in(1);
2099
Node* base = addp->in(AddPNode::Base);
2100
Node* address = addp->in(AddPNode::Address);
2101
Node* offset = addp->in(AddPNode::Offset);
2102
if (base != NULL && address != NULL && offset != NULL &&
2103
!base->is_top() && !address->is_top() && !offset->is_top()) {
2104
const Type* base_type = base->bottom_type();
2105
const Type* address_type = address->bottom_type();
2106
// make sure that all the inputs are similar to the first one,
2107
// i.e. AddP with base == address and same offset as first AddP
2108
bool doit = true;
2109
for (uint i = 2; i < req(); i++) {
2110
if (in(i) == NULL ||
2111
in(i)->Opcode() != Op_AddP ||
2112
in(i)->in(AddPNode::Base) == NULL ||
2113
in(i)->in(AddPNode::Address) == NULL ||
2114
in(i)->in(AddPNode::Offset) == NULL ||
2115
in(i)->in(AddPNode::Base)->is_top() ||
2116
in(i)->in(AddPNode::Address)->is_top() ||
2117
in(i)->in(AddPNode::Offset)->is_top()) {
2118
doit = false;
2119
break;
2120
}
2121
if (in(i)->in(AddPNode::Offset) != base) {
2122
base = NULL;
2123
}
2124
if (in(i)->in(AddPNode::Offset) != offset) {
2125
offset = NULL;
2126
}
2127
if (in(i)->in(AddPNode::Address) != address) {
2128
address = NULL;
2129
}
2130
// Accumulate type for resulting Phi
2131
base_type = base_type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
2132
address_type = address_type->meet_speculative(in(i)->in(AddPNode::Address)->bottom_type());
2133
}
2134
if (doit && base == NULL) {
2135
// Check for neighboring AddP nodes in a tree.
2136
// If they have a base, use that it.
2137
for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
2138
Node* u = this->fast_out(k);
2139
if (u->is_AddP()) {
2140
Node* base2 = u->in(AddPNode::Base);
2141
if (base2 != NULL && !base2->is_top()) {
2142
if (base == NULL)
2143
base = base2;
2144
else if (base != base2)
2145
{ doit = false; break; }
2146
}
2147
}
2148
}
2149
}
2150
if (doit) {
2151
if (base == NULL) {
2152
base = new PhiNode(in(0), base_type, NULL);
2153
for (uint i = 1; i < req(); i++) {
2154
base->init_req(i, in(i)->in(AddPNode::Base));
2155
}
2156
phase->is_IterGVN()->register_new_node_with_optimizer(base);
2157
}
2158
if (address == NULL) {
2159
address = new PhiNode(in(0), address_type, NULL);
2160
for (uint i = 1; i < req(); i++) {
2161
address->init_req(i, in(i)->in(AddPNode::Address));
2162
}
2163
phase->is_IterGVN()->register_new_node_with_optimizer(address);
2164
}
2165
if (offset == NULL) {
2166
offset = new PhiNode(in(0), TypeX_X, NULL);
2167
for (uint i = 1; i < req(); i++) {
2168
offset->init_req(i, in(i)->in(AddPNode::Offset));
2169
}
2170
phase->is_IterGVN()->register_new_node_with_optimizer(offset);
2171
}
2172
return new AddPNode(base, address, offset);
2173
}
2174
}
2175
}
2176
2177
// Split phis through memory merges, so that the memory merges will go away.
2178
// Piggy-back this transformation on the search for a unique input....
2179
// It will be as if the merged memory is the unique value of the phi.
2180
// (Do not attempt this optimization unless parsing is complete.
2181
// It would make the parser's memory-merge logic sick.)
2182
// (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
2183
if (progress == NULL && can_reshape && type() == Type::MEMORY) {
2184
// see if this phi should be sliced
2185
uint merge_width = 0;
2186
bool saw_self = false;
2187
for( uint i=1; i<req(); ++i ) {// For all paths in
2188
Node *ii = in(i);
2189
// TOP inputs should not be counted as safe inputs because if the
2190
// Phi references itself through all other inputs then splitting the
2191
// Phi through memory merges would create dead loop at later stage.
2192
if (ii == top) {
2193
return NULL; // Delay optimization until graph is cleaned.
