Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/opto/convertnode.cpp
40930 views
1
/*
2
* Copyright (c) 2014, 2019, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "opto/addnode.hpp"
27
#include "opto/castnode.hpp"
28
#include "opto/convertnode.hpp"
29
#include "opto/matcher.hpp"
30
#include "opto/phaseX.hpp"
31
#include "opto/subnode.hpp"
32
#include "runtime/sharedRuntime.hpp"
33
34
//=============================================================================
35
//------------------------------Identity---------------------------------------
36
Node* Conv2BNode::Identity(PhaseGVN* phase) {
37
const Type *t = phase->type( in(1) );
38
if( t == Type::TOP ) return in(1);
39
if( t == TypeInt::ZERO ) return in(1);
40
if( t == TypeInt::ONE ) return in(1);
41
if( t == TypeInt::BOOL ) return in(1);
42
return this;
43
}
44
45
//------------------------------Value------------------------------------------
46
const Type* Conv2BNode::Value(PhaseGVN* phase) const {
47
const Type *t = phase->type( in(1) );
48
if( t == Type::TOP ) return Type::TOP;
49
if( t == TypeInt::ZERO ) return TypeInt::ZERO;
50
if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
51
const TypePtr *tp = t->isa_ptr();
52
if( tp != NULL ) {
53
if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
54
if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
55
if (tp->ptr() == TypePtr::NotNull) return TypeInt::ONE;
56
return TypeInt::BOOL;
57
}
58
if (t->base() != Type::Int) return TypeInt::BOOL;
59
const TypeInt *ti = t->is_int();
60
if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
61
return TypeInt::BOOL;
62
}
63
64
65
// The conversions operations are all Alpha sorted. Please keep it that way!
66
//=============================================================================
67
//------------------------------Value------------------------------------------
68
const Type* ConvD2FNode::Value(PhaseGVN* phase) const {
69
const Type *t = phase->type( in(1) );
70
if( t == Type::TOP ) return Type::TOP;
71
if( t == Type::DOUBLE ) return Type::FLOAT;
72
const TypeD *td = t->is_double_constant();
73
return TypeF::make( (float)td->getd() );
74
}
75
76
//------------------------------Ideal------------------------------------------
77
// If we see pattern ConvF2D SomeDoubleOp ConvD2F, do operation as float.
78
Node *ConvD2FNode::Ideal(PhaseGVN *phase, bool can_reshape) {
79
if ( in(1)->Opcode() == Op_SqrtD ) {
80
Node* sqrtd = in(1);
81
if ( sqrtd->in(1)->Opcode() == Op_ConvF2D ) {
82
if ( Matcher::match_rule_supported(Op_SqrtF) ) {
83
Node* convf2d = sqrtd->in(1);
84
return new SqrtFNode(phase->C, sqrtd->in(0), convf2d->in(1));
85
}
86
}
87
}
88
return NULL;
89
}
90
91
//------------------------------Identity---------------------------------------
92
// Float's can be converted to doubles with no loss of bits. Hence
93
// converting a float to a double and back to a float is a NOP.
94
Node* ConvD2FNode::Identity(PhaseGVN* phase) {
95
return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
96
}
97
98
//=============================================================================
99
//------------------------------Value------------------------------------------
100
const Type* ConvD2INode::Value(PhaseGVN* phase) const {
101
const Type *t = phase->type( in(1) );
102
if( t == Type::TOP ) return Type::TOP;
103
if( t == Type::DOUBLE ) return TypeInt::INT;
104
const TypeD *td = t->is_double_constant();
105
return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
106
}
107
108
//------------------------------Ideal------------------------------------------
109
// If converting to an int type, skip any rounding nodes
110
Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
111
if( in(1)->Opcode() == Op_RoundDouble )
112
set_req(1,in(1)->in(1));
113
return NULL;
114
}
115
116
//------------------------------Identity---------------------------------------
117
// Int's can be converted to doubles with no loss of bits. Hence
118
// converting an integer to a double and back to an integer is a NOP.
119
Node* ConvD2INode::Identity(PhaseGVN* phase) {
120
return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
121
}
122
123
//=============================================================================
124
//------------------------------Value------------------------------------------
125
const Type* ConvD2LNode::Value(PhaseGVN* phase) const {
126
const Type *t = phase->type( in(1) );
127
if( t == Type::TOP ) return Type::TOP;
128
if( t == Type::DOUBLE ) return TypeLong::LONG;
129
const TypeD *td = t->is_double_constant();
130
return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
131
}
132
133
//------------------------------Identity---------------------------------------
134
Node* ConvD2LNode::Identity(PhaseGVN* phase) {
135
// Remove ConvD2L->ConvL2D->ConvD2L sequences.
