Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/opto/domgraph.cpp
40930 views
1
/*
2
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "libadt/vectset.hpp"
27
#include "memory/allocation.hpp"
28
#include "memory/resourceArea.hpp"
29
#include "opto/block.hpp"
30
#include "opto/machnode.hpp"
31
#include "opto/phaseX.hpp"
32
#include "opto/rootnode.hpp"
33
34
// Portions of code courtesy of Clifford Click
35
36
// A data structure that holds all the information needed to find dominators.
37
struct Tarjan {
38
Block *_block; // Basic block for this info
39
40
uint _semi; // Semi-dominators
41
uint _size; // Used for faster LINK and EVAL
42
Tarjan *_parent; // Parent in DFS
43
Tarjan *_label; // Used for LINK and EVAL
44
Tarjan *_ancestor; // Used for LINK and EVAL
45
Tarjan *_child; // Used for faster LINK and EVAL
46
Tarjan *_dom; // Parent in dominator tree (immediate dom)
47
Tarjan *_bucket; // Set of vertices with given semidominator
48
49
Tarjan *_dom_child; // Child in dominator tree
50
Tarjan *_dom_next; // Next in dominator tree
51
52
// Fast union-find work
53
void COMPRESS();
54
Tarjan *EVAL(void);
55
void LINK( Tarjan *w, Tarjan *tarjan0 );
56
57
void setdepth( uint size );
58
59
};
60
61
// Compute the dominator tree of the CFG. The CFG must already have been
62
// constructed. This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
63
void PhaseCFG::build_dominator_tree() {
64
// Pre-grow the blocks array, prior to the ResourceMark kicking in
65
_blocks.map(number_of_blocks(), 0);
66
67
ResourceMark rm;
68
// Setup mappings from my Graph to Tarjan's stuff and back
69
// Note: Tarjan uses 1-based arrays
70
Tarjan* tarjan = NEW_RESOURCE_ARRAY(Tarjan, number_of_blocks() + 1);
71
72
// Tarjan's algorithm, almost verbatim:
73
// Step 1:
74
uint dfsnum = do_DFS(tarjan, number_of_blocks());
75
if (dfsnum - 1 != number_of_blocks()) { // Check for unreachable loops!
76
// If the returned dfsnum does not match the number of blocks, then we
77
// must have some unreachable loops. These can be made at any time by
78
// IterGVN. They are cleaned up by CCP or the loop opts, but the last
79
// IterGVN can always make more that are not cleaned up. Highly unlikely
80
// except in ZKM.jar, where endless irreducible loops cause the loop opts
81
// to not get run.
82
//
83
// Having found unreachable loops, we have made a bad RPO _block layout.
84
// We can re-run the above DFS pass with the correct number of blocks,
85
// and hack the Tarjan algorithm below to be robust in the presence of
86
// such dead loops (as was done for the NTarjan code farther below).
87
// Since this situation is so unlikely, instead I've decided to bail out.
88
// CNC 7/24/2001
89
C->record_method_not_compilable("unreachable loop");
90
return;
91
}
92
_blocks._cnt = number_of_blocks();
93
94
// Tarjan is using 1-based arrays, so these are some initialize flags
95
tarjan[0]._size = tarjan[0]._semi = 0;
96
tarjan[0]._label = &tarjan[0];
97
98
for (uint i = number_of_blocks(); i >= 2; i--) { // For all vertices in DFS order
99
Tarjan *w = &tarjan[i]; // Get vertex from DFS
100
101
// Step 2:
102
Node *whead = w->_block->head();
103
for (uint j = 1; j < whead->req(); j++) {
104
Block* b = get_block_for_node(whead->in(j));
105
Tarjan *vx = &tarjan[b->_pre_order];
106
Tarjan *u = vx->EVAL();
107
if( u->_semi < w->_semi )
108
w->_semi = u->_semi;
109
}
110
111
// w is added to a bucket here, and only here.
