Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/opto/chaitin.hpp
40930 views
1
/*
2
* Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_OPTO_CHAITIN_HPP
26
#define SHARE_OPTO_CHAITIN_HPP
27
28
#include "code/vmreg.hpp"
29
#include "memory/resourceArea.hpp"
30
#include "opto/connode.hpp"
31
#include "opto/live.hpp"
32
#include "opto/machnode.hpp"
33
#include "opto/matcher.hpp"
34
#include "opto/phase.hpp"
35
#include "opto/regalloc.hpp"
36
#include "opto/regmask.hpp"
37
38
class Matcher;
39
class PhaseCFG;
40
class PhaseLive;
41
class PhaseRegAlloc;
42
class PhaseChaitin;
43
44
#define OPTO_DEBUG_SPLIT_FREQ BLOCK_FREQUENCY(0.001)
45
#define OPTO_LRG_HIGH_FREQ BLOCK_FREQUENCY(0.25)
46
47
//------------------------------LRG--------------------------------------------
48
// Live-RanGe structure.
49
class LRG : public ResourceObj {
50
friend class VMStructs;
51
public:
52
static const uint AllStack_size = 0xFFFFF; // This mask size is used to tell that the mask of this LRG supports stack positions
53
enum { SPILL_REG=29999 }; // Register number of a spilled LRG
54
55
double _cost; // 2 for loads/1 for stores times block freq
56
double _area; // Sum of all simultaneously live values
57
double score() const; // Compute score from cost and area
58
double _maxfreq; // Maximum frequency of any def or use
59
60
Node *_def; // Check for multi-def live ranges
61
#ifndef PRODUCT
62
GrowableArray<Node*>* _defs;
63
#endif
64
65
uint _risk_bias; // Index of LRG which we want to avoid color
66
uint _copy_bias; // Index of LRG which we want to share color
67
68
uint _next; // Index of next LRG in linked list
69
uint _prev; // Index of prev LRG in linked list
70
private:
71
uint _reg; // Chosen register; undefined if mask is plural
72
public:
73
// Return chosen register for this LRG. Error if the LRG is not bound to
74
// a single register.
75
OptoReg::Name reg() const { return OptoReg::Name(_reg); }
76
void set_reg( OptoReg::Name r ) { _reg = r; }
77
78
private:
79
uint _eff_degree; // Effective degree: Sum of neighbors _num_regs
80
public:
81
int degree() const { assert( _degree_valid , "" ); return _eff_degree; }
82
// Degree starts not valid and any change to the IFG neighbor
83
// set makes it not valid.
84
void set_degree( uint degree ) {
85
_eff_degree = degree;
86
debug_only(_degree_valid = 1;)
87
assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
88
}
89
// Made a change that hammered degree
90
void invalid_degree() { debug_only(_degree_valid=0;) }
91
// Incrementally modify degree. If it was correct, it should remain correct
92
void inc_degree( uint mod ) {
93
_eff_degree += mod;
94
assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
95
}
96
// Compute the degree between 2 live ranges
97
int compute_degree( LRG &l ) const;
98
bool mask_is_nonempty_and_up() const {
99
return mask().is_UP() && mask_size();
100
}
101
bool is_float_or_vector() const {
102
return _is_float || _is_vector;
103
}
104
105
private:
106
RegMask _mask; // Allowed registers for this LRG
107
uint _mask_size; // cache of _mask.Size();
108
public:
109
int compute_mask_size() const { return _mask.is_AllStack() ? AllStack_size : _mask.Size(); }
110
void set_mask_size( int size ) {
111
assert((size == (int)AllStack_size) || (size == (int)_mask.Size()), "");
112
_mask_size = size;
113
#ifdef ASSERT
114
_msize_valid=1;
115
if (_is_vector) {
116
assert(!_fat_proj, "sanity");
117
if (!(_is_scalable && OptoReg::is_stack(_reg))) {
118
assert(_mask.is_aligned_sets(_num_regs), "mask is not aligned, adjacent sets");
119
}
120
} else if (_num_regs == 2 && !_fat_proj) {
121
assert(_mask.is_aligned_pairs(), "mask is not aligned, adjacent pairs");
122
}
123
#endif
124
}
125
void compute_set_mask_size() { set_mask_size(compute_mask_size()); }
126
int mask_size() const { assert( _msize_valid, "mask size not valid" );
127
return _mask_size; }
128
// Get the last mask size computed, even if it does not match the
129
// count of bits in the current mask.