136
if( in(1) ->Opcode() == Op_ConvL2D &&
137
in(1)->in(1)->Opcode() == Op_ConvD2L )
138
return in(1)->in(1);
139
return this;
140
}
141
142
//------------------------------Ideal------------------------------------------
143
// If converting to an int type, skip any rounding nodes
144
Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
145
if( in(1)->Opcode() == Op_RoundDouble )
146
set_req(1,in(1)->in(1));
147
return NULL;
148
}
149
150
//=============================================================================
151
//------------------------------Value------------------------------------------
152
const Type* ConvF2DNode::Value(PhaseGVN* phase) const {
153
const Type *t = phase->type( in(1) );
154
if( t == Type::TOP ) return Type::TOP;
155
if( t == Type::FLOAT ) return Type::DOUBLE;
156
const TypeF *tf = t->is_float_constant();
157
return TypeD::make( (double)tf->getf() );
158
}
159
160
//=============================================================================
161
//------------------------------Value------------------------------------------
162
const Type* ConvF2INode::Value(PhaseGVN* phase) const {
163
const Type *t = phase->type( in(1) );
164
if( t == Type::TOP ) return Type::TOP;
165
if( t == Type::FLOAT ) return TypeInt::INT;
166
const TypeF *tf = t->is_float_constant();
167
return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
168
}
169
170
//------------------------------Identity---------------------------------------
171
Node* ConvF2INode::Identity(PhaseGVN* phase) {
172
// Remove ConvF2I->ConvI2F->ConvF2I sequences.
173
if( in(1) ->Opcode() == Op_ConvI2F &&
174
in(1)->in(1)->Opcode() == Op_ConvF2I )
175
return in(1)->in(1);
176
return this;
177
}
178
179
//------------------------------Ideal------------------------------------------
180
// If converting to an int type, skip any rounding nodes
181
Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
182
if( in(1)->Opcode() == Op_RoundFloat )
183
set_req(1,in(1)->in(1));
184
return NULL;
185
}
186
187
//=============================================================================
188
//------------------------------Value------------------------------------------
189
const Type* ConvF2LNode::Value(PhaseGVN* phase) const {
190
const Type *t = phase->type( in(1) );
191
if( t == Type::TOP ) return Type::TOP;
192
if( t == Type::FLOAT ) return TypeLong::LONG;
193
const TypeF *tf = t->is_float_constant();
194
return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
195
}
196
197
//------------------------------Identity---------------------------------------
198
Node* ConvF2LNode::Identity(PhaseGVN* phase) {
199
// Remove ConvF2L->ConvL2F->ConvF2L sequences.
200
if( in(1) ->Opcode() == Op_ConvL2F &&
201
in(1)->in(1)->Opcode() == Op_ConvF2L )
202
return in(1)->in(1);
203
return this;
204
}
205
206
//------------------------------Ideal------------------------------------------
207
// If converting to an int type, skip any rounding nodes
208
Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
209
if( in(1)->Opcode() == Op_RoundFloat )
210
set_req(1,in(1)->in(1));
211
return NULL;
212
}
213
214
//=============================================================================
215
//------------------------------Value------------------------------------------
216
const Type* ConvI2DNode::Value(PhaseGVN* phase) const {
217
const Type *t = phase->type( in(1) );
218
if( t == Type::TOP ) return Type::TOP;
219
const TypeInt *ti = t->is_int();
220
if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
221
return bottom_type();
222
}
223
224
//=============================================================================
225
//------------------------------Value------------------------------------------
226
const Type* ConvI2FNode::Value(PhaseGVN* phase) const {
227
const Type *t = phase->type( in(1) );
228
if( t == Type::TOP ) return Type::TOP;
229
const TypeInt *ti = t->is_int();
230
if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
231
return bottom_type();
232
}
233
234
//------------------------------Identity---------------------------------------
235
Node* ConvI2FNode::Identity(PhaseGVN* phase) {
236
// Remove ConvI2F->ConvF2I->ConvI2F sequences.
237
if( in(1) ->Opcode() == Op_ConvF2I &&
238
in(1)->in(1)->Opcode() == Op_ConvI2F )
239
return in(1)->in(1);
240
return this;
241
}
242
243
//=============================================================================
244
//------------------------------Value------------------------------------------
245
const Type* ConvI2LNode::Value(PhaseGVN* phase) const {
246
const Type *t = phase->type( in(1) );
247
if( t == Type::TOP ) return Type::TOP;
248
const TypeInt *ti = t->is_int();
249
const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
250
// Join my declared type against my incoming type.
