Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/opto/chaitin.cpp
40930 views
1
/*
2
* Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "compiler/compileLog.hpp"
27
#include "compiler/oopMap.hpp"
28
#include "memory/allocation.inline.hpp"
29
#include "memory/resourceArea.hpp"
30
#include "opto/addnode.hpp"
31
#include "opto/block.hpp"
32
#include "opto/callnode.hpp"
33
#include "opto/cfgnode.hpp"
34
#include "opto/chaitin.hpp"
35
#include "opto/coalesce.hpp"
36
#include "opto/connode.hpp"
37
#include "opto/idealGraphPrinter.hpp"
38
#include "opto/indexSet.hpp"
39
#include "opto/machnode.hpp"
40
#include "opto/memnode.hpp"
41
#include "opto/movenode.hpp"
42
#include "opto/opcodes.hpp"
43
#include "opto/rootnode.hpp"
44
#include "utilities/align.hpp"
45
46
#ifndef PRODUCT
47
void LRG::dump() const {
48
ttyLocker ttyl;
49
tty->print("%d ",num_regs());
50
_mask.dump();
51
if( _msize_valid ) {
52
if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
53
else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
54
} else {
55
tty->print(", #?(%d) ",_mask.Size());
56
}
57
58
tty->print("EffDeg: ");
59
if( _degree_valid ) tty->print( "%d ", _eff_degree );
60
else tty->print("? ");
61
62
if( is_multidef() ) {
63
tty->print("MultiDef ");
64
if (_defs != NULL) {
65
tty->print("(");
66
for (int i = 0; i < _defs->length(); i++) {
67
tty->print("N%d ", _defs->at(i)->_idx);
68
}
69
tty->print(") ");
70
}
71
}
72
else if( _def == 0 ) tty->print("Dead ");
73
else tty->print("Def: N%d ",_def->_idx);
74
75
tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
76
// Flags
77
if( _is_oop ) tty->print("Oop ");
78
if( _is_float ) tty->print("Float ");
79
if( _is_vector ) tty->print("Vector ");
80
if( _is_scalable ) tty->print("Scalable ");
81
if( _was_spilled1 ) tty->print("Spilled ");
82
if( _was_spilled2 ) tty->print("Spilled2 ");
83
if( _direct_conflict ) tty->print("Direct_conflict ");
84
if( _fat_proj ) tty->print("Fat ");
85
if( _was_lo ) tty->print("Lo ");
86
if( _has_copy ) tty->print("Copy ");
87
if( _at_risk ) tty->print("Risk ");
88
89
if( _must_spill ) tty->print("Must_spill ");
90
if( _is_bound ) tty->print("Bound ");
91
if( _msize_valid ) {
92
if( _degree_valid && lo_degree() ) tty->print("Trivial ");
93
}
94
95
tty->cr();
96
}
97
#endif
98
99
// Compute score from cost and area. Low score is best to spill.
100
static double raw_score( double cost, double area ) {
101
return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
102
}
103
104
double LRG::score() const {
105
// Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
106
// Bigger area lowers score, encourages spilling this live range.
107
// Bigger cost raise score, prevents spilling this live range.
108
// (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
109
// to turn a divide by a constant into a multiply by the reciprical).
110
double score = raw_score( _cost, _area);
111
112
// Account for area. Basically, LRGs covering large areas are better
113
// to spill because more other LRGs get freed up.
114
if( _area == 0.0 ) // No area? Then no progress to spill
115
return 1e35;
116
117
if( _was_spilled2 ) // If spilled once before, we are unlikely
118
return score + 1e30; // to make progress again.
119
120
if( _cost >= _area*3.0 ) // Tiny area relative to cost
121
return score + 1e17; // Probably no progress to spill
122
123
if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
124
return score + 1e10; // Likely no progress to spill
125
126
return score;
127
}
128
129
#define NUMBUCKS 3
130
131
// Straight out of Tarjan's union-find algorithm
132
uint LiveRangeMap::find_compress(uint lrg) {
133
uint cur = lrg;
134
uint next = _uf_map.at(cur);
135
while (next != cur) { // Scan chain of equivalences
136
assert( next < cur, "always union smaller");
137
cur = next; // until find a fixed-point
138
next = _uf_map.at(cur);
139
}
140
141
// Core of union-find algorithm: update chain of
142
// equivalences to be equal to the root.
143
while (lrg != next) {
144
uint tmp = _uf_map.at(lrg);
145
_uf_map.at_put(lrg, next);
146
lrg = tmp;
147
}
148
return lrg;
149
}
150
151
// Reset the Union-Find map to identity
152
void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
153
_max_lrg_id= max_lrg_id;
154
// Force the Union-Find mapping to be at least this large
155
_uf_map.at_put_grow(_max_lrg_id, 0);
156
// Initialize it to be the ID mapping.
157
for (uint i = 0; i < _max_lrg_id; ++i) {
158
_uf_map.at_put(i, i);
159
}
160
}
161
162
// Make all Nodes map directly to their final live range; no need for
163
// the Union-Find mapping after this call.
164
void LiveRangeMap::compress_uf_map_for_nodes() {
165
// For all Nodes, compress mapping
166
uint unique = _names.length();
167
for (uint i = 0; i < unique; ++i) {
168
uint lrg = _names.at(i);
169
uint compressed_lrg = find(lrg);
170
if (lrg != compressed_lrg) {
171
_names.at_put(i, compressed_lrg);
172
}
173
}
174
}
175
176
// Like Find above, but no path compress, so bad asymptotic behavior
177
uint LiveRangeMap::find_const(uint lrg) const {
178
if (!lrg) {
179
return lrg; // Ignore the zero LRG
180
}
181
182
// Off the end? This happens during debugging dumps when you got
183
// brand new live ranges but have not told the allocator yet.
184
if (lrg >= _max_lrg_id) {
185
return lrg;
186
}
187
188
uint next = _uf_map.at(lrg);
189
while (next != lrg) { // Scan chain of equivalences
190
assert(next < lrg, "always union smaller");
191
lrg = next; // until find a fixed-point
192
next = _uf_map.at(lrg);
193
}
194
return next;
195
}
196
197
PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool scheduling_info_generated)
198
: PhaseRegAlloc(unique, cfg, matcher,
199
#ifndef PRODUCT
200
print_chaitin_statistics
201
#else
202
NULL
203
#endif
204
)
205
, _live(0)
206
, _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
207
, _oldphi(unique)
208
#ifndef PRODUCT
209
, _trace_spilling(C->directive()->TraceSpillingOption)
210
#endif
211
, _lrg_map(Thread::current()->resource_area(), unique)
212
, _scheduling_info_generated(scheduling_info_generated)
213
, _sched_int_pressure(0, INTPRESSURE)
214
, _sched_float_pressure(0, FLOATPRESSURE)
215
, _scratch_int_pressure(0, INTPRESSURE)
216
, _scratch_float_pressure(0, FLOATPRESSURE)
217
{
218
Compile::TracePhase tp("ctorChaitin", &timers[_t_ctorChaitin]);
219
220
_high_frequency_lrg = MIN2(double(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
221
222
// Build a list of basic blocks, sorted by frequency
223
_blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
224
// Experiment with sorting strategies to speed compilation
225
double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
226
Block **buckets[NUMBUCKS]; // Array of buckets
227
uint buckcnt[NUMBUCKS]; // Array of bucket counters
228
double buckval[NUMBUCKS]; // Array of bucket value cutoffs
229
for (uint i = 0; i < NUMBUCKS; i++) {
230
buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
231
buckcnt[i] = 0;
232
// Bump by three orders of magnitude each time
233
cutoff *= 0.001;
234
buckval[i] = cutoff;
235
for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
236
buckets[i][j] = NULL;
237
}
238
}
239
// Sort blocks into buckets
240
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
241
for (uint j = 0; j < NUMBUCKS; j++) {
242
if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
243
// Assign block to end of list for appropriate bucket
244
buckets[j][buckcnt[j]++] = _cfg.get_block(i);
245
break; // kick out of inner loop
246
}
247
}
248
}
249
// Dump buckets into final block array
250
uint blkcnt = 0;
251
for (uint i = 0; i < NUMBUCKS; i++) {
252
for (uint j = 0; j < buckcnt[i]; j++) {
253
_blks[blkcnt++] = buckets[i][j];
254
}
255
}
256
257
assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
258
}
259
260
// union 2 sets together.
261
void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
262
uint src = _lrg_map.find(src_n);
263
uint dst = _lrg_map.find(dst_n);
264
assert(src, "");
265
assert(dst, "");
266
assert(src < _lrg_map.max_lrg_id(), "oob");
267
assert(dst < _lrg_map.max_lrg_id(), "oob");
268
assert(src < dst, "always union smaller");
269
_lrg_map.uf_map(dst, src);
270
}
271
272
void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
273
// Make the Node->LRG mapping
274
_lrg_map.extend(x->_idx,lrg);
275
// Make the Union-Find mapping an identity function
276
_lrg_map.uf_extend(lrg, lrg);
277
}
278
279
280
int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
281
assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
282
DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
283
int found_projs = 0;
284
uint cnt = orig->outcnt();
285
for (uint i = 0; i < cnt; i++) {
286
Node* proj = orig->raw_out(i);
287
if (proj->is_MachProj()) {
288
assert(proj->outcnt() == 0, "only kill projections are expected here");
289
assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
290
found_projs++;
291
// Copy kill projections after the cloned node
292
Node* kills = proj->clone();
293
kills->set_req(0, copy);
294
b->insert_node(kills, idx++);
295
_cfg.map_node_to_block(kills, b);
296
new_lrg(kills, max_lrg_id++);
297
}
298
}
299
return found_projs;
300
}
301
302
// Renumber the live ranges to compact them. Makes the IFG smaller.
303
void PhaseChaitin::compact() {
304
Compile::TracePhase tp("chaitinCompact", &timers[_t_chaitinCompact]);
305
306
// Current the _uf_map contains a series of short chains which are headed
307
// by a self-cycle. All the chains run from big numbers to little numbers.
308
// The Find() call chases the chains & shortens them for the next Find call.
309
// We are going to change this structure slightly. Numbers above a moving
310
// wave 'i' are unchanged. Numbers below 'j' point directly to their
311
// compacted live range with no further chaining. There are no chains or
312
// cycles below 'i', so the Find call no longer works.
313
uint j=1;
314
uint i;
315
for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
316
uint lr = _lrg_map.uf_live_range_id(i);
317
// Ignore unallocated live ranges
318
if (!lr) {
319
continue;
320
}
321
assert(lr <= i, "");
322
_lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
323
}
324
// Now change the Node->LR mapping to reflect the compacted names
325
uint unique = _lrg_map.size();
326
for (i = 0; i < unique; i++) {
327
uint lrg_id = _lrg_map.live_range_id(i);
328
_lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
329
}
330
331
// Reset the Union-Find mapping
332
_lrg_map.reset_uf_map(j);
333
}
334
335
void PhaseChaitin::Register_Allocate() {
336
337
// Above the OLD FP (and in registers) are the incoming arguments. Stack
338
// slots in this area are called "arg_slots". Above the NEW FP (and in
339
// registers) is the outgoing argument area; above that is the spill/temp
340
// area. These are all "frame_slots". Arg_slots start at the zero
341
// stack_slots and count up to the known arg_size. Frame_slots start at
342
// the stack_slot #arg_size and go up. After allocation I map stack
343
// slots to actual offsets. Stack-slots in the arg_slot area are biased
344
// by the frame_size; stack-slots in the frame_slot area are biased by 0.
