Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/opto/coalesce.cpp
40930 views
1
/*
2
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "memory/allocation.inline.hpp"
27
#include "opto/block.hpp"
28
#include "opto/c2compiler.hpp"
29
#include "opto/cfgnode.hpp"
30
#include "opto/chaitin.hpp"
31
#include "opto/coalesce.hpp"
32
#include "opto/connode.hpp"
33
#include "opto/indexSet.hpp"
34
#include "opto/machnode.hpp"
35
#include "opto/matcher.hpp"
36
#include "opto/regmask.hpp"
37
38
#ifndef PRODUCT
39
void PhaseCoalesce::dump(Node *n) const {
40
// Being a const function means I cannot use 'Find'
41
uint r = _phc._lrg_map.find(n);
42
tty->print("L%d/N%d ",r,n->_idx);
43
}
44
45
void PhaseCoalesce::dump() const {
46
// I know I have a block layout now, so I can print blocks in a loop
47
for( uint i=0; i<_phc._cfg.number_of_blocks(); i++ ) {
48
uint j;
49
Block* b = _phc._cfg.get_block(i);
50
// Print a nice block header
51
tty->print("B%d: ",b->_pre_order);
52
for( j=1; j<b->num_preds(); j++ )
53
tty->print("B%d ", _phc._cfg.get_block_for_node(b->pred(j))->_pre_order);
54
tty->print("-> ");
55
for( j=0; j<b->_num_succs; j++ )
56
tty->print("B%d ",b->_succs[j]->_pre_order);
57
tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
58
uint cnt = b->number_of_nodes();
59
for( j=0; j<cnt; j++ ) {
60
Node *n = b->get_node(j);
61
dump( n );
62
tty->print("\t%s\t",n->Name());
63
64
// Dump the inputs
65
uint k; // Exit value of loop
66
for( k=0; k<n->req(); k++ ) // For all required inputs
67
if( n->in(k) ) dump( n->in(k) );
68
else tty->print("_ ");
69
int any_prec = 0;
70
for( ; k<n->len(); k++ ) // For all precedence inputs
71
if( n->in(k) ) {
72
if( !any_prec++ ) tty->print(" |");
73
dump( n->in(k) );
74
}
75
76
// Dump node-specific info
77
n->dump_spec(tty);
78
tty->print("\n");
79
80
}
81
tty->print("\n");
82
}
83
}
84
#endif
85
86
// Combine the live ranges def'd by these 2 Nodes. N2 is an input to N1.
87
void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) {
88
uint lr1 = _phc._lrg_map.find(n1);
89
uint lr2 = _phc._lrg_map.find(n2);
90
if( lr1 != lr2 && // Different live ranges already AND
91
!_phc._ifg->test_edge_sq( lr1, lr2 ) ) { // Do not interfere
92
LRG *lrg1 = &_phc.lrgs(lr1);
93
LRG *lrg2 = &_phc.lrgs(lr2);
94
// Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
95
96
// Now, why is int->oop OK? We end up declaring a raw-pointer as an oop
97
// and in general that's a bad thing. However, int->oop conversions only
98
// happen at GC points, so the lifetime of the misclassified raw-pointer
99
// is from the CheckCastPP (that converts it to an oop) backwards up
100
// through a merge point and into the slow-path call, and around the
101
// diamond up to the heap-top check and back down into the slow-path call.
102
// The misclassified raw pointer is NOT live across the slow-path call,
103
// and so does not appear in any GC info, so the fact that it is
104
// misclassified is OK.
105
106
if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
107
// Compatible final mask
108
lrg1->mask().overlap( lrg2->mask() ) ) {
109
// Merge larger into smaller.
