Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/opto/gcm.cpp
40930 views
1
/*
2
* Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "libadt/vectset.hpp"
27
#include "memory/allocation.inline.hpp"
28
#include "memory/resourceArea.hpp"
29
#include "opto/block.hpp"
30
#include "opto/c2compiler.hpp"
31
#include "opto/callnode.hpp"
32
#include "opto/cfgnode.hpp"
33
#include "opto/machnode.hpp"
34
#include "opto/opcodes.hpp"
35
#include "opto/phaseX.hpp"
36
#include "opto/rootnode.hpp"
37
#include "opto/runtime.hpp"
38
#include "opto/chaitin.hpp"
39
#include "runtime/deoptimization.hpp"
40
41
// Portions of code courtesy of Clifford Click
42
43
// Optimization - Graph Style
44
45
// To avoid float value underflow
46
#define MIN_BLOCK_FREQUENCY 1.e-35f
47
48
//----------------------------schedule_node_into_block-------------------------
49
// Insert node n into block b. Look for projections of n and make sure they
50
// are in b also.
51
void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
52
// Set basic block of n, Add n to b,
53
map_node_to_block(n, b);
54
b->add_inst(n);
55
56
// After Matching, nearly any old Node may have projections trailing it.
57
// These are usually machine-dependent flags. In any case, they might
58
// float to another block below this one. Move them up.
59
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
60
Node* use = n->fast_out(i);
61
if (use->is_Proj()) {
62
Block* buse = get_block_for_node(use);
63
if (buse != b) { // In wrong block?
64
if (buse != NULL) {
65
buse->find_remove(use); // Remove from wrong block
66
}
67
map_node_to_block(use, b);
68
b->add_inst(use);
69
}
70
}
71
}
72
}
73
74
//----------------------------replace_block_proj_ctrl-------------------------
75
// Nodes that have is_block_proj() nodes as their control need to use
76
// the appropriate Region for their actual block as their control since
77
// the projection will be in a predecessor block.
78
void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
79
const Node *in0 = n->in(0);
80
assert(in0 != NULL, "Only control-dependent");
81
const Node *p = in0->is_block_proj();
82
if (p != NULL && p != n) { // Control from a block projection?
83
assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
84
// Find trailing Region
85
Block *pb = get_block_for_node(in0); // Block-projection already has basic block
86
uint j = 0;
87
if (pb->_num_succs != 1) { // More then 1 successor?
88
// Search for successor
89
uint max = pb->number_of_nodes();
90
assert( max > 1, "" );
91
uint start = max - pb->_num_succs;
92
// Find which output path belongs to projection
93
for (j = start; j < max; j++) {
94
if( pb->get_node(j) == in0 )
95
break;
96
}
97
assert( j < max, "must find" );
98
// Change control to match head of successor basic block
99
j -= start;
100
}
101
n->set_req(0, pb->_succs[j]->head());
102
}
103
}
104
105
bool PhaseCFG::is_dominator(Node* dom_node, Node* node) {
106
assert(is_CFG(node) && is_CFG(dom_node), "node and dom_node must be CFG nodes");
107
if (dom_node == node) {
108
return true;
109
}
110
Block* d = find_block_for_node(dom_node);
111
Block* n = find_block_for_node(node);
112
assert(n != NULL && d != NULL, "blocks must exist");
113
114
if (d == n) {
115
if (dom_node->is_block_start()) {
116
return true;
117
}
118
if (node->is_block_start()) {
119
return false;
120
}
121
if (dom_node->is_block_proj()) {
122
return false;
123
}
124
if (node->is_block_proj()) {
125
return true;
126
}
127
128
assert(is_control_proj_or_safepoint(node), "node must be control projection or safepoint");
129
assert(is_control_proj_or_safepoint(dom_node), "dom_node must be control projection or safepoint");
130
131
// Neither 'node' nor 'dom_node' is a block start or block projection.
132
// Check if 'dom_node' is above 'node' in the control graph.
133
if (is_dominating_control(dom_node, node)) {
134
return true;
135
}
136
137
#ifdef ASSERT
138
// If 'dom_node' does not dominate 'node' then 'node' has to dominate 'dom_node'
139
if (!is_dominating_control(node, dom_node)) {
140
node->dump();
141
dom_node->dump();
142
assert(false, "neither dom_node nor node dominates the other");
143
}
144
#endif
145
146
return false;
147
}
148
return d->dom_lca(n) == d;
149
}
150
151
bool PhaseCFG::is_CFG(Node* n) {
152
return n->is_block_proj() || n->is_block_start() || is_control_proj_or_safepoint(n);
153
}
154
155
bool PhaseCFG::is_control_proj_or_safepoint(Node* n) const {
156
bool result = (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_SafePoint) || (n->is_Proj() && n->as_Proj()->bottom_type() == Type::CONTROL);
157
assert(!result || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_SafePoint)
158
|| (n->is_Proj() && n->as_Proj()->_con == 0), "If control projection, it must be projection 0");
159
return result;
160
}
161
162
Block* PhaseCFG::find_block_for_node(Node* n) const {
163
if (n->is_block_start() || n->is_block_proj()) {
164
return get_block_for_node(n);
165
} else {
166
// Walk the control graph up if 'n' is not a block start nor a block projection. In this case 'n' must be
167
// an unmatched control projection or a not yet matched safepoint precedence edge in the middle of a block.
168
assert(is_control_proj_or_safepoint(n), "must be control projection or safepoint");
169
Node* ctrl = n->in(0);
170
while (!ctrl->is_block_start()) {
171
ctrl = ctrl->in(0);
172
}
173
return get_block_for_node(ctrl);
174
}
175
}
176
177
// Walk up the control graph from 'n' and check if 'dom_ctrl' is found.
178
bool PhaseCFG::is_dominating_control(Node* dom_ctrl, Node* n) {
179
Node* ctrl = n->in(0);
180
while (!ctrl->is_block_start()) {
181
if (ctrl == dom_ctrl) {
182
return true;
183
}
184
ctrl = ctrl->in(0);
185
}
186
return false;
187
}
188
189
190
//------------------------------schedule_pinned_nodes--------------------------
191
// Set the basic block for Nodes pinned into blocks
192
void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) {
193
// Allocate node stack of size C->live_nodes()+8 to avoid frequent realloc
194
GrowableArray <Node*> spstack(C->live_nodes() + 8);
195
spstack.push(_root);
196
while (spstack.is_nonempty()) {
197
Node* node = spstack.pop();
198
if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
199
if (node->pinned() && !has_block(node)) { // Pinned? Nail it down!
200
assert(node->in(0), "pinned Node must have Control");
201
// Before setting block replace block_proj control edge
202
replace_block_proj_ctrl(node);
203
Node* input = node->in(0);
204
while (!input->is_block_start()) {
205
input = input->in(0);
206
}
207
Block* block = get_block_for_node(input); // Basic block of controlling input
208
schedule_node_into_block(node, block);
209
}
210
211
// If the node has precedence edges (added when CastPP nodes are
212
// removed in final_graph_reshaping), fix the control of the
213
// node to cover the precedence edges and remove the
214
// dependencies.
215
Node* n = NULL;
216
for (uint i = node->len()-1; i >= node->req(); i--) {
217
Node* m = node->in(i);
218
if (m == NULL) continue;
219
220
// Only process precedence edges that are CFG nodes. Safepoints and control projections can be in the middle of a block
221
if (is_CFG(m)) {
222
node->rm_prec(i);
223
if (n == NULL) {
224
n = m;
225
} else {
226
assert(is_dominator(n, m) || is_dominator(m, n), "one must dominate the other");
227
n = is_dominator(n, m) ? m : n;
228
}
229
} else {
230
assert(node->is_Mach(), "sanity");
231
assert(node->as_Mach()->ideal_Opcode() == Op_StoreCM, "must be StoreCM node");
232
}
233
}
234
if (n != NULL) {
235
assert(node->in(0), "control should have been set");
236
assert(is_dominator(n, node->in(0)) || is_dominator(node->in(0), n), "one must dominate the other");
237
if (!is_dominator(n, node->in(0))) {
238
node->set_req(0, n);
239
}
240
}
241
242
// process all inputs that are non NULL
243
for (int i = node->req()-1; i >= 0; --i) {
244
if (node->in(i) != NULL) {
245
spstack.push(node->in(i));
246
}
247
}
248
}
249
}
250
}
251
252
#ifdef ASSERT
253
// Assert that new input b2 is dominated by all previous inputs.
254
// Check this by by seeing that it is dominated by b1, the deepest
255
// input observed until b2.
256
static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
257
if (b1 == NULL) return;
258
assert(b1->_dom_depth < b2->_dom_depth, "sanity");
259
Block* tmp = b2;
260
while (tmp != b1 && tmp != NULL) {
261
tmp = tmp->_idom;
262
}
263
if (tmp != b1) {
264
// Detected an unschedulable graph. Print some nice stuff and die.
265
tty->print_cr("!!! Unschedulable graph !!!");
266
for (uint j=0; j<n->len(); j++) { // For all inputs
267
Node* inn = n->in(j); // Get input
268
if (inn == NULL) continue; // Ignore NULL, missing inputs
269
Block* inb = cfg->get_block_for_node(inn);
270
tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
271
inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
272
inn->dump();
273
}
274
tty->print("Failing node: ");
275
n->dump();
276
assert(false, "unscheduable graph");
277
}
278
}
279
#endif
280
281
static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
282
// Find the last input dominated by all other inputs.
283
Block* deepb = NULL; // Deepest block so far
284
int deepb_dom_depth = 0;
285
for (uint k = 0; k < n->len(); k++) { // For all inputs
286
Node* inn = n->in(k); // Get input
287
if (inn == NULL) continue; // Ignore NULL, missing inputs
288
Block* inb = cfg->get_block_for_node(inn);
289
assert(inb != NULL, "must already have scheduled this input");
290
if (deepb_dom_depth < (int) inb->_dom_depth) {
291
// The new inb must be dominated by the previous deepb.
292
// The various inputs must be linearly ordered in the dom
293
// tree, or else there will not be a unique deepest block.