345
346
_trip_cnt = 0;
347
_alternate = 0;
348
_matcher._allocation_started = true;
349
350
ResourceArea split_arena(mtCompiler); // Arena for Split local resources
351
ResourceArea live_arena(mtCompiler); // Arena for liveness & IFG info
352
ResourceMark rm(&live_arena);
353
354
// Need live-ness for the IFG; need the IFG for coalescing. If the
355
// liveness is JUST for coalescing, then I can get some mileage by renaming
356
// all copy-related live ranges low and then using the max copy-related
357
// live range as a cut-off for LIVE and the IFG. In other words, I can
358
// build a subset of LIVE and IFG just for copies.
359
PhaseLive live(_cfg, _lrg_map.names(), &live_arena, false);
360
361
// Need IFG for coalescing and coloring
362
PhaseIFG ifg(&live_arena);
363
_ifg = &ifg;
364
365
// Come out of SSA world to the Named world. Assign (virtual) registers to
366
// Nodes. Use the same register for all inputs and the output of PhiNodes
367
// - effectively ending SSA form. This requires either coalescing live
368
// ranges or inserting copies. For the moment, we insert "virtual copies"
369
// - we pretend there is a copy prior to each Phi in predecessor blocks.
370
// We will attempt to coalesce such "virtual copies" before we manifest
371
// them for real.
372
de_ssa();
373
374
#ifdef ASSERT
375
// Veify the graph before RA.
376
verify(&live_arena);
377
#endif
378
379
{
380
Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
381
_live = NULL; // Mark live as being not available
382
rm.reset_to_mark(); // Reclaim working storage
383
IndexSet::reset_memory(C, &live_arena);
384
ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
385
gather_lrg_masks( false ); // Collect LRG masks
386
live.compute(_lrg_map.max_lrg_id()); // Compute liveness
387
_live = &live; // Mark LIVE as being available
388
}
389
390
// Base pointers are currently "used" by instructions which define new
391
// derived pointers. This makes base pointers live up to the where the
392
// derived pointer is made, but not beyond. Really, they need to be live
393
// across any GC point where the derived value is live. So this code looks
394
// at all the GC points, and "stretches" the live range of any base pointer
395
// to the GC point.
396
if (stretch_base_pointer_live_ranges(&live_arena)) {
397
Compile::TracePhase tp("computeLive (sbplr)", &timers[_t_computeLive]);
398
// Since some live range stretched, I need to recompute live
399
_live = NULL;
400
rm.reset_to_mark(); // Reclaim working storage
401
IndexSet::reset_memory(C, &live_arena);
402
ifg.init(_lrg_map.max_lrg_id());
403
gather_lrg_masks(false);
404
live.compute(_lrg_map.max_lrg_id());
405
_live = &live;
406
}
407
// Create the interference graph using virtual copies
408
build_ifg_virtual(); // Include stack slots this time
409
410
// The IFG is/was triangular. I am 'squaring it up' so Union can run
411
// faster. Union requires a 'for all' operation which is slow on the
412
// triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
413
// meaning I can visit all the Nodes neighbors less than a Node in time
414
// O(# of neighbors), but I have to visit all the Nodes greater than a
415
// given Node and search them for an instance, i.e., time O(#MaxLRG)).
416
_ifg->SquareUp();
417
418
// Aggressive (but pessimistic) copy coalescing.
419
// This pass works on virtual copies. Any virtual copies which are not
420
// coalesced get manifested as actual copies
421
{
422
Compile::TracePhase tp("chaitinCoalesce1", &timers[_t_chaitinCoalesce1]);
423
424
PhaseAggressiveCoalesce coalesce(*this);
425
coalesce.coalesce_driver();
426
// Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do
427
// not match the Phi itself, insert a copy.
428
coalesce.insert_copies(_matcher);
429
if (C->failing()) {
430
return;
431
}
432
}
433
434
// After aggressive coalesce, attempt a first cut at coloring.
435
// To color, we need the IFG and for that we need LIVE.
436
{
437
Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
438
_live = NULL;
439
rm.reset_to_mark(); // Reclaim working storage
440
IndexSet::reset_memory(C, &live_arena);
441
ifg.init(_lrg_map.max_lrg_id());
442
gather_lrg_masks( true );
443
live.compute(_lrg_map.max_lrg_id());
444
_live = &live;
445
}
446
447
// Build physical interference graph
448
uint must_spill = 0;
449
must_spill = build_ifg_physical(&live_arena);
450
// If we have a guaranteed spill, might as well spill now
451
if (must_spill) {
452
if(!_lrg_map.max_lrg_id()) {
453
return;
454
}
455
// Bail out if unique gets too large (ie - unique > MaxNodeLimit)
456
C->check_node_count(10*must_spill, "out of nodes before split");
457
if (C->failing()) {
458
return;
459
}
460
461
uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
462
_lrg_map.set_max_lrg_id(new_max_lrg_id);
463
// Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
464
// or we failed to split
465
C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
466
if (C->failing()) {
467
return;
468
}
469
470
NOT_PRODUCT(C->verify_graph_edges();)
471
472
compact(); // Compact LRGs; return new lower max lrg
473
474
{
475
Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
476
_live = NULL;
477
rm.reset_to_mark(); // Reclaim working storage
478
IndexSet::reset_memory(C, &live_arena);
479
ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
480
gather_lrg_masks( true ); // Collect intersect mask
481
live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
482
_live = &live;
483
}
484
build_ifg_physical(&live_arena);
485
_ifg->SquareUp();
486
_ifg->Compute_Effective_Degree();
487
// Only do conservative coalescing if requested
488
if (OptoCoalesce) {
489
Compile::TracePhase tp("chaitinCoalesce2", &timers[_t_chaitinCoalesce2]);
490
// Conservative (and pessimistic) copy coalescing of those spills
491
PhaseConservativeCoalesce coalesce(*this);
492
// If max live ranges greater than cutoff, don't color the stack.
493
// This cutoff can be larger than below since it is only done once.
494
coalesce.coalesce_driver();
495
}
496
_lrg_map.compress_uf_map_for_nodes();
497
498
#ifdef ASSERT
499
verify(&live_arena, true);
500
#endif
501
} else {
502
ifg.SquareUp();
503
ifg.Compute_Effective_Degree();
504
#ifdef ASSERT
505
set_was_low();
506
#endif
507
}
508
509
// Prepare for Simplify & Select
510
cache_lrg_info(); // Count degree of LRGs
511
512
// Simplify the InterFerence Graph by removing LRGs of low degree.
513
// LRGs of low degree are trivially colorable.
514
Simplify();
515
516
// Select colors by re-inserting LRGs back into the IFG in reverse order.
517
// Return whether or not something spills.
518
uint spills = Select( );
519
520
// If we spill, split and recycle the entire thing
521
while( spills ) {
522
if( _trip_cnt++ > 24 ) {
523
DEBUG_ONLY( dump_for_spill_split_recycle(); )
524
if( _trip_cnt > 27 ) {
525
C->record_method_not_compilable("failed spill-split-recycle sanity check");
526
return;
527
}
528
}
529
530
if (!_lrg_map.max_lrg_id()) {
531
return;
532
}
533
uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
534
_lrg_map.set_max_lrg_id(new_max_lrg_id);
535
// Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
536
C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
537
if (C->failing()) {
538
return;
539
}
540
541
compact(); // Compact LRGs; return new lower max lrg
542
543
// Nuke the live-ness and interference graph and LiveRanGe info
544
{
545
Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
546
_live = NULL;
547
rm.reset_to_mark(); // Reclaim working storage
548
IndexSet::reset_memory(C, &live_arena);
549
ifg.init(_lrg_map.max_lrg_id());
550
551
// Create LiveRanGe array.
552
// Intersect register masks for all USEs and DEFs
553
gather_lrg_masks(true);
554
live.compute(_lrg_map.max_lrg_id());
555
_live = &live;
556
}
557
must_spill = build_ifg_physical(&live_arena);
558
_ifg->SquareUp();
559
_ifg->Compute_Effective_Degree();
560
561
// Only do conservative coalescing if requested
562
if (OptoCoalesce) {
563
Compile::TracePhase tp("chaitinCoalesce3", &timers[_t_chaitinCoalesce3]);
564
// Conservative (and pessimistic) copy coalescing
565
PhaseConservativeCoalesce coalesce(*this);
566
// Check for few live ranges determines how aggressive coalesce is.
567
coalesce.coalesce_driver();
568
}
569
_lrg_map.compress_uf_map_for_nodes();
570
#ifdef ASSERT
571
verify(&live_arena, true);
572
#endif
573
cache_lrg_info(); // Count degree of LRGs
574
575
// Simplify the InterFerence Graph by removing LRGs of low degree.
576
// LRGs of low degree are trivially colorable.
577
Simplify();
578
579
// Select colors by re-inserting LRGs back into the IFG in reverse order.
580
// Return whether or not something spills.
581
spills = Select();
582
}
583
584
// Count number of Simplify-Select trips per coloring success.
585
_allocator_attempts += _trip_cnt + 1;
586
_allocator_successes += 1;
587
588
// Peephole remove copies
589
post_allocate_copy_removal();
590
591
// Merge multidefs if multiple defs representing the same value are used in a single block.
592
merge_multidefs();
593
594
#ifdef ASSERT
595
// Veify the graph after RA.
596
verify(&live_arena);
597
#endif
598
599
// max_reg is past the largest *register* used.
600
// Convert that to a frame_slot number.
601
if (_max_reg <= _matcher._new_SP) {
602
_framesize = C->out_preserve_stack_slots();
603
}
604
else {
605
_framesize = _max_reg -_matcher._new_SP;
606
}
607
assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
608
609
// This frame must preserve the required fp alignment
610
_framesize = align_up(_framesize, Matcher::stack_alignment_in_slots());
611
assert(_framesize <= 1000000, "sanity check");
612
#ifndef PRODUCT
613
_total_framesize += _framesize;
614
if ((int)_framesize > _max_framesize) {
615
_max_framesize = _framesize;
616
}
617
#endif
618
619
// Convert CISC spills
620
fixup_spills();
621
622
// Log regalloc results
623
CompileLog* log = Compile::current()->log();
624
if (log != NULL) {
625
log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
626
}
627
628
if (C->failing()) {
629
return;
630
}
631
632
NOT_PRODUCT(C->verify_graph_edges();)
633
634
// Move important info out of the live_arena to longer lasting storage.
635
alloc_node_regs(_lrg_map.size());
636
for (uint i=0; i < _lrg_map.size(); i++) {
637
if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
638
LRG &lrg = lrgs(_lrg_map.live_range_id(i));
639
if (!lrg.alive()) {
640
set_bad(i);
641
} else if (lrg.num_regs() == 1) {
642
set1(i, lrg.reg());
643
} else { // Must be a register-set
644
if (!lrg._fat_proj) { // Must be aligned adjacent register set
645
// Live ranges record the highest register in their mask.
646
// We want the low register for the AD file writer's convenience.
647
OptoReg::Name hi = lrg.reg(); // Get hi register
648
int num_regs = lrg.num_regs();
649
if (lrg.is_scalable() && OptoReg::is_stack(hi)) {
650
// For scalable vector registers, when they are allocated in physical
651
// registers, num_regs is RegMask::SlotsPerVecA for reg mask of scalable
652
// vector. If they are allocated on stack, we need to get the actual
653
// num_regs, which reflects the physical length of scalable registers.
654
num_regs = lrg.scalable_reg_slots();
655
}
656
OptoReg::Name lo = OptoReg::add(hi, (1-num_regs)); // Find lo
657
// We have to use pair [lo,lo+1] even for wide vectors because
658
// the rest of code generation works only with pairs. It is safe
659
// since for registers encoding only 'lo' is used.
660
// Second reg from pair is used in ScheduleAndBundle on SPARC where
661
// vector max size is 8 which corresponds to registers pair.
662
// It is also used in BuildOopMaps but oop operations are not
663
// vectorized.