110
if( lr1 > lr2 ) {
111
uint tmp = lr1; lr1 = lr2; lr2 = tmp;
112
Node *n = n1; n1 = n2; n2 = n;
113
LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
114
}
115
// Union lr2 into lr1
116
_phc.Union( n1, n2 );
117
if (lrg1->_maxfreq < lrg2->_maxfreq)
118
lrg1->_maxfreq = lrg2->_maxfreq;
119
// Merge in the IFG
120
_phc._ifg->Union( lr1, lr2 );
121
// Combine register restrictions
122
lrg1->AND(lrg2->mask());
123
}
124
}
125
}
126
127
// Copy coalescing
128
void PhaseCoalesce::coalesce_driver() {
129
verify();
130
// Coalesce from high frequency to low
131
for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
132
coalesce(_phc._blks[i]);
133
}
134
}
135
136
// I am inserting copies to come out of SSA form. In the general case, I am
137
// doing a parallel renaming. I'm in the Named world now, so I can't do a
138
// general parallel renaming. All the copies now use "names" (live-ranges)
139
// to carry values instead of the explicit use-def chains. Suppose I need to
140
// insert 2 copies into the same block. They copy L161->L128 and L128->L132.
141
// If I insert them in the wrong order then L128 will get clobbered before it
142
// can get used by the second copy. This cannot happen in the SSA model;
143
// direct use-def chains get me the right value. It DOES happen in the named
144
// model so I have to handle the reordering of copies.
145
//
146
// In general, I need to topo-sort the placed copies to avoid conflicts.
147
// Its possible to have a closed cycle of copies (e.g., recirculating the same
148
// values around a loop). In this case I need a temp to break the cycle.
149
void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
150
151
// Scan backwards for the locations of the last use of the dst_name.
152
// I am about to clobber the dst_name, so the copy must be inserted
153
// after the last use. Last use is really first-use on a backwards scan.
154
uint i = b->end_idx()-1;
155
while(1) {
156
Node *n = b->get_node(i);
157
// Check for end of virtual copies; this is also the end of the
158
// parallel renaming effort.
159
if (n->_idx < _unique) {
160
break;
161
}
162
uint idx = n->is_Copy();
163
assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
164
if (idx && _phc._lrg_map.find(n->in(idx)) == dst_name) {
165
break;
166
}
167
i--;
168
}
169
uint last_use_idx = i;
170
171
// Also search for any kill of src_name that exits the block.
172
// Since the copy uses src_name, I have to come before any kill.
173
uint kill_src_idx = b->end_idx();
174
// There can be only 1 kill that exits any block and that is
175
// the last kill. Thus it is the first kill on a backwards scan.
176
i = b->end_idx()-1;
177
while (1) {
178
Node *n = b->get_node(i);
179
// Check for end of virtual copies; this is also the end of the
180
// parallel renaming effort.
181
if (n->_idx < _unique) {
182
break;
183
}
184
assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
185
if (_phc._lrg_map.find(n) == src_name) {
186
kill_src_idx = i;
187
break;
188
}
189
i--;
190
}
191
// Need a temp? Last use of dst comes after the kill of src?
192
if (last_use_idx >= kill_src_idx) {
193
// Need to break a cycle with a temp
194
uint idx = copy->is_Copy();
195
Node *tmp = copy->clone();
196
uint max_lrg_id = _phc._lrg_map.max_lrg_id();
197
_phc.new_lrg(tmp, max_lrg_id);
198
_phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
199
200
// Insert new temp between copy and source
201
tmp ->set_req(idx,copy->in(idx));
202
copy->set_req(idx,tmp);
203
// Save source in temp early, before source is killed
204
b->insert_node(tmp, kill_src_idx);
205
_phc._cfg.map_node_to_block(tmp, b);
206
last_use_idx++;
207
}
208
209
// Insert just after last use
210
b->insert_node(copy, last_use_idx + 1);
211
}
212
213
void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
214
// We do LRGs compressing and fix a liveout data only here since the other
215
// place in Split() is guarded by the assert which we never hit.
216
_phc._lrg_map.compress_uf_map_for_nodes();
217
// Fix block's liveout data for compressed live ranges.
218
for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) {
219
uint compressed_lrg = _phc._lrg_map.find(lrg);
220
if (lrg != compressed_lrg) {
221
for (uint bidx = 0; bidx < _phc._cfg.number_of_blocks(); bidx++) {
222
IndexSet *liveout = _phc._live->live(_phc._cfg.get_block(bidx));
223
if (liveout->member(lrg)) {
224
liveout->remove(lrg);
225
liveout->insert(compressed_lrg);
226
}
227
}
228
}
229
}
230
231
// All new nodes added are actual copies to replace virtual copies.