112
// Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
113
// Thus bucket can be a linked list.
114
// Thus we do not need a small integer name for each Block.
115
w->_bucket = tarjan[w->_semi]._bucket;
116
tarjan[w->_semi]._bucket = w;
117
118
w->_parent->LINK( w, &tarjan[0] );
119
120
// Step 3:
121
for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
122
Tarjan *u = vx->EVAL();
123
vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
124
}
125
}
126
127
// Step 4:
128
for (uint i = 2; i <= number_of_blocks(); i++) {
129
Tarjan *w = &tarjan[i];
130
if( w->_dom != &tarjan[w->_semi] )
131
w->_dom = w->_dom->_dom;
132
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
133
}
134
// No immediate dominator for the root
135
Tarjan *w = &tarjan[get_root_block()->_pre_order];
136
w->_dom = NULL;
137
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
138
139
// Convert the dominator tree array into my kind of graph
140
for(uint i = 1; i <= number_of_blocks(); i++){ // For all Tarjan vertices
141
Tarjan *t = &tarjan[i]; // Handy access
142
Tarjan *tdom = t->_dom; // Handy access to immediate dominator
143
if( tdom ) { // Root has no immediate dominator
144
t->_block->_idom = tdom->_block; // Set immediate dominator
145
t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
146
tdom->_dom_child = t; // Make me a child of my parent
147
} else
148
t->_block->_idom = NULL; // Root
149
}
150
w->setdepth(number_of_blocks() + 1); // Set depth in dominator tree
151
152
}
153
154
class Block_Stack {
155
private:
156
struct Block_Descr {
157
Block *block; // Block
158
int index; // Index of block's successor pushed on stack
159
int freq_idx; // Index of block's most frequent successor
160
};
161
Block_Descr *_stack_top;
162
Block_Descr *_stack_max;
163
Block_Descr *_stack;
164
Tarjan *_tarjan;
165
uint most_frequent_successor( Block *b );
166
public:
167
Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) {
168
_stack = NEW_RESOURCE_ARRAY(Block_Descr, size);
169
_stack_max = _stack + size;
170
_stack_top = _stack - 1; // stack is empty
171
}
172
void push(uint pre_order, Block *b) {
173
Tarjan *t = &_tarjan[pre_order]; // Fast local access
174
b->_pre_order = pre_order; // Flag as visited
175
t->_block = b; // Save actual block
176
t->_semi = pre_order; // Block to DFS map
177
t->_label = t; // DFS to vertex map
178
t->_ancestor = NULL; // Fast LINK & EVAL setup
179
t->_child = &_tarjan[0]; // Sentenial
180
t->_size = 1;
181
t->_bucket = NULL;
182
if (pre_order == 1)
183
t->_parent = NULL; // first block doesn't have parent
184
else {
185
// Save parent (current top block on stack) in DFS
186
t->_parent = &_tarjan[_stack_top->block->_pre_order];
187
}
188
// Now put this block on stack
189
++_stack_top;
190
assert(_stack_top < _stack_max, ""); // assert if stack have to grow
191
_stack_top->block = b;
192
_stack_top->index = -1;
193
// Find the index into b->succs[] array of the most frequent successor.
194
_stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0
195
}
196
Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; }
197
bool is_nonempty() { return (_stack_top >= _stack); }
198
bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); }
199
Block* next_successor() {
200
int i = _stack_top->index;
201
i++;
202
if (i == _stack_top->freq_idx) i++;
203
if (i >= (int)(_stack_top->block->_num_succs)) {
204
i = _stack_top->freq_idx; // process most frequent successor last
205
}
206
_stack_top->index = i;
207
return _stack_top->block->_succs[ i ];
208
}
209
};
210
211
// Find the index into the b->succs[] array of the most frequent successor.