664
set2(i, lo);
665
} else { // Misaligned; extract 2 bits
666
OptoReg::Name hi = lrg.reg(); // Get hi register
667
lrg.Remove(hi); // Yank from mask
668
int lo = lrg.mask().find_first_elem(); // Find lo
669
set_pair(i, hi, lo);
670
}
671
}
672
if( lrg._is_oop ) _node_oops.set(i);
673
} else {
674
set_bad(i);
675
}
676
}
677
678
// Done!
679
_live = NULL;
680
_ifg = NULL;
681
C->set_indexSet_arena(NULL); // ResourceArea is at end of scope
682
}
683
684
void PhaseChaitin::de_ssa() {
685
// Set initial Names for all Nodes. Most Nodes get the virtual register
686
// number. A few get the ZERO live range number. These do not
687
// get allocated, but instead rely on correct scheduling to ensure that
688
// only one instance is simultaneously live at a time.
689
uint lr_counter = 1;
690
for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
691
Block* block = _cfg.get_block(i);
692
uint cnt = block->number_of_nodes();
693
694
// Handle all the normal Nodes in the block
695
for( uint j = 0; j < cnt; j++ ) {
696
Node *n = block->get_node(j);
697
// Pre-color to the zero live range, or pick virtual register
698
const RegMask &rm = n->out_RegMask();
699
_lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
700
}
701
}
702
703
// Reset the Union-Find mapping to be identity
704
_lrg_map.reset_uf_map(lr_counter);
705
}
706
707
void PhaseChaitin::mark_ssa() {
708
// Use ssa names to populate the live range maps or if no mask
709
// is available, use the 0 entry.
710
uint max_idx = 0;
711
for ( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
712
Block* block = _cfg.get_block(i);
713
uint cnt = block->number_of_nodes();
714
715
// Handle all the normal Nodes in the block
716
for ( uint j = 0; j < cnt; j++ ) {
717
Node *n = block->get_node(j);
718
// Pre-color to the zero live range, or pick virtual register
719
const RegMask &rm = n->out_RegMask();
720
_lrg_map.map(n->_idx, rm.is_NotEmpty() ? n->_idx : 0);
721
max_idx = (n->_idx > max_idx) ? n->_idx : max_idx;
722
}
723
}
724
_lrg_map.set_max_lrg_id(max_idx+1);
725
726
// Reset the Union-Find mapping to be identity
727
_lrg_map.reset_uf_map(max_idx+1);
728
}
729
730
731
// Gather LiveRanGe information, including register masks. Modification of
732
// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
733
void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
734
735
// Nail down the frame pointer live range
736
uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
737
lrgs(fp_lrg)._cost += 1e12; // Cost is infinite
738
739
// For all blocks
740
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
741
Block* block = _cfg.get_block(i);
742
743
// For all instructions
744
for (uint j = 1; j < block->number_of_nodes(); j++) {
745
Node* n = block->get_node(j);
746
uint input_edge_start =1; // Skip control most nodes
747
bool is_machine_node = false;
748
if (n->is_Mach()) {
749
is_machine_node = true;
750
input_edge_start = n->as_Mach()->oper_input_base();
751
}
752
uint idx = n->is_Copy();
753
754
// Get virtual register number, same as LiveRanGe index
755
uint vreg = _lrg_map.live_range_id(n);
756
LRG& lrg = lrgs(vreg);
757
if (vreg) { // No vreg means un-allocable (e.g. memory)
758
759
// Check for float-vs-int live range (used in register-pressure
760
// calculations)
761
const Type *n_type = n->bottom_type();
762
if (n_type->is_floatingpoint()) {
763
lrg._is_float = 1;
764
}
765
766
// Check for twice prior spilling. Once prior spilling might have
767
// spilled 'soft', 2nd prior spill should have spilled 'hard' and
768
// further spilling is unlikely to make progress.
769
if (_spilled_once.test(n->_idx)) {
770
lrg._was_spilled1 = 1;
771
if (_spilled_twice.test(n->_idx)) {
772
lrg._was_spilled2 = 1;
773
}
774
}
775
776
#ifndef PRODUCT
777
// Collect bits not used by product code, but which may be useful for
778
// debugging.
779
780
// Collect has-copy bit
781
if (idx) {
782
lrg._has_copy = 1;
783
uint clidx = _lrg_map.live_range_id(n->in(idx));
784
LRG& copy_src = lrgs(clidx);
785
copy_src._has_copy = 1;
786
}
787
788
if (trace_spilling() && lrg._def != NULL) {
789
// collect defs for MultiDef printing
790
if (lrg._defs == NULL) {
791
lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
792
lrg._defs->append(lrg._def);
793
}
794
lrg._defs->append(n);
795
}
796
#endif
797
798
// Check for a single def LRG; these can spill nicely
799
// via rematerialization. Flag as NULL for no def found
800
// yet, or 'n' for single def or -1 for many defs.
801
lrg._def = lrg._def ? NodeSentinel : n;
802
803
// Limit result register mask to acceptable registers
804
const RegMask &rm = n->out_RegMask();
805
lrg.AND( rm );
806
807
uint ireg = n->ideal_reg();
808
assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
809
"oops must be in Op_RegP's" );
810
811
// Check for vector live range (only if vector register is used).
812
// On SPARC vector uses RegD which could be misaligned so it is not
813
// processes as vector in RA.
814
if (RegMask::is_vector(ireg)) {
815
lrg._is_vector = 1;
816
if (Matcher::implements_scalable_vector && ireg == Op_VecA) {
817
assert(Matcher::supports_scalable_vector(), "scalable vector should be supported");
818
lrg._is_scalable = 1;
819
// For scalable vector, when it is allocated in physical register,
820
// num_regs is RegMask::SlotsPerVecA for reg mask,
821
// which may not be the actual physical register size.
822
// If it is allocated in stack, we need to get the actual
823
// physical length of scalable vector register.
824
lrg.set_scalable_reg_slots(Matcher::scalable_vector_reg_size(T_FLOAT));
825
}
826
}
827
assert(n_type->isa_vect() == NULL || lrg._is_vector ||
828
ireg == Op_RegD || ireg == Op_RegL || ireg == Op_RegVectMask,
829
"vector must be in vector registers");
830
831
// Check for bound register masks
832
const RegMask &lrgmask = lrg.mask();
833
if (lrgmask.is_bound(ireg)) {
834
lrg._is_bound = 1;
835
}
836
837
// Check for maximum frequency value
838
if (lrg._maxfreq < block->_freq) {
839
lrg._maxfreq = block->_freq;
840
}
841
842
// Check for oop-iness, or long/double
843
// Check for multi-kill projection
844
switch (ireg) {
845
case MachProjNode::fat_proj:
846
// Fat projections have size equal to number of registers killed
847
lrg.set_num_regs(rm.Size());
848
lrg.set_reg_pressure(lrg.num_regs());
849
lrg._fat_proj = 1;
850
lrg._is_bound = 1;
851
break;
852
case Op_RegP:
853
#ifdef _LP64
854
lrg.set_num_regs(2); // Size is 2 stack words
855
#else
856
lrg.set_num_regs(1); // Size is 1 stack word
857
#endif
858
// Register pressure is tracked relative to the maximum values
859
// suggested for that platform, INTPRESSURE and FLOATPRESSURE,
860
// and relative to other types which compete for the same regs.
861
//
862
// The following table contains suggested values based on the
863
// architectures as defined in each .ad file.
864
// INTPRESSURE and FLOATPRESSURE may be tuned differently for
865
// compile-speed or performance.
866
// Note1:
867
// SPARC and SPARCV9 reg_pressures are at 2 instead of 1
868
// since .ad registers are defined as high and low halves.
869
// These reg_pressure values remain compatible with the code
870
// in is_high_pressure() which relates get_invalid_mask_size(),
871
// Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
872
// Note2:
873
// SPARC -d32 has 24 registers available for integral values,
874
// but only 10 of these are safe for 64-bit longs.
875
// Using set_reg_pressure(2) for both int and long means
876
// the allocator will believe it can fit 26 longs into
877
// registers. Using 2 for longs and 1 for ints means the
878
// allocator will attempt to put 52 integers into registers.
879
// The settings below limit this problem to methods with
880
// many long values which are being run on 32-bit SPARC.
881
//
882
// ------------------- reg_pressure --------------------
883
// Each entry is reg_pressure_per_value,number_of_regs
884
// RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE
885
// IA32 2 1 1 1 1 6 6
886
// IA64 1 1 1 1 1 50 41
887
// SPARC 2 2 2 2 2 48 (24) 52 (26)
888
// SPARCV9 2 2 2 2 2 48 (24) 52 (26)
889
// AMD64 1 1 1 1 1 14 15
890
// -----------------------------------------------------
891
lrg.set_reg_pressure(1); // normally one value per register
892
if( n_type->isa_oop_ptr() ) {
893
lrg._is_oop = 1;
894
}
895
break;
896
case Op_RegL: // Check for long or double
897
case Op_RegD:
898
lrg.set_num_regs(2);
899
// Define platform specific register pressure
900
#if defined(ARM32)
901
lrg.set_reg_pressure(2);
902
#elif defined(IA32)
903
if( ireg == Op_RegL ) {
904
lrg.set_reg_pressure(2);
905
} else {
906
lrg.set_reg_pressure(1);
907
}
908
#else
909
lrg.set_reg_pressure(1); // normally one value per register
910
#endif
911
// If this def of a double forces a mis-aligned double,
912
// flag as '_fat_proj' - really flag as allowing misalignment
913
// AND changes how we count interferences. A mis-aligned
914
// double can interfere with TWO aligned pairs, or effectively
915
// FOUR registers!
916
if (rm.is_misaligned_pair()) {
917
lrg._fat_proj = 1;
918
lrg._is_bound = 1;
919
}
920
break;
921
case Op_RegVectMask:
922
lrg.set_num_regs(RegMask::SlotsPerRegVectMask);
923
lrg.set_reg_pressure(1);
924
break;
925
case Op_RegF:
926
case Op_RegI:
927
case Op_RegN:
928
case Op_RegFlags:
929
case 0: // not an ideal register
930
lrg.set_num_regs(1);
931
lrg.set_reg_pressure(1);
932
break;
933
case Op_VecA:
934
assert(Matcher::supports_scalable_vector(), "does not support scalable vector");
935
assert(RegMask::num_registers(Op_VecA) == RegMask::SlotsPerVecA, "sanity");
936
assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecA), "vector should be aligned");
937
lrg.set_num_regs(RegMask::SlotsPerVecA);
938
lrg.set_reg_pressure(1);
939
break;
940
case Op_VecS:
941
assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
942
assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
943
lrg.set_num_regs(RegMask::SlotsPerVecS);
944
lrg.set_reg_pressure(1);
945
break;
946
case Op_VecD:
947
assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
948
assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
949
assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
950
lrg.set_num_regs(RegMask::SlotsPerVecD);
951
lrg.set_reg_pressure(1);
952
break;
953
case Op_VecX:
954
assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
955
assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
956
assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
957
lrg.set_num_regs(RegMask::SlotsPerVecX);
958
lrg.set_reg_pressure(1);
959
break;
960
case Op_VecY:
961
assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
962
assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
963
assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
964
lrg.set_num_regs(RegMask::SlotsPerVecY);
965
lrg.set_reg_pressure(1);
966
break;
967
case Op_VecZ:
968
assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ), "sanity");
969
assert(RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ, "sanity");
970
assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ), "vector should be aligned");
971
lrg.set_num_regs(RegMask::SlotsPerVecZ);
972
lrg.set_reg_pressure(1);
973
break;
974
default:
975
ShouldNotReachHere();
976
}
977
}
978
979
// Now do the same for inputs
980
uint cnt = n->req();
981
// Setup for CISC SPILLING
982
uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
983
if( UseCISCSpill && after_aggressive ) {
984
inp = n->cisc_operand();
985
if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
986
// Convert operand number to edge index number
987
inp = n->as_Mach()->operand_index(inp);
988
}
989
990
// Prepare register mask for each input
991
for( uint k = input_edge_start; k < cnt; k++ ) {
992
uint vreg = _lrg_map.live_range_id(n->in(k));
993
if (!vreg) {
994
continue;
995
}
996
997
// If this instruction is CISC Spillable, add the flags
998
// bit to its appropriate input
999
if( UseCISCSpill && after_aggressive && inp == k ) {
1000
#ifndef PRODUCT
1001
if( TraceCISCSpill ) {
1002
tty->print(" use_cisc_RegMask: ");
1003
n->dump();
1004
}
1005
#endif
1006
n->as_Mach()->use_cisc_RegMask();
1007
}
1008
1009
if (is_machine_node && _scheduling_info_generated) {
1010
MachNode* cur_node = n->as_Mach();
1011
// this is cleaned up by register allocation
1012
if (k >= cur_node->num_opnds()) continue;
1013
}
1014
1015
LRG &lrg = lrgs(vreg);
1016
// // Testing for floating point code shape
1017
// Node *test = n->in(k);
1018
// if( test->is_Mach() ) {
1019
// MachNode *m = test->as_Mach();
1020
// int op = m->ideal_Opcode();
1021
// if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
1022
// int zzz = 1;
1023
// }
1024
// }
1025
1026
// Limit result register mask to acceptable registers.