232
// Nodes with index less than '_unique' are original, non-virtual Nodes.
233
_unique = C->unique();
234
235
for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
236
C->check_node_count(NodeLimitFudgeFactor, "out of nodes in coalesce");
237
if (C->failing()) return;
238
Block *b = _phc._cfg.get_block(i);
239
uint cnt = b->num_preds(); // Number of inputs to the Phi
240
241
for( uint l = 1; l<b->number_of_nodes(); l++ ) {
242
Node *n = b->get_node(l);
243
244
// Do not use removed-copies, use copied value instead
245
uint ncnt = n->req();
246
for( uint k = 1; k<ncnt; k++ ) {
247
Node *copy = n->in(k);
248
uint cidx = copy->is_Copy();
249
if( cidx ) {
250
Node *def = copy->in(cidx);
251
if (_phc._lrg_map.find(copy) == _phc._lrg_map.find(def)) {
252
n->set_req(k, def);
253
}
254
}
255
}
256
257
// Remove any explicit copies that get coalesced.
258
uint cidx = n->is_Copy();
259
if( cidx ) {
260
Node *def = n->in(cidx);
261
if (_phc._lrg_map.find(n) == _phc._lrg_map.find(def)) {
262
n->replace_by(def);
263
n->set_req(cidx,NULL);
264
b->remove_node(l);
265
l--;
266
continue;
267
}
268
}
269
270
if (n->is_Phi()) {
271
// Get the chosen name for the Phi
272
uint phi_name = _phc._lrg_map.find(n);
273
// Ignore the pre-allocated specials
274
if (!phi_name) {
275
continue;
276
}
277
// Check for mismatch inputs to Phi
278
for (uint j = 1; j < cnt; j++) {
279
Node *m = n->in(j);
280
uint src_name = _phc._lrg_map.find(m);
281
if (src_name != phi_name) {
282
Block *pred = _phc._cfg.get_block_for_node(b->pred(j));
283
Node *copy;
284
assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
285
// Rematerialize constants instead of copying them.
286
// We do this only for immediate constants, we avoid constant table loads
287
// because that will unsafely extend the live range of the constant table base.
288
if (m->is_Mach() && m->as_Mach()->is_Con() && !m->as_Mach()->is_MachConstant() &&
289
m->as_Mach()->rematerialize()) {
290
copy = m->clone();
291
// Insert the copy in the predecessor basic block
292
pred->add_inst(copy);
293
// Copy any flags as well
294
_phc.clone_projs(pred, pred->end_idx(), m, copy, _phc._lrg_map);
295
} else {
296
uint ireg = m->ideal_reg();
297
if (ireg == 0 || ireg == Op_RegFlags) {
298
if (C->subsume_loads()) {
299
C->record_failure(C2Compiler::retry_no_subsuming_loads());
300
} else {
301
assert(false, "attempted to spill a non-spillable item: %d: %s, ireg = %u, spill_type: %s",
302
m->_idx, m->Name(), ireg, MachSpillCopyNode::spill_type(MachSpillCopyNode::PhiInput));
303
C->record_method_not_compilable("attempted to spill a non-spillable item");
304
}
305
return;
306
}
307
const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
308
copy = new MachSpillCopyNode(MachSpillCopyNode::PhiInput, m, *rm, *rm);
309
// Find a good place to insert. Kinda tricky, use a subroutine
310
insert_copy_with_overlap(pred,copy,phi_name,src_name);
311
}
312
// Insert the copy in the use-def chain
313
n->set_req(j, copy);
314
_phc._cfg.map_node_to_block(copy, pred);
315
// Extend ("register allocate") the names array for the copy.
316
_phc._lrg_map.extend(copy->_idx, phi_name);
317
} // End of if Phi names do not match
318
} // End of for all inputs to Phi
319
} else { // End of if Phi
320
321
// Now check for 2-address instructions
322
uint idx;
323
if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
324
// Get the chosen name for the Node
325
uint name = _phc._lrg_map.find(n);
326
assert (name, "no 2-address specials");
327
// Check for name mis-match on the 2-address input
328
Node *m = n->in(idx);
329
if (_phc._lrg_map.find(m) != name) {
330
Node *copy;
331
assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
332
// At this point it is unsafe to extend live ranges (6550579).