212
uint Block_Stack::most_frequent_successor( Block *b ) {
213
uint freq_idx = 0;
214
int eidx = b->end_idx();
215
Node *n = b->get_node(eidx);
216
int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
217
switch( op ) {
218
case Op_CountedLoopEnd:
219
case Op_If: { // Split frequency amongst children
220
float prob = n->as_MachIf()->_prob;
221
// Is succ[0] the TRUE branch or the FALSE branch?
222
if( b->get_node(eidx+1)->Opcode() == Op_IfFalse )
223
prob = 1.0f - prob;
224
freq_idx = prob < PROB_FAIR; // freq=1 for succ[0] < 0.5 prob
225
break;
226
}
227
case Op_Catch: // Split frequency amongst children
228
for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ )
229
if( b->get_node(eidx+1+freq_idx)->as_CatchProj()->_con == CatchProjNode::fall_through_index )
230
break;
231
// Handle case of no fall-thru (e.g., check-cast MUST throw an exception)
232
if( freq_idx == b->_num_succs ) freq_idx = 0;
233
break;
234
// Currently there is no support for finding out the most
235
// frequent successor for jumps, so lets just make it the first one
236
case Op_Jump:
237
case Op_Root:
238
case Op_Goto:
239
case Op_NeverBranch:
240
freq_idx = 0; // fall thru
241
break;
242
case Op_TailCall:
243
case Op_TailJump:
244
case Op_Return:
245
case Op_Halt:
246
case Op_Rethrow:
247
break;
248
default:
249
ShouldNotReachHere();
250
}
251
return freq_idx;
252
}
253
254
// Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup
255
// 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent.
256
uint PhaseCFG::do_DFS(Tarjan *tarjan, uint rpo_counter) {
257
Block* root_block = get_root_block();
258
uint pre_order = 1;
259
// Allocate stack of size number_of_blocks() + 1 to avoid frequent realloc
260
Block_Stack bstack(tarjan, number_of_blocks() + 1);
261
262
// Push on stack the state for the first block
263
bstack.push(pre_order, root_block);
264
++pre_order;
265
266
while (bstack.is_nonempty()) {
267
if (!bstack.last_successor()) {
268
// Walk over all successors in pre-order (DFS).
269
Block* next_block = bstack.next_successor();
270
if (next_block->_pre_order == 0) { // Check for no-pre-order, not-visited
271
// Push on stack the state of successor
272
bstack.push(pre_order, next_block);
273
++pre_order;
274
}
275
}
276
else {
277
// Build a reverse post-order in the CFG _blocks array
278
Block *stack_top = bstack.pop();
279
stack_top->_rpo = --rpo_counter;
280
_blocks.map(stack_top->_rpo, stack_top);
281
}
282
}
283
return pre_order;
284
}
285
286
void Tarjan::COMPRESS()
287
{
288
assert( _ancestor != 0, "" );
289
if( _ancestor->_ancestor != 0 ) {
290
_ancestor->COMPRESS( );
291
if( _ancestor->_label->_semi < _label->_semi )
292
_label = _ancestor->_label;
293
_ancestor = _ancestor->_ancestor;
294
}
295
}
296
297
Tarjan *Tarjan::EVAL() {
298
if( !_ancestor ) return _label;
299
COMPRESS();
300
return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
301
}
302
303
void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
304
Tarjan *s = w;
305
while( w->_label->_semi < s->_child->_label->_semi ) {
306
if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
307
s->_child->_ancestor = s;
308
s->_child = s->_child->_child;
309
} else {
310
s->_child->_size = s->_size;
311
s = s->_ancestor = s->_child;
312
}
313
}
314
s->_label = w->_label;
315
_size += w->_size;
316
if( _size < (w->_size << 1) ) {
317
Tarjan *tmp = s; s = _child; _child = tmp;
318
}
319
while( s != tarjan0 ) {
320
s->_ancestor = this;
321
s = s->_child;
322
}
323
}
324
325
void Tarjan::setdepth( uint stack_size ) {
326
Tarjan **top = NEW_RESOURCE_ARRAY(Tarjan*, stack_size);
327
Tarjan **next = top;
328
Tarjan **last;
329
uint depth = 0;
330
*top = this;
331
++top;
332
do {
333
// next level
334
++depth;
335
last = top;
336
do {
337
// Set current depth for all tarjans on this level
338
Tarjan *t = *next; // next tarjan from stack
339
++next;
340
do {
341
t->_block->_dom_depth = depth; // Set depth in dominator tree
342
Tarjan *dom_child = t->_dom_child;
343
t = t->_dom_next; // next tarjan
344
if (dom_child != NULL) {
345
*top = dom_child; // save child on stack
346
++top;
347
}
348
} while (t != NULL);
349
} while (next < last);
350
} while (last < top);
351
}
352
353
// Compute dominators on the Sea of Nodes form
354
// A data structure that holds all the information needed to find dominators.