130
int get_invalid_mask_size() const { return _mask_size; }
131
const RegMask &mask() const { return _mask; }
132
void set_mask( const RegMask &rm ) { _mask = rm; debug_only(_msize_valid=0;)}
133
void AND( const RegMask &rm ) { _mask.AND(rm); debug_only(_msize_valid=0;)}
134
void SUBTRACT( const RegMask &rm ) { _mask.SUBTRACT(rm); debug_only(_msize_valid=0;)}
135
void Clear() { _mask.Clear() ; debug_only(_msize_valid=1); _mask_size = 0; }
136
void Set_All() { _mask.Set_All(); debug_only(_msize_valid=1); _mask_size = RegMask::CHUNK_SIZE; }
137
138
void Insert( OptoReg::Name reg ) { _mask.Insert(reg); debug_only(_msize_valid=0;) }
139
void Remove( OptoReg::Name reg ) { _mask.Remove(reg); debug_only(_msize_valid=0;) }
140
void clear_to_sets() { _mask.clear_to_sets(_num_regs); debug_only(_msize_valid=0;) }
141
142
private:
143
// Number of registers this live range uses when it colors
144
uint16_t _num_regs; // 2 for Longs and Doubles, 1 for all else
145
// except _num_regs is kill count for fat_proj
146
147
// For scalable register, num_regs may not be the actual physical register size.
148
// We need to get the actual physical length of scalable register when scalable
149
// register is spilled. The size of one slot is 32-bit.
150
uint _scalable_reg_slots; // Actual scalable register length of slots.
151
// Meaningful only when _is_scalable is true.
152
public:
153
int num_regs() const { return _num_regs; }
154
void set_num_regs( int reg ) { assert( _num_regs == reg || !_num_regs, "" ); _num_regs = reg; }
155
156
uint scalable_reg_slots() { return _scalable_reg_slots; }
157
void set_scalable_reg_slots(uint slots) {
158
assert(_is_scalable, "scalable register");
159
assert(slots > 0, "slots of scalable register is not valid");
160
_scalable_reg_slots = slots;
161
}
162
163
bool is_scalable() {
164
#ifdef ASSERT
165
if (_is_scalable) {
166
// Should only be a vector for now, but it could also be a RegVectMask in future.
167
assert(_is_vector && (_num_regs == RegMask::SlotsPerVecA), "unexpected scalable reg");
168
}
169
#endif
170
return Matcher::implements_scalable_vector && _is_scalable;
171
}
172
173
private:
174
// Number of physical registers this live range uses when it colors
175
// Architecture and register-set dependent
176
uint16_t _reg_pressure;
177
public:
178
void set_reg_pressure(int i) { _reg_pressure = i; }
179
int reg_pressure() const { return _reg_pressure; }
180
181
// How much 'wiggle room' does this live range have?
182
// How many color choices can it make (scaled by _num_regs)?
183
int degrees_of_freedom() const { return mask_size() - _num_regs; }
184
// Bound LRGs have ZERO degrees of freedom. We also count
185
// must_spill as bound.
186
bool is_bound () const { return _is_bound; }
187
// Negative degrees-of-freedom; even with no neighbors this
188
// live range must spill.
189
bool not_free() const { return degrees_of_freedom() < 0; }
190
// Is this live range of "low-degree"? Trivially colorable?
191
bool lo_degree () const { return degree() <= degrees_of_freedom(); }
192
// Is this live range just barely "low-degree"? Trivially colorable?