294
DEBUG_ONLY(assert_dom(deepb, inb, n, cfg));
295
deepb = inb; // Save deepest block
296
deepb_dom_depth = deepb->_dom_depth;
297
}
298
}
299
assert(deepb != NULL, "must be at least one input to n");
300
return deepb;
301
}
302
303
304
//------------------------------schedule_early---------------------------------
305
// Find the earliest Block any instruction can be placed in. Some instructions
306
// are pinned into Blocks. Unpinned instructions can appear in last block in
307
// which all their inputs occur.
308
bool PhaseCFG::schedule_early(VectorSet &visited, Node_Stack &roots) {
309
// Allocate stack with enough space to avoid frequent realloc
310
Node_Stack nstack(roots.size() + 8);
311
// _root will be processed among C->top() inputs
312
roots.push(C->top(), 0);
313
visited.set(C->top()->_idx);
314
315
while (roots.size() != 0) {
316
// Use local variables nstack_top_n & nstack_top_i to cache values
317
// on stack's top.
318
Node* parent_node = roots.node();
319
uint input_index = 0;
320
roots.pop();
321
322
while (true) {
323
if (input_index == 0) {
324
// Fixup some control. Constants without control get attached
325
// to root and nodes that use is_block_proj() nodes should be attached
326
// to the region that starts their block.
327
const Node* control_input = parent_node->in(0);
328
if (control_input != NULL) {
329
replace_block_proj_ctrl(parent_node);
330
} else {
331
// Is a constant with NO inputs?
332
if (parent_node->req() == 1) {
333
parent_node->set_req(0, _root);
334
}
335
}
336
}
337
338
// First, visit all inputs and force them to get a block. If an
339
// input is already in a block we quit following inputs (to avoid
340
// cycles). Instead we put that Node on a worklist to be handled
341
// later (since IT'S inputs may not have a block yet).
342
343
// Assume all n's inputs will be processed
344
bool done = true;
345
346
while (input_index < parent_node->len()) {
347
Node* in = parent_node->in(input_index++);
348
if (in == NULL) {
349
continue;
350
}
351
352
int is_visited = visited.test_set(in->_idx);
353
if (!has_block(in)) {
354
if (is_visited) {
355
assert(false, "graph should be schedulable");
356
return false;
357
}
358
// Save parent node and next input's index.
359
nstack.push(parent_node, input_index);
360
// Process current input now.
361
parent_node = in;
362
input_index = 0;
363
// Not all n's inputs processed.
364
done = false;
365
break;
366
} else if (!is_visited) {
367
// Visit this guy later, using worklist
368
roots.push(in, 0);
369
}
370
}
371
372
if (done) {
373
// All of n's inputs have been processed, complete post-processing.
374
375
// Some instructions are pinned into a block. These include Region,
376
// Phi, Start, Return, and other control-dependent instructions and
377
// any projections which depend on them.
378
if (!parent_node->pinned()) {
379
// Set earliest legal block.
380
Block* earliest_block = find_deepest_input(parent_node, this);
381
map_node_to_block(parent_node, earliest_block);
382
} else {
383
assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
384
}
385
386
if (nstack.is_empty()) {
387
// Finished all nodes on stack.
388
// Process next node on the worklist 'roots'.
389
break;
390
}
391
// Get saved parent node and next input's index.
392
parent_node = nstack.node();
393
input_index = nstack.index();
394
nstack.pop();
395
}
396
}
397
}
398
return true;
399
}
400
401
//------------------------------dom_lca----------------------------------------
402
// Find least common ancestor in dominator tree
403
// LCA is a current notion of LCA, to be raised above 'this'.
404
// As a convenient boundary condition, return 'this' if LCA is NULL.
405
// Find the LCA of those two nodes.
406
Block* Block::dom_lca(Block* LCA) {
407
if (LCA == NULL || LCA == this) return this;
408
409
Block* anc = this;
410
while (anc->_dom_depth > LCA->_dom_depth)
411
anc = anc->_idom; // Walk up till anc is as high as LCA
412
413
while (LCA->_dom_depth > anc->_dom_depth)
414
LCA = LCA->_idom; // Walk up till LCA is as high as anc
415
416
while (LCA != anc) { // Walk both up till they are the same
417
LCA = LCA->_idom;
418
anc = anc->_idom;
419
}
420
421
return LCA;
422
}
423
424
//--------------------------raise_LCA_above_use--------------------------------
425
// We are placing a definition, and have been given a def->use edge.
426
// The definition must dominate the use, so move the LCA upward in the
427
// dominator tree to dominate the use. If the use is a phi, adjust
428
// the LCA only with the phi input paths which actually use this def.
429
static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
430
Block* buse = cfg->get_block_for_node(use);
431
if (buse == NULL) return LCA; // Unused killing Projs have no use block
432
if (!use->is_Phi()) return buse->dom_lca(LCA);
433
uint pmax = use->req(); // Number of Phi inputs
434
// Why does not this loop just break after finding the matching input to
435
// the Phi? Well...it's like this. I do not have true def-use/use-def
436
// chains. Means I cannot distinguish, from the def-use direction, which
437
// of many use-defs lead from the same use to the same def. That is, this
438
// Phi might have several uses of the same def. Each use appears in a
439
// different predecessor block. But when I enter here, I cannot distinguish
440
// which use-def edge I should find the predecessor block for. So I find
441
// them all. Means I do a little extra work if a Phi uses the same value
442
// more than once.
443
for (uint j=1; j<pmax; j++) { // For all inputs
444
if (use->in(j) == def) { // Found matching input?
445
Block* pred = cfg->get_block_for_node(buse->pred(j));
446
LCA = pred->dom_lca(LCA);
447
}
448
}
449
return LCA;
450
}
451
452
//----------------------------raise_LCA_above_marks----------------------------
453
// Return a new LCA that dominates LCA and any of its marked predecessors.
454
// Search all my parents up to 'early' (exclusive), looking for predecessors
455
// which are marked with the given index. Return the LCA (in the dom tree)
456
// of all marked blocks. If there are none marked, return the original
457
// LCA.
458
static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {
459
Block_List worklist;
460
worklist.push(LCA);
461
while (worklist.size() > 0) {
462
Block* mid = worklist.pop();
463
if (mid == early) continue; // stop searching here
464
465
// Test and set the visited bit.
466
if (mid->raise_LCA_visited() == mark) continue; // already visited
467
468
// Don't process the current LCA, otherwise the search may terminate early
469
if (mid != LCA && mid->raise_LCA_mark() == mark) {
470
// Raise the LCA.
471
LCA = mid->dom_lca(LCA);
472
if (LCA == early) break; // stop searching everywhere
473
assert(early->dominates(LCA), "early is high enough");
474
// Resume searching at that point, skipping intermediate levels.
475
worklist.push(LCA);
476
if (LCA == mid)
477
continue; // Don't mark as visited to avoid early termination.
478
} else {
479
// Keep searching through this block's predecessors.
480
for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
481
Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
482
worklist.push(mid_parent);
483
}
484
}
485
mid->set_raise_LCA_visited(mark);
486
}
487
return LCA;
488
}
489
490
//--------------------------memory_early_block--------------------------------
491
// This is a variation of find_deepest_input, the heart of schedule_early.
492
// Find the "early" block for a load, if we considered only memory and
493
// address inputs, that is, if other data inputs were ignored.
494
//
495
// Because a subset of edges are considered, the resulting block will
496
// be earlier (at a shallower dom_depth) than the true schedule_early
497
// point of the node. We compute this earlier block as a more permissive
498
// site for anti-dependency insertion, but only if subsume_loads is enabled.
499
static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
500
Node* base;
501
Node* index;
502
Node* store = load->in(MemNode::Memory);
503
load->as_Mach()->memory_inputs(base, index);
504
505
assert(base != NodeSentinel && index != NodeSentinel,
506
"unexpected base/index inputs");
507
508
Node* mem_inputs[4];
509
int mem_inputs_length = 0;
510
if (base != NULL) mem_inputs[mem_inputs_length++] = base;
511
if (index != NULL) mem_inputs[mem_inputs_length++] = index;
512
if (store != NULL) mem_inputs[mem_inputs_length++] = store;
513
514
// In the comparision below, add one to account for the control input,
515
// which may be null, but always takes up a spot in the in array.
516
if (mem_inputs_length + 1 < (int) load->req()) {
517
// This "load" has more inputs than just the memory, base and index inputs.
518
// For purposes of checking anti-dependences, we need to start
519
// from the early block of only the address portion of the instruction,
520
// and ignore other blocks that may have factored into the wider
521
// schedule_early calculation.
522
if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
523
524
Block* deepb = NULL; // Deepest block so far
525
int deepb_dom_depth = 0;
526
for (int i = 0; i < mem_inputs_length; i++) {
527
Block* inb = cfg->get_block_for_node(mem_inputs[i]);
528
if (deepb_dom_depth < (int) inb->_dom_depth) {
529
// The new inb must be dominated by the previous deepb.
530
// The various inputs must be linearly ordered in the dom
531
// tree, or else there will not be a unique deepest block.
532
DEBUG_ONLY(assert_dom(deepb, inb, load, cfg));
533
deepb = inb; // Save deepest block
534
deepb_dom_depth = deepb->_dom_depth;
535
}
536
}
537
early = deepb;
538
}
539
540
return early;
541
}
542
543
//--------------------------insert_anti_dependences---------------------------
544
// A load may need to witness memory that nearby stores can overwrite.
545
// For each nearby store, either insert an "anti-dependence" edge
546
// from the load to the store, or else move LCA upward to force the
547
// load to (eventually) be scheduled in a block above the store.
548
//
549
// Do not add edges to stores on distinct control-flow paths;
550
// only add edges to stores which might interfere.
551
//
552
// Return the (updated) LCA. There will not be any possibly interfering
553
// store between the load's "early block" and the updated LCA.
554
// Any stores in the updated LCA will have new precedence edges
555
// back to the load. The caller is expected to schedule the load
556
// in the LCA, in which case the precedence edges will make LCM
557
// preserve anti-dependences. The caller may also hoist the load
558
// above the LCA, if it is not the early block.
559
Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
560
assert(load->needs_anti_dependence_check(), "must be a load of some sort");
561
assert(LCA != NULL, "");
562
DEBUG_ONLY(Block* LCA_orig = LCA);
563
564
// Compute the alias index. Loads and stores with different alias indices
565
// do not need anti-dependence edges.