333
// Rematerialize only constants as we do for Phi above.
334
if (m->is_Mach() && m->as_Mach()->is_Con() && !m->as_Mach()->is_MachConstant() &&
335
m->as_Mach()->rematerialize()) {
336
copy = m->clone();
337
// Insert the copy in the basic block, just before us
338
b->insert_node(copy, l++);
339
l += _phc.clone_projs(b, l, m, copy, _phc._lrg_map);
340
} else {
341
uint ireg = m->ideal_reg();
342
if (ireg == 0 || ireg == Op_RegFlags) {
343
assert(false, "attempted to spill a non-spillable item: %d: %s, ireg = %u, spill_type: %s",
344
m->_idx, m->Name(), ireg, MachSpillCopyNode::spill_type(MachSpillCopyNode::TwoAddress));
345
C->record_method_not_compilable("attempted to spill a non-spillable item");
346
return;
347
}
348
const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
349
copy = new MachSpillCopyNode(MachSpillCopyNode::TwoAddress, m, *rm, *rm);
350
// Insert the copy in the basic block, just before us
351
b->insert_node(copy, l++);
352
}
353
// Insert the copy in the use-def chain
354
n->set_req(idx, copy);
355
// Extend ("register allocate") the names array for the copy.
356
_phc._lrg_map.extend(copy->_idx, name);
357
_phc._cfg.map_node_to_block(copy, b);
358
}
359
360
} // End of is two-adr
361
362
// Insert a copy at a debug use for a lrg which has high frequency
363
if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || _phc._cfg.is_uncommon(b)) {
364
// Walk the debug inputs to the node and check for lrg freq
365
JVMState* jvms = n->jvms();
366
uint debug_start = jvms ? jvms->debug_start() : 999999;
367
uint debug_end = jvms ? jvms->debug_end() : 999999;
368
for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
369
// Do not split monitors; they are only needed for debug table
370
// entries and need no code.
371
if (jvms->is_monitor_use(inpidx)) {
372
continue;
373
}
374
Node *inp = n->in(inpidx);
375
uint nidx = _phc._lrg_map.live_range_id(inp);
376
LRG &lrg = lrgs(nidx);
377
378
// If this lrg has a high frequency use/def
379
if( lrg._maxfreq >= _phc.high_frequency_lrg() ) {
380
// If the live range is also live out of this block (like it
381
// would be for a fast/slow idiom), the normal spill mechanism
382
// does an excellent job. If it is not live out of this block
383
// (like it would be for debug info to uncommon trap) splitting
384
// the live range now allows a better allocation in the high
385
// frequency blocks.
386
// Build_IFG_virtual has converted the live sets to
387
// live-IN info, not live-OUT info.
388
uint k;
389
for( k=0; k < b->_num_succs; k++ )
390
if( _phc._live->live(b->_succs[k])->member( nidx ) )
391
break; // Live in to some successor block?
392
if( k < b->_num_succs )
393
continue; // Live out; do not pre-split
394
// Split the lrg at this use
395
uint ireg = inp->ideal_reg();
396
if (ireg == 0 || ireg == Op_RegFlags) {
397
assert(false, "attempted to spill a non-spillable item: %d: %s, ireg = %u, spill_type: %s",
398
inp->_idx, inp->Name(), ireg, MachSpillCopyNode::spill_type(MachSpillCopyNode::DebugUse));
399
C->record_method_not_compilable("attempted to spill a non-spillable item");
400
return;
401
}
402
const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
403
Node* copy = new MachSpillCopyNode(MachSpillCopyNode::DebugUse, inp, *rm, *rm);
404
// Insert the copy in the use-def chain
405
n->set_req(inpidx, copy );
406
// Insert the copy in the basic block, just before us
407
b->insert_node(copy, l++);
408
// Extend ("register allocate") the names array for the copy.