2194
}
2195
if (ii->is_MergeMem()) {
2196
MergeMemNode* n = ii->as_MergeMem();
2197
merge_width = MAX2(merge_width, n->req());
2198
saw_self = saw_self || (n->base_memory() == this);
2199
}
2200
}
2201
2202
// This restriction is temporarily necessary to ensure termination:
2203
if (!saw_self && adr_type() == TypePtr::BOTTOM) merge_width = 0;
2204
2205
if (merge_width > Compile::AliasIdxRaw) {
2206
// found at least one non-empty MergeMem
2207
const TypePtr* at = adr_type();
2208
if (at != TypePtr::BOTTOM) {
2209
// Patch the existing phi to select an input from the merge:
2210
// Phi:AT1(...MergeMem(m0, m1, m2)...) into
2211
// Phi:AT1(...m1...)
2212
int alias_idx = phase->C->get_alias_index(at);
2213
for (uint i=1; i<req(); ++i) {
2214
Node *ii = in(i);
2215
if (ii->is_MergeMem()) {
2216
MergeMemNode* n = ii->as_MergeMem();
2217
// compress paths and change unreachable cycles to TOP
2218
// If not, we can update the input infinitely along a MergeMem cycle
2219
// Equivalent code is in MemNode::Ideal_common
2220
Node *m = phase->transform(n);
2221
if (outcnt() == 0) { // Above transform() may kill us!
2222
return top;
2223
}
2224
// If transformed to a MergeMem, get the desired slice
2225
// Otherwise the returned node represents memory for every slice
2226
Node *new_mem = (m->is_MergeMem()) ?
2227
m->as_MergeMem()->memory_at(alias_idx) : m;
2228
// Update input if it is progress over what we have now
2229
if (new_mem != ii) {
2230
set_req_X(i, new_mem, phase->is_IterGVN());
2231
progress = this;
2232
}
2233
}
2234
}
2235
} else {
2236
// We know that at least one MergeMem->base_memory() == this
2237
// (saw_self == true). If all other inputs also references this phi
2238
// (directly or through data nodes) - it is a dead loop.
2239
bool saw_safe_input = false;
2240
for (uint j = 1; j < req(); ++j) {
2241
Node* n = in(j);
2242
if (n->is_MergeMem()) {
2243
MergeMemNode* mm = n->as_MergeMem();
2244
if (mm->base_memory() == this || mm->base_memory() == mm->empty_memory()) {
2245
// Skip this input if it references back to this phi or if the memory path is dead
2246
continue;
2247
}
2248
}
2249
if (!is_unsafe_data_reference(n)) {
2250
saw_safe_input = true; // found safe input
2251
break;
2252
}
2253
}
2254
if (!saw_safe_input) {
2255
// There is a dead loop: All inputs are either dead or reference back to this phi
2256
return top;
2257
}
2258
2259
// Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
2260
// MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
2261
PhaseIterGVN* igvn = phase->is_IterGVN();
2262
Node* hook = new Node(1);
2263
PhiNode* new_base = (PhiNode*) clone();
2264
// Must eagerly register phis, since they participate in loops.
2265
if (igvn) {
2266
igvn->register_new_node_with_optimizer(new_base);
2267
hook->add_req(new_base);
2268
}
2269
MergeMemNode* result = MergeMemNode::make(new_base);
2270
for (uint i = 1; i < req(); ++i) {
2271
Node *ii = in(i);
2272
if (ii->is_MergeMem()) {
2273
MergeMemNode* n = ii->as_MergeMem();
2274
for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
2275
// If we have not seen this slice yet, make a phi for it.
2276
bool made_new_phi = false;
2277
if (mms.is_empty()) {
2278
Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
2279
made_new_phi = true;
2280
if (igvn) {
2281
igvn->register_new_node_with_optimizer(new_phi);
2282
hook->add_req(new_phi);
2283
}
2284
mms.set_memory(new_phi);
2285
}
2286
Node* phi = mms.memory();
2287
assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
2288
phi->set_req(i, mms.memory2());
2289
}
2290
}
2291
}
2292
// Distribute all self-loops.
2293
{ // (Extra braces to hide mms.)
2294
for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2295
Node* phi = mms.memory();
2296
for (uint i = 1; i < req(); ++i) {
2297
if (phi->in(i) == this) phi->set_req(i, phi);
2298
}
2299
}
2300
}
2301
// now transform the new nodes, and return the mergemem
2302
for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2303
Node* phi = mms.memory();
2304
mms.set_memory(phase->transform(phi));
2305
}
2306
hook->destruct(igvn);
2307
// Replace self with the result.