566
int load_alias_idx = C->get_alias_index(load->adr_type());
567
#ifdef ASSERT
568
assert(Compile::AliasIdxTop <= load_alias_idx && load_alias_idx < C->num_alias_types(), "Invalid alias index");
569
if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
570
(PrintOpto || VerifyAliases ||
571
(PrintMiscellaneous && (WizardMode || Verbose)))) {
572
// Load nodes should not consume all of memory.
573
// Reporting a bottom type indicates a bug in adlc.
574
// If some particular type of node validly consumes all of memory,
575
// sharpen the preceding "if" to exclude it, so we can catch bugs here.
576
tty->print_cr("*** Possible Anti-Dependence Bug: Load consumes all of memory.");
577
load->dump(2);
578
if (VerifyAliases) assert(load_alias_idx != Compile::AliasIdxBot, "");
579
}
580
#endif
581
582
if (!C->alias_type(load_alias_idx)->is_rewritable()) {
583
// It is impossible to spoil this load by putting stores before it,
584
// because we know that the stores will never update the value
585
// which 'load' must witness.
586
return LCA;
587
}
588
589
node_idx_t load_index = load->_idx;
590
591
// Note the earliest legal placement of 'load', as determined by
592
// by the unique point in the dom tree where all memory effects
593
// and other inputs are first available. (Computed by schedule_early.)
594
// For normal loads, 'early' is the shallowest place (dom graph wise)
595
// to look for anti-deps between this load and any store.
596
Block* early = get_block_for_node(load);
597
598
// If we are subsuming loads, compute an "early" block that only considers
599
// memory or address inputs. This block may be different than the
600
// schedule_early block in that it could be at an even shallower depth in the
601
// dominator tree, and allow for a broader discovery of anti-dependences.
602
if (C->subsume_loads()) {
603
early = memory_early_block(load, early, this);
604
}
605
606
ResourceArea *area = Thread::current()->resource_area();
607
Node_List worklist_mem(area); // prior memory state to store
608
Node_List worklist_store(area); // possible-def to explore
609
Node_List worklist_visited(area); // visited mergemem nodes
610
Node_List non_early_stores(area); // all relevant stores outside of early
611
bool must_raise_LCA = false;
612
613
// 'load' uses some memory state; look for users of the same state.
614
// Recurse through MergeMem nodes to the stores that use them.
615
616
// Each of these stores is a possible definition of memory
617
// that 'load' needs to use. We need to force 'load'
618
// to occur before each such store. When the store is in
619
// the same block as 'load', we insert an anti-dependence
620
// edge load->store.
621
622
// The relevant stores "nearby" the load consist of a tree rooted
623
// at initial_mem, with internal nodes of type MergeMem.
624
// Therefore, the branches visited by the worklist are of this form:
625
// initial_mem -> (MergeMem ->)* store
626
// The anti-dependence constraints apply only to the fringe of this tree.
627
628
Node* initial_mem = load->in(MemNode::Memory);
629
worklist_store.push(initial_mem);
630
worklist_visited.push(initial_mem);
631
worklist_mem.push(NULL);
632
while (worklist_store.size() > 0) {
633
// Examine a nearby store to see if it might interfere with our load.
634
Node* mem = worklist_mem.pop();
635
Node* store = worklist_store.pop();
636
uint op = store->Opcode();
637
638
// MergeMems do not directly have anti-deps.
639
// Treat them as internal nodes in a forward tree of memory states,
640
// the leaves of which are each a 'possible-def'.
641
if (store == initial_mem // root (exclusive) of tree we are searching
642
|| op == Op_MergeMem // internal node of tree we are searching
643
) {
644
mem = store; // It's not a possibly interfering store.
645
if (store == initial_mem)
646
initial_mem = NULL; // only process initial memory once
647
648
for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
649
store = mem->fast_out(i);
650
if (store->is_MergeMem()) {
651
// Be sure we don't get into combinatorial problems.
652
// (Allow phis to be repeated; they can merge two relevant states.)
653
uint j = worklist_visited.size();
654
for (; j > 0; j--) {
655
if (worklist_visited.at(j-1) == store) break;
656
}
657
if (j > 0) continue; // already on work list; do not repeat
658
worklist_visited.push(store);
659
}
660
worklist_mem.push(mem);
661
worklist_store.push(store);
662
}
663
continue;
664
}
665
666
if (op == Op_MachProj || op == Op_Catch) continue;
667
if (store->needs_anti_dependence_check()) continue; // not really a store
668
669
// Compute the alias index. Loads and stores with different alias
670
// indices do not need anti-dependence edges. Wide MemBar's are
671
// anti-dependent on everything (except immutable memories).
672
const TypePtr* adr_type = store->adr_type();
673
if (!C->can_alias(adr_type, load_alias_idx)) continue;
674
675
// Most slow-path runtime calls do NOT modify Java memory, but
676
// they can block and so write Raw memory.
677
if (store->is_Mach()) {
678
MachNode* mstore = store->as_Mach();
679
if (load_alias_idx != Compile::AliasIdxRaw) {
680
// Check for call into the runtime using the Java calling
681
// convention (and from there into a wrapper); it has no
682
// _method. Can't do this optimization for Native calls because
683
// they CAN write to Java memory.
684
if (mstore->ideal_Opcode() == Op_CallStaticJava) {
685
assert(mstore->is_MachSafePoint(), "");
686
MachSafePointNode* ms = (MachSafePointNode*) mstore;
687
assert(ms->is_MachCallJava(), "");
688
MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
689
if (mcj->_method == NULL) {
690
// These runtime calls do not write to Java visible memory
691
// (other than Raw) and so do not require anti-dependence edges.
692
continue;
693
}
694
}
695
// Same for SafePoints: they read/write Raw but only read otherwise.
696
// This is basically a workaround for SafePoints only defining control
697
// instead of control + memory.
698
if (mstore->ideal_Opcode() == Op_SafePoint)
699
continue;
700
} else {
701
// Some raw memory, such as the load of "top" at an allocation,
702
// can be control dependent on the previous safepoint. See
703
// comments in GraphKit::allocate_heap() about control input.
704
// Inserting an anti-dep between such a safepoint and a use
705
// creates a cycle, and will cause a subsequent failure in
706
// local scheduling. (BugId 4919904)
707
// (%%% How can a control input be a safepoint and not a projection??)
708
if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
709
continue;
710
}
711
}
712
713
// Identify a block that the current load must be above,
714
// or else observe that 'store' is all the way up in the
715
// earliest legal block for 'load'. In the latter case,
716
// immediately insert an anti-dependence edge.
717
Block* store_block = get_block_for_node(store);
718
assert(store_block != NULL, "unused killing projections skipped above");
719
720
if (store->is_Phi()) {
721
// Loop-phis need to raise load before input. (Other phis are treated
722
// as store below.)
723
//
724
// 'load' uses memory which is one (or more) of the Phi's inputs.
725
// It must be scheduled not before the Phi, but rather before
726
// each of the relevant Phi inputs.
727
//
728
// Instead of finding the LCA of all inputs to a Phi that match 'mem',
729
// we mark each corresponding predecessor block and do a combined
730
// hoisting operation later (raise_LCA_above_marks).
731
//
732
// Do not assert(store_block != early, "Phi merging memory after access")
733
// PhiNode may be at start of block 'early' with backedge to 'early'
734
DEBUG_ONLY(bool found_match = false);
735
for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
736
if (store->in(j) == mem) { // Found matching input?
737
DEBUG_ONLY(found_match = true);
738
Block* pred_block = get_block_for_node(store_block->pred(j));
739
if (pred_block != early) {
740
// If any predecessor of the Phi matches the load's "early block",
741
// we do not need a precedence edge between the Phi and 'load'
742
// since the load will be forced into a block preceding the Phi.
743
pred_block->set_raise_LCA_mark(load_index);
744
assert(!LCA_orig->dominates(pred_block) ||
745
early->dominates(pred_block), "early is high enough");
746
must_raise_LCA = true;
747
} else {
748
// anti-dependent upon PHI pinned below 'early', no edge needed
749
LCA = early; // but can not schedule below 'early'
750
}
751
}
752
}
753
assert(found_match, "no worklist bug");
754
} else if (store_block != early) {
755
// 'store' is between the current LCA and earliest possible block.
756
// Label its block, and decide later on how to raise the LCA
757
// to include the effect on LCA of this store.
758
// If this store's block gets chosen as the raised LCA, we
759
// will find him on the non_early_stores list and stick him
760
// with a precedence edge.
761
// (But, don't bother if LCA is already raised all the way.)
762
if (LCA != early) {
763
store_block->set_raise_LCA_mark(load_index);
764
must_raise_LCA = true;
765
non_early_stores.push(store);
766
}
767
} else {
768
// Found a possibly-interfering store in the load's 'early' block.
769
// This means 'load' cannot sink at all in the dominator tree.
770
// Add an anti-dep edge, and squeeze 'load' into the highest block.
771
assert(store != load->find_exact_control(load->in(0)), "dependence cycle found");
772
if (verify) {
773
#ifdef ASSERT
774
// We expect an anti-dependence edge from 'load' to 'store', except when
775
// implicit_null_check() has hoisted 'store' above its early block to
776
// perform an implicit null check, and 'load' is placed in the null
777
// block. In this case it is safe to ignore the anti-dependence, as the
778
// null block is only reached if 'store' tries to write to null.
779
Block* store_null_block = NULL;
780
Node* store_null_check = store->find_out_with(Op_MachNullCheck);
781
if (store_null_check != NULL) {
782
Node* if_true = store_null_check->find_out_with(Op_IfTrue);
783
assert(if_true != NULL, "null check without null projection");
784
Node* null_block_region = if_true->find_out_with(Op_Region);
785
assert(null_block_region != NULL, "null check without null region");
786
store_null_block = get_block_for_node(null_block_region);
787
}
788
#endif
789
assert(LCA == store_null_block || store->find_edge(load) != -1,
790
"missing precedence edge");
791
} else {
792
store->add_prec(load);
793
}
794
LCA = early;
795
// This turns off the process of gathering non_early_stores.
796
}
797
}
798
// (Worklist is now empty; all nearby stores have been visited.)
799
800
// Finished if 'load' must be scheduled in its 'early' block.
801
// If we found any stores there, they have already been given
802
// precedence edges.
803
if (LCA == early) return LCA;
804
805
// We get here only if there are no possibly-interfering stores
806
// in the load's 'early' block. Move LCA up above all predecessors
807
// which contain stores we have noted.