251
tl = tl->filter(_type);
252
return tl;
253
}
254
255
static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
256
jlong lo2, jlong hi2) {
257
// Two ranges overlap iff one range's low point falls in the other range.
258
return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
259
}
260
261
#ifdef _LP64
262
// If there is an existing ConvI2L node with the given parent and type, return
263
// it. Otherwise, create and return a new one. Both reusing existing ConvI2L
264
// nodes and postponing the idealization of new ones are needed to avoid an
265
// explosion of recursive Ideal() calls when compiling long AddI chains.
266
static Node* find_or_make_convI2L(PhaseIterGVN* igvn, Node* parent,
267
const TypeLong* type) {
268
Node* n = new ConvI2LNode(parent, type);
269
Node* existing = igvn->hash_find_insert(n);
270
if (existing != NULL) {
271
n->destruct(igvn);
272
return existing;
273
}
274
return igvn->register_new_node_with_optimizer(n);
275
}
276
#endif
277
278
bool Compile::push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry,
279
BasicType bt) {
280
int op = z->Opcode();
281
if (op == Op_AddI || op == Op_SubI) {
282
Node* x = z->in(1);
283
Node* y = z->in(2);
284
assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
285
if (phase->type(x) == Type::TOP) {
286
return false;
287
}
288
if (phase->type(y) == Type::TOP) {
289
return false;
290
}
291
const TypeInt* tx = phase->type(x)->is_int();
292
const TypeInt* ty = phase->type(y)->is_int();
293
294
jlong xlo = tx->is_int()->_lo;
295
jlong xhi = tx->is_int()->_hi;
296
jlong ylo = ty->is_int()->_lo;
297
jlong yhi = ty->is_int()->_hi;
298
jlong zlo = tz->lo_as_long();
299
jlong zhi = tz->hi_as_long();
300
jlong vbit = CONST64(1) << BitsPerInt;
301
int widen = MAX2(tx->_widen, ty->_widen);
302
if (op == Op_SubI) {
303
jlong ylo0 = ylo;
304
ylo = -yhi;
305
yhi = -ylo0;
306
}
307
// See if x+y can cause positive overflow into z+2**32
308
if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) {
309
return false;
310
}
311
// See if x+y can cause negative overflow into z-2**32
312
if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) {
313
return false;
314
}
315
// Now it's always safe to assume x+y does not overflow.
316
// This is true even if some pairs x,y might cause overflow, as long
317
// as that overflow value cannot fall into [zlo,zhi].
318
319
// Confident that the arithmetic is "as if infinite precision",
320
// we can now use z's range to put constraints on those of x and y.
321
// The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
322
// more "restricted" range by intersecting [xlo,xhi] with the
323
// range obtained by subtracting y's range from the asserted range
324
// of the I2L conversion. Here's the interval arithmetic algebra:
325
// x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
326
// => x in [zlo-yhi, zhi-ylo]
327
// => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
328
// => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
329
jlong rxlo = MAX2(xlo, zlo - yhi);
330
jlong rxhi = MIN2(xhi, zhi - ylo);
331
// And similarly, x changing place with y:
332
jlong rylo = MAX2(ylo, zlo - xhi);
333
jlong ryhi = MIN2(yhi, zhi - xlo);
334
if (rxlo > rxhi || rylo > ryhi) {
335
return false; // x or y is dying; don't mess w/ it
336
}
337
if (op == Op_SubI) {
338
jlong rylo0 = rylo;
339
rylo = -ryhi;
340
ryhi = -rylo0;
341
}
342
assert(rxlo == (int)rxlo && rxhi == (int)rxhi, "x should not overflow");
343
assert(rylo == (int)rylo && ryhi == (int)ryhi, "y should not overflow");
344
rx = TypeInteger::make(rxlo, rxhi, widen, bt);
345
ry = TypeInteger::make(rylo, ryhi, widen, bt);
346
return true;
347
}
348
return false;
349
}
350
351
352
//------------------------------Ideal------------------------------------------
353
Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
354
PhaseIterGVN *igvn = phase->is_IterGVN();
355
const TypeLong* this_type = this->type()->is_long();
356
Node* this_changed = NULL;
357
358
if (igvn != NULL) {
359
// Do NOT remove this node's type assertion until no more loop ops can happen.
360
if (phase->C->post_loop_opts_phase()) {
361
const TypeInt* in_type = phase->type(in(1))->isa_int();
362
if (in_type != NULL && this_type != NULL &&
363
(in_type->_lo != this_type->_lo ||
364
in_type->_hi != this_type->_hi)) {
365
// Although this WORSENS the type, it increases GVN opportunities,
366
// because I2L nodes with the same input will common up, regardless
367
// of slightly differing type assertions. Such slight differences
368
// arise routinely as a result of loop unrolling, so this is a
369
// post-unrolling graph cleanup. Choose a type which depends only
370
// on my input. (Exception: Keep a range assertion of >=0 or <0.)