409
uint max_lrg_id = _phc._lrg_map.max_lrg_id();
410
_phc.new_lrg(copy, max_lrg_id);
411
_phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
412
_phc._cfg.map_node_to_block(copy, b);
413
//tty->print_cr("Split a debug use in Aggressive Coalesce");
414
} // End of if high frequency use/def
415
} // End of for all debug inputs
416
} // End of if low frequency safepoint
417
418
} // End of if Phi
419
420
} // End of for all instructions
421
} // End of for all blocks
422
}
423
424
425
// Aggressive (but pessimistic) copy coalescing of a single block
426
427
// The following coalesce pass represents a single round of aggressive
428
// pessimistic coalesce. "Aggressive" means no attempt to preserve
429
// colorability when coalescing. This occasionally means more spills, but
430
// it also means fewer rounds of coalescing for better code - and that means
431
// faster compiles.
432
433
// "Pessimistic" means we do not hit the fixed point in one pass (and we are
434
// reaching for the least fixed point to boot). This is typically solved
435
// with a few more rounds of coalescing, but the compiler must run fast. We
436
// could optimistically coalescing everything touching PhiNodes together
437
// into one big live range, then check for self-interference. Everywhere
438
// the live range interferes with self it would have to be split. Finding
439
// the right split points can be done with some heuristics (based on
440
// expected frequency of edges in the live range). In short, it's a real
441
// research problem and the timeline is too short to allow such research.
442
// Further thoughts: (1) build the LR in a pass, (2) find self-interference
443
// in another pass, (3) per each self-conflict, split, (4) split by finding
444
// the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
445
// according to the GCM algorithm (or just exec freq on CFG edges).
446
447
void PhaseAggressiveCoalesce::coalesce( Block *b ) {
448
// Copies are still "virtual" - meaning we have not made them explicitly
449
// copies. Instead, Phi functions of successor blocks have mis-matched
450
// live-ranges. If I fail to coalesce, I'll have to insert a copy to line
451
// up the live-ranges. Check for Phis in successor blocks.
452
uint i;
453
for( i=0; i<b->_num_succs; i++ ) {
454
Block *bs = b->_succs[i];
455
// Find index of 'b' in 'bs' predecessors
456
uint j=1;
457
while (_phc._cfg.get_block_for_node(bs->pred(j)) != b) {
458
j++;
459
}
460
461
// Visit all the Phis in successor block
462
for( uint k = 1; k<bs->number_of_nodes(); k++ ) {
463
Node *n = bs->get_node(k);
464
if( !n->is_Phi() ) break;
465
combine_these_two( n, n->in(j) );
466
}
467
} // End of for all successor blocks
468
469
470
// Check _this_ block for 2-address instructions and copies.
471
uint cnt = b->end_idx();
472
for( i = 1; i<cnt; i++ ) {
473
Node *n = b->get_node(i);
474
uint idx;
475
// 2-address instructions have a virtual Copy matching their input
476
// to their output
477
if (n->is_Mach() && (idx = n->as_Mach()->two_adr())) {
478
MachNode *mach = n->as_Mach();
479
combine_these_two(mach, mach->in(idx));
480
}
481
} // End of for all instructions in block
482
}
483
484
PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) {
485
_ulr.initialize(_phc._lrg_map.max_lrg_id());
486
}
487
488
void PhaseConservativeCoalesce::verify() {
489
#ifdef ASSERT
490
_phc.set_was_low();
491
#endif
492
}
493
494
void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
495
// Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the
496
// union-find tree
497
_phc.Union( lr1_node, lr2_node );
498
499
// Single-def live range ONLY if both live ranges are single-def.
500
// If both are single def, then src_def powers one live range
501
// and def_copy powers the other. After merging, src_def powers
502
// the combined live range.
503
lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
504
lrgs(lr2).is_multidef() )
505
? NodeSentinel : src_def;
506
lrgs(lr2)._def = NULL; // No def for lrg 2
507
lrgs(lr2).Clear(); // Force empty mask for LRG 2
508
//lrgs(lr2)._size = 0; // Live-range 2 goes dead
509
lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
510
lrgs(lr2)._is_oop = 0; // In particular, not an oop for GC info
511
512
if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
513
lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
514
515
// Copy original value instead. Intermediate copies go dead, and
516
// the dst_copy becomes useless.