808
//
809
// The raised LCA block can be a home to such interfering stores,
810
// but its predecessors must not contain any such stores.
811
//
812
// The raised LCA will be a lower bound for placing the load,
813
// preventing the load from sinking past any block containing
814
// a store that may invalidate the memory state required by 'load'.
815
if (must_raise_LCA)
816
LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
817
if (LCA == early) return LCA;
818
819
// Insert anti-dependence edges from 'load' to each store
820
// in the non-early LCA block.
821
// Mine the non_early_stores list for such stores.
822
if (LCA->raise_LCA_mark() == load_index) {
823
while (non_early_stores.size() > 0) {
824
Node* store = non_early_stores.pop();
825
Block* store_block = get_block_for_node(store);
826
if (store_block == LCA) {
827
// add anti_dependence from store to load in its own block
828
assert(store != load->find_exact_control(load->in(0)), "dependence cycle found");
829
if (verify) {
830
assert(store->find_edge(load) != -1, "missing precedence edge");
831
} else {
832
store->add_prec(load);
833
}
834
} else {
835
assert(store_block->raise_LCA_mark() == load_index, "block was marked");
836
// Any other stores we found must be either inside the new LCA
837
// or else outside the original LCA. In the latter case, they
838
// did not interfere with any use of 'load'.
839
assert(LCA->dominates(store_block)
840
|| !LCA_orig->dominates(store_block), "no stray stores");
841
}
842
}
843
}
844
845
// Return the highest block containing stores; any stores
846
// within that block have been given anti-dependence edges.
847
return LCA;
848
}
849
850
// This class is used to iterate backwards over the nodes in the graph.
851
852
class Node_Backward_Iterator {
853
854
private:
855
Node_Backward_Iterator();
856
857
public:
858
// Constructor for the iterator
859
Node_Backward_Iterator(Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg);
860
861
// Postincrement operator to iterate over the nodes
862
Node *next();
863
864
private:
865
VectorSet &_visited;
866
Node_Stack &_stack;
867
PhaseCFG &_cfg;
868
};
869
870
// Constructor for the Node_Backward_Iterator
871
Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg)
872
: _visited(visited), _stack(stack), _cfg(cfg) {
873
// The stack should contain exactly the root
874
stack.clear();
875
stack.push(root, root->outcnt());
876
877
// Clear the visited bits
878
visited.clear();
879
}
880
881
// Iterator for the Node_Backward_Iterator
882
Node *Node_Backward_Iterator::next() {
883
884
// If the _stack is empty, then just return NULL: finished.
885
if ( !_stack.size() )
886
return NULL;
887
888
// I visit unvisited not-anti-dependence users first, then anti-dependent
889
// children next. I iterate backwards to support removal of nodes.
890
// The stack holds states consisting of 3 values:
891
// current Def node, flag which indicates 1st/2nd pass, index of current out edge
892
Node *self = (Node*)(((uintptr_t)_stack.node()) & ~1);
893
bool iterate_anti_dep = (((uintptr_t)_stack.node()) & 1);
894
uint idx = MIN2(_stack.index(), self->outcnt()); // Support removal of nodes.
895
_stack.pop();
896
897
// I cycle here when I am entering a deeper level of recursion.
898
// The key variable 'self' was set prior to jumping here.
899
while( 1 ) {
900
901
_visited.set(self->_idx);
902
903
// Now schedule all uses as late as possible.
904
const Node* src = self->is_Proj() ? self->in(0) : self;
905
uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
906
907
// Schedule all nodes in a post-order visit
908
Node *unvisited = NULL; // Unvisited anti-dependent Node, if any
909
910
// Scan for unvisited nodes
911
while (idx > 0) {
912
// For all uses, schedule late
913
Node* n = self->raw_out(--idx); // Use
914
915
// Skip already visited children
916
if ( _visited.test(n->_idx) )
917
continue;
918
919
// do not traverse backward control edges
920
Node *use = n->is_Proj() ? n->in(0) : n;
921
uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
922
923
if ( use_rpo < src_rpo )
924
continue;
925
926
// Phi nodes always precede uses in a basic block
927
if ( use_rpo == src_rpo && use->is_Phi() )
928
continue;
929
930
unvisited = n; // Found unvisited
931
932
// Check for possible-anti-dependent
933
// 1st pass: No such nodes, 2nd pass: Only such nodes.
934
if (n->needs_anti_dependence_check() == iterate_anti_dep) {
935
unvisited = n; // Found unvisited
936
break;
937
}
938
}
939
940
// Did I find an unvisited not-anti-dependent Node?
941
if (!unvisited) {
942
if (!iterate_anti_dep) {
943
// 2nd pass: Iterate over nodes which needs_anti_dependence_check.
944
iterate_anti_dep = true;
945
idx = self->outcnt();
946
continue;
947
}
948
break; // All done with children; post-visit 'self'
949
}
950
951
// Visit the unvisited Node. Contains the obvious push to
952
// indicate I'm entering a deeper level of recursion. I push the
953
// old state onto the _stack and set a new state and loop (recurse).
954
_stack.push((Node*)((uintptr_t)self | (uintptr_t)iterate_anti_dep), idx);
955
self = unvisited;
956
iterate_anti_dep = false;
957
idx = self->outcnt();
958
} // End recursion loop
959
960
return self;
961
}
962
963
//------------------------------ComputeLatenciesBackwards----------------------
964
// Compute the latency of all the instructions.
965
void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_Stack &stack) {
966
#ifndef PRODUCT
967
if (trace_opto_pipelining())
968
tty->print("\n#---- ComputeLatenciesBackwards ----\n");
969
#endif
970
971
Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
972
Node *n;
973
974
// Walk over all the nodes from last to first
975
while ((n = iter.next())) {
976
// Set the latency for the definitions of this instruction
977
partial_latency_of_defs(n);
978
}
979
} // end ComputeLatenciesBackwards
980
981
//------------------------------partial_latency_of_defs------------------------
982
// Compute the latency impact of this node on all defs. This computes
983
// a number that increases as we approach the beginning of the routine.
984
void PhaseCFG::partial_latency_of_defs(Node *n) {
985
// Set the latency for this instruction
986
#ifndef PRODUCT
987
if (trace_opto_pipelining()) {
988
tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
989
dump();
990
}
991
#endif
992
993
if (n->is_Proj()) {
994
n = n->in(0);
995
}
996
997
if (n->is_Root()) {
998
return;
999
}
1000
1001
uint nlen = n->len();
1002
uint use_latency = get_latency_for_node(n);
1003
uint use_pre_order = get_block_for_node(n)->_pre_order;
1004
1005
for (uint j = 0; j < nlen; j++) {
1006
Node *def = n->in(j);
1007
1008
if (!def || def == n) {
1009
continue;
1010
}
1011
1012
// Walk backwards thru projections
1013
if (def->is_Proj()) {
1014
def = def->in(0);
1015
}
1016
1017
#ifndef PRODUCT
1018
if (trace_opto_pipelining()) {
1019
tty->print("# in(%2d): ", j);
1020
def->dump();
1021
}
1022
#endif
1023
1024
// If the defining block is not known, assume it is ok
1025
Block *def_block = get_block_for_node(def);
1026
uint def_pre_order = def_block ? def_block->_pre_order : 0;
1027
1028
if ((use_pre_order < def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
1029
continue;
1030
}
1031
1032
uint delta_latency = n->latency(j);
1033
uint current_latency = delta_latency + use_latency;
1034
1035
if (get_latency_for_node(def) < current_latency) {
1036
set_latency_for_node(def, current_latency);
1037
}
1038
1039
#ifndef PRODUCT
1040
if (trace_opto_pipelining()) {
1041
tty->print_cr("# %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
1042
}
1043
#endif
1044
}
1045
}
1046
1047
//------------------------------latency_from_use-------------------------------
1048
// Compute the latency of a specific use
1049
int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
1050
// If self-reference, return no latency
1051
if (use == n || use->is_Root()) {
1052
return 0;
1053
}
1054
1055
uint def_pre_order = get_block_for_node(def)->_pre_order;
1056
uint latency = 0;
1057
1058
// If the use is not a projection, then it is simple...
1059
if (!use->is_Proj()) {
1060
#ifndef PRODUCT
1061
if (trace_opto_pipelining()) {
1062
tty->print("# out(): ");
1063
use->dump();
1064
}
1065
#endif
1066
1067
uint use_pre_order = get_block_for_node(use)->_pre_order;
1068
1069
if (use_pre_order < def_pre_order)
1070
return 0;
1071
1072
if (use_pre_order == def_pre_order && use->is_Phi())
1073
return 0;
1074
1075
uint nlen = use->len();
1076
uint nl = get_latency_for_node(use);
1077
1078
for ( uint j=0; j<nlen; j++ ) {
1079
if (use->in(j) == n) {
1080
// Change this if we want local latencies
1081
uint ul = use->latency(j);
1082
uint l = ul + nl;
1083
if (latency < l) latency = l;
1084
#ifndef PRODUCT
1085
if (trace_opto_pipelining()) {
1086
tty->print_cr("# %d + edge_latency(%d) == %d -> %d, latency = %d",
1087
nl, j, ul, l, latency);
1088
}
1089
#endif
1090
}
1091
}
1092
} else {
1093
// This is a projection, just grab the latency of the use(s)
1094
for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
1095
uint l = latency_from_use(use, def, use->fast_out(j));
1096
if (latency < l) latency = l;
1097
}
1098
}
1099
1100
return latency;
1101
}
1102
1103
//------------------------------latency_from_uses------------------------------
1104
// Compute the latency of this instruction relative to all of it's uses.
1105
// This computes a number that increases as we approach the beginning of the
1106
// routine.
1107
void PhaseCFG::latency_from_uses(Node *n) {
1108
// Set the latency for this instruction
1109
#ifndef PRODUCT
1110
if (trace_opto_pipelining()) {
1111
tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
1112
dump();
1113
}
1114
#endif
1115
uint latency=0;
1116
const Node *def = n->is_Proj() ? n->in(0): n;
1117
1118
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1119
uint l = latency_from_use(n, def, n->fast_out(i));
1120
1121
if (latency < l) latency = l;
1122
}
1123
1124
set_latency_for_node(n, latency);
1125
}
1126
1127
//------------------------------hoist_to_cheaper_block-------------------------
1128
// Pick a block for node self, between early and LCA, that is a cheaper
1129
// alternative to LCA.