355
struct NTarjan {
356
Node *_control; // Control node associated with this info
357
358
uint _semi; // Semi-dominators
359
uint _size; // Used for faster LINK and EVAL
360
NTarjan *_parent; // Parent in DFS
361
NTarjan *_label; // Used for LINK and EVAL
362
NTarjan *_ancestor; // Used for LINK and EVAL
363
NTarjan *_child; // Used for faster LINK and EVAL
364
NTarjan *_dom; // Parent in dominator tree (immediate dom)
365
NTarjan *_bucket; // Set of vertices with given semidominator
366
367
NTarjan *_dom_child; // Child in dominator tree
368
NTarjan *_dom_next; // Next in dominator tree
369
370
// Perform DFS search.
371
// Setup 'vertex' as DFS to vertex mapping.
372
// Setup 'semi' as vertex to DFS mapping.
373
// Set 'parent' to DFS parent.
374
static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder );
375
void setdepth( uint size, uint *dom_depth );
376
377
// Fast union-find work
378
void COMPRESS();
379
NTarjan *EVAL(void);
380
void LINK( NTarjan *w, NTarjan *ntarjan0 );
381
#ifndef PRODUCT
382
void dump(int offset) const;
383
#endif
384
};
385
386
// Compute the dominator tree of the sea of nodes. This version walks all CFG
387
// nodes (using the is_CFG() call) and places them in a dominator tree. Thus,
388
// it needs a count of the CFG nodes for the mapping table. This is the
389
// Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
390
void PhaseIdealLoop::Dominators() {
391
ResourceMark rm;
392
// Setup mappings from my Graph to Tarjan's stuff and back
393
// Note: Tarjan uses 1-based arrays
394
NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1);
395
// Initialize _control field for fast reference
396
int i;
397
for( i= C->unique()-1; i>=0; i-- )
398
ntarjan[i]._control = NULL;
399
400
// Store the DFS order for the main loop
401
const uint fill_value = max_juint;
402
uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1);
403
memset(dfsorder, fill_value, (C->unique()+1) * sizeof(uint));
404
405
// Tarjan's algorithm, almost verbatim:
406
// Step 1:
407
VectorSet visited;
408
int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder);
409
410
// Tarjan is using 1-based arrays, so these are some initialize flags
411
ntarjan[0]._size = ntarjan[0]._semi = 0;
412
ntarjan[0]._label = &ntarjan[0];
413
414
for( i = dfsnum-1; i>1; i-- ) { // For all nodes in reverse DFS order
415
NTarjan *w = &ntarjan[i]; // Get Node from DFS
416
assert(w->_control != NULL,"bad DFS walk");
417
418
// Step 2:
419
Node *whead = w->_control;
420
for( uint j=0; j < whead->req(); j++ ) { // For each predecessor
421
if( whead->in(j) == NULL || !whead->in(j)->is_CFG() )
422
continue; // Only process control nodes
423
uint b = dfsorder[whead->in(j)->_idx];
424
if(b == fill_value) continue;
425
NTarjan *vx = &ntarjan[b];
426
NTarjan *u = vx->EVAL();
427
if( u->_semi < w->_semi )
428
w->_semi = u->_semi;
429
}
430
431
// w is added to a bucket here, and only here.