517
int didx = dst_copy->is_Copy();
518
dst_copy->set_req( didx, src_def );
519
// Add copy to free list
520
// _phc.free_spillcopy(b->_nodes[bindex]);
521
assert( b->get_node(bindex) == dst_copy, "" );
522
dst_copy->replace_by( dst_copy->in(didx) );
523
dst_copy->set_req( didx, NULL);
524
b->remove_node(bindex);
525
if( bindex < b->_ihrp_index ) b->_ihrp_index--;
526
if( bindex < b->_fhrp_index ) b->_fhrp_index--;
527
528
// Stretched lr1; add it to liveness of intermediate blocks
529
Block *b2 = _phc._cfg.get_block_for_node(src_copy);
530
while( b != b2 ) {
531
b = _phc._cfg.get_block_for_node(b->pred(1));
532
_phc._live->live(b)->insert(lr1);
533
}
534
}
535
536
// Factored code from copy_copy that computes extra interferences from
537
// lengthening a live range by double-coalescing.
538
uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint rm_size, uint reg_degree, uint lr1, uint lr2 ) {
539
540
assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
541
assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
542
Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
543
Block *b2 = b;
544
uint bindex2 = bindex;
545
while( 1 ) {
546
// Find previous instruction
547
bindex2--; // Chain backwards 1 instruction
548
while( bindex2 == 0 ) { // At block start, find prior block
549
assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
550
b2 = _phc._cfg.get_block_for_node(b2->pred(1));
551
bindex2 = b2->end_idx()-1;
552
}
553
// Get prior instruction
554
assert(bindex2 < b2->number_of_nodes(), "index out of bounds");
555
Node *x = b2->get_node(bindex2);
556
if( x == prev_copy ) { // Previous copy in copy chain?
557
if( prev_copy == src_copy)// Found end of chain and all interferences
558
break; // So break out of loop
559
// Else work back one in copy chain
560
prev_copy = prev_copy->in(prev_copy->is_Copy());
561
} else { // Else collect interferences
562
uint lidx = _phc._lrg_map.find(x);
563
// Found another def of live-range being stretched?
564
if(lidx == lr1) {
565
return max_juint;
566
}
567
if(lidx == lr2) {
568
return max_juint;
569
}
570
571
// If we attempt to coalesce across a bound def
572
if( lrgs(lidx).is_bound() ) {
573
// Do not let the coalesced LRG expect to get the bound color
574
rm.SUBTRACT( lrgs(lidx).mask() );
575
// Recompute rm_size
576
rm_size = rm.Size();
577
//if( rm._flags ) rm_size += 1000000;
578
if( reg_degree >= rm_size ) return max_juint;
579
}
580
if( rm.overlap(lrgs(lidx).mask()) ) {
581
// Insert lidx into union LRG; returns TRUE if actually inserted
582
if( _ulr.insert(lidx) ) {
583
// Infinite-stack neighbors do not alter colorability, as they
584
// can always color to some other color.
585
if( !lrgs(lidx).mask().is_AllStack() ) {
586
// If this coalesce will make any new neighbor uncolorable,
587
// do not coalesce.
588
if( lrgs(lidx).just_lo_degree() )
589
return max_juint;
590
// Bump our degree
591
if( ++reg_degree >= rm_size )
592
return max_juint;
593
} // End of if not infinite-stack neighbor
594
} // End of if actually inserted
595
} // End of if live range overlaps
596
} // End of else collect interferences for 1 node
597
} // End of while forever, scan back for interferences
598
return reg_degree;
599
}
600
601
void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
602
// Some original neighbors of lr1 might have gone away
603
// because the constrained register mask prevented them.
604
// Remove lr1 from such neighbors.