1027
// Do not limit registers from uncommon uses before
1028
// AggressiveCoalesce. This effectively pre-virtual-splits
1029
// around uncommon uses of common defs.
1030
const RegMask &rm = n->in_RegMask(k);
1031
if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
1032
// Since we are BEFORE aggressive coalesce, leave the register
1033
// mask untrimmed by the call. This encourages more coalescing.
1034
// Later, AFTER aggressive, this live range will have to spill
1035
// but the spiller handles slow-path calls very nicely.
1036
} else {
1037
lrg.AND( rm );
1038
}
1039
1040
// Check for bound register masks
1041
const RegMask &lrgmask = lrg.mask();
1042
uint kreg = n->in(k)->ideal_reg();
1043
bool is_vect = RegMask::is_vector(kreg);
1044
assert(n->in(k)->bottom_type()->isa_vect() == NULL || is_vect ||
1045
kreg == Op_RegD || kreg == Op_RegL || kreg == Op_RegVectMask,
1046
"vector must be in vector registers");
1047
if (lrgmask.is_bound(kreg))
1048
lrg._is_bound = 1;
1049
1050
// If this use of a double forces a mis-aligned double,
1051
// flag as '_fat_proj' - really flag as allowing misalignment
1052
// AND changes how we count interferences. A mis-aligned
1053
// double can interfere with TWO aligned pairs, or effectively
1054
// FOUR registers!
1055
#ifdef ASSERT
1056
if (is_vect && !_scheduling_info_generated) {
1057
if (lrg.num_regs() != 0) {
1058
assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
1059
assert(!lrg._fat_proj, "sanity");
1060
assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
1061
} else {
1062
assert(n->is_Phi(), "not all inputs processed only if Phi");
1063
}
1064
}
1065
#endif
1066
if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
1067
lrg._fat_proj = 1;
1068
lrg._is_bound = 1;
1069
}
1070
// if the LRG is an unaligned pair, we will have to spill
1071
// so clear the LRG's register mask if it is not already spilled
1072
if (!is_vect && !n->is_SpillCopy() &&
1073
(lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
1074
lrgmask.is_misaligned_pair()) {
1075
lrg.Clear();
1076
}
1077
1078
// Check for maximum frequency value
1079
if (lrg._maxfreq < block->_freq) {
1080
lrg._maxfreq = block->_freq;
1081
}
1082
1083
} // End for all allocated inputs
1084
} // end for all instructions
1085
} // end for all blocks
1086
1087
// Final per-liverange setup
1088
for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
1089
LRG &lrg = lrgs(i2);
1090
assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
1091
if (lrg.num_regs() > 1 && !lrg._fat_proj) {
1092
lrg.clear_to_sets();
1093
}
1094
lrg.compute_set_mask_size();
1095
if (lrg.not_free()) { // Handle case where we lose from the start
1096
lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
1097
lrg._direct_conflict = 1;
1098
}
1099
lrg.set_degree(0); // no neighbors in IFG yet
1100
}
1101
}
1102
1103
// Set the was-lo-degree bit. Conservative coalescing should not change the
1104
// colorability of the graph. If any live range was of low-degree before
1105
// coalescing, it should Simplify. This call sets the was-lo-degree bit.
1106
// The bit is checked in Simplify.
1107
void PhaseChaitin::set_was_low() {
1108
#ifdef ASSERT
1109
for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1110
int size = lrgs(i).num_regs();
1111
uint old_was_lo = lrgs(i)._was_lo;
1112
lrgs(i)._was_lo = 0;
1113
if( lrgs(i).lo_degree() ) {
1114
lrgs(i)._was_lo = 1; // Trivially of low degree
1115
} else { // Else check the Brigg's assertion
1116
// Brigg's observation is that the lo-degree neighbors of a
1117
// hi-degree live range will not interfere with the color choices
1118
// of said hi-degree live range. The Simplify reverse-stack-coloring
1119
// order takes care of the details. Hence you do not have to count
1120
// low-degree neighbors when determining if this guy colors.
1121
int briggs_degree = 0;
1122
IndexSet *s = _ifg->neighbors(i);
1123
IndexSetIterator elements(s);
1124
uint lidx;
1125
while((lidx = elements.next()) != 0) {
1126
if( !lrgs(lidx).lo_degree() )
1127
briggs_degree += MAX2(size,lrgs(lidx).num_regs());
1128
}
1129
if( briggs_degree < lrgs(i).degrees_of_freedom() )
1130
lrgs(i)._was_lo = 1; // Low degree via the briggs assertion
1131
}
1132
assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
1133
}
1134
#endif
1135
}
1136
1137
// Compute cost/area ratio, in case we spill. Build the lo-degree list.
1138
void PhaseChaitin::cache_lrg_info( ) {
1139
Compile::TracePhase tp("chaitinCacheLRG", &timers[_t_chaitinCacheLRG]);
1140
1141
for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1142
LRG &lrg = lrgs(i);
1143
1144
// Check for being of low degree: means we can be trivially colored.
1145
// Low degree, dead or must-spill guys just get to simplify right away
1146
if( lrg.lo_degree() ||
1147
!lrg.alive() ||
1148
lrg._must_spill ) {
1149
// Split low degree list into those guys that must get a
1150
// register and those that can go to register or stack.
1151
// The idea is LRGs that can go register or stack color first when
1152
// they have a good chance of getting a register. The register-only
1153
// lo-degree live ranges always get a register.
1154
OptoReg::Name hi_reg = lrg.mask().find_last_elem();
1155
if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
1156
lrg._next = _lo_stk_degree;
1157
_lo_stk_degree = i;
1158
} else {
1159
lrg._next = _lo_degree;
1160
_lo_degree = i;
1161
}
1162
} else { // Else high degree
1163
lrgs(_hi_degree)._prev = i;
1164
lrg._next = _hi_degree;
1165
lrg._prev = 0;
1166
_hi_degree = i;
1167
}
1168
}
1169
}
1170
1171
// Simplify the IFG by removing LRGs of low degree.
1172
void PhaseChaitin::Simplify( ) {
1173
Compile::TracePhase tp("chaitinSimplify", &timers[_t_chaitinSimplify]);
1174
1175
while( 1 ) { // Repeat till simplified it all
1176
// May want to explore simplifying lo_degree before _lo_stk_degree.
1177
// This might result in more spills coloring into registers during
1178
// Select().
1179
while( _lo_degree || _lo_stk_degree ) {
1180
// If possible, pull from lo_stk first
1181
uint lo;
1182
if( _lo_degree ) {
1183
lo = _lo_degree;
1184
_lo_degree = lrgs(lo)._next;
1185
} else {
1186
lo = _lo_stk_degree;
1187
_lo_stk_degree = lrgs(lo)._next;
1188
}
1189
1190
// Put the simplified guy on the simplified list.
1191
lrgs(lo)._next = _simplified;
1192
_simplified = lo;
1193
// If this guy is "at risk" then mark his current neighbors
1194
if (lrgs(lo)._at_risk && !_ifg->neighbors(lo)->is_empty()) {
1195
IndexSetIterator elements(_ifg->neighbors(lo));
1196
uint datum;
1197
while ((datum = elements.next()) != 0) {
1198
lrgs(datum)._risk_bias = lo;
1199
}
1200
}
1201
1202
// Yank this guy from the IFG.
1203
IndexSet *adj = _ifg->remove_node(lo);
1204
if (adj->is_empty()) {
1205
continue;
1206
}
1207
1208
// If any neighbors' degrees fall below their number of
1209
// allowed registers, then put that neighbor on the low degree
1210
// list. Note that 'degree' can only fall and 'numregs' is
1211
// unchanged by this action. Thus the two are equal at most once,
1212
// so LRGs hit the lo-degree worklist at most once.
1213
IndexSetIterator elements(adj);
1214
uint neighbor;
1215
while ((neighbor = elements.next()) != 0) {
1216
LRG *n = &lrgs(neighbor);
1217
#ifdef ASSERT
1218
if (VerifyRegisterAllocator) {
1219
assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1220
}
1221
#endif
1222
1223
// Check for just becoming of-low-degree just counting registers.
1224
// _must_spill live ranges are already on the low degree list.
1225
if (n->just_lo_degree() && !n->_must_spill) {
1226
assert(!_ifg->_yanked->test(neighbor), "Cannot move to lo degree twice");
1227
// Pull from hi-degree list
1228
uint prev = n->_prev;
1229
uint next = n->_next;
1230
if (prev) {
1231
lrgs(prev)._next = next;
1232
} else {
1233
_hi_degree = next;
1234
}
1235
lrgs(next)._prev = prev;
1236
n->_next = _lo_degree;
1237
_lo_degree = neighbor;
1238
}
1239
}
1240
} // End of while lo-degree/lo_stk_degree worklist not empty
1241
1242
// Check for got everything: is hi-degree list empty?
1243
if (!_hi_degree) break;
1244
1245
// Time to pick a potential spill guy
1246
uint lo_score = _hi_degree;
1247
double score = lrgs(lo_score).score();
1248
double area = lrgs(lo_score)._area;
1249
double cost = lrgs(lo_score)._cost;
1250
bool bound = lrgs(lo_score)._is_bound;
1251
1252
// Find cheapest guy
1253
debug_only( int lo_no_simplify=0; );
1254
for (uint i = _hi_degree; i; i = lrgs(i)._next) {
1255
assert(!_ifg->_yanked->test(i), "");
1256
// It's just vaguely possible to move hi-degree to lo-degree without
1257
// going through a just-lo-degree stage: If you remove a double from
1258
// a float live range it's degree will drop by 2 and you can skip the
1259
// just-lo-degree stage. It's very rare (shows up after 5000+ methods
1260
// in -Xcomp of Java2Demo). So just choose this guy to simplify next.
1261
if( lrgs(i).lo_degree() ) {
1262
lo_score = i;
1263
break;
1264
}
1265
debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1266
double iscore = lrgs(i).score();
1267
double iarea = lrgs(i)._area;
1268
double icost = lrgs(i)._cost;
1269
bool ibound = lrgs(i)._is_bound;
1270
1271
// Compare cost/area of i vs cost/area of lo_score. Smaller cost/area
1272
// wins. Ties happen because all live ranges in question have spilled
1273
// a few times before and the spill-score adds a huge number which
1274
// washes out the low order bits. We are choosing the lesser of 2
1275
// evils; in this case pick largest area to spill.