193
bool just_lo_degree () const { return degree() == degrees_of_freedom(); }
194
195
uint _is_oop:1, // Live-range holds an oop
196
_is_float:1, // True if in float registers
197
_is_vector:1, // True if in vector registers
198
_is_scalable:1, // True if register size is scalable
199
// e.g. Arm SVE vector/predicate registers.
200
_was_spilled1:1, // True if prior spilling on def
201
_was_spilled2:1, // True if twice prior spilling on def
202
_is_bound:1, // live range starts life with no
203
// degrees of freedom.
204
_direct_conflict:1, // True if def and use registers in conflict
205
_must_spill:1, // live range has lost all degrees of freedom
206
// If _fat_proj is set, live range does NOT require aligned, adjacent
207
// registers and has NO interferences.
208
// If _fat_proj is clear, live range requires num_regs() to be a power of
209
// 2, and it requires registers to form an aligned, adjacent set.
210
_fat_proj:1, //
211
_was_lo:1, // Was lo-degree prior to coalesce
212
_msize_valid:1, // _mask_size cache valid
213
_degree_valid:1, // _degree cache valid
214
_has_copy:1, // Adjacent to some copy instruction
215
_at_risk:1; // Simplify says this guy is at risk to spill
216
217
218
// Alive if non-zero, dead if zero
219
bool alive() const { return _def != NULL; }
220
bool is_multidef() const { return _def == NodeSentinel; }
221
bool is_singledef() const { return _def != NodeSentinel; }
222
223
#ifndef PRODUCT
224
void dump( ) const;
225
#endif
226
};
227
228
//------------------------------IFG--------------------------------------------
229
// InterFerence Graph
230
// An undirected graph implementation. Created with a fixed number of
231
// vertices. Edges can be added & tested. Vertices can be removed, then
232
// added back later with all edges intact. Can add edges between one vertex
233
// and a list of other vertices. Can union vertices (and their edges)
234
// together. The IFG needs to be really really fast, and also fairly
235
// abstract! It needs abstraction so I can fiddle with the implementation to
236
// get even more speed.
237
class PhaseIFG : public Phase {
238
friend class VMStructs;
239
// Current implementation: a triangular adjacency list.
240
241
// Array of adjacency-lists, indexed by live-range number
242
IndexSet *_adjs;
243
244
// Assertion bit for proper use of Squaring
245
bool _is_square;
246
247
// Live range structure goes here
248
LRG *_lrgs; // Array of LRG structures
249
250
public:
251
// Largest live-range number
252
uint _maxlrg;
253
254
Arena *_arena;
255
256
// Keep track of inserted and deleted Nodes
257
VectorSet *_yanked;
258
259
PhaseIFG( Arena *arena );
260
void init( uint maxlrg );
261
262
// Add edge between a and b. Returns true if actually addded.
263
int add_edge( uint a, uint b );
264
265
// Test for edge existance
266
int test_edge( uint a, uint b ) const;
267
268
// Square-up matrix for faster Union
269
void SquareUp();
270
271
// Return number of LRG neighbors
272
uint neighbor_cnt( uint a ) const { return _adjs[a].count(); }
273
// Union edges of b into a on Squared-up matrix
274
void Union( uint a, uint b );
275
// Test for edge in Squared-up matrix
276
int test_edge_sq( uint a, uint b ) const;
277
// Yank a Node and all connected edges from the IFG. Be prepared to
278
// re-insert the yanked Node in reverse order of yanking. Return a
279
// list of neighbors (edges) yanked.
280
IndexSet *remove_node( uint a );
281
// Reinsert a yanked Node
282
void re_insert( uint a );
283
// Return set of neighbors
284
IndexSet *neighbors( uint a ) const { return &_adjs[a]; }
285
286
#ifndef PRODUCT
287
// Dump the IFG
288
void dump() const;
289
void stats() const;
290
void verify( const PhaseChaitin * ) const;
291
#endif
292
293
//--------------- Live Range Accessors
294
LRG &lrgs(uint idx) const { assert(idx < _maxlrg, "oob"); return _lrgs[idx]; }
295
296
// Compute and set effective degree. Might be folded into SquareUp().