2308
return result;
2309
}
2310
}
2311
//
2312
// Other optimizations on the memory chain
2313
//
2314
const TypePtr* at = adr_type();
2315
for( uint i=1; i<req(); ++i ) {// For all paths in
2316
Node *ii = in(i);
2317
Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
2318
if (ii != new_in ) {
2319
set_req(i, new_in);
2320
progress = this;
2321
}
2322
}
2323
}
2324
2325
#ifdef _LP64
2326
// Push DecodeN/DecodeNKlass down through phi.
2327
// The rest of phi graph will transform by split EncodeP node though phis up.
2328
if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
2329
bool may_push = true;
2330
bool has_decodeN = false;
2331
bool is_decodeN = false;
2332
for (uint i=1; i<req(); ++i) {// For all paths in
2333
Node *ii = in(i);
2334
if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
2335
// Do optimization if a non dead path exist.
2336
if (ii->in(1)->bottom_type() != Type::TOP) {
2337
has_decodeN = true;
2338
is_decodeN = ii->is_DecodeN();
2339
}
2340
} else if (!ii->is_Phi()) {
2341
may_push = false;
2342
}
2343
}
2344
2345
if (has_decodeN && may_push) {
2346
PhaseIterGVN *igvn = phase->is_IterGVN();
2347
// Make narrow type for new phi.
2348
const Type* narrow_t;
2349
if (is_decodeN) {
2350
narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
2351
} else {
2352
narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
2353
}
2354
PhiNode* new_phi = new PhiNode(r, narrow_t);
2355
uint orig_cnt = req();
2356
for (uint i=1; i<req(); ++i) {// For all paths in
2357
Node *ii = in(i);
2358
Node* new_ii = NULL;
2359
if (ii->is_DecodeNarrowPtr()) {
2360
assert(ii->bottom_type() == bottom_type(), "sanity");
2361
new_ii = ii->in(1);
2362
} else {
2363
assert(ii->is_Phi(), "sanity");
2364
if (ii->as_Phi() == this) {
2365
new_ii = new_phi;
2366
} else {
2367
if (is_decodeN) {
2368
new_ii = new EncodePNode(ii, narrow_t);
2369
} else {
2370
new_ii = new EncodePKlassNode(ii, narrow_t);
2371
}
2372
igvn->register_new_node_with_optimizer(new_ii);
2373
}
2374
}
2375
new_phi->set_req(i, new_ii);
2376
}
2377
igvn->register_new_node_with_optimizer(new_phi, this);
2378
if (is_decodeN) {
2379
progress = new DecodeNNode(new_phi, bottom_type());
2380
} else {
2381
progress = new DecodeNKlassNode(new_phi, bottom_type());
2382
}
2383
}
2384
}
2385
#endif
2386
2387
// Phi (VB ... VB) => VB (Phi ...) (Phi ...)
2388
if (EnableVectorReboxing && can_reshape && progress == NULL) {
2389
PhaseIterGVN* igvn = phase->is_IterGVN();
2390
2391
bool all_inputs_are_equiv_vboxes = true;
2392
for (uint i = 1; i < req(); ++i) {
2393
Node* n = in(i);
2394
if (in(i)->Opcode() != Op_VectorBox) {
2395
all_inputs_are_equiv_vboxes = false;
2396
break;
2397
}
2398
// Check that vector type of vboxes is equivalent
2399
if (i != 1) {
2400
if (Type::cmp(in(i-0)->in(VectorBoxNode::Value)->bottom_type(),
2401
in(i-1)->in(VectorBoxNode::Value)->bottom_type()) != 0) {
2402
all_inputs_are_equiv_vboxes = false;
2403
break;
2404
}
2405
if (Type::cmp(in(i-0)->in(VectorBoxNode::Box)->bottom_type(),
2406
in(i-1)->in(VectorBoxNode::Box)->bottom_type()) != 0) {
2407
all_inputs_are_equiv_vboxes = false;
2408
break;
2409
}
2410
}
2411
}
2412
2413
if (all_inputs_are_equiv_vboxes) {
2414
VectorBoxNode* vbox = static_cast<VectorBoxNode*>(in(1));
2415
PhiNode* new_vbox_phi = new PhiNode(r, vbox->box_type());
2416
PhiNode* new_vect_phi = new PhiNode(r, vbox->vec_type());
2417
for (uint i = 1; i < req(); ++i) {
2418
VectorBoxNode* old_vbox = static_cast<VectorBoxNode*>(in(i));
2419
new_vbox_phi->set_req(i, old_vbox->in(VectorBoxNode::Box));
2420
new_vect_phi->set_req(i, old_vbox->in(VectorBoxNode::Value));
2421
}
2422
igvn->register_new_node_with_optimizer(new_vbox_phi, this);
2423
igvn->register_new_node_with_optimizer(new_vect_phi, this);
2424
progress = new VectorBoxNode(igvn->C, new_vbox_phi, new_vect_phi, vbox->box_type(), vbox->vec_type());
2425
}
2426
}
2427
2428
return progress; // Return any progress
2429
}
2430
2431
bool PhiNode::is_data_loop(RegionNode* r, Node* uin, const PhaseGVN* phase) {
2432
// First, take the short cut when we know it is a loop and the EntryControl data path is dead.