371
jlong lo1 = this_type->_lo;
372
jlong hi1 = this_type->_hi;
373
int w1 = this_type->_widen;
374
if (lo1 != (jint)lo1 ||
375
hi1 != (jint)hi1 ||
376
lo1 > hi1) {
377
// Overflow leads to wraparound, wraparound leads to range saturation.
378
lo1 = min_jint; hi1 = max_jint;
379
} else if (lo1 >= 0) {
380
// Keep a range assertion of >=0.
381
lo1 = 0; hi1 = max_jint;
382
} else if (hi1 < 0) {
383
// Keep a range assertion of <0.
384
lo1 = min_jint; hi1 = -1;
385
} else {
386
lo1 = min_jint; hi1 = max_jint;
387
}
388
const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
389
MIN2((jlong)in_type->_hi, hi1),
390
MAX2((int)in_type->_widen, w1));
391
if (wtype != type()) {
392
set_type(wtype);
393
// Note: this_type still has old type value, for the logic below.
394
this_changed = this;
395
}
396
}
397
} else {
398
phase->C->record_for_post_loop_opts_igvn(this);
399
}
400
}
401
#ifdef _LP64
402
// Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y))
403
// but only if x and y have subranges that cannot cause 32-bit overflow,
404
// under the assumption that x+y is in my own subrange this->type().
405
406
// This assumption is based on a constraint (i.e., type assertion)
407
// established in Parse::array_addressing or perhaps elsewhere.
408
// This constraint has been adjoined to the "natural" type of
409
// the incoming argument in(0). We know (because of runtime
410
// checks) - that the result value I2L(x+y) is in the joined range.
411
// Hence we can restrict the incoming terms (x, y) to values such
412
// that their sum also lands in that range.
413
414
// This optimization is useful only on 64-bit systems, where we hope
415
// the addition will end up subsumed in an addressing mode.
416
// It is necessary to do this when optimizing an unrolled array
417
// copy loop such as x[i++] = y[i++].
418
419
// On 32-bit systems, it's better to perform as much 32-bit math as
420
// possible before the I2L conversion, because 32-bit math is cheaper.
421
// There's no common reason to "leak" a constant offset through the I2L.
422
// Addressing arithmetic will not absorb it as part of a 64-bit AddL.
423
424
Node* z = in(1);
425
const TypeInteger* rx = NULL;
426
const TypeInteger* ry = NULL;
427
if (Compile::push_thru_add(phase, z, this_type, rx, ry, T_LONG)) {
428
if (igvn == NULL) {
429
// Postpone this optimization to iterative GVN, where we can handle deep
430
// AddI chains without an exponential number of recursive Ideal() calls.
431
phase->record_for_igvn(this);
432
return this_changed;
433
}
434
int op = z->Opcode();
435
Node* x = z->in(1);
436
Node* y = z->in(2);
437
438
Node* cx = find_or_make_convI2L(igvn, x, rx->is_long());
439
Node* cy = find_or_make_convI2L(igvn, y, ry->is_long());
440
switch (op) {
441
case Op_AddI: return new AddLNode(cx, cy);
442
case Op_SubI: return new SubLNode(cx, cy);
443
default: ShouldNotReachHere();
444
}
445
}
446
#endif //_LP64
447
448
return this_changed;
449
}
450
451
//=============================================================================
452
//------------------------------Value------------------------------------------
453
const Type* ConvL2DNode::Value(PhaseGVN* phase) const {
454
const Type *t = phase->type( in(1) );
455
if( t == Type::TOP ) return Type::TOP;
456
const TypeLong *tl = t->is_long();
457
if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
458
return bottom_type();
459
}
460
461
//=============================================================================
462
//------------------------------Value------------------------------------------
463
const Type* ConvL2FNode::Value(PhaseGVN* phase) const {
464
const Type *t = phase->type( in(1) );
465
if( t == Type::TOP ) return Type::TOP;
466
const TypeLong *tl = t->is_long();
467
if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
468
return bottom_type();
469
}
470
471
//=============================================================================
472
//----------------------------Identity-----------------------------------------
473
Node* ConvL2INode::Identity(PhaseGVN* phase) {
474
// Convert L2I(I2L(x)) => x
475
if (in(1)->Opcode() == Op_ConvI2L) return in(1)->in(1);
476
return this;
477
}
478
479
//------------------------------Value------------------------------------------
480
const Type* ConvL2INode::Value(PhaseGVN* phase) const {
481
const Type *t = phase->type( in(1) );
482
if( t == Type::TOP ) return Type::TOP;
483
const TypeLong *tl = t->is_long();
484
const TypeInt* ti = TypeInt::INT;
485
if (tl->is_con()) {
486
// Easy case.