1276
// Ties also happen when live ranges are defined and used only inside
1277
// one block. In which case their area is 0 and score set to max.
1278
// In such case choose bound live range over unbound to free registers
1279
// or with smaller cost to spill.
1280
if ( iscore < score ||
1281
(iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1282
(iscore == score && iarea == area &&
1283
( (ibound && !bound) || (ibound == bound && (icost < cost)) )) ) {
1284
lo_score = i;
1285
score = iscore;
1286
area = iarea;
1287
cost = icost;
1288
bound = ibound;
1289
}
1290
}
1291
LRG *lo_lrg = &lrgs(lo_score);
1292
// The live range we choose for spilling is either hi-degree, or very
1293
// rarely it can be low-degree. If we choose a hi-degree live range
1294
// there better not be any lo-degree choices.
1295
assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1296
1297
// Pull from hi-degree list
1298
uint prev = lo_lrg->_prev;
1299
uint next = lo_lrg->_next;
1300
if( prev ) lrgs(prev)._next = next;
1301
else _hi_degree = next;
1302
lrgs(next)._prev = prev;
1303
// Jam him on the lo-degree list, despite his high degree.
1304
// Maybe he'll get a color, and maybe he'll spill.
1305
// Only Select() will know.
1306
lrgs(lo_score)._at_risk = true;
1307
_lo_degree = lo_score;
1308
lo_lrg->_next = 0;
1309
1310
} // End of while not simplified everything
1311
1312
}
1313
1314
// Is 'reg' register legal for 'lrg'?
1315
static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
1316
if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
1317
lrg.mask().Member(OptoReg::add(reg,-chunk))) {
1318
// RA uses OptoReg which represent the highest element of a registers set.
1319
// For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
1320
// in which XMMd is used by RA to represent such vectors. A double value
1321
// uses [XMM,XMMb] pairs and XMMb is used by RA for it.
1322
// The register mask uses largest bits set of overlapping register sets.
1323
// On x86 with AVX it uses 8 bits for each XMM registers set.
1324
//
1325
// The 'lrg' already has cleared-to-set register mask (done in Select()
1326
// before calling choose_color()). Passing mask.Member(reg) check above
1327
// indicates that the size (num_regs) of 'reg' set is less or equal to
1328
// 'lrg' set size.
1329
// For set size 1 any register which is member of 'lrg' mask is legal.
1330
if (lrg.num_regs()==1)
1331
return true;
1332
// For larger sets only an aligned register with the same set size is legal.
1333
int mask = lrg.num_regs()-1;
1334
if ((reg&mask) == mask)
1335
return true;
1336
}
1337
return false;
1338
}
1339
1340
static OptoReg::Name find_first_set(LRG &lrg, RegMask mask, int chunk) {
1341
int num_regs = lrg.num_regs();
1342
OptoReg::Name assigned = mask.find_first_set(lrg, num_regs);
1343
1344
if (lrg.is_scalable()) {
1345
// a physical register is found
1346
if (chunk == 0 && OptoReg::is_reg(assigned)) {
1347
return assigned;
1348
}
1349
1350
// find available stack slots for scalable register
1351
if (lrg._is_vector) {
1352
num_regs = lrg.scalable_reg_slots();
1353
// if actual scalable vector register is exactly SlotsPerVecA * 32 bits
1354
if (num_regs == RegMask::SlotsPerVecA) {
1355
return assigned;
1356
}
1357
1358
// mask has been cleared out by clear_to_sets(SlotsPerVecA) before choose_color, but it
1359
// does not work for scalable size. We have to find adjacent scalable_reg_slots() bits
1360
// instead of SlotsPerVecA bits.
1361
assigned = mask.find_first_set(lrg, num_regs); // find highest valid reg
1362
while (OptoReg::is_valid(assigned) && RegMask::can_represent(assigned)) {
1363
// Verify the found reg has scalable_reg_slots() bits set.
1364
if (mask.is_valid_reg(assigned, num_regs)) {
1365
return assigned;
1366
} else {
1367
// Remove more for each iteration
1368
mask.Remove(assigned - num_regs + 1); // Unmask the lowest reg
1369
mask.clear_to_sets(RegMask::SlotsPerVecA); // Align by SlotsPerVecA bits
1370
assigned = mask.find_first_set(lrg, num_regs);
1371
}
1372
}
1373
return OptoReg::Bad; // will cause chunk change, and retry next chunk
1374
}
1375
}
1376
1377
return assigned;
1378
}
1379
1380
// Choose a color using the biasing heuristic
1381
OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1382
1383
// Check for "at_risk" LRG's
1384
uint risk_lrg = _lrg_map.find(lrg._risk_bias);
1385
if (risk_lrg != 0 && !_ifg->neighbors(risk_lrg)->is_empty()) {
1386
// Walk the colored neighbors of the "at_risk" candidate
1387
// Choose a color which is both legal and already taken by a neighbor
1388
// of the "at_risk" candidate in order to improve the chances of the
1389
// "at_risk" candidate of coloring
1390
IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1391
uint datum;
1392
while ((datum = elements.next()) != 0) {
1393
OptoReg::Name reg = lrgs(datum).reg();
1394
// If this LRG's register is legal for us, choose it
1395
if (is_legal_reg(lrg, reg, chunk))
1396
return reg;
1397
}
1398
}
1399
1400
uint copy_lrg = _lrg_map.find(lrg._copy_bias);
1401
if (copy_lrg != 0) {
1402
// If he has a color,
1403
if(!_ifg->_yanked->test(copy_lrg)) {
1404
OptoReg::Name reg = lrgs(copy_lrg).reg();
1405
// And it is legal for you,
1406
if (is_legal_reg(lrg, reg, chunk))
1407
return reg;
1408
} else if( chunk == 0 ) {
1409
// Choose a color which is legal for him
1410
RegMask tempmask = lrg.mask();
1411
tempmask.AND(lrgs(copy_lrg).mask());
1412
tempmask.clear_to_sets(lrg.num_regs());
1413
OptoReg::Name reg = find_first_set(lrg, tempmask, chunk);
1414
if (OptoReg::is_valid(reg))
1415
return reg;
1416
}
1417
}
1418
1419
// If no bias info exists, just go with the register selection ordering
1420
if (lrg._is_vector || lrg.num_regs() == 2) {
1421
// Find an aligned set
1422
return OptoReg::add(find_first_set(lrg, lrg.mask(), chunk), chunk);
1423
}
1424
1425
// CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate
1426
// copy removal to remove many more copies, by preventing a just-assigned
1427
// register from being repeatedly assigned.
1428
OptoReg::Name reg = lrg.mask().find_first_elem();
1429
if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1430
// This 'Remove; find; Insert' idiom is an expensive way to find the
1431
// SECOND element in the mask.
1432
lrg.Remove(reg);
1433
OptoReg::Name reg2 = lrg.mask().find_first_elem();
1434
lrg.Insert(reg);
1435
if( OptoReg::is_reg(reg2))
1436
reg = reg2;
1437
}
1438
return OptoReg::add( reg, chunk );
1439
}
1440
1441
// Choose a color in the current chunk
1442
OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1443
assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1444
assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1445
1446
if( lrg.num_regs() == 1 || // Common Case
1447
!lrg._fat_proj ) // Aligned+adjacent pairs ok
1448
// Use a heuristic to "bias" the color choice
1449
return bias_color(lrg, chunk);
1450
1451
assert(!lrg._is_vector, "should be not vector here" );
1452
assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1453
1454
// Fat-proj case or misaligned double argument.
1455
assert(lrg.compute_mask_size() == lrg.num_regs() ||
1456
lrg.num_regs() == 2,"fat projs exactly color" );
1457
assert( !chunk, "always color in 1st chunk" );
1458
// Return the highest element in the set.
1459
return lrg.mask().find_last_elem();
1460
}
1461
1462
// Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted
1463
// in reverse order of removal. As long as nothing of hi-degree was yanked,
1464
// everything going back is guaranteed a color. Select that color. If some
1465
// hi-degree LRG cannot get a color then we record that we must spill.
1466
uint PhaseChaitin::Select( ) {
1467
Compile::TracePhase tp("chaitinSelect", &timers[_t_chaitinSelect]);
1468
1469
uint spill_reg = LRG::SPILL_REG;
1470
_max_reg = OptoReg::Name(0); // Past max register used
1471
while( _simplified ) {
1472
// Pull next LRG from the simplified list - in reverse order of removal
1473
uint lidx = _simplified;
1474
LRG *lrg = &lrgs(lidx);
1475
_simplified = lrg->_next;
1476
1477
#ifndef PRODUCT
1478
if (trace_spilling()) {
1479
ttyLocker ttyl;
1480
tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1481
lrg->degrees_of_freedom());
1482
lrg->dump();
1483
}
1484
#endif
1485
1486
// Re-insert into the IFG
1487
_ifg->re_insert(lidx);
1488
if( !lrg->alive() ) continue;
1489
// capture allstackedness flag before mask is hacked
1490
const int is_allstack = lrg->mask().is_AllStack();
1491
1492
// Yeah, yeah, yeah, I know, I know. I can refactor this
1493
// to avoid the GOTO, although the refactored code will not
1494
// be much clearer. We arrive here IFF we have a stack-based
1495
// live range that cannot color in the current chunk, and it
1496
// has to move into the next free stack chunk.
1497
int chunk = 0; // Current chunk is first chunk
1498
retry_next_chunk:
1499
1500
// Remove neighbor colors
1501
IndexSet *s = _ifg->neighbors(lidx);
1502
debug_only(RegMask orig_mask = lrg->mask();)
1503
1504
if (!s->is_empty()) {
1505
IndexSetIterator elements(s);
1506
uint neighbor;
1507
while ((neighbor = elements.next()) != 0) {
1508
// Note that neighbor might be a spill_reg. In this case, exclusion
1509
// of its color will be a no-op, since the spill_reg chunk is in outer
1510
// space. Also, if neighbor is in a different chunk, this exclusion
1511
// will be a no-op. (Later on, if lrg runs out of possible colors in
1512
// its chunk, a new chunk of color may be tried, in which case
1513
// examination of neighbors is started again, at retry_next_chunk.)
1514
LRG &nlrg = lrgs(neighbor);
1515
OptoReg::Name nreg = nlrg.reg();
1516
// Only subtract masks in the same chunk
1517
if (nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE) {
1518
#ifndef PRODUCT
1519
uint size = lrg->mask().Size();
1520
RegMask rm = lrg->mask();
1521
#endif
1522
lrg->SUBTRACT(nlrg.mask());
1523
#ifndef PRODUCT
1524
if (trace_spilling() && lrg->mask().Size() != size) {
1525
ttyLocker ttyl;
1526
tty->print("L%d ", lidx);
1527
rm.dump();
1528
tty->print(" intersected L%d ", neighbor);
1529
nlrg.mask().dump();
1530
tty->print(" removed ");
1531
rm.SUBTRACT(lrg->mask());
1532
rm.dump();
1533
tty->print(" leaving ");
1534
lrg->mask().dump();
1535
tty->cr();
1536
}
1537
#endif
1538
}
1539
}
1540
}
1541
//assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1542
// Aligned pairs need aligned masks
1543
assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1544
if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
1545
lrg->clear_to_sets();
1546
}
1547
1548
// Check if a color is available and if so pick the color
1549
OptoReg::Name reg = choose_color( *lrg, chunk );
1550
1551
//---------------
1552
// If we fail to color and the AllStack flag is set, trigger
1553
// a chunk-rollover event
1554
if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1555
// Bump register mask up to next stack chunk
1556
chunk += RegMask::CHUNK_SIZE;
1557
lrg->Set_All();
1558
goto retry_next_chunk;
1559
}
1560
1561
//---------------
1562
// Did we get a color?