2433
// The loop node may only have one input because the entry path was removed in PhaseIdealLoop::Dominators().
2434
// Then, check if there is a data loop when the phi references itself directly or through other data nodes.
2435
assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
2436
const bool is_loop = (r->is_Loop() && r->req() == 3);
2437
const Node* top = phase->C->top();
2438
if (is_loop) {
2439
return !uin->eqv_uncast(in(LoopNode::EntryControl));
2440
} else {
2441
// We have a data loop either with an unsafe data reference or if a region is unreachable.
2442
return is_unsafe_data_reference(uin)
2443
|| (r->req() == 3 && (r->in(1) != top && r->in(2) == top && r->is_unreachable_region(phase)));
2444
}
2445
}
2446
2447
//------------------------------is_tripcount-----------------------------------
2448
bool PhiNode::is_tripcount(BasicType bt) const {
2449
return (in(0) != NULL && in(0)->is_BaseCountedLoop() &&
2450
in(0)->as_BaseCountedLoop()->operates_on(bt, true) &&
2451
in(0)->as_BaseCountedLoop()->phi() == this);
2452
}
2453
2454
//------------------------------out_RegMask------------------------------------
2455
const RegMask &PhiNode::in_RegMask(uint i) const {
2456
return i ? out_RegMask() : RegMask::Empty;
2457
}
2458
2459
const RegMask &PhiNode::out_RegMask() const {
2460
uint ideal_reg = _type->ideal_reg();
2461
assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2462
if( ideal_reg == 0 ) return RegMask::Empty;
2463
assert(ideal_reg != Op_RegFlags, "flags register is not spillable");
2464
return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2465
}
2466
2467
#ifndef PRODUCT
2468
void PhiNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2469
// For a PhiNode, the set of related nodes includes all inputs till level 2,
2470
// and all outputs till level 1. In compact mode, inputs till level 1 are
2471
// collected.
2472
this->collect_nodes(in_rel, compact ? 1 : 2, false, false);
2473
this->collect_nodes(out_rel, -1, false, false);
2474
}
2475
2476
void PhiNode::dump_spec(outputStream *st) const {
2477
TypeNode::dump_spec(st);
2478
if (is_tripcount(T_INT) || is_tripcount(T_LONG)) {
2479
st->print(" #tripcount");
2480
}
2481
}
2482
#endif
2483
2484
2485
//=============================================================================
2486
const Type* GotoNode::Value(PhaseGVN* phase) const {
2487
// If the input is reachable, then we are executed.
2488
// If the input is not reachable, then we are not executed.
2489
return phase->type(in(0));
2490
}
2491
2492
Node* GotoNode::Identity(PhaseGVN* phase) {
2493
return in(0); // Simple copy of incoming control
2494
}
2495
2496
const RegMask &GotoNode::out_RegMask() const {
2497
return RegMask::Empty;
2498
}
2499
2500
#ifndef PRODUCT
2501
//-----------------------------related-----------------------------------------
2502
// The related nodes of a GotoNode are all inputs at level 1, as well as the
2503
// outputs at level 1. This is regardless of compact mode.