1130
Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
1131
const double delta = 1+PROB_UNLIKELY_MAG(4);
1132
Block* least = LCA;
1133
double least_freq = least->_freq;
1134
uint target = get_latency_for_node(self);
1135
uint start_latency = get_latency_for_node(LCA->head());
1136
uint end_latency = get_latency_for_node(LCA->get_node(LCA->end_idx()));
1137
bool in_latency = (target <= start_latency);
1138
const Block* root_block = get_block_for_node(_root);
1139
1140
// Turn off latency scheduling if scheduling is just plain off
1141
if (!C->do_scheduling())
1142
in_latency = true;
1143
1144
// Do not hoist (to cover latency) instructions which target a
1145
// single register. Hoisting stretches the live range of the
1146
// single register and may force spilling.
1147
MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1148
if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1149
in_latency = true;
1150
1151
#ifndef PRODUCT
1152
if (trace_opto_pipelining()) {
1153
tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
1154
self->dump();
1155
tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1156
LCA->_pre_order,
1157
LCA->head()->_idx,
1158
start_latency,
1159
LCA->get_node(LCA->end_idx())->_idx,
1160
end_latency,
1161
least_freq);
1162
}
1163
#endif
1164
1165
int cand_cnt = 0; // number of candidates tried
1166
1167
// Walk up the dominator tree from LCA (Lowest common ancestor) to
1168
// the earliest legal location. Capture the least execution frequency.
1169
while (LCA != early) {
1170
LCA = LCA->_idom; // Follow up the dominator tree
1171
1172
if (LCA == NULL) {
1173
// Bailout without retry
1174
assert(false, "graph should be schedulable");
1175
C->record_method_not_compilable("late schedule failed: LCA == NULL");
1176
return least;
1177
}
1178
1179
// Don't hoist machine instructions to the root basic block
1180
if (mach && LCA == root_block)
1181
break;
1182
1183
if (self->is_memory_writer() &&
1184
(LCA->_loop->depth() > early->_loop->depth())) {
1185
// LCA is an invalid placement for a memory writer: choosing it would
1186
// cause memory interference, as illustrated in schedule_late().
1187
continue;
1188
}
1189
verify_memory_writer_placement(LCA, self);
1190
1191
uint start_lat = get_latency_for_node(LCA->head());
1192
uint end_idx = LCA->end_idx();
1193
uint end_lat = get_latency_for_node(LCA->get_node(end_idx));
1194
double LCA_freq = LCA->_freq;
1195
#ifndef PRODUCT
1196
if (trace_opto_pipelining()) {
1197
tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1198
LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
1199
}
1200
#endif
1201
cand_cnt++;
1202
if (LCA_freq < least_freq || // Better Frequency
1203
(StressGCM && C->randomized_select(cand_cnt)) || // Should be randomly accepted in stress mode
1204
(!StressGCM && // Otherwise, choose with latency
1205
!in_latency && // No block containing latency
1206
LCA_freq < least_freq * delta && // No worse frequency
1207
target >= end_lat && // within latency range
1208
!self->is_iteratively_computed() ) // But don't hoist IV increments
1209
// because they may end up above other uses of their phi forcing
1210
// their result register to be different from their input.
1211
) {
1212
least = LCA; // Found cheaper block
1213
least_freq = LCA_freq;
1214
start_latency = start_lat;
1215
end_latency = end_lat;
1216
if (target <= start_lat)
1217
in_latency = true;
1218
}
1219
}
1220
1221
#ifndef PRODUCT
1222
if (trace_opto_pipelining()) {
1223
tty->print_cr("# Choose block B%d with start latency=%d and freq=%g",
1224
least->_pre_order, start_latency, least_freq);
1225
}
1226
#endif
1227
1228
// See if the latency needs to be updated
1229
if (target < end_latency) {
1230
#ifndef PRODUCT
1231
if (trace_opto_pipelining()) {
1232
tty->print_cr("# Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1233
}
1234
#endif
1235
set_latency_for_node(self, end_latency);
1236
partial_latency_of_defs(self);
1237
}
1238
1239
return least;
1240
}
1241
1242
1243
//------------------------------schedule_late-----------------------------------
1244
// Now schedule all codes as LATE as possible. This is the LCA in the
1245
// dominator tree of all USES of a value. Pick the block with the least
1246
// loop nesting depth that is lowest in the dominator tree.
1247
extern const char must_clone[];
1248
void PhaseCFG::schedule_late(VectorSet &visited, Node_Stack &stack) {
1249
#ifndef PRODUCT
1250
if (trace_opto_pipelining())
1251
tty->print("\n#---- schedule_late ----\n");
1252
#endif
1253
1254
Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
1255
Node *self;
1256
1257
// Walk over all the nodes from last to first
1258
while ((self = iter.next())) {
1259
Block* early = get_block_for_node(self); // Earliest legal placement
1260
1261
if (self->is_top()) {
1262
// Top node goes in bb #2 with other constants.
1263
// It must be special-cased, because it has no out edges.
1264
early->add_inst(self);
1265
continue;
1266
}
1267
1268
// No uses, just terminate
1269
if (self->outcnt() == 0) {
1270
assert(self->is_MachProj(), "sanity");
1271
continue; // Must be a dead machine projection
1272
}
1273
1274
// If node is pinned in the block, then no scheduling can be done.
1275
if( self->pinned() ) // Pinned in block?
1276
continue;
1277
1278
#ifdef ASSERT
1279
// Assert that memory writers (e.g. stores) have a "home" block (the block
1280
// given by their control input), and that this block corresponds to their
1281
// earliest possible placement. This guarantees that
1282
// hoist_to_cheaper_block() will always have at least one valid choice.
1283
if (self->is_memory_writer()) {
1284
assert(find_block_for_node(self->in(0)) == early,
1285
"The home of a memory writer must also be its earliest placement");
1286
}
1287
#endif
1288
1289
MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1290
if (mach) {
1291
switch (mach->ideal_Opcode()) {
1292
case Op_CreateEx:
1293
// Don't move exception creation
1294
early->add_inst(self);
1295
continue;
1296
break;
1297
case Op_CheckCastPP: {
1298
// Don't move CheckCastPP nodes away from their input, if the input
1299
// is a rawptr (5071820).
1300
Node *def = self->in(1);
1301
if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1302
early->add_inst(self);
1303
#ifdef ASSERT
1304
_raw_oops.push(def);
1305
#endif
1306
continue;
1307
}
1308
break;
1309
}
1310
default:
1311
break;
1312
}
1313
if (C->has_irreducible_loop() && self->is_memory_writer()) {
1314
// If the CFG is irreducible, place memory writers in their home block.
1315
// This prevents hoist_to_cheaper_block() from accidentally placing such
1316
// nodes into deeper loops, as in the following example:
1317
//
1318
// Home placement of store in B1 (loop L1):
1319
//
1320
// B1 (L1):
1321
// m1 <- ..
1322
// m2 <- store m1, ..
1323
// B2 (L2):
1324
// jump B2
1325
// B3 (L1):
1326
// .. <- .. m2, ..
1327
//
1328
// Wrong "hoisting" of store to B2 (in loop L2, child of L1):
1329
//
1330
// B1 (L1):
1331
// m1 <- ..
1332
// B2 (L2):
1333
// m2 <- store m1, ..
1334
// # Wrong: m1 and m2 interfere at this point.
1335
// jump B2
1336
// B3 (L1):
1337
// .. <- .. m2, ..
1338
//
1339
// This "hoist inversion" can happen due to different factors such as
1340
// inaccurate estimation of frequencies for irreducible CFGs, and loops
1341
// with always-taken exits in reducible CFGs. In the reducible case,
1342
// hoist inversion is prevented by discarding invalid blocks (those in
1343
// deeper loops than the home block). In the irreducible case, the
1344
// invalid blocks cannot be identified due to incomplete loop nesting
1345
// information, hence a conservative solution is taken.
1346
#ifndef PRODUCT
1347
if (trace_opto_pipelining()) {
1348
tty->print_cr("# Irreducible loops: schedule in home block B%d:",
1349
early->_pre_order);
1350
self->dump();
1351
}
1352
#endif
1353
schedule_node_into_block(self, early);
1354
continue;
1355
}
1356
}
1357
1358
// Gather LCA of all uses
1359
Block *LCA = NULL;
1360
{
1361
for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1362
// For all uses, find LCA
1363
Node* use = self->fast_out(i);
1364
LCA = raise_LCA_above_use(LCA, use, self, this);
1365
}
1366
guarantee(LCA != NULL, "There must be a LCA");
1367
} // (Hide defs of imax, i from rest of block.)
1368
1369
// Place temps in the block of their use. This isn't a
1370
// requirement for correctness but it reduces useless
1371
// interference between temps and other nodes.
1372
if (mach != NULL && mach->is_MachTemp()) {
1373
map_node_to_block(self, LCA);
1374
LCA->add_inst(self);
1375
continue;
1376
}
1377
1378
// Check if 'self' could be anti-dependent on memory
1379
if (self->needs_anti_dependence_check()) {
1380
// Hoist LCA above possible-defs and insert anti-dependences to
1381
// defs in new LCA block.
1382
LCA = insert_anti_dependences(LCA, self);
1383
}
1384
1385
if (early->_dom_depth > LCA->_dom_depth) {
1386
// Somehow the LCA has moved above the earliest legal point.
1387
// (One way this can happen is via memory_early_block.)
1388
if (C->subsume_loads() == true && !C->failing()) {
1389
// Retry with subsume_loads == false
1390
// If this is the first failure, the sentinel string will "stick"
1391
// to the Compile object, and the C2Compiler will see it and retry.
1392
C->record_failure(C2Compiler::retry_no_subsuming_loads());
1393
} else {
1394
// Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1395
assert(false, "graph should be schedulable");
1396
C->record_method_not_compilable("late schedule failed: incorrect graph");
1397
}
1398
return;
1399
}
1400
1401
if (self->is_memory_writer()) {
1402
// If the LCA of a memory writer is a descendant of its home loop, hoist
1403
// it into a valid placement.