1563
else if( OptoReg::is_valid(reg)) {
1564
#ifndef PRODUCT
1565
RegMask avail_rm = lrg->mask();
1566
#endif
1567
1568
// Record selected register
1569
lrg->set_reg(reg);
1570
1571
if( reg >= _max_reg ) // Compute max register limit
1572
_max_reg = OptoReg::add(reg,1);
1573
// Fold reg back into normal space
1574
reg = OptoReg::add(reg,-chunk);
1575
1576
// If the live range is not bound, then we actually had some choices
1577
// to make. In this case, the mask has more bits in it than the colors
1578
// chosen. Restrict the mask to just what was picked.
1579
int n_regs = lrg->num_regs();
1580
assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1581
if (n_regs == 1 || !lrg->_fat_proj) {
1582
if (Matcher::supports_scalable_vector()) {
1583
assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecA, "sanity");
1584
} else {
1585
assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ, "sanity");
1586
}
1587
lrg->Clear(); // Clear the mask
1588
lrg->Insert(reg); // Set regmask to match selected reg
1589
// For vectors and pairs, also insert the low bit of the pair
1590
// We always choose the high bit, then mask the low bits by register size
1591
if (lrg->is_scalable() && OptoReg::is_stack(lrg->reg())) { // stack
1592
n_regs = lrg->scalable_reg_slots();
1593
}
1594
for (int i = 1; i < n_regs; i++) {
1595
lrg->Insert(OptoReg::add(reg,-i));
1596
}
1597
lrg->set_mask_size(n_regs);
1598
} else { // Else fatproj
1599
// mask must be equal to fatproj bits, by definition
1600
}
1601
#ifndef PRODUCT
1602
if (trace_spilling()) {
1603
ttyLocker ttyl;
1604
tty->print("L%d selected ", lidx);
1605
lrg->mask().dump();
1606
tty->print(" from ");
1607
avail_rm.dump();
1608
tty->cr();
1609
}
1610
#endif
1611
// Note that reg is the highest-numbered register in the newly-bound mask.
1612
} // end color available case
1613
1614
//---------------
1615
// Live range is live and no colors available
1616
else {
1617
assert( lrg->alive(), "" );
1618
assert( !lrg->_fat_proj || lrg->is_multidef() ||
1619
lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1620
assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1621
1622
// Assign the special spillreg register
1623
lrg->set_reg(OptoReg::Name(spill_reg++));
1624
// Do not empty the regmask; leave mask_size lying around
1625
// for use during Spilling
1626
#ifndef PRODUCT
1627
if( trace_spilling() ) {
1628
ttyLocker ttyl;
1629
tty->print("L%d spilling with neighbors: ", lidx);
1630
s->dump();
1631
debug_only(tty->print(" original mask: "));
1632
debug_only(orig_mask.dump());
1633
dump_lrg(lidx);
1634
}
1635
#endif
1636
} // end spill case
1637
1638
}
1639
1640
return spill_reg-LRG::SPILL_REG; // Return number of spills
1641
}
1642
1643
// Set the 'spilled_once' or 'spilled_twice' flag on a node.
1644
void PhaseChaitin::set_was_spilled( Node *n ) {
1645
if( _spilled_once.test_set(n->_idx) )
1646
_spilled_twice.set(n->_idx);
1647
}
1648
1649
// Convert Ideal spill instructions into proper FramePtr + offset Loads and
1650
// Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1651
void PhaseChaitin::fixup_spills() {
1652
// This function does only cisc spill work.
1653
if( !UseCISCSpill ) return;
1654
1655
Compile::TracePhase tp("fixupSpills", &timers[_t_fixupSpills]);
1656
1657
// Grab the Frame Pointer
1658
Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
1659
1660
// For all blocks
1661
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1662
Block* block = _cfg.get_block(i);
1663
1664
// For all instructions in block
1665
uint last_inst = block->end_idx();
1666
for (uint j = 1; j <= last_inst; j++) {
1667
Node* n = block->get_node(j);
1668
1669
// Dead instruction???
1670
assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1671
C->top() == n || // Or the random TOP node
1672
n->is_Proj(), // Or a fat-proj kill node
1673
"No dead instructions after post-alloc" );
1674
1675
int inp = n->cisc_operand();
1676
if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1677
// Convert operand number to edge index number
1678
MachNode *mach = n->as_Mach();
1679
inp = mach->operand_index(inp);
1680
Node *src = n->in(inp); // Value to load or store
1681
LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
1682
OptoReg::Name src_reg = lrg_cisc.reg();
1683
// Doubles record the HIGH register of an adjacent pair.
1684
src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1685
if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1686
// This is a CISC Spill, get stack offset and construct new node
1687
#ifndef PRODUCT
1688
if( TraceCISCSpill ) {
1689
tty->print(" reg-instr: ");
1690
n->dump();
1691
}
1692
#endif
1693
int stk_offset = reg2offset(src_reg);
1694
// Bailout if we might exceed node limit when spilling this instruction
1695
C->check_node_count(0, "out of nodes fixing spills");
1696
if (C->failing()) return;
1697
// Transform node
1698
MachNode *cisc = mach->cisc_version(stk_offset)->as_Mach();
1699
cisc->set_req(inp,fp); // Base register is frame pointer
1700
if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1701
assert( cisc->oper_input_base() == 2, "Only adding one edge");
1702
cisc->ins_req(1,src); // Requires a memory edge
1703
}
1704
block->map_node(cisc, j); // Insert into basic block
1705
n->subsume_by(cisc, C); // Correct graph
1706
//
1707
++_used_cisc_instructions;
1708
#ifndef PRODUCT
1709
if( TraceCISCSpill ) {
1710
tty->print(" cisc-instr: ");
1711
cisc->dump();
1712
}
1713
#endif
1714
} else {
1715
#ifndef PRODUCT
1716
if( TraceCISCSpill ) {
1717
tty->print(" using reg-instr: ");
1718
n->dump();
1719
}
1720
#endif
1721
++_unused_cisc_instructions; // input can be on stack
1722
}
1723
}
1724
1725
} // End of for all instructions
1726
1727
} // End of for all blocks
1728
}
1729
1730
// Helper to stretch above; recursively discover the base Node for a
1731
// given derived Node. Easy for AddP-related machine nodes, but needs
1732
// to be recursive for derived Phis.
1733
Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1734
// See if already computed; if so return it
1735
if( derived_base_map[derived->_idx] )
1736
return derived_base_map[derived->_idx];
1737
1738
// See if this happens to be a base.
1739
// NOTE: we use TypePtr instead of TypeOopPtr because we can have
1740
// pointers derived from NULL! These are always along paths that
1741
// can't happen at run-time but the optimizer cannot deduce it so
1742
// we have to handle it gracefully.
1743
assert(!derived->bottom_type()->isa_narrowoop() ||
1744
derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1745
const TypePtr *tj = derived->bottom_type()->isa_ptr();
1746
// If its an OOP with a non-zero offset, then it is derived.
1747
if( tj == NULL || tj->_offset == 0 ) {
1748
derived_base_map[derived->_idx] = derived;
1749
return derived;
1750
}
1751
// Derived is NULL+offset? Base is NULL!
1752
if( derived->is_Con() ) {
1753
Node *base = _matcher.mach_null();
1754
assert(base != NULL, "sanity");
1755
if (base->in(0) == NULL) {
1756
// Initialize it once and make it shared:
1757
// set control to _root and place it into Start block
1758
// (where top() node is placed).
1759
base->init_req(0, _cfg.get_root_node());
1760
Block *startb = _cfg.get_block_for_node(C->top());
1761
uint node_pos = startb->find_node(C->top());
1762
startb->insert_node(base, node_pos);
1763
_cfg.map_node_to_block(base, startb);
1764
assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
1765
1766
// The loadConP0 might have projection nodes depending on architecture
1767
// Add the projection nodes to the CFG
1768
for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
1769
Node* use = base->fast_out(i);
1770
if (use->is_MachProj()) {
1771
startb->insert_node(use, ++node_pos);
1772
_cfg.map_node_to_block(use, startb);
1773
new_lrg(use, maxlrg++);
1774
}
1775
}
1776
}
1777
if (_lrg_map.live_range_id(base) == 0) {
1778
new_lrg(base, maxlrg++);
1779
}
1780
assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
1781
derived_base_map[derived->_idx] = base;
1782
return base;
1783
}
1784
1785
// Check for AddP-related opcodes
1786
if (!derived->is_Phi()) {
1787
assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, "but is: %s", derived->Name());
1788
Node *base = derived->in(AddPNode::Base);
1789
derived_base_map[derived->_idx] = base;
1790
return base;
1791
}
1792
1793
// Recursively find bases for Phis.
1794
// First check to see if we can avoid a base Phi here.
1795
Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1796
uint i;
1797
for( i = 2; i < derived->req(); i++ )
1798
if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1799
break;
1800
// Went to the end without finding any different bases?
1801
if( i == derived->req() ) { // No need for a base Phi here
1802
derived_base_map[derived->_idx] = base;
1803
return base;
1804
}
1805
1806
// Now we see we need a base-Phi here to merge the bases
1807
const Type *t = base->bottom_type();
1808
base = new PhiNode( derived->in(0), t );
1809
for( i = 1; i < derived->req(); i++ ) {
1810
base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1811
t = t->meet(base->in(i)->bottom_type());
1812
}
1813
base->as_Phi()->set_type(t);
1814
1815
// Search the current block for an existing base-Phi
1816
Block *b = _cfg.get_block_for_node(derived);
1817
for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1818
Node *phi = b->get_node(i);
1819
if( !phi->is_Phi() ) { // Found end of Phis with no match?
1820
b->insert_node(base, i); // Must insert created Phi here as base
1821
_cfg.map_node_to_block(base, b);
1822
new_lrg(base,maxlrg++);
1823
break;
1824
}
1825
// See if Phi matches.
1826
uint j;
1827
for( j = 1; j < base->req(); j++ )
1828
if( phi->in(j) != base->in(j) &&
1829
!(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1830
break;
1831
if( j == base->req() ) { // All inputs match?
1832
base = phi; // Then use existing 'phi' and drop 'base'
1833
break;
1834
}
1835
}
1836
1837
1838
// Cache info for later passes
1839
derived_base_map[derived->_idx] = base;
1840
return base;
1841
}
1842
1843
// At each Safepoint, insert extra debug edges for each pair of derived value/
1844
// base pointer that is live across the Safepoint for oopmap building. The
1845
// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1846
// required edge set.
1847
bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
1848
int must_recompute_live = false;
1849
uint maxlrg = _lrg_map.max_lrg_id();
1850
Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1851
memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1852
1853
// For all blocks in RPO do...
1854
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1855
Block* block = _cfg.get_block(i);
1856
// Note use of deep-copy constructor. I cannot hammer the original
1857
// liveout bits, because they are needed by the following coalesce pass.
1858
IndexSet liveout(_live->live(block));
1859
1860
for (uint j = block->end_idx() + 1; j > 1; j--) {
1861
Node* n = block->get_node(j - 1);
1862
1863
// Pre-split compares of loop-phis. Loop-phis form a cycle we would
1864
// like to see in the same register. Compare uses the loop-phi and so
1865
// extends its live range BUT cannot be part of the cycle. If this
1866
// extended live range overlaps with the update of the loop-phi value
1867
// we need both alive at the same time -- which requires at least 1
1868
// copy. But because Intel has only 2-address registers we end up with
1869
// at least 2 copies, one before the loop-phi update instruction and
1870
// one after. Instead we split the input to the compare just after the
1871
// phi.