2504
void GotoNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2505
this->collect_nodes(in_rel, 1, false, false);
2506
this->collect_nodes(out_rel, -1, false, false);
2507
}
2508
#endif
2509
2510
2511
//=============================================================================
2512
const RegMask &JumpNode::out_RegMask() const {
2513
return RegMask::Empty;
2514
}
2515
2516
#ifndef PRODUCT
2517
//-----------------------------related-----------------------------------------
2518
// The related nodes of a JumpNode are all inputs at level 1, as well as the
2519
// outputs at level 2 (to include actual jump targets beyond projection nodes).
2520
// This is regardless of compact mode.
2521
void JumpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2522
this->collect_nodes(in_rel, 1, false, false);
2523
this->collect_nodes(out_rel, -2, false, false);
2524
}
2525
#endif
2526
2527
//=============================================================================
2528
const RegMask &JProjNode::out_RegMask() const {
2529
return RegMask::Empty;
2530
}
2531
2532
//=============================================================================
2533
const RegMask &CProjNode::out_RegMask() const {
2534
return RegMask::Empty;
2535
}
2536
2537
2538
2539
//=============================================================================
2540
2541
uint PCTableNode::hash() const { return Node::hash() + _size; }
2542
bool PCTableNode::cmp( const Node &n ) const
2543
{ return _size == ((PCTableNode&)n)._size; }
2544
2545
const Type *PCTableNode::bottom_type() const {
2546
const Type** f = TypeTuple::fields(_size);
2547
for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2548
return TypeTuple::make(_size, f);
2549
}
2550
2551
//------------------------------Value------------------------------------------
2552
// Compute the type of the PCTableNode. If reachable it is a tuple of
2553
// Control, otherwise the table targets are not reachable
2554
const Type* PCTableNode::Value(PhaseGVN* phase) const {
2555
if( phase->type(in(0)) == Type::CONTROL )
2556
return bottom_type();
2557
return Type::TOP; // All paths dead? Then so are we
2558
}
2559
2560
//------------------------------Ideal------------------------------------------
2561
// Return a node which is more "ideal" than the current node. Strip out
2562
// control copies
2563
Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2564
return remove_dead_region(phase, can_reshape) ? this : NULL;
2565
}
2566
2567
//=============================================================================
2568
uint JumpProjNode::hash() const {
2569
return Node::hash() + _dest_bci;
2570
}
2571
2572
bool JumpProjNode::cmp( const Node &n ) const {
2573
return ProjNode::cmp(n) &&
2574
_dest_bci == ((JumpProjNode&)n)._dest_bci;
2575
}
2576
2577
#ifndef PRODUCT
2578
void JumpProjNode::dump_spec(outputStream *st) const {
2579
ProjNode::dump_spec(st);
2580
st->print("@bci %d ",_dest_bci);
2581
}
2582
2583
void JumpProjNode::dump_compact_spec(outputStream *st) const {
2584
ProjNode::dump_compact_spec(st);
2585
st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci);
2586
}
2587
2588
void JumpProjNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2589
// The related nodes of a JumpProjNode are its inputs and outputs at level 1.
2590
this->collect_nodes(in_rel, 1, false, false);
2591
this->collect_nodes(out_rel, -1, false, false);
2592
}
2593
#endif
2594
2595
//=============================================================================
2596
//------------------------------Value------------------------------------------
2597
// Check for being unreachable, or for coming from a Rethrow. Rethrow's cannot
2598
// have the default "fall_through_index" path.
2599
const Type* CatchNode::Value(PhaseGVN* phase) const {
2600
// Unreachable? Then so are all paths from here.