487
ti = TypeInt::make((jint)tl->get_con());
488
} else if (tl->_lo >= min_jint && tl->_hi <= max_jint) {
489
ti = TypeInt::make((jint)tl->_lo, (jint)tl->_hi, tl->_widen);
490
}
491
return ti->filter(_type);
492
}
493
494
//------------------------------Ideal------------------------------------------
495
// Return a node which is more "ideal" than the current node.
496
// Blow off prior masking to int
497
Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
498
Node *andl = in(1);
499
uint andl_op = andl->Opcode();
500
if( andl_op == Op_AndL ) {
501
// Blow off prior masking to int
502
if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
503
set_req_X(1,andl->in(1), phase);
504
return this;
505
}
506
}
507
508
// Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
509
// This replaces an 'AddL' with an 'AddI'.
510
if( andl_op == Op_AddL ) {
511
// Don't do this for nodes which have more than one user since
512
// we'll end up computing the long add anyway.
513
if (andl->outcnt() > 1) return NULL;
514
515
Node* x = andl->in(1);
516
Node* y = andl->in(2);
517
assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
518
if (phase->type(x) == Type::TOP) return NULL;
519
if (phase->type(y) == Type::TOP) return NULL;
520
Node *add1 = phase->transform(new ConvL2INode(x));
521
Node *add2 = phase->transform(new ConvL2INode(y));
522
return new AddINode(add1,add2);
523
}
524
525
// Disable optimization: LoadL->ConvL2I ==> LoadI.
526
// It causes problems (sizes of Load and Store nodes do not match)
527
// in objects initialization code and Escape Analysis.
528
return NULL;
529
}
530
531
532
533
//=============================================================================
534
//------------------------------Identity---------------------------------------
535
// Remove redundant roundings
536
Node* RoundFloatNode::Identity(PhaseGVN* phase) {
537
assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
538
// Do not round constants
539
if (phase->type(in(1))->base() == Type::FloatCon) return in(1);
540
int op = in(1)->Opcode();
541
// Redundant rounding
542
if( op == Op_RoundFloat ) return in(1);
543
// Already rounded
544
if( op == Op_Parm ) return in(1);
545
if( op == Op_LoadF ) return in(1);
546
return this;
547
}
548
549
//------------------------------Value------------------------------------------
550
const Type* RoundFloatNode::Value(PhaseGVN* phase) const {
551
return phase->type( in(1) );
552
}
553
554
//=============================================================================
555
//------------------------------Identity---------------------------------------
556
// Remove redundant roundings. Incoming arguments are already rounded.
557
Node* RoundDoubleNode::Identity(PhaseGVN* phase) {
558
assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
559
// Do not round constants
560
if (phase->type(in(1))->base() == Type::DoubleCon) return in(1);
561
int op = in(1)->Opcode();
562
// Redundant rounding
563
if( op == Op_RoundDouble ) return in(1);
564
// Already rounded
565
if( op == Op_Parm ) return in(1);
566
if( op == Op_LoadD ) return in(1);
567
if( op == Op_ConvF2D ) return in(1);
568
if( op == Op_ConvI2D ) return in(1);
569
return this;
570
}
571
572
//------------------------------Value------------------------------------------
573
const Type* RoundDoubleNode::Value(PhaseGVN* phase) const {
574
return phase->type( in(1) );
575
}
576
577
//=============================================================================
578
RoundDoubleModeNode* RoundDoubleModeNode::make(PhaseGVN& gvn, Node* arg, RoundDoubleModeNode::RoundingMode rmode) {
579
ConINode* rm = gvn.intcon(rmode);
580
return new RoundDoubleModeNode(arg, (Node *)rm);
581
}
582
583
//------------------------------Identity---------------------------------------
584
// Remove redundant roundings.
585
Node* RoundDoubleModeNode::Identity(PhaseGVN* phase) {
586
int op = in(1)->Opcode();
587
// Redundant rounding e.g. floor(ceil(n)) -> ceil(n)
588
if(op == Op_RoundDoubleMode) return in(1);
589
return this;
590
}
591
const Type* RoundDoubleModeNode::Value(PhaseGVN* phase) const {
592
return Type::DOUBLE;
593
}
594
//=============================================================================
595
596