605
uint neighbor = 0;
606
LRG &lrg1 = lrgs(lr1);
607
if (!n_lr1->is_empty()) {
608
IndexSetIterator one(n_lr1);
609
while ((neighbor = one.next()) != 0) {
610
if (!_ulr.member(neighbor)) {
611
if (_phc._ifg->neighbors(neighbor)->remove(lr1)) {
612
lrgs(neighbor).inc_degree(-lrg1.compute_degree(lrgs(neighbor)));
613
}
614
}
615
}
616
}
617
618
619
// lr2 is now called (coalesced into) lr1.
620
// Remove lr2 from the IFG.
621
LRG &lrg2 = lrgs(lr2);
622
if (!n_lr2->is_empty()) {
623
IndexSetIterator two(n_lr2);
624
while ((neighbor = two.next()) != 0) {
625
if (_phc._ifg->neighbors(neighbor)->remove(lr2)) {
626
lrgs(neighbor).inc_degree(-lrg2.compute_degree(lrgs(neighbor)));
627
}
628
}
629
}
630
631
// Some neighbors of intermediate copies now interfere with the
632
// combined live range.
633
if (!_ulr.is_empty()) {
634
IndexSetIterator three(&_ulr);
635
while ((neighbor = three.next()) != 0) {
636
if (_phc._ifg->neighbors(neighbor)->insert(lr1)) {
637
lrgs(neighbor).inc_degree(lrg1.compute_degree(lrgs(neighbor)));
638
}
639
}
640
}
641
}
642
643
static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
644
// Tag copy bias here
645
if( !ifg->lrgs(lr1)._copy_bias )
646
ifg->lrgs(lr1)._copy_bias = lr2;
647
if( !ifg->lrgs(lr2)._copy_bias )
648
ifg->lrgs(lr2)._copy_bias = lr1;
649
}
650
651
// See if I can coalesce a series of multiple copies together. I need the
652
// final dest copy and the original src copy. They can be the same Node.
653
// Compute the compatible register masks.
654
bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block *b, uint bindex) {
655
656
if (!dst_copy->is_SpillCopy()) {
657
return false;
658
}
659
if (!src_copy->is_SpillCopy()) {
660
return false;
661
}
662
Node *src_def = src_copy->in(src_copy->is_Copy());
663
uint lr1 = _phc._lrg_map.find(dst_copy);
664
uint lr2 = _phc._lrg_map.find(src_def);
665
666
// Same live ranges already?
667
if (lr1 == lr2) {
668
return false;
669
}
670
671
// Interfere?
672
if (_phc._ifg->test_edge_sq(lr1, lr2)) {
673
return false;
674
}
675
676
// Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
677
if (!lrgs(lr1)._is_oop && lrgs(lr2)._is_oop) { // not an oop->int cast
678
return false;
679
}
680
681
// Coalescing between an aligned live range and a mis-aligned live range?
682
// No, no! Alignment changes how we count degree.
683
if (lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj) {
684
return false;
685
}
686
687
// Sort; use smaller live-range number
688
Node *lr1_node = dst_copy;
689
Node *lr2_node = src_def;
690
if (lr1 > lr2) {
691
uint tmp = lr1; lr1 = lr2; lr2 = tmp;
692
lr1_node = src_def; lr2_node = dst_copy;
693
}
694
695
// Check for compatibility of the 2 live ranges by
696
// intersecting their allowed register sets.
697
RegMask rm = lrgs(lr1).mask();
698
rm.AND(lrgs(lr2).mask());
699
// Number of bits free
700
uint rm_size = rm.Size();
701
702
if (UseFPUForSpilling && rm.is_AllStack() ) {
703
// Don't coalesce when frequency difference is large
704
Block *dst_b = _phc._cfg.get_block_for_node(dst_copy);
705
Block *src_def_b = _phc._cfg.get_block_for_node(src_def);
706
if (src_def_b->_freq > 10*dst_b->_freq )
707
return false;
708
}
709
710
// If we can use any stack slot, then effective size is infinite
711
if( rm.is_AllStack() ) rm_size += 1000000;
712
// Incompatible masks, no way to coalesce
713
if( rm_size == 0 ) return false;
714
715
// Another early bail-out test is when we are double-coalescing and the
716
// 2 copies are separated by some control flow.