297
void Compute_Effective_Degree();
298
299
// Compute effective degree as the sum of neighbors' _sizes.
300
int effective_degree( uint lidx ) const;
301
};
302
303
// The LiveRangeMap class is responsible for storing node to live range id mapping.
304
// Each node is mapped to a live range id (a virtual register). Nodes that are
305
// not considered for register allocation are given live range id 0.
306
class LiveRangeMap {
307
308
private:
309
310
uint _max_lrg_id;
311
312
// Union-find map. Declared as a short for speed.
313
// Indexed by live-range number, it returns the compacted live-range number
314
LRG_List _uf_map;
315
316
// Map from Nodes to live ranges
317
LRG_List _names;
318
319
// Straight out of Tarjan's union-find algorithm
320
uint find_compress(const Node *node) {
321
uint lrg_id = find_compress(_names.at(node->_idx));
322
_names.at_put(node->_idx, lrg_id);
323
return lrg_id;
324
}
325
326
uint find_compress(uint lrg);
327
328
public:
329
330
const LRG_List& names() {
331
return _names;
332
}
333
334
uint max_lrg_id() const {
335
return _max_lrg_id;
336
}
337
338
void set_max_lrg_id(uint max_lrg_id) {
339
_max_lrg_id = max_lrg_id;
340
}
341
342
uint size() const {
343
return _names.length();
344
}
345
346
uint live_range_id(uint idx) const {
347
return _names.at(idx);
348
}
349
350
uint live_range_id(const Node *node) const {
351
return _names.at(node->_idx);
352
}
353
354
uint uf_live_range_id(uint lrg_id) const {
355
return _uf_map.at(lrg_id);
356
}
357
358
void map(uint idx, uint lrg_id) {
359
_names.at_put(idx, lrg_id);
360
}
361
362
void uf_map(uint dst_lrg_id, uint src_lrg_id) {
363
_uf_map.at_put(dst_lrg_id, src_lrg_id);
364
}
365
366
void extend(uint idx, uint lrg_id) {
367
_names.at_put_grow(idx, lrg_id);
368
}
369
370
void uf_extend(uint dst_lrg_id, uint src_lrg_id) {
371
_uf_map.at_put_grow(dst_lrg_id, src_lrg_id);
372
}
373
374
LiveRangeMap(Arena* arena, uint unique)
375
: _max_lrg_id(0)
376
, _uf_map(arena, unique, unique, 0)
377
, _names(arena, unique, unique, 0) {}
378
379
uint find_id( const Node *n ) {
380
uint retval = live_range_id(n);
381
assert(retval == find(n),"Invalid node to lidx mapping");
382
return retval;
383
}
384
385
// Reset the Union-Find map to identity
386
void reset_uf_map(uint max_lrg_id);
387
388
// Make all Nodes map directly to their final live range; no need for
389
// the Union-Find mapping after this call.
390
void compress_uf_map_for_nodes();
391
392
uint find(uint lidx) {
393
uint uf_lidx = _uf_map.at(lidx);
394
return (uf_lidx == lidx) ? uf_lidx : find_compress(lidx);
395
}
396
397
// Convert a Node into a Live Range Index - a lidx
398
uint find(const Node *node) {
399
uint lidx = live_range_id(node);
400
uint uf_lidx = _uf_map.at(lidx);
401
return (uf_lidx == lidx) ? uf_lidx : find_compress(node);
402
}
403
404
// Like Find above, but no path compress, so bad asymptotic behavior
405
uint find_const(uint lrg) const;
406
407
// Like Find above, but no path compress, so bad asymptotic behavior
408
uint find_const(const Node *node) const {
409
if(node->_idx >= (uint)_names.length()) {
410
return 0; // not mapped, usual for debug dump
411
}
412
return find_const(_names.at(node->_idx));
413
}
414
};
415
416
//------------------------------Chaitin----------------------------------------
417
// Briggs-Chaitin style allocation, mostly.