432
// Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
433
// Thus bucket can be a linked list.
434
w->_bucket = ntarjan[w->_semi]._bucket;
435
ntarjan[w->_semi]._bucket = w;
436
437
w->_parent->LINK( w, &ntarjan[0] );
438
439
// Step 3:
440
for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
441
NTarjan *u = vx->EVAL();
442
vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
443
}
444
445
// Cleanup any unreachable loops now. Unreachable loops are loops that
446
// flow into the main graph (and hence into ROOT) but are not reachable
447
// from above. Such code is dead, but requires a global pass to detect
448
// it; this global pass was the 'build_loop_tree' pass run just prior.
449
if( !_verify_only && whead->is_Region() ) {
450
for( uint i = 1; i < whead->req(); i++ ) {
451
if (!has_node(whead->in(i))) {
452
// Kill dead input path
453
assert( !visited.test(whead->in(i)->_idx),
454
"input with no loop must be dead" );
455
_igvn.delete_input_of(whead, i);
456
for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) {
457
Node* p = whead->fast_out(j);
458
if( p->is_Phi() ) {
459
_igvn.delete_input_of(p, i);
460
}
461
}
462
i--; // Rerun same iteration
463
} // End of if dead input path
464
} // End of for all input paths
465
} // End if if whead is a Region
466
} // End of for all Nodes in reverse DFS order
467
468
// Step 4:
469
for( i=2; i < dfsnum; i++ ) { // DFS order
470
NTarjan *w = &ntarjan[i];
471
assert(w->_control != NULL,"Bad DFS walk");
472
if( w->_dom != &ntarjan[w->_semi] )
473
w->_dom = w->_dom->_dom;
474
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
475
}
476
// No immediate dominator for the root
477
NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]];
478
w->_dom = NULL;
479
w->_parent = NULL;
480
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
481
482
// Convert the dominator tree array into my kind of graph
483
for( i=1; i<dfsnum; i++ ) { // For all Tarjan vertices
484
NTarjan *t = &ntarjan[i]; // Handy access
485
assert(t->_control != NULL,"Bad DFS walk");
486
NTarjan *tdom = t->_dom; // Handy access to immediate dominator
487
if( tdom ) { // Root has no immediate dominator
488
_idom[t->_control->_idx] = tdom->_control; // Set immediate dominator
489
t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
490
tdom->_dom_child = t; // Make me a child of my parent
491
} else
492
_idom[C->root()->_idx] = NULL; // Root
493
}
494
w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree
495
// Pick up the 'top' node as well
496
_idom [C->top()->_idx] = C->root();
497
_dom_depth[C->top()->_idx] = 1;
498
499
// Debug Print of Dominator tree
500
if( PrintDominators ) {
501
#ifndef PRODUCT
502
w->dump(0);
503
#endif
504
}
505
}
506
507
// Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup
508
// 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent.
509
int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) {
510
// Allocate stack of size C->live_nodes()/8 to avoid frequent realloc
511
GrowableArray <Node *> dfstack(pil->C->live_nodes() >> 3);
512
Node *b = pil->C->root();
513
int dfsnum = 1;
514
dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use
515
dfstack.push(b);
516
517
while (dfstack.is_nonempty()) {
518
b = dfstack.pop();
519
if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited
520
NTarjan *w = &ntarjan[dfsnum];
521
// Only fully process control nodes
522
w->_control = b; // Save actual node
523
// Use parent's cached dfsnum to identify "Parent in DFS"
524
w->_parent = &ntarjan[dfsorder[b->_idx]];
525
dfsorder[b->_idx] = dfsnum; // Save DFS order info
526
w->_semi = dfsnum; // Node to DFS map
527
w->_label = w; // DFS to vertex map
528
w->_ancestor = NULL; // Fast LINK & EVAL setup
529
w->_child = &ntarjan[0]; // Sentinal
530
w->_size = 1;
531
w->_bucket = NULL;
532
533
// Need DEF-USE info for this pass
534
for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards
535
Node* s = b->raw_out(i); // Get a use
536
// CFG nodes only and not dead stuff
537
if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) {
538
dfsorder[s->_idx] = dfsnum; // Cache parent's dfsnum for a later use
539
dfstack.push(s);
540
}
541
}
542
dfsnum++; // update after parent's dfsnum has been cached.