2601
if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2602
// First assume all paths are reachable
2603
const Type** f = TypeTuple::fields(_size);
2604
for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2605
// Identify cases that will always throw an exception
2606
// () rethrow call
2607
// () virtual or interface call with NULL receiver
2608
// () call is a check cast with incompatible arguments
2609
if( in(1)->is_Proj() ) {
2610
Node *i10 = in(1)->in(0);
2611
if( i10->is_Call() ) {
2612
CallNode *call = i10->as_Call();
2613
// Rethrows always throw exceptions, never return
2614
if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2615
f[CatchProjNode::fall_through_index] = Type::TOP;
2616
} else if( call->req() > TypeFunc::Parms ) {
2617
const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2618
// Check for null receiver to virtual or interface calls
2619
if( call->is_CallDynamicJava() &&
2620
arg0->higher_equal(TypePtr::NULL_PTR) ) {
2621
f[CatchProjNode::fall_through_index] = Type::TOP;
2622
}
2623
} // End of if not a runtime stub
2624
} // End of if have call above me
2625
} // End of slot 1 is not a projection
2626
return TypeTuple::make(_size, f);
2627
}
2628
2629
//=============================================================================
2630
uint CatchProjNode::hash() const {
2631
return Node::hash() + _handler_bci;
2632
}
2633
2634
2635
bool CatchProjNode::cmp( const Node &n ) const {
2636
return ProjNode::cmp(n) &&
2637
_handler_bci == ((CatchProjNode&)n)._handler_bci;
2638
}
2639
2640
2641
//------------------------------Identity---------------------------------------
2642
// If only 1 target is possible, choose it if it is the main control
2643
Node* CatchProjNode::Identity(PhaseGVN* phase) {
2644
// If my value is control and no other value is, then treat as ID
2645
const TypeTuple *t = phase->type(in(0))->is_tuple();
2646
if (t->field_at(_con) != Type::CONTROL) return this;
2647
// If we remove the last CatchProj and elide the Catch/CatchProj, then we
2648
// also remove any exception table entry. Thus we must know the call
2649
// feeding the Catch will not really throw an exception. This is ok for
2650
// the main fall-thru control (happens when we know a call can never throw
2651
// an exception) or for "rethrow", because a further optimization will
2652
// yank the rethrow (happens when we inline a function that can throw an
2653
// exception and the caller has no handler). Not legal, e.g., for passing
2654
// a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2655
// These cases MUST throw an exception via the runtime system, so the VM
2656
// will be looking for a table entry.
2657
Node *proj = in(0)->in(1); // Expect a proj feeding CatchNode
2658
CallNode *call;
2659
if (_con != TypeFunc::Control && // Bail out if not the main control.
2660
!(proj->is_Proj() && // AND NOT a rethrow
2661
proj->in(0)->is_Call() &&
2662
(call = proj->in(0)->as_Call()) &&
2663
call->entry_point() == OptoRuntime::rethrow_stub()))
2664
return this;
2665
2666
// Search for any other path being control
2667
for (uint i = 0; i < t->cnt(); i++) {
2668
if (i != _con && t->field_at(i) == Type::CONTROL)
2669
return this;
2670
}
2671
// Only my path is possible; I am identity on control to the jump
2672
return in(0)->in(0);
2673
}
2674
2675
2676
#ifndef PRODUCT
2677
void CatchProjNode::dump_spec(outputStream *st) const {
2678
ProjNode::dump_spec(st);
2679
st->print("@bci %d ",_handler_bci);
2680
}
2681
#endif
2682
2683
//=============================================================================
2684
//------------------------------Identity---------------------------------------
2685
// Check for CreateEx being Identity.
2686
Node* CreateExNode::Identity(PhaseGVN* phase) {
2687
if( phase->type(in(1)) == Type::TOP ) return in(1);
2688
if( phase->type(in(0)) == Type::TOP ) return in(0);
2689
// We only come from CatchProj, unless the CatchProj goes away.
2690
// If the CatchProj is optimized away, then we just carry the
2691
// exception oop through.
2692
CallNode *call = in(1)->in(0)->as_Call();
2693
2694
return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2695
? this
2696
: call->in(TypeFunc::Parms);
2697
}
2698
2699
//=============================================================================
2700
//------------------------------Value------------------------------------------
2701
// Check for being unreachable.
2702
const Type* NeverBranchNode::Value(PhaseGVN* phase) const {
2703
if (!in(0) || in(0)->is_top()) return Type::TOP;
2704
return bottom_type();
2705
}
2706
2707
//------------------------------Ideal------------------------------------------
2708
// Check for no longer being part of a loop
2709
Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2710
if (can_reshape && !in(0)->is_Loop()) {
2711
// Dead code elimination can sometimes delete this projection so
2712
// if it's not there, there's nothing to do.
2713
Node* fallthru = proj_out_or_null(0);
2714
if (fallthru != NULL) {
2715
phase->is_IterGVN()->replace_node(fallthru, in(0));
2716
}
2717
return phase->C->top();
2718
}
2719
return NULL;
2720
}
2721
2722
#ifndef PRODUCT
2723
void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2724
st->print("%s", Name());
2725
}
2726
#endif
2727
2728