1872
if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1873
Node *phi = n->in(1);
1874
if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1875
Block *phi_block = _cfg.get_block_for_node(phi);
1876
if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
1877
const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1878
Node *spill = new MachSpillCopyNode(MachSpillCopyNode::LoopPhiInput, phi, *mask, *mask);
1879
insert_proj( phi_block, 1, spill, maxlrg++ );
1880
n->set_req(1,spill);
1881
must_recompute_live = true;
1882
}
1883
}
1884
}
1885
1886
// Get value being defined
1887
uint lidx = _lrg_map.live_range_id(n);
1888
// Ignore the occasional brand-new live range
1889
if (lidx && lidx < _lrg_map.max_lrg_id()) {
1890
// Remove from live-out set
1891
liveout.remove(lidx);
1892
1893
// Copies do not define a new value and so do not interfere.
1894
// Remove the copies source from the liveout set before interfering.
1895
uint idx = n->is_Copy();
1896
if (idx) {
1897
liveout.remove(_lrg_map.live_range_id(n->in(idx)));
1898
}
1899
}
1900
1901
// Found a safepoint?
1902
JVMState *jvms = n->jvms();
1903
if (jvms && !liveout.is_empty()) {
1904
// Now scan for a live derived pointer
1905
IndexSetIterator elements(&liveout);
1906
uint neighbor;
1907
while ((neighbor = elements.next()) != 0) {
1908
// Find reaching DEF for base and derived values
1909
// This works because we are still in SSA during this call.
1910
Node *derived = lrgs(neighbor)._def;
1911
const TypePtr *tj = derived->bottom_type()->isa_ptr();
1912
assert(!derived->bottom_type()->isa_narrowoop() ||
1913
derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1914
// If its an OOP with a non-zero offset, then it is derived.
1915
if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1916
Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
1917
assert(base->_idx < _lrg_map.size(), "");
1918
// Add reaching DEFs of derived pointer and base pointer as a
1919
// pair of inputs
1920
n->add_req(derived);
1921
n->add_req(base);
1922
1923
// See if the base pointer is already live to this point.
1924
// Since I'm working on the SSA form, live-ness amounts to
1925
// reaching def's. So if I find the base's live range then
1926
// I know the base's def reaches here.
1927
if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
1928
!liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
1929
(_lrg_map.live_range_id(base) > 0) && // not a constant
1930
_cfg.get_block_for_node(base) != block) { // base not def'd in blk)
1931
// Base pointer is not currently live. Since I stretched
1932
// the base pointer to here and it crosses basic-block
1933
// boundaries, the global live info is now incorrect.
1934
// Recompute live.
1935
must_recompute_live = true;
1936
} // End of if base pointer is not live to debug info
1937
}
1938
} // End of scan all live data for derived ptrs crossing GC point
1939
} // End of if found a GC point
1940
1941
// Make all inputs live
1942
if (!n->is_Phi()) { // Phi function uses come from prior block
1943
for (uint k = 1; k < n->req(); k++) {
1944
uint lidx = _lrg_map.live_range_id(n->in(k));
1945
if (lidx < _lrg_map.max_lrg_id()) {
1946
liveout.insert(lidx);
1947
}
1948
}
1949
}
1950
1951
} // End of forall instructions in block
1952
liveout.clear(); // Free the memory used by liveout.
1953
1954
} // End of forall blocks
1955
_lrg_map.set_max_lrg_id(maxlrg);
1956
1957
// If I created a new live range I need to recompute live
1958
if (maxlrg != _ifg->_maxlrg) {
1959
must_recompute_live = true;
1960
}
1961
1962
return must_recompute_live != 0;
1963
}
1964
1965
// Extend the node to LRG mapping
1966
1967
void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
1968
_lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
1969
}
1970
1971
#ifndef PRODUCT
1972
void PhaseChaitin::dump(const Node* n) const {
1973
uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
1974
tty->print("L%d",r);
1975
if (r && n->Opcode() != Op_Phi) {
1976
if( _node_regs ) { // Got a post-allocation copy of allocation?
1977
tty->print("[");
1978
OptoReg::Name second = get_reg_second(n);
1979
if( OptoReg::is_valid(second) ) {
1980
if( OptoReg::is_reg(second) )
1981
tty->print("%s:",Matcher::regName[second]);
1982
else
1983
tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1984
}
1985
OptoReg::Name first = get_reg_first(n);
1986
if( OptoReg::is_reg(first) )
1987
tty->print("%s]",Matcher::regName[first]);
1988
else
1989
tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1990
} else
1991
n->out_RegMask().dump();
1992
}
1993
tty->print("/N%d\t",n->_idx);
1994
tty->print("%s === ", n->Name());
1995
uint k;
1996
for (k = 0; k < n->req(); k++) {
1997
Node *m = n->in(k);
1998
if (!m) {
1999
tty->print("_ ");
2000
}
2001
else {
2002
uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2003
tty->print("L%d",r);
2004
// Data MultiNode's can have projections with no real registers.
2005
// Don't die while dumping them.
2006
int op = n->Opcode();
2007
if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
2008
if( _node_regs ) {
2009
tty->print("[");
2010
OptoReg::Name second = get_reg_second(n->in(k));
2011
if( OptoReg::is_valid(second) ) {
2012
if( OptoReg::is_reg(second) )
2013
tty->print("%s:",Matcher::regName[second]);
2014
else
2015
tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
2016
reg2offset_unchecked(second));
2017
}
2018
OptoReg::Name first = get_reg_first(n->in(k));
2019
if( OptoReg::is_reg(first) )
2020
tty->print("%s]",Matcher::regName[first]);
2021
else
2022
tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
2023
reg2offset_unchecked(first));
2024
} else
2025
n->in_RegMask(k).dump();
2026
}
2027
tty->print("/N%d ",m->_idx);
2028
}
2029
}
2030
if( k < n->len() && n->in(k) ) tty->print("| ");
2031
for( ; k < n->len(); k++ ) {
2032
Node *m = n->in(k);
2033
if(!m) {
2034
break;
2035
}
2036
uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2037
tty->print("L%d",r);
2038
tty->print("/N%d ",m->_idx);
2039
}
2040
if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
2041
else n->dump_spec(tty);
2042
if( _spilled_once.test(n->_idx ) ) {
2043
tty->print(" Spill_1");
2044
if( _spilled_twice.test(n->_idx ) )
2045
tty->print(" Spill_2");
2046
}
2047
tty->print("\n");
2048
}
2049
2050
void PhaseChaitin::dump(const Block* b) const {
2051
b->dump_head(&_cfg);
2052
2053
// For all instructions
2054
for( uint j = 0; j < b->number_of_nodes(); j++ )
2055
dump(b->get_node(j));
2056
// Print live-out info at end of block
2057
if( _live ) {
2058
tty->print("Liveout: ");
2059
IndexSet *live = _live->live(b);
2060
IndexSetIterator elements(live);
2061
tty->print("{");
2062
uint i;
2063
while ((i = elements.next()) != 0) {
2064
tty->print("L%d ", _lrg_map.find_const(i));
2065
}
2066
tty->print_cr("}");
2067
}
2068
tty->print("\n");
2069
}
2070
2071
void PhaseChaitin::dump() const {
2072
tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n",
2073
_matcher._new_SP, _framesize );
2074
2075
// For all blocks
2076
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2077
dump(_cfg.get_block(i));
2078
}
2079
// End of per-block dump
2080
tty->print("\n");
2081
2082
if (!_ifg) {
2083
tty->print("(No IFG.)\n");
2084
return;
2085
}
2086
2087
// Dump LRG array
2088
tty->print("--- Live RanGe Array ---\n");
2089
for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
2090
tty->print("L%d: ",i2);
2091
if (i2 < _ifg->_maxlrg) {
2092
lrgs(i2).dump();
2093
}
2094
else {
2095
tty->print_cr("new LRG");
2096
}
2097
}
2098
tty->cr();
2099
2100
// Dump lo-degree list
2101
tty->print("Lo degree: ");
2102
for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
2103
tty->print("L%d ",i3);
2104
tty->cr();
2105
2106
// Dump lo-stk-degree list
2107
tty->print("Lo stk degree: ");
2108
for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
2109
tty->print("L%d ",i4);
2110
tty->cr();
2111
2112
// Dump lo-degree list
2113
tty->print("Hi degree: ");
2114
for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
2115
tty->print("L%d ",i5);
2116
tty->cr();
2117
}
2118
2119
void PhaseChaitin::dump_degree_lists() const {
2120
// Dump lo-degree list
2121
tty->print("Lo degree: ");
2122
for( uint i = _lo_degree; i; i = lrgs(i)._next )
2123
tty->print("L%d ",i);
2124
tty->cr();
2125
2126
// Dump lo-stk-degree list
2127
tty->print("Lo stk degree: ");
2128
for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
2129
tty->print("L%d ",i2);
2130
tty->cr();
2131
2132
// Dump lo-degree list
2133
tty->print("Hi degree: ");
2134
for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
2135
tty->print("L%d ",i3);
2136
tty->cr();
2137
}
2138
2139
void PhaseChaitin::dump_simplified() const {
2140
tty->print("Simplified: ");
2141
for( uint i = _simplified; i; i = lrgs(i)._next )
2142
tty->print("L%d ",i);
2143
tty->cr();
2144
}
2145
2146
static char *print_reg(OptoReg::Name reg, const PhaseChaitin* pc, char* buf) {
2147
if ((int)reg < 0)
2148
sprintf(buf, "<OptoReg::%d>", (int)reg);
2149
else if (OptoReg::is_reg(reg))
2150
strcpy(buf, Matcher::regName[reg]);
2151
else
2152
sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
2153
pc->reg2offset(reg));
2154
return buf+strlen(buf);
2155
}
2156
2157
// Dump a register name into a buffer. Be intelligent if we get called
2158
// before allocation is complete.