543
}
544
}
545
546
return dfsnum;
547
}
548
549
void NTarjan::COMPRESS()
550
{
551
assert( _ancestor != 0, "" );
552
if( _ancestor->_ancestor != 0 ) {
553
_ancestor->COMPRESS( );
554
if( _ancestor->_label->_semi < _label->_semi )
555
_label = _ancestor->_label;
556
_ancestor = _ancestor->_ancestor;
557
}
558
}
559
560
NTarjan *NTarjan::EVAL() {
561
if( !_ancestor ) return _label;
562
COMPRESS();
563
return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
564
}
565
566
void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
567
NTarjan *s = w;
568
while( w->_label->_semi < s->_child->_label->_semi ) {
569
if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
570
s->_child->_ancestor = s;
571
s->_child = s->_child->_child;
572
} else {
573
s->_child->_size = s->_size;
574
s = s->_ancestor = s->_child;
575
}
576
}
577
s->_label = w->_label;
578
_size += w->_size;
579
if( _size < (w->_size << 1) ) {
580
NTarjan *tmp = s; s = _child; _child = tmp;
581
}
582
while( s != ntarjan0 ) {
583
s->_ancestor = this;
584
s = s->_child;
585
}
586
}
587
588
void NTarjan::setdepth( uint stack_size, uint *dom_depth ) {
589
NTarjan **top = NEW_RESOURCE_ARRAY(NTarjan*, stack_size);
590
NTarjan **next = top;
591
NTarjan **last;
592
uint depth = 0;
593
*top = this;
594
++top;
595
do {
596
// next level
597
++depth;
598
last = top;
599
do {
600
// Set current depth for all tarjans on this level
601
NTarjan *t = *next; // next tarjan from stack
602
++next;
603
do {
604
dom_depth[t->_control->_idx] = depth; // Set depth in dominator tree
605
NTarjan *dom_child = t->_dom_child;
606
t = t->_dom_next; // next tarjan
607
if (dom_child != NULL) {
608
*top = dom_child; // save child on stack
609
++top;
610
}
611
} while (t != NULL);
612
} while (next < last);
613
} while (last < top);
614
}
615
616
#ifndef PRODUCT
617
void NTarjan::dump(int offset) const {
618
// Dump the data from this node
619
int i;
620
for(i = offset; i >0; i--) // Use indenting for tree structure
621
tty->print(" ");
622
tty->print("Dominator Node: ");
623
_control->dump(); // Control node for this dom node
624
tty->print("\n");
625
for(i = offset; i >0; i--) // Use indenting for tree structure
626
tty->print(" ");
627
tty->print("semi:%d, size:%d\n",_semi, _size);
628
for(i = offset; i >0; i--) // Use indenting for tree structure
629
tty->print(" ");
630
tty->print("DFS Parent: ");
631
if(_parent != NULL)
632
_parent->_control->dump(); // Parent in DFS
633
tty->print("\n");
634
for(i = offset; i >0; i--) // Use indenting for tree structure
635
tty->print(" ");
636
tty->print("Dom Parent: ");
637
if(_dom != NULL)
638
_dom->_control->dump(); // Parent in Dominator Tree
639
tty->print("\n");
640
641
// Recurse over remaining tree
642
if( _dom_child ) _dom_child->dump(offset+2); // Children in dominator tree
643
if( _dom_next ) _dom_next ->dump(offset ); // Siblings in dominator tree
644
645
}
646
#endif
647
648