1404
while (LCA->_loop->depth() > early->_loop->depth()) {
1405
LCA = LCA->_idom;
1406
}
1407
assert(LCA != NULL, "a valid LCA must exist");
1408
verify_memory_writer_placement(LCA, self);
1409
}
1410
1411
// If there is no opportunity to hoist, then we're done.
1412
// In stress mode, try to hoist even the single operations.
1413
bool try_to_hoist = StressGCM || (LCA != early);
1414
1415
// Must clone guys stay next to use; no hoisting allowed.
1416
// Also cannot hoist guys that alter memory or are otherwise not
1417
// allocatable (hoisting can make a value live longer, leading to
1418
// anti and output dependency problems which are normally resolved
1419
// by the register allocator giving everyone a different register).
1420
if (mach != NULL && must_clone[mach->ideal_Opcode()])
1421
try_to_hoist = false;
1422
1423
Block* late = NULL;
1424
if (try_to_hoist) {
1425
// Now find the block with the least execution frequency.
1426
// Start at the latest schedule and work up to the earliest schedule
1427
// in the dominator tree. Thus the Node will dominate all its uses.
1428
late = hoist_to_cheaper_block(LCA, early, self);
1429
} else {
1430
// Just use the LCA of the uses.
1431
late = LCA;
1432
}
1433
1434
// Put the node into target block
1435
schedule_node_into_block(self, late);
1436
1437
#ifdef ASSERT
1438
if (self->needs_anti_dependence_check()) {
1439
// since precedence edges are only inserted when we're sure they
1440
// are needed make sure that after placement in a block we don't
1441
// need any new precedence edges.
1442
verify_anti_dependences(late, self);
1443
}
1444
#endif
1445
} // Loop until all nodes have been visited
1446
1447
} // end ScheduleLate
1448
1449
//------------------------------GlobalCodeMotion-------------------------------
1450
void PhaseCFG::global_code_motion() {
1451
ResourceMark rm;
1452
1453
#ifndef PRODUCT
1454
if (trace_opto_pipelining()) {
1455
tty->print("\n---- Start GlobalCodeMotion ----\n");
1456
}
1457
#endif
1458
1459
// Initialize the node to block mapping for things on the proj_list
1460
for (uint i = 0; i < _matcher.number_of_projections(); i++) {
1461
unmap_node_from_block(_matcher.get_projection(i));
1462
}
1463
1464
// Set the basic block for Nodes pinned into blocks
1465
VectorSet visited;
1466
schedule_pinned_nodes(visited);
1467
1468
// Find the earliest Block any instruction can be placed in. Some
1469
// instructions are pinned into Blocks. Unpinned instructions can
1470
// appear in last block in which all their inputs occur.
1471
visited.clear();
1472
Node_Stack stack((C->live_nodes() >> 2) + 16); // pre-grow
1473
if (!schedule_early(visited, stack)) {
1474
// Bailout without retry
1475
C->record_method_not_compilable("early schedule failed");
1476
return;
1477
}
1478
1479
// Build Def-Use edges.
1480
// Compute the latency information (via backwards walk) for all the
1481
// instructions in the graph
1482
_node_latency = new GrowableArray<uint>(); // resource_area allocation
1483
1484
if (C->do_scheduling()) {
1485
compute_latencies_backwards(visited, stack);
1486
}
1487
1488
// Now schedule all codes as LATE as possible. This is the LCA in the
1489
// dominator tree of all USES of a value. Pick the block with the least
1490
// loop nesting depth that is lowest in the dominator tree.
1491
// ( visited.clear() called in schedule_late()->Node_Backward_Iterator() )
1492
schedule_late(visited, stack);
1493
if (C->failing()) {
1494
return;
1495
}
1496
1497
#ifndef PRODUCT
1498
if (trace_opto_pipelining()) {
1499
tty->print("\n---- Detect implicit null checks ----\n");
1500
}
1501
#endif
1502
1503
// Detect implicit-null-check opportunities. Basically, find NULL checks
1504
// with suitable memory ops nearby. Use the memory op to do the NULL check.
1505
// I can generate a memory op if there is not one nearby.
1506
if (C->is_method_compilation()) {
1507
// By reversing the loop direction we get a very minor gain on mpegaudio.
1508
// Feel free to revert to a forward loop for clarity.
1509
// for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1510
for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
1511
Node* proj = _matcher._null_check_tests[i];
1512
Node* val = _matcher._null_check_tests[i + 1];
1513
Block* block = get_block_for_node(proj);
1514
implicit_null_check(block, proj, val, C->allowed_deopt_reasons());
1515
// The implicit_null_check will only perform the transformation
1516
// if the null branch is truly uncommon, *and* it leads to an
1517
// uncommon trap. Combined with the too_many_traps guards
1518
// above, this prevents SEGV storms reported in 6366351,
1519
// by recompiling offending methods without this optimization.
1520
}
1521
}
1522
1523
bool block_size_threshold_ok = false;
1524
intptr_t *recalc_pressure_nodes = NULL;
1525
if (OptoRegScheduling) {
1526
for (uint i = 0; i < number_of_blocks(); i++) {
1527
Block* block = get_block(i);
1528
if (block->number_of_nodes() > 10) {
1529
block_size_threshold_ok = true;
1530
break;
1531
}
1532
}
1533
}
1534
1535
// Enabling the scheduler for register pressure plus finding blocks of size to schedule for it
1536
// is key to enabling this feature.
1537
PhaseChaitin regalloc(C->unique(), *this, _matcher, true);
1538
ResourceArea live_arena(mtCompiler); // Arena for liveness
1539
ResourceMark rm_live(&live_arena);
1540
PhaseLive live(*this, regalloc._lrg_map.names(), &live_arena, true);
1541
PhaseIFG ifg(&live_arena);
1542
if (OptoRegScheduling && block_size_threshold_ok) {
1543
regalloc.mark_ssa();
1544
Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
1545
rm_live.reset_to_mark(); // Reclaim working storage
1546
IndexSet::reset_memory(C, &live_arena);
1547
uint node_size = regalloc._lrg_map.max_lrg_id();
1548
ifg.init(node_size); // Empty IFG
1549
regalloc.set_ifg(ifg);
1550
regalloc.set_live(live);
1551
regalloc.gather_lrg_masks(false); // Collect LRG masks
1552
live.compute(node_size); // Compute liveness
1553
1554
recalc_pressure_nodes = NEW_RESOURCE_ARRAY(intptr_t, node_size);
1555
for (uint i = 0; i < node_size; i++) {
1556
recalc_pressure_nodes[i] = 0;
1557
}
1558
}
1559
_regalloc = &regalloc;
1560
1561
#ifndef PRODUCT
1562
if (trace_opto_pipelining()) {
1563
tty->print("\n---- Start Local Scheduling ----\n");
1564
}
1565
#endif
1566
1567
// Schedule locally. Right now a simple topological sort.
1568
// Later, do a real latency aware scheduler.
1569
GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
1570
visited.reset();
1571
for (uint i = 0; i < number_of_blocks(); i++) {
1572
Block* block = get_block(i);
1573
if (!schedule_local(block, ready_cnt, visited, recalc_pressure_nodes)) {
1574
if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1575
C->record_method_not_compilable("local schedule failed");
1576
}
1577
_regalloc = NULL;
1578
return;
1579
}
1580
}
1581
_regalloc = NULL;
1582
1583
// If we inserted any instructions between a Call and his CatchNode,
1584
// clone the instructions on all paths below the Catch.
1585
for (uint i = 0; i < number_of_blocks(); i++) {
1586
Block* block = get_block(i);
1587
call_catch_cleanup(block);
1588
}
1589
1590
#ifndef PRODUCT
1591
if (trace_opto_pipelining()) {
1592
tty->print("\n---- After GlobalCodeMotion ----\n");
1593
for (uint i = 0; i < number_of_blocks(); i++) {
1594
Block* block = get_block(i);
1595
block->dump();
1596
}
1597
}
1598
#endif
1599
// Dead.
1600
_node_latency = (GrowableArray<uint> *)((intptr_t)0xdeadbeef);
1601
}
1602
1603
bool PhaseCFG::do_global_code_motion() {
1604
1605
build_dominator_tree();
1606
if (C->failing()) {
1607
return false;
1608
}
1609
1610
NOT_PRODUCT( C->verify_graph_edges(); )
1611
1612
estimate_block_frequency();
1613
1614
global_code_motion();
1615
1616
if (C->failing()) {
1617
return false;
1618
}
1619
1620
return true;
1621
}
1622
1623
//------------------------------Estimate_Block_Frequency-----------------------
1624
// Estimate block frequencies based on IfNode probabilities.
1625
void PhaseCFG::estimate_block_frequency() {
1626
1627
// Force conditional branches leading to uncommon traps to be unlikely,
1628
// not because we get to the uncommon_trap with less relative frequency,
1629
// but because an uncommon_trap typically causes a deopt, so we only get
1630
// there once.
1631
if (C->do_freq_based_layout()) {
1632
Block_List worklist;
1633
Block* root_blk = get_block(0);
1634
for (uint i = 1; i < root_blk->num_preds(); i++) {
1635
Block *pb = get_block_for_node(root_blk->pred(i));
1636
if (pb->has_uncommon_code()) {
1637
worklist.push(pb);
1638
}
1639
}
1640
while (worklist.size() > 0) {
1641
Block* uct = worklist.pop();
1642
if (uct == get_root_block()) {
1643
continue;
1644
}
1645
for (uint i = 1; i < uct->num_preds(); i++) {
1646
Block *pb = get_block_for_node(uct->pred(i));
1647
if (pb->_num_succs == 1) {
1648
worklist.push(pb);
1649
} else if (pb->num_fall_throughs() == 2) {
1650
pb->update_uncommon_branch(uct);
1651
}
1652
}
1653
}
1654
}
1655
1656
// Create the loop tree and calculate loop depth.
1657
_root_loop = create_loop_tree();
1658
_root_loop->compute_loop_depth(0);
1659
1660
// Compute block frequency of each block, relative to a single loop entry.