2159
char *PhaseChaitin::dump_register(const Node* n, char* buf) const {
2160
if( _node_regs ) {
2161
// Post allocation, use direct mappings, no LRG info available
2162
print_reg( get_reg_first(n), this, buf );
2163
} else {
2164
uint lidx = _lrg_map.find_const(n); // Grab LRG number
2165
if( !_ifg ) {
2166
sprintf(buf,"L%d",lidx); // No register binding yet
2167
} else if( !lidx ) { // Special, not allocated value
2168
strcpy(buf,"Special");
2169
} else {
2170
if (lrgs(lidx)._is_vector) {
2171
if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
2172
print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
2173
else
2174
sprintf(buf,"L%d",lidx); // No register binding yet
2175
} else if( (lrgs(lidx).num_regs() == 1)
2176
? lrgs(lidx).mask().is_bound1()
2177
: lrgs(lidx).mask().is_bound_pair() ) {
2178
// Hah! We have a bound machine register
2179
print_reg( lrgs(lidx).reg(), this, buf );
2180
} else {
2181
sprintf(buf,"L%d",lidx); // No register binding yet
2182
}
2183
}
2184
}
2185
return buf+strlen(buf);
2186
}
2187
2188
void PhaseChaitin::dump_for_spill_split_recycle() const {
2189
if( WizardMode && (PrintCompilation || PrintOpto) ) {
2190
// Display which live ranges need to be split and the allocator's state
2191
tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
2192
for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
2193
if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
2194
tty->print("L%d: ", bidx);
2195
lrgs(bidx).dump();
2196
}
2197
}
2198
tty->cr();
2199
dump();
2200
}
2201
}
2202
2203
void PhaseChaitin::dump_frame() const {
2204
const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
2205
const TypeTuple *domain = C->tf()->domain();
2206
const int argcnt = domain->cnt() - TypeFunc::Parms;
2207
2208
// Incoming arguments in registers dump
2209
for( int k = 0; k < argcnt; k++ ) {
2210
OptoReg::Name parmreg = _matcher._parm_regs[k].first();
2211
if( OptoReg::is_reg(parmreg)) {
2212
const char *reg_name = OptoReg::regname(parmreg);
2213
tty->print("#r%3.3d %s", parmreg, reg_name);
2214
parmreg = _matcher._parm_regs[k].second();
2215
if( OptoReg::is_reg(parmreg)) {
2216
tty->print(":%s", OptoReg::regname(parmreg));
2217
}
2218
tty->print(" : parm %d: ", k);
2219
domain->field_at(k + TypeFunc::Parms)->dump();
2220
tty->cr();
2221
}
2222
}
2223
2224
// Check for un-owned padding above incoming args
2225
OptoReg::Name reg = _matcher._new_SP;
2226
if( reg > _matcher._in_arg_limit ) {
2227
reg = OptoReg::add(reg, -1);
2228
tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
2229
}
2230
2231
// Incoming argument area dump
2232
OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
2233
while( reg > begin_in_arg ) {
2234
reg = OptoReg::add(reg, -1);
2235
tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2236
int j;
2237
for( j = 0; j < argcnt; j++) {
2238
if( _matcher._parm_regs[j].first() == reg ||
2239
_matcher._parm_regs[j].second() == reg ) {
2240
tty->print("parm %d: ",j);
2241
domain->field_at(j + TypeFunc::Parms)->dump();
2242
tty->cr();
2243
break;
2244
}
2245
}
2246
if( j >= argcnt )
2247
tty->print_cr("HOLE, owned by SELF");
2248
}
2249
2250
// Old outgoing preserve area
2251
while( reg > _matcher._old_SP ) {
2252
reg = OptoReg::add(reg, -1);
2253
tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
2254
}
2255
2256
// Old SP
2257
tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
2258
reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
2259
2260
// Preserve area dump
2261
int fixed_slots = C->fixed_slots();
2262
OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
2263
OptoReg::Name return_addr = _matcher.return_addr();
2264
2265
reg = OptoReg::add(reg, -1);
2266
while (OptoReg::is_stack(reg)) {
2267
tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2268
if (return_addr == reg) {
2269
tty->print_cr("return address");
2270
} else if (reg >= begin_in_preserve) {
2271
// Preserved slots are present on x86
2272
if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
2273
tty->print_cr("saved fp register");
2274
else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
2275
VerifyStackAtCalls)
2276
tty->print_cr("0xBADB100D +VerifyStackAtCalls");
2277
else
2278
tty->print_cr("in_preserve");
2279
} else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
2280
tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
2281
} else {
2282
tty->print_cr("pad2, stack alignment");
2283
}
2284
reg = OptoReg::add(reg, -1);
2285
}
2286
2287
// Spill area dump
2288
reg = OptoReg::add(_matcher._new_SP, _framesize );
2289
while( reg > _matcher._out_arg_limit ) {
2290
reg = OptoReg::add(reg, -1);
2291
tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
2292
}
2293
2294
// Outgoing argument area dump
2295
while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
2296
reg = OptoReg::add(reg, -1);
2297
tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
2298
}
2299
2300
// Outgoing new preserve area
2301
while( reg > _matcher._new_SP ) {
2302
reg = OptoReg::add(reg, -1);
2303
tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
2304
}
2305
tty->print_cr("#");
2306
}
2307
2308
void PhaseChaitin::dump_bb(uint pre_order) const {
2309
tty->print_cr("---dump of B%d---",pre_order);
2310
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2311
Block* block = _cfg.get_block(i);
2312
if (block->_pre_order == pre_order) {
2313
dump(block);
2314
}
2315
}
2316
}
2317
2318
void PhaseChaitin::dump_lrg(uint lidx, bool defs_only) const {
2319
tty->print_cr("---dump of L%d---",lidx);
2320
2321
if (_ifg) {
2322
if (lidx >= _lrg_map.max_lrg_id()) {
2323
tty->print("Attempt to print live range index beyond max live range.\n");
2324
return;
2325
}
2326
tty->print("L%d: ",lidx);
2327
if (lidx < _ifg->_maxlrg) {
2328
lrgs(lidx).dump();
2329
} else {
2330
tty->print_cr("new LRG");
2331
}
2332
}
2333
if( _ifg && lidx < _ifg->_maxlrg) {
2334
tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2335
_ifg->neighbors(lidx)->dump();
2336
tty->cr();
2337
}
2338
// For all blocks
2339
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2340
Block* block = _cfg.get_block(i);
2341
int dump_once = 0;
2342
2343
// For all instructions
2344
for( uint j = 0; j < block->number_of_nodes(); j++ ) {
2345
Node *n = block->get_node(j);
2346
if (_lrg_map.find_const(n) == lidx) {
2347
if (!dump_once++) {
2348
tty->cr();
2349
block->dump_head(&_cfg);
2350
}
2351
dump(n);
2352
continue;
2353
}
2354
if (!defs_only) {
2355
uint cnt = n->req();
2356
for( uint k = 1; k < cnt; k++ ) {
2357
Node *m = n->in(k);
2358
if (!m) {
2359
continue; // be robust in the dumper
2360
}
2361
if (_lrg_map.find_const(m) == lidx) {
2362
if (!dump_once++) {
2363
tty->cr();
2364
block->dump_head(&_cfg);
2365
}
2366
dump(n);
2367
}
2368
}
2369
}
2370
}
2371
} // End of per-block dump
2372
tty->cr();
2373
}
2374
#endif // not PRODUCT
2375
2376
#ifdef ASSERT
2377
// Verify that base pointers and derived pointers are still sane.
2378
void PhaseChaitin::verify_base_ptrs(ResourceArea* a) const {
2379
Unique_Node_List worklist(a);
2380
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2381
Block* block = _cfg.get_block(i);
2382
for (uint j = block->end_idx() + 1; j > 1; j--) {
2383
Node* n = block->get_node(j-1);
2384
if (n->is_Phi()) {
2385
break;
2386
}
2387
// Found a safepoint?
2388
if (n->is_MachSafePoint()) {
2389
MachSafePointNode* sfpt = n->as_MachSafePoint();
2390
JVMState* jvms = sfpt->jvms();
2391
if (jvms != NULL) {
2392
// Now scan for a live derived pointer
2393
if (jvms->oopoff() < sfpt->req()) {
2394
// Check each derived/base pair
2395
for (uint idx = jvms->oopoff(); idx < sfpt->req(); idx++) {
2396
Node* check = sfpt->in(idx);
2397
bool is_derived = ((idx - jvms->oopoff()) & 1) == 0;
2398
// search upwards through spills and spill phis for AddP
2399
worklist.clear();
2400
worklist.push(check);
2401
uint k = 0;
2402
while (k < worklist.size()) {
2403
check = worklist.at(k);
2404
assert(check, "Bad base or derived pointer");
2405
// See PhaseChaitin::find_base_for_derived() for all cases.
2406
int isc = check->is_Copy();
2407
if (isc) {
2408
worklist.push(check->in(isc));
2409
} else if (check->is_Phi()) {
2410
for (uint m = 1; m < check->req(); m++) {
2411
worklist.push(check->in(m));
2412
}
2413
} else if (check->is_Con()) {
2414
if (is_derived && check->bottom_type()->is_ptr()->_offset != 0) {
2415
// Derived is NULL+non-zero offset, base must be NULL.
2416
assert(check->bottom_type()->is_ptr()->ptr() == TypePtr::Null, "Bad derived pointer");
2417
} else {
2418
assert(check->bottom_type()->is_ptr()->_offset == 0, "Bad base pointer");
2419
// Base either ConP(NULL) or loadConP
2420
if (check->is_Mach()) {
2421
assert(check->as_Mach()->ideal_Opcode() == Op_ConP, "Bad base pointer");
2422
} else {
2423
assert(check->Opcode() == Op_ConP &&
2424
check->bottom_type()->is_ptr()->ptr() == TypePtr::Null, "Bad base pointer");
2425
}
2426
}
2427
} else if (check->bottom_type()->is_ptr()->_offset == 0) {
2428
if (check->is_Proj() || (check->is_Mach() &&
2429
(check->as_Mach()->ideal_Opcode() == Op_CreateEx ||
2430
check->as_Mach()->ideal_Opcode() == Op_ThreadLocal ||
2431
check->as_Mach()->ideal_Opcode() == Op_CMoveP ||
2432
check->as_Mach()->ideal_Opcode() == Op_CheckCastPP ||
2433
#ifdef _LP64
2434
(UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_CastPP) ||
2435
(UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_DecodeN) ||
2436
(UseCompressedClassPointers && check->as_Mach()->ideal_Opcode() == Op_DecodeNKlass) ||
2437
#endif // _LP64
2438
check->as_Mach()->ideal_Opcode() == Op_LoadP ||
2439
check->as_Mach()->ideal_Opcode() == Op_LoadKlass))) {
2440
// Valid nodes
2441
} else {
2442
check->dump();
2443
assert(false, "Bad base or derived pointer");
2444
}
2445
} else {
2446
assert(is_derived, "Bad base pointer");
2447
assert(check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP, "Bad derived pointer");
2448
}
2449
k++;
2450
assert(k < 100000, "Derived pointer checking in infinite loop");
2451
} // End while
2452
}
2453
} // End of check for derived pointers
2454
} // End of Kcheck for debug info
2455
} // End of if found a safepoint
2456
} // End of forall instructions in block
2457
} // End of forall blocks
2458
}
2459
2460
// Verify that graphs and base pointers are still sane.
2461
void PhaseChaitin::verify(ResourceArea* a, bool verify_ifg) const {
2462
if (VerifyRegisterAllocator) {
2463
_cfg.verify();
2464
verify_base_ptrs(a);
2465
if (verify_ifg) {
2466
_ifg->verify(this);
2467
}
2468
}
2469
}
2470
#endif // ASSERT
2471
2472
int PhaseChaitin::_final_loads = 0;
2473
int PhaseChaitin::_final_stores = 0;
2474
int PhaseChaitin::_final_memoves= 0;
2475
int PhaseChaitin::_final_copies = 0;
2476
double PhaseChaitin::_final_load_cost = 0;
2477
double PhaseChaitin::_final_store_cost = 0;
2478
double PhaseChaitin::_final_memove_cost= 0;
2479
double PhaseChaitin::_final_copy_cost = 0;
2480
int PhaseChaitin::_conserv_coalesce = 0;
2481
int PhaseChaitin::_conserv_coalesce_pair = 0;
2482
int PhaseChaitin::_conserv_coalesce_trie = 0;
2483
int PhaseChaitin::_conserv_coalesce_quad = 0;
2484
int PhaseChaitin::_post_alloc = 0;
2485
int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2486
int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2487
int PhaseChaitin::_used_cisc_instructions = 0;
2488
int PhaseChaitin::_unused_cisc_instructions = 0;
2489
int PhaseChaitin::_allocator_attempts = 0;
2490
int PhaseChaitin::_allocator_successes = 0;
2491
2492
#ifndef PRODUCT
2493
uint PhaseChaitin::_high_pressure = 0;
2494
uint PhaseChaitin::_low_pressure = 0;
2495
2496
void PhaseChaitin::print_chaitin_statistics() {
2497
tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2498
tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2499
tty->print_cr("Adjusted spill cost = %7.0f.",
2500
_final_load_cost*4.0 + _final_store_cost * 2.0 +
2501
_final_copy_cost*1.0 + _final_memove_cost*12.0);
2502
tty->print("Conservatively coalesced %d copies, %d pairs",
2503
_conserv_coalesce, _conserv_coalesce_pair);
2504
if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2505
tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2506
tty->print_cr(", %d post alloc.", _post_alloc);
2507
if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2508
tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2509
_lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2510
if( _used_cisc_instructions || _unused_cisc_instructions )
2511
tty->print_cr("Used cisc instruction %d, remained in register %d",
2512
_used_cisc_instructions, _unused_cisc_instructions);
2513
if( _allocator_successes != 0 )
2514
tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2515
tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2516
}
2517
#endif // not PRODUCT
2518
2519