717
if( dst_copy != src_copy ) {
718
Block *src_b = _phc._cfg.get_block_for_node(src_copy);
719
Block *b2 = b;
720
while( b2 != src_b ) {
721
if( b2->num_preds() > 2 ){// Found merge-point
722
_phc._lost_opp_cflow_coalesce++;
723
// extra record_bias commented out because Chris believes it is not
724
// productive. Since we can record only 1 bias, we want to choose one
725
// that stands a chance of working and this one probably does not.
726
//record_bias( _phc._lrgs, lr1, lr2 );
727
return false; // To hard to find all interferences
728
}
729
b2 = _phc._cfg.get_block_for_node(b2->pred(1));
730
}
731
}
732
733
// Union the two interference sets together into '_ulr'
734
uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
735
736
if( reg_degree >= rm_size ) {
737
record_bias( _phc._ifg, lr1, lr2 );
738
return false;
739
}
740
741
// Now I need to compute all the interferences between dst_copy and
742
// src_copy. I'm not willing visit the entire interference graph, so
743
// I limit my search to things in dst_copy's block or in a straight
744
// line of previous blocks. I give up at merge points or when I get
745
// more interferences than my degree. I can stop when I find src_copy.
746
if( dst_copy != src_copy ) {
747
reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
748
if( reg_degree == max_juint ) {
749
record_bias( _phc._ifg, lr1, lr2 );
750
return false;
751
}
752
} // End of if dst_copy & src_copy are different
753
754
755
// ---- THE COMBINED LRG IS COLORABLE ----
756
757
// YEAH - Now coalesce this copy away
758
assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(), "" );
759
760
IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
761
IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
762
763
// Update the interference graph
764
update_ifg(lr1, lr2, n_lr1, n_lr2);
765
766
_ulr.remove(lr1);
767
768
// Uncomment the following code to trace Coalescing in great detail.
769
//
770
//if (false) {
771
// tty->cr();
772
// tty->print_cr("#######################################");
773
// tty->print_cr("union %d and %d", lr1, lr2);
774
// n_lr1->dump();
775
// n_lr2->dump();
776
// tty->print_cr("resulting set is");
777
// _ulr.dump();
778
//}
779
780
// Replace n_lr1 with the new combined live range. _ulr will use
781
// n_lr1's old memory on the next iteration. n_lr2 is cleared to
782
// send its internal memory to the free list.
783
_ulr.swap(n_lr1);
784
_ulr.clear();
785
n_lr2->clear();
786
787
lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
788
lrgs(lr2).set_degree( 0 );
789
790
// Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the
791
// union-find tree
792
union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
793
// Combine register restrictions
794
lrgs(lr1).set_mask(rm);
795
lrgs(lr1).compute_set_mask_size();
796
lrgs(lr1)._cost += lrgs(lr2)._cost;
797
lrgs(lr1)._area += lrgs(lr2)._area;
798
799
// While its uncommon to successfully coalesce live ranges that started out
800
// being not-lo-degree, it can happen. In any case the combined coalesced
801
// live range better Simplify nicely.
802
lrgs(lr1)._was_lo = 1;
803
804
// kinda expensive to do all the time
805
//tty->print_cr("warning: slow verify happening");
806
//_phc._ifg->verify( &_phc );
807
return true;
808
}
809
810
// Conservative (but pessimistic) copy coalescing of a single block
811
void PhaseConservativeCoalesce::coalesce( Block *b ) {
812
// Bail out on infrequent blocks
813
if (_phc._cfg.is_uncommon(b)) {
814
return;
815
}
816
// Check this block for copies.
817
for( uint i = 1; i<b->end_idx(); i++ ) {
818
// Check for actual copies on inputs. Coalesce a copy into its
819
// input if use and copy's input are compatible.
820
Node *copy1 = b->get_node(i);
821
uint idx1 = copy1->is_Copy();
822
if( !idx1 ) continue; // Not a copy
823
824
if( copy_copy(copy1,copy1,b,i) ) {
825
i--; // Retry, same location in block
826
PhaseChaitin::_conserv_coalesce++; // Collect stats on success
827
continue;
828
}
829
}
830
}
831
832