1661
_root_loop->compute_freq();
1662
1663
// Adjust all frequencies to be relative to a single method entry
1664
_root_loop->_freq = 1.0;
1665
_root_loop->scale_freq();
1666
1667
// Save outmost loop frequency for LRG frequency threshold
1668
_outer_loop_frequency = _root_loop->outer_loop_freq();
1669
1670
// force paths ending at uncommon traps to be infrequent
1671
if (!C->do_freq_based_layout()) {
1672
Block_List worklist;
1673
Block* root_blk = get_block(0);
1674
for (uint i = 1; i < root_blk->num_preds(); i++) {
1675
Block *pb = get_block_for_node(root_blk->pred(i));
1676
if (pb->has_uncommon_code()) {
1677
worklist.push(pb);
1678
}
1679
}
1680
while (worklist.size() > 0) {
1681
Block* uct = worklist.pop();
1682
uct->_freq = PROB_MIN;
1683
for (uint i = 1; i < uct->num_preds(); i++) {
1684
Block *pb = get_block_for_node(uct->pred(i));
1685
if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1686
worklist.push(pb);
1687
}
1688
}
1689
}
1690
}
1691
1692
#ifdef ASSERT
1693
for (uint i = 0; i < number_of_blocks(); i++) {
1694
Block* b = get_block(i);
1695
assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
1696
}
1697
#endif
1698
1699
#ifndef PRODUCT
1700
if (PrintCFGBlockFreq) {
1701
tty->print_cr("CFG Block Frequencies");
1702
_root_loop->dump_tree();
1703
if (Verbose) {
1704
tty->print_cr("PhaseCFG dump");
1705
dump();
1706
tty->print_cr("Node dump");
1707
_root->dump(99999);
1708
}
1709
}
1710
#endif
1711
}
1712
1713
//----------------------------create_loop_tree--------------------------------
1714
// Create a loop tree from the CFG
1715
CFGLoop* PhaseCFG::create_loop_tree() {
1716
1717
#ifdef ASSERT
1718
assert(get_block(0) == get_root_block(), "first block should be root block");
1719
for (uint i = 0; i < number_of_blocks(); i++) {
1720
Block* block = get_block(i);
1721
// Check that _loop field are clear...we could clear them if not.
1722
assert(block->_loop == NULL, "clear _loop expected");
1723
// Sanity check that the RPO numbering is reflected in the _blocks array.
1724
// It doesn't have to be for the loop tree to be built, but if it is not,
1725
// then the blocks have been reordered since dom graph building...which
1726
// may question the RPO numbering
1727
assert(block->_rpo == i, "unexpected reverse post order number");
1728
}
1729
#endif
1730
1731
int idct = 0;
1732
CFGLoop* root_loop = new CFGLoop(idct++);
1733
1734
Block_List worklist;
1735
1736
// Assign blocks to loops
1737
for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
1738
Block* block = get_block(i);
1739
1740
if (block->head()->is_Loop()) {
1741
Block* loop_head = block;
1742
assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1743
Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1744
Block* tail = get_block_for_node(tail_n);
1745
1746
// Defensively filter out Loop nodes for non-single-entry loops.
1747
// For all reasonable loops, the head occurs before the tail in RPO.
1748
if (i <= tail->_rpo) {
1749
1750
// The tail and (recursive) predecessors of the tail
1751
// are made members of a new loop.
1752
1753
assert(worklist.size() == 0, "nonempty worklist");
1754
CFGLoop* nloop = new CFGLoop(idct++);
1755
assert(loop_head->_loop == NULL, "just checking");
1756
loop_head->_loop = nloop;
1757
// Add to nloop so push_pred() will skip over inner loops
1758
nloop->add_member(loop_head);
1759
nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
1760
1761
while (worklist.size() > 0) {
1762
Block* member = worklist.pop();
1763
if (member != loop_head) {
1764
for (uint j = 1; j < member->num_preds(); j++) {
1765
nloop->push_pred(member, j, worklist, this);
1766
}
1767
}
1768
}
1769
}
1770
}
1771
}
1772
1773
// Create a member list for each loop consisting
1774
// of both blocks and (immediate child) loops.
1775
for (uint i = 0; i < number_of_blocks(); i++) {
1776
Block* block = get_block(i);
1777
CFGLoop* lp = block->_loop;
1778
if (lp == NULL) {
1779
// Not assigned to a loop. Add it to the method's pseudo loop.
1780
block->_loop = root_loop;
1781
lp = root_loop;
1782
}
1783
if (lp == root_loop || block != lp->head()) { // loop heads are already members
1784
lp->add_member(block);
1785
}
1786
if (lp != root_loop) {
1787
if (lp->parent() == NULL) {
1788
// Not a nested loop. Make it a child of the method's pseudo loop.
1789
root_loop->add_nested_loop(lp);
1790
}
1791
if (block == lp->head()) {
1792
// Add nested loop to member list of parent loop.
1793
lp->parent()->add_member(lp);
1794
}
1795
}
1796
}
1797
1798
return root_loop;
1799
}
1800
1801
//------------------------------push_pred--------------------------------------
1802
void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
1803
Node* pred_n = blk->pred(i);
1804
Block* pred = cfg->get_block_for_node(pred_n);
1805
CFGLoop *pred_loop = pred->_loop;
1806
if (pred_loop == NULL) {
1807
// Filter out blocks for non-single-entry loops.
1808
// For all reasonable loops, the head occurs before the tail in RPO.
1809
if (pred->_rpo > head()->_rpo) {
1810
pred->_loop = this;
1811
worklist.push(pred);
1812
}
1813
} else if (pred_loop != this) {
1814
// Nested loop.
1815
while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1816
pred_loop = pred_loop->_parent;
1817
}
1818
// Make pred's loop be a child
1819
if (pred_loop->_parent == NULL) {
1820
add_nested_loop(pred_loop);
1821
// Continue with loop entry predecessor.
1822
Block* pred_head = pred_loop->head();
1823
assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1824
assert(pred_head != head(), "loop head in only one loop");
1825
push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
1826
} else {
1827
assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1828
}
1829
}
1830
}
1831
1832
//------------------------------add_nested_loop--------------------------------
1833
// Make cl a child of the current loop in the loop tree.
1834
void CFGLoop::add_nested_loop(CFGLoop* cl) {
1835
assert(_parent == NULL, "no parent yet");
1836
assert(cl != this, "not my own parent");
1837
cl->_parent = this;
1838
CFGLoop* ch = _child;
1839
if (ch == NULL) {
1840
_child = cl;
1841
} else {
1842
while (ch->_sibling != NULL) { ch = ch->_sibling; }
1843
ch->_sibling = cl;
1844
}
1845
}
1846
1847
//------------------------------compute_loop_depth-----------------------------
1848
// Store the loop depth in each CFGLoop object.
1849
// Recursively walk the children to do the same for them.
1850
void CFGLoop::compute_loop_depth(int depth) {
1851
_depth = depth;
1852
CFGLoop* ch = _child;
1853
while (ch != NULL) {
1854
ch->compute_loop_depth(depth + 1);
1855
ch = ch->_sibling;
1856
}
1857
}
1858
1859
//------------------------------compute_freq-----------------------------------
1860
// Compute the frequency of each block and loop, relative to a single entry
1861
// into the dominating loop head.
1862
void CFGLoop::compute_freq() {
1863
// Bottom up traversal of loop tree (visit inner loops first.)
1864
// Set loop head frequency to 1.0, then transitively
1865
// compute frequency for all successors in the loop,
1866
// as well as for each exit edge. Inner loops are
1867
// treated as single blocks with loop exit targets
1868
// as the successor blocks.
1869
1870
// Nested loops first
1871
CFGLoop* ch = _child;
1872
while (ch != NULL) {
1873
ch->compute_freq();
1874
ch = ch->_sibling;
1875
}
1876
assert (_members.length() > 0, "no empty loops");
1877
Block* hd = head();
1878
hd->_freq = 1.0;
1879
for (int i = 0; i < _members.length(); i++) {
1880
CFGElement* s = _members.at(i);
1881
double freq = s->_freq;
1882
if (s->is_block()) {
1883
Block* b = s->as_Block();
1884
for (uint j = 0; j < b->_num_succs; j++) {
1885
Block* sb = b->_succs[j];
1886
update_succ_freq(sb, freq * b->succ_prob(j));
1887
}
1888
} else {
1889
CFGLoop* lp = s->as_CFGLoop();
1890
assert(lp->_parent == this, "immediate child");
1891
for (int k = 0; k < lp->_exits.length(); k++) {
1892
Block* eb = lp->_exits.at(k).get_target();
1893
double prob = lp->_exits.at(k).get_prob();
1894
update_succ_freq(eb, freq * prob);
1895
}
1896
}
1897
}
1898
1899
// For all loops other than the outer, "method" loop,
1900
// sum and normalize the exit probability. The "method" loop
1901
// should keep the initial exit probability of 1, so that
1902
// inner blocks do not get erroneously scaled.
1903
if (_depth != 0) {
1904
// Total the exit probabilities for this loop.
1905
double exits_sum = 0.0f;
1906
for (int i = 0; i < _exits.length(); i++) {
1907
exits_sum += _exits.at(i).get_prob();
1908
}
1909
1910
// Normalize the exit probabilities. Until now, the
1911
// probabilities estimate the possibility of exit per
1912
// a single loop iteration; afterward, they estimate
1913
// the probability of exit per loop entry.
1914
for (int i = 0; i < _exits.length(); i++) {
1915
Block* et = _exits.at(i).get_target();
1916
float new_prob = 0.0f;
1917
if (_exits.at(i).get_prob() > 0.0f) {
1918
new_prob = _exits.at(i).get_prob() / exits_sum;
1919
}
1920
BlockProbPair bpp(et, new_prob);
1921
_exits.at_put(i, bpp);
1922
}
1923
1924
// Save the total, but guard against unreasonable probability,
1925
// as the value is used to estimate the loop trip count.
1926
// An infinite trip count would blur relative block
1927
// frequencies.
1928
if (exits_sum > 1.0f) exits_sum = 1.0;
1929
if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1930
_exit_prob = exits_sum;
1931
}
1932
}
1933
1934
//------------------------------succ_prob-------------------------------------
1935
// Determine the probability of reaching successor 'i' from the receiver block.
1936
float Block::succ_prob(uint i) {
1937
int eidx = end_idx();
1938
Node *n = get_node(eidx); // Get ending Node
1939
1940
int op = n->Opcode();
1941
if (n->is_Mach()) {
1942
if (n->is_MachNullCheck()) {
1943
// Can only reach here if called after lcm. The original Op_If is gone,
1944
// so we attempt to infer the probability from one or both of the
1945
// successor blocks.