418
class PhaseChaitin : public PhaseRegAlloc {
419
friend class VMStructs;
420
421
int _trip_cnt;
422
int _alternate;
423
424
PhaseLive *_live; // Liveness, used in the interference graph
425
PhaseIFG *_ifg; // Interference graph (for original chunk)
426
VectorSet _spilled_once; // Nodes that have been spilled
427
VectorSet _spilled_twice; // Nodes that have been spilled twice
428
429
// Combine the Live Range Indices for these 2 Nodes into a single live
430
// range. Future requests for any Node in either live range will
431
// return the live range index for the combined live range.
432
void Union( const Node *src, const Node *dst );
433
434
void new_lrg( const Node *x, uint lrg );
435
436
// Compact live ranges, removing unused ones. Return new maxlrg.
437
void compact();
438
439
uint _lo_degree; // Head of lo-degree LRGs list
440
uint _lo_stk_degree; // Head of lo-stk-degree LRGs list
441
uint _hi_degree; // Head of hi-degree LRGs list
442
uint _simplified; // Linked list head of simplified LRGs
443
444
// Helper functions for Split()
445
uint split_DEF(Node *def, Block *b, int loc, uint max, Node **Reachblock, Node **debug_defs, GrowableArray<uint> splits, int slidx );
446
int split_USE(MachSpillCopyNode::SpillType spill_type, Node *def, Block *b, Node *use, uint useidx, uint max, bool def_down, bool cisc_sp, GrowableArray<uint> splits, int slidx );
447
448
//------------------------------clone_projs------------------------------------
449
// After cloning some rematerialized instruction, clone any MachProj's that
450
// follow it. Example: Intel zero is XOR, kills flags. Sparc FP constants
451
// use G3 as an address temp.
452
int clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id);
453
454
int clone_projs(Block* b, uint idx, Node* orig, Node* copy, LiveRangeMap& lrg_map) {
455
uint max_lrg_id = lrg_map.max_lrg_id();
456
int found_projs = clone_projs(b, idx, orig, copy, max_lrg_id);
457
if (found_projs > 0) {
458
// max_lrg_id is updated during call above
459
lrg_map.set_max_lrg_id(max_lrg_id);
460
}
461
return found_projs;
462
}
463
464
Node *split_Rematerialize(Node *def, Block *b, uint insidx, uint &maxlrg, GrowableArray<uint> splits,
465
int slidx, uint *lrg2reach, Node **Reachblock, bool walkThru);
466
// True if lidx is used before any real register is def'd in the block
467
bool prompt_use( Block *b, uint lidx );
468
Node *get_spillcopy_wide(MachSpillCopyNode::SpillType spill_type, Node *def, Node *use, uint uidx );
469
// Insert the spill at chosen location. Skip over any intervening Proj's or
470
// Phis. Skip over a CatchNode and projs, inserting in the fall-through block
471
// instead. Update high-pressure indices. Create a new live range.
472
void insert_proj( Block *b, uint i, Node *spill, uint maxlrg );
473
474
bool is_high_pressure( Block *b, LRG *lrg, uint insidx );
475
476
uint _oldphi; // Node index which separates pre-allocation nodes
477
478
Block **_blks; // Array of blocks sorted by frequency for coalescing
479
480
float _high_frequency_lrg; // Frequency at which LRG will be spilled for debug info
481
482
#ifndef PRODUCT
483
bool _trace_spilling;
484
#endif
485
486
public:
487
PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool track_liveout_pressure);
488
~PhaseChaitin() {}
489
490
LiveRangeMap _lrg_map;
491
492
LRG &lrgs(uint idx) const { return _ifg->lrgs(idx); }
493
494
// Do all the real work of allocate
495
void Register_Allocate();
496
497
float high_frequency_lrg() const { return _high_frequency_lrg; }
498
499
// Used when scheduling info generated, not in general register allocation
500
bool _scheduling_info_generated;
501
502
void set_ifg(PhaseIFG &ifg) { _ifg = &ifg; }
503
void set_live(PhaseLive &live) { _live = &live; }
504
PhaseLive* get_live() { return _live; }
505
506
// Populate the live range maps with ssa info for scheduling
507
void mark_ssa();
508
509
#ifndef PRODUCT
510
bool trace_spilling() const { return _trace_spilling; }
511
#endif
512
513
private:
514
// De-SSA the world. Assign registers to Nodes. Use the same register for
515
// all inputs to a PhiNode, effectively coalescing live ranges. Insert
516
// copies as needed.
517
void de_ssa();
518
519
// Add edge between reg and everything in the vector.
520
// Use the RegMask information to trim the set of interferences. Return the
521
// count of edges added.
522
void interfere_with_live(uint lid, IndexSet* liveout);
523
#ifdef ASSERT
524
// Count register pressure for asserts
525
uint count_int_pressure(IndexSet* liveout);
526
uint count_float_pressure(IndexSet* liveout);
527
#endif
528
529
// Build the interference graph using virtual registers only.
530
// Used for aggressive coalescing.
531
void build_ifg_virtual( );
532
533
// used when computing the register pressure for each block in the CFG. This
534
// is done during IFG creation.
535
class Pressure {
536
// keeps track of the register pressure at the current
537
// instruction (used when stepping backwards in the block)
538
uint _current_pressure;
539
540
// keeps track of the instruction index of the first low to high register pressure
541
// transition (starting from the top) in the block
542
// if high_pressure_index == 0 then the whole block is high pressure
543
// if high_pressure_index = b.end_idx() + 1 then the whole block is low pressure
544
uint _high_pressure_index;
545
546
// stores the highest pressure we find
547
uint _final_pressure;
548
549
// number of live ranges that constitute high register pressure
550
uint _high_pressure_limit;
551
552
// initial pressure observed
553
uint _start_pressure;
554
555
public:
556
557
// lower the register pressure and look for a low to high pressure
558
// transition
559
void lower(LRG& lrg, uint& location) {
560
_current_pressure -= lrg.reg_pressure();
561
if (_current_pressure == _high_pressure_limit) {
562
_high_pressure_index = location;
563
}
564
}
565
566
// raise the pressure and store the pressure if it's the biggest
567
// pressure so far
568
void raise(LRG &lrg) {
569
_current_pressure += lrg.reg_pressure();
570
if (_current_pressure > _final_pressure) {
571
_final_pressure = _current_pressure;
572
}
573
}
574
575
void init(int limit) {
576
_current_pressure = 0;
577
_high_pressure_index = 0;
578
_final_pressure = 0;
579
_high_pressure_limit = limit;
580
_start_pressure = 0;
581
}
582
583
uint high_pressure_index() const {
584
return _high_pressure_index;
585
}
586
587
uint final_pressure() const {
588
return _final_pressure;
589
}
590
591
uint start_pressure() const {
592
return _start_pressure;
593
}
594
595
uint current_pressure() const {
596
return _current_pressure;
597
}
598
599
uint high_pressure_limit() const {
600
return _high_pressure_limit;
601
}
602
603
void lower_high_pressure_index() {
604
_high_pressure_index--;
605
}
606
607
void set_high_pressure_index_to_block_start() {
608
_high_pressure_index = 0;
609
}
610
611
void set_start_pressure(int value) {
612
_start_pressure = value;
613
_final_pressure = value;
614
}
615
616
void set_current_pressure(int value) {
617
_current_pressure = value;
618
}
619
620
void check_pressure_at_fatproj(uint fatproj_location, RegMask& fatproj_mask) {
621
// this pressure is only valid at this instruction, i.e. we don't need to lower
622
// the register pressure since the fat proj was never live before (going backwards)
623
uint new_pressure = current_pressure() + fatproj_mask.Size();
624
if (new_pressure > final_pressure()) {
625
_final_pressure = new_pressure;
626
}
627
628
// if we were at a low pressure and now and the fat proj is at high pressure, record the fat proj location
629
// as coming from a low to high (to low again)
630
if (current_pressure() <= high_pressure_limit() && new_pressure > high_pressure_limit()) {
631
_high_pressure_index = fatproj_location;
632
}
633
}
634
635
Pressure(uint high_pressure_index, uint high_pressure_limit)
636
: _current_pressure(0)
637
, _high_pressure_index(high_pressure_index)
638
, _final_pressure(0)
639
, _high_pressure_limit(high_pressure_limit)
640
, _start_pressure(0) {}
641
};
642
643
void check_for_high_pressure_transition_at_fatproj(uint& block_reg_pressure, uint location, LRG& lrg, Pressure& pressure, const int op_regtype);
644
void add_input_to_liveout(Block* b, Node* n, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure);
645
void compute_initial_block_pressure(Block* b, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure, double cost);
646
bool remove_node_if_not_used(Block* b, uint location, Node* n, uint lid, IndexSet* liveout);
647
void assign_high_score_to_immediate_copies(Block* b, Node* n, LRG& lrg, uint next_inst, uint last_inst);
648
void remove_interference_from_copy(Block* b, uint location, uint lid_copy, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure);
649
void remove_bound_register_from_interfering_live_ranges(LRG& lrg, IndexSet* liveout, uint& must_spill);
650
void check_for_high_pressure_block(Pressure& pressure);
651
void adjust_high_pressure_index(Block* b, uint& hrp_index, Pressure& pressure);
652
653
// Build the interference graph using physical registers when available.
654
// That is, if 2 live ranges are simultaneously alive but in their
655
// acceptable register sets do not overlap, then they do not interfere.
656
uint build_ifg_physical( ResourceArea *a );
657
658
public:
659
// Gather LiveRanGe information, including register masks and base pointer/
660
// derived pointer relationships.
661
void gather_lrg_masks( bool mod_cisc_masks );
662
663
// user visible pressure variables for scheduling
664
Pressure _sched_int_pressure;
665
Pressure _sched_float_pressure;
666
Pressure _scratch_int_pressure;
667
Pressure _scratch_float_pressure;
668
669
// Pressure functions for user context
670
void lower_pressure(Block* b, uint location, LRG& lrg, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure);
671
void raise_pressure(Block* b, LRG& lrg, Pressure& int_pressure, Pressure& float_pressure);
672
void compute_entry_block_pressure(Block* b);
673
void compute_exit_block_pressure(Block* b);
674
void print_pressure_info(Pressure& pressure, const char *str);
675
676
private:
677
// Force the bases of derived pointers to be alive at GC points.
678
bool stretch_base_pointer_live_ranges( ResourceArea *a );
679
// Helper to stretch above; recursively discover the base Node for
680
// a given derived Node. Easy for AddP-related machine nodes, but
681
// needs to be recursive for derived Phis.
682
Node *find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg );
683
684
// Set the was-lo-degree bit. Conservative coalescing should not change the
685
// colorability of the graph. If any live range was of low-degree before
686
// coalescing, it should Simplify. This call sets the was-lo-degree bit.
687
void set_was_low();
688
689
// Init LRG caching of degree, numregs. Init lo_degree list.
690
void cache_lrg_info( );
691
692
// Simplify the IFG by removing LRGs of low degree
693
void Simplify();
694
695
// Select colors by re-inserting edges into the IFG.
696
// Return TRUE if any spills occurred.
697
uint Select( );
698
// Helper function for select which allows biased coloring
699
OptoReg::Name choose_color( LRG &lrg, int chunk );
700
// Helper function which implements biasing heuristic
701
OptoReg::Name bias_color( LRG &lrg, int chunk );
702
703
// Split uncolorable live ranges
704
// Return new number of live ranges
705
uint Split(uint maxlrg, ResourceArea* split_arena);
706
707
// Set the 'spilled_once' or 'spilled_twice' flag on a node.
708
void set_was_spilled( Node *n );
709
710
// Convert ideal spill-nodes into machine loads & stores
711
// Set C->failing when fixup spills could not complete, node limit exceeded.
712
void fixup_spills();
713
714
// Post-Allocation peephole copy removal
715
void post_allocate_copy_removal();
716
Node *skip_copies( Node *c );
717
// Replace the old node with the current live version of that value
718
// and yank the old value if it's dead.
719
int replace_and_yank_if_dead( Node *old, OptoReg::Name nreg,
720
Block *current_block, Node_List& value, Node_List& regnd ) {
721
Node* v = regnd[nreg];
722
assert(v->outcnt() != 0, "no dead values");
723
old->replace_by(v);
724
return yank_if_dead(old, current_block, &value, &regnd);
725
}
726
727
int yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
728
return yank_if_dead_recurse(old, old, current_block, value, regnd);
729
}
730
int yank_if_dead_recurse(Node *old, Node *orig_old, Block *current_block,
731
Node_List *value, Node_List *regnd);
732
int yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd );
733
int elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs );
734
int use_prior_register( Node *copy, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd );
735
bool may_be_copy_of_callee( Node *def ) const;
736
737
// If nreg already contains the same constant as val then eliminate it
738
bool eliminate_copy_of_constant(Node* val, Node* n,
739
Block *current_block, Node_List& value, Node_List &regnd,
740
OptoReg::Name nreg, OptoReg::Name nreg2);
741
// Extend the node to LRG mapping
742
void add_reference( const Node *node, const Node *old_node);
743
744
// Record the first use of a def in the block for a register.
745
class RegDefUse {
746
Node* _def;
747
Node* _first_use;
748
public:
749
RegDefUse() : _def(NULL), _first_use(NULL) { }
750
Node* def() const { return _def; }
751
Node* first_use() const { return _first_use; }
752
753
void update(Node* def, Node* use) {
754
if (_def != def) {
755
_def = def;
756
_first_use = use;
757
}
758
}
759
void clear() {
760
_def = NULL;
761
_first_use = NULL;
762
}
763
};
764
typedef GrowableArray<RegDefUse> RegToDefUseMap;
765
int possibly_merge_multidef(Node *n, uint k, Block *block, RegToDefUseMap& reg2defuse);
766
767
// Merge nodes that are a part of a multidef lrg and produce the same value within a block.
768
void merge_multidefs();
769
770
private:
771
772
static int _final_loads, _final_stores, _final_copies, _final_memoves;
773
static double _final_load_cost, _final_store_cost, _final_copy_cost, _final_memove_cost;
774
static int _conserv_coalesce, _conserv_coalesce_pair;
775
static int _conserv_coalesce_trie, _conserv_coalesce_quad;
776
static int _post_alloc;
777
static int _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce;
778
static int _used_cisc_instructions, _unused_cisc_instructions;
779
static int _allocator_attempts, _allocator_successes;
780
781
#ifdef ASSERT
782
// Verify that base pointers and derived pointers are still sane
783
void verify_base_ptrs(ResourceArea* a) const;
784
void verify(ResourceArea* a, bool verify_ifg = false) const;
785
#endif // ASSERT
786
787
#ifndef PRODUCT
788
static uint _high_pressure, _low_pressure;
789
790
void dump() const;
791
void dump(const Node* n) const;
792
void dump(const Block* b) const;
793
void dump_degree_lists() const;
794
void dump_simplified() const;
795
void dump_lrg(uint lidx, bool defs_only) const;
796
void dump_lrg(uint lidx) const {
797
// dump defs and uses by default
798
dump_lrg(lidx, false);
799
}
800
void dump_bb(uint pre_order) const;
801
void dump_for_spill_split_recycle() const;
802
803
public:
804
void dump_frame() const;
805
char *dump_register(const Node* n, char* buf) const;
806
private:
807
static void print_chaitin_statistics();
808
#endif // not PRODUCT
809
friend class PhaseCoalesce;
810
friend class PhaseAggressiveCoalesce;
811
friend class PhaseConservativeCoalesce;
812
};
813
814
#endif // SHARE_OPTO_CHAITIN_HPP
815
816