1946
assert(_num_succs == 2, "expecting 2 successors of a null check");
1947
// If either successor has only one predecessor, then the
1948
// probability estimate can be derived using the
1949
// relative frequency of the successor and this block.
1950
if (_succs[i]->num_preds() == 2) {
1951
return _succs[i]->_freq / _freq;
1952
} else if (_succs[1-i]->num_preds() == 2) {
1953
return 1 - (_succs[1-i]->_freq / _freq);
1954
} else {
1955
// Estimate using both successor frequencies
1956
float freq = _succs[i]->_freq;
1957
return freq / (freq + _succs[1-i]->_freq);
1958
}
1959
}
1960
op = n->as_Mach()->ideal_Opcode();
1961
}
1962
1963
1964
// Switch on branch type
1965
switch( op ) {
1966
case Op_CountedLoopEnd:
1967
case Op_If: {
1968
assert (i < 2, "just checking");
1969
// Conditionals pass on only part of their frequency
1970
float prob = n->as_MachIf()->_prob;
1971
assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1972
// If succ[i] is the FALSE branch, invert path info
1973
if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
1974
return 1.0f - prob; // not taken
1975
} else {
1976
return prob; // taken
1977
}
1978
}
1979
1980
case Op_Jump:
1981
return n->as_MachJump()->_probs[get_node(i + eidx + 1)->as_JumpProj()->_con];
1982
1983
case Op_Catch: {
1984
const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1985
if (ci->_con == CatchProjNode::fall_through_index) {
1986
// Fall-thru path gets the lion's share.
1987
return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1988
} else {
1989
// Presume exceptional paths are equally unlikely
1990
return PROB_UNLIKELY_MAG(5);
1991
}
1992
}
1993
1994
case Op_Root:
1995
case Op_Goto:
1996
// Pass frequency straight thru to target
1997
return 1.0f;
1998
1999
case Op_NeverBranch:
2000
return 0.0f;
2001
2002
case Op_TailCall:
2003
case Op_TailJump:
2004
case Op_Return:
2005
case Op_Halt:
2006
case Op_Rethrow:
2007
// Do not push out freq to root block
2008
return 0.0f;
2009
2010
default:
2011
ShouldNotReachHere();
2012
}
2013
2014
return 0.0f;
2015
}
2016
2017
//------------------------------num_fall_throughs-----------------------------
2018
// Return the number of fall-through candidates for a block
2019
int Block::num_fall_throughs() {
2020
int eidx = end_idx();
2021
Node *n = get_node(eidx); // Get ending Node
2022
2023
int op = n->Opcode();
2024
if (n->is_Mach()) {
2025
if (n->is_MachNullCheck()) {
2026
// In theory, either side can fall-thru, for simplicity sake,
2027
// let's say only the false branch can now.
2028
return 1;
2029
}
2030
op = n->as_Mach()->ideal_Opcode();
2031
}
2032
2033
// Switch on branch type
2034
switch( op ) {
2035
case Op_CountedLoopEnd:
2036
case Op_If:
2037
return 2;
2038
2039
case Op_Root:
2040
case Op_Goto:
2041
return 1;
2042
2043
case Op_Catch: {
2044
for (uint i = 0; i < _num_succs; i++) {
2045
const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
2046
if (ci->_con == CatchProjNode::fall_through_index) {
2047
return 1;
2048
}
2049
}
2050
return 0;
2051
}
2052
2053
case Op_Jump:
2054
case Op_NeverBranch:
2055
case Op_TailCall:
2056
case Op_TailJump:
2057
case Op_Return:
2058
case Op_Halt:
2059
case Op_Rethrow:
2060
return 0;
2061
2062
default:
2063
ShouldNotReachHere();
2064
}
2065
2066
return 0;
2067
}
2068
2069
//------------------------------succ_fall_through-----------------------------
2070
// Return true if a specific successor could be fall-through target.
2071
bool Block::succ_fall_through(uint i) {
2072
int eidx = end_idx();
2073
Node *n = get_node(eidx); // Get ending Node
2074
2075
int op = n->Opcode();
2076
if (n->is_Mach()) {
2077
if (n->is_MachNullCheck()) {
2078
// In theory, either side can fall-thru, for simplicity sake,
2079
// let's say only the false branch can now.
2080
return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
2081
}
2082
op = n->as_Mach()->ideal_Opcode();
2083
}
2084
2085
// Switch on branch type
2086
switch( op ) {
2087
case Op_CountedLoopEnd:
2088
case Op_If:
2089
case Op_Root:
2090
case Op_Goto:
2091
return true;
2092
2093
case Op_Catch: {
2094
const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
2095
return ci->_con == CatchProjNode::fall_through_index;
2096
}
2097
2098
case Op_Jump:
2099
case Op_NeverBranch:
2100
case Op_TailCall:
2101
case Op_TailJump:
2102
case Op_Return:
2103
case Op_Halt:
2104
case Op_Rethrow:
2105
return false;
2106
2107
default:
2108
ShouldNotReachHere();
2109
}
2110
2111
return false;
2112
}
2113
2114
//------------------------------update_uncommon_branch------------------------
2115
// Update the probability of a two-branch to be uncommon
2116
void Block::update_uncommon_branch(Block* ub) {
2117
int eidx = end_idx();
2118
Node *n = get_node(eidx); // Get ending Node
2119
2120
int op = n->as_Mach()->ideal_Opcode();
2121
2122
assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
2123
assert(num_fall_throughs() == 2, "must be a two way branch block");
2124
2125
// Which successor is ub?
2126
uint s;
2127
for (s = 0; s <_num_succs; s++) {
2128
if (_succs[s] == ub) break;
2129
}
2130
assert(s < 2, "uncommon successor must be found");
2131
2132
// If ub is the true path, make the proability small, else
2133
// ub is the false path, and make the probability large
2134
bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
2135
2136
// Get existing probability
2137
float p = n->as_MachIf()->_prob;
2138
2139
if (invert) p = 1.0 - p;
2140
if (p > PROB_MIN) {
2141
p = PROB_MIN;
2142
}
2143
if (invert) p = 1.0 - p;
2144
2145
n->as_MachIf()->_prob = p;
2146
}
2147
2148
//------------------------------update_succ_freq-------------------------------
2149
// Update the appropriate frequency associated with block 'b', a successor of
2150
// a block in this loop.
2151
void CFGLoop::update_succ_freq(Block* b, double freq) {
2152
if (b->_loop == this) {
2153
if (b == head()) {
2154
// back branch within the loop
2155
// Do nothing now, the loop carried frequency will be
2156
// adjust later in scale_freq().
2157
} else {
2158
// simple branch within the loop
2159
b->_freq += freq;
2160
}
2161
} else if (!in_loop_nest(b)) {
2162
// branch is exit from this loop
2163
BlockProbPair bpp(b, freq);
2164
_exits.append(bpp);
2165
} else {
2166
// branch into nested loop
2167
CFGLoop* ch = b->_loop;
2168
ch->_freq += freq;
2169
}
2170
}
2171
2172
//------------------------------in_loop_nest-----------------------------------
2173
// Determine if block b is in the receiver's loop nest.
2174
bool CFGLoop::in_loop_nest(Block* b) {
2175
int depth = _depth;
2176
CFGLoop* b_loop = b->_loop;
2177
int b_depth = b_loop->_depth;
2178
if (depth == b_depth) {
2179
return true;
2180
}
2181
while (b_depth > depth) {
2182
b_loop = b_loop->_parent;
2183
b_depth = b_loop->_depth;
2184
}
2185
return b_loop == this;
2186
}
2187
2188
//------------------------------scale_freq-------------------------------------
2189
// Scale frequency of loops and blocks by trip counts from outer loops
2190
// Do a top down traversal of loop tree (visit outer loops first.)
2191
void CFGLoop::scale_freq() {
2192
double loop_freq = _freq * trip_count();
2193
_freq = loop_freq;
2194
for (int i = 0; i < _members.length(); i++) {
2195
CFGElement* s = _members.at(i);
2196
double block_freq = s->_freq * loop_freq;
2197
if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
2198
block_freq = MIN_BLOCK_FREQUENCY;
2199
s->_freq = block_freq;
2200
}
2201
CFGLoop* ch = _child;
2202
while (ch != NULL) {
2203
ch->scale_freq();
2204
ch = ch->_sibling;
2205
}
2206
}
2207
2208
// Frequency of outer loop
2209
double CFGLoop::outer_loop_freq() const {
2210
if (_child != NULL) {
2211
return _child->_freq;
2212
}
2213
return _freq;
2214
}
2215
2216
#ifndef PRODUCT
2217
//------------------------------dump_tree--------------------------------------
2218
void CFGLoop::dump_tree() const {
2219
dump();
2220
if (_child != NULL) _child->dump_tree();
2221
if (_sibling != NULL) _sibling->dump_tree();
2222
}
2223
2224
//------------------------------dump-------------------------------------------
2225
void CFGLoop::dump() const {
2226
for (int i = 0; i < _depth; i++) tty->print(" ");
2227
tty->print("%s: %d trip_count: %6.0f freq: %6.0f\n",
2228
_depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
2229
for (int i = 0; i < _depth; i++) tty->print(" ");
2230
tty->print(" members:");
2231
int k = 0;
2232
for (int i = 0; i < _members.length(); i++) {
2233
if (k++ >= 6) {
2234
tty->print("\n ");
2235
for (int j = 0; j < _depth+1; j++) tty->print(" ");
2236
k = 0;
2237
}
2238
CFGElement *s = _members.at(i);
2239
if (s->is_block()) {
2240
Block *b = s->as_Block();
2241
tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
2242
} else {
2243
CFGLoop* lp = s->as_CFGLoop();
2244
tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
2245
}
2246
}
2247
tty->print("\n");
2248
for (int i = 0; i < _depth; i++) tty->print(" ");
2249
tty->print(" exits: ");
2250
k = 0;
2251
for (int i = 0; i < _exits.length(); i++) {
2252
if (k++ >= 7) {
2253
tty->print("\n ");
2254
for (int j = 0; j < _depth+1; j++) tty->print(" ");
2255
k = 0;
2256
}
2257
Block *blk = _exits.at(i).get_target();
2258
double prob = _exits.at(i).get_prob();
2259
tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
2260
}
2261
tty->print("\n");
2262
}
2263
#endif